

1 **Tobacco use and associated factors among Rwandan youth aged 15-34 years: Findings
2 from a nationwide survey, 2013**

3 François Habiyaremye^{1, 2*}, Samuel Rwunganira^{1, 2}, Clarisse Musanabaganwa¹, Marie Aimée
4 Muhimpundu¹

5 ¹Department of Institute of HIV/AIDS Diseases Prevention and Control, Non-Communicable
6 Diseases Division, Rwanda Biomedical Center, Kigali, Rwanda;

7 ²Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences,
8 School of Public Health, Field Epidemiology and Laboratory Training Program, University of
9 Rwanda, Kigali, Rwanda,

10 *francoishabiyaremye2040@gmail.com

11 **Abstract**

12 **Introduction**

13 Tobacco use is the single most preventable cause of death in the world. The objective of this
14 study was to determine the prevalence of current tobacco use and identify associated factors
15 among Rwandans aged 15-34 years.

16 **Methods**

17 This cross-sectional analytical study analysed secondary data collected during the nationally
18 representative Non-Communicable Disease Risk Factors Surveillance survey conducted in 2013
19 to explore the prevalence of tobacco use in Rwanda and identify factors associated with tobacco
20 use. This study analysed data collected from 3,900 youth participants (15-34 years old), selected
21 using multistage cluster sampling technique. The overall proportion of current smokers, as well
22 as demographic and socioeconomic characteristics of the sample were determined and

23 multivariable logistic regression employed to identify factors independently associated with
24 current tobacco use.

25 **Results**

26 The prevalence (weighted) of current tobacco use (all forms) was 8% (95%CI: 7.08-9.01).
27 Prevalence statistically significant was found in the following group: higher prevalence was
28 found among males, young adults aged 24-34, youth with primary school education or less, those
29 from Southern province, people with income (work in public, private organizations and self-
30 employed) and young married adults.

31 There was no statistically significant difference in prevalence of tobacco use between
32 participants from urban or rural areas (7.8% vs. 8.0%). Factors that were found to be associated
33 with current tobacco use through the multivariate analysis included being a male, aged 25 years
34 and above, having an income, and residing in Eastern, Kigali City and Southern Province
35 compared to Western province.

36 **Conclusion**

37 The association between smoking and sociodemographic characteristics among Rwandan youth
38 identified in this study provides an opportunity for policy makers to tailor future policies, and
39 implement coordinated, high-impact interventions to prevent initiation of tobacco use among the
40 youth.

41 **Funding:** These authors have no support or funding to report

42 **Competing Interests:** The authors have declared that no competing interests exist.

43 **Introduction**

44 Tobacco use is the single most preventable cause of death in the world[1]. The World Health
45 Organization (WHO) estimates that there are nearly one billion smokers globally[2]. Every year,

46 smoking accounts for more than 7 million preventable deaths worldwide[3]. The annual deaths
47 are expected to reach 8 million by 2030 if no cost effectiveness measures to reduce smoking are
48 initiated [4]. Approximately 80% of all the tobacco attributable deaths occur in low-middle
49 income countries (LMICs)[5] such as Rwanda where tobacco use among adults is estimated to be
50 13%[6].

51 Without implementation and enforcement of effective tobacco control policies, smoking
52 prevalence could increase to as high as 22% globally and in the WHO African region by 2030
53 [7]. The 2013 global burden of disease report estimates that deaths from tobacco use are among
54 the top five causes of mortality in the East African Community (EAC) countries; Burundi,
55 Kenya, Rwanda, South Sudan, Tanzania, and Uganda [8].

56 Current evidence shows that the path towards smoking and smoking addiction starts at a young
57 age and strongly influences future adult smoking behaviour [9-10]. In Rwanda, no studies have
58 been conducted to identify the major risk factors of tobacco use among the youth. This study
59 was conducted to determine the prevalence of current tobacco use and identify associated factors
60 among Rwandans aged 15-34 years. The Rwandan government policies cap the age of youth as
61 persons aged between 14 to 35 years old[11].

62 This study was the first comprehensive analysis of the association of current tobacco use and
63 selected socio-demographic characteristics for youth aged 15-34 in Rwanda, and provides
64 evidence for a more targeted programmatic response to tobacco use among the youth in the
65 country.

66 **Materials and Methods**

67 **Study design and study population**

68 This was a cross sectional analytical study using secondary data collected from the nationally
69 representative Non-Communicable Disease Risk Factors Survey, 2013 of Rwanda.

70 **Description of the Rwanda Non-Communicable Disease Risk Factors Survey STEPS
71 Survey**

72 The STEPS survey was a population based cross-sectional study conducted in all 30 districts
73 throughout the country from November 2012 to March 2013. The overall objective was to assess
74 the magnitude of risk factors of selected Non-Communicable Diseases in the Rwandan
75 population using the WHO STEPwise approach to surveillance (STEPS).

77 A multi-stage cluster sampling design was used to select a nationally representative sample. The
78 WHO STEPSwise approach was used to collect data using personal digital assistants (PDAs).
79 These data included socio demographic and behavioural information; physical measurements
80 such as height, weight, blood pressure and waist and hip circumference. Additionally,
81 biochemical measurements were collected to assess total cholesterol, triglycerides levels, fasting
82 blood glucose and urine albumin. In the initial survey, 7200 participants aged 15-64 years were
83 enrolled.

84 **Data Variables**

85 Information on tobacco use was obtained by asking participants if they were current users of
86 tobacco products. Current smokers were those who had smoked any tobacco product (such as
87 cigarettes, cigars or rolled tobacco) in the previous 12 months. Additional information was
88 collected on behavioral as well as physical and biochemical measurements.

89 **Statistical analyses**

90 For this secondary study, we extracted data from the STEPS survey for participants aged 15-34
91 years. Frequencies and percentages were used for descriptive analysis. The primary outcome,
92 current tobacco use among participants aged 15 to 34 years was modeled as a binary variable.
93 We carried out weighted analysis to determine the prevalence of tobacco use and conducted
94 multivariable logistic regression models to identify factors independently associated with current
95 tobacco use. A p-value ≤ 0.05 was considered as significant. We used STATA (StataCorp
96 11.stata statistical software: Release 12. College Station, Tx:StataCorp LP.) to conduct data
97 analysis.

98 **Ethical consideration**

99
100 The survey's protocol was reviewed and approved by the Rwanda National Ethics Committee
101 (RNEC) and the Centers for Disease Control and Prevention (CDC) Institutional Review Board.
102 Consent was obtained from participants and no individually identifiable information was
103 collected.

104 **Results**

105 **Characteristics of participants**

106 A total of 3900 participants aged 15-34 years were included in the analysis, of which 2405 (62%)
107 were females. Eighty-three percent (3233) had primary education and below, 80% (944) lived in
108 urban areas, 56% (2187) were married and 80% (3121) were engaged in some form of income
109 generating employment. The sociodemographic characteristics of study participants by tobacco
110 use are shown in table 1.

111 **Table 1: Socio-demographic characteristics by tobacco use (N = 3900)**

Variables	Tobacco use				
	N	Percentage	Yes	No	p value
15-24	1511	38.7	4.4	95.5	0.001***
25-34	2389	61.3	12.4	87.5	
Gender					
Men	1495	38.3	13.9	86	0.001***
Women	2405	61.7	2.4	97.5	
Level of Education					
Primary school and below	3233	82.9	8.7	91.2	0.001***
Secondary and High	669	17.1	4.7	95.2	
Province					
Eastern	972	24.9	8.8	91.1	0.001***
Kigali	560	14.3	7.2	92.8	
Northern	651	16.6	5.4	94.5	
Southern	773	19.8	14	85.9	
Western	944	24.2	4.3	95.6	
Employment status					
No earnings	764	20	2.7	97.2	0.001***
Earnings	3121	80	9.8	90	
Residence					
Rural	2956	20	8	92	0.89 NS
Urban	944	80	7.8	92	
Marital status					
Married	2187	56.1	9.9	90	0.001***
Others	1713	43.9	6.3	93.6	

112

113 **Tobacco use and associated factors**

114 The prevalence (weighted) of current tobacco use (all forms) was 8% (95%CI: 7.08-9.01).
 115 Higher prevalence was found among males, young adults aged 24-34, youth whose highest
 116 education was primary school or below, those from Southern province (compared to Western),
 117 people with income and young married adults (Table 1). There was no statistically significant

118 difference in prevalence of tobacco use among study participants from urban and those from
119 rural areas (7.8% vs. 8%).

120
121 The factors that were found to be associated with current tobacco use after multivariate analysis
122 are shown in table 2. Smoking was associated with being male, aged 25 years and above,
123 residing in Eastern, Kigali City and Southern Province and having an income.
124 Education attainment was not associated with tobacco use (OR:1.2; 95%CI: [0.8-1.9]).

125 **Table 2: Socio-demographic factors associated with tobacco use among Rwandans aged 15-
126 34 years, 2012-2013.**

Variables	Univariate analysis			Multivariate analysis		
	Cru de OR	95% CI	P-value	Adjus- ted OR	95% CI	P value
15-24	1			1		
25-34	3	[2.2-4.2]	0.001***	2.5	[1.7-3.6]	0.001***
Sex						
Women	1			1		
Men	6.5	[5-8.6]	0.001***	6.9	[5.2-9.1]	0.001***
Education						
Secondary school and over	1			1		
Primary school and below	1.9	[1.26- 2.8]	0.002**	1.2	[0.8-1.9]	0.31 NS
Province						
Western	1			1		
Eastern	2.1	[1.4-3.2]	0.001***	2.3	[1.4-3.6]	0.001***
Kigali	1.7	[1-2.9]	0.04*	2.2	[1.2-3.8]	0.006***
Northern	1.2	[0.7-2.1]	0.3NS	1.2	[0.7-2.1]	0.4NS
Southern	3.6	[2.4-5.3]	0.001***	3.4	[2.2-5.1]	0.001***
Residence						
Urban	1					
Rural	1.02	[0.7-1.3]	0.89 NS			
Employment status						
No earning	1			1		
Earning	3.8	[2.4-6,1]	0.001***	2.5	[1.4-4.2]	0.001***
Marital status						

127	Others	1		
	Married	0.6	[0.4-0.7]	0.001***

128 **Discussion**

129 The WHO STEPS survey was conducted in Rwanda with the aim of providing national level
130 estimates for various NCD risk factors (including tobacco use). To our knowledge, this is the
131 first study conducted to assess tobacco use and associated factors among youth (15-34 years) in
132 Rwanda. Our report using the Rwanda WHO STEPs database provides national-level estimates
133 and information about the prevalence of tobacco use among youth and factors associated with its
134 use in Rwanda. This secondary analysis targeted the youth which comprises over 60% of the
135 Rwanda population and also represents the age at highest risk of tobacco initiation [10-12].

136 The findings of the study revealed that prevalence of current tobacco use was 2.4% among
137 young women, 14% among young men while the overall prevalence among the youth aged 15-35
138 was 8%. The results revealed quite similar differences in prevalence by gender among the youth
139 and that of all adults observed during the RDHS 2014/2015 (2% women and 13% men)[14].

140 These findings are consistent with those of global estimates and other surveys which have
141 found tobacco use to be more prevalent among men than women of all population groups[15].

142 The observation of higher tobacco consumption among males among Rwandan youth has been
143 consistently observed in many studies conducted in Rwanda and elsewhere. For example,
144 evidence from the Rwanda National health surveys[15][16][13], Rwanda NCDs risk factors
145 surveys[6], the psychoactive substance abuse study[17], Ethiopian study on prevalence of
146 tobacco use and associated factors[18], Southeast Asian Countries study, and the
147 sociodemographic correlates of tobacco consumption in Rural Gujarat, India[19][20], have all

148 found prevalence of tobacco use to be higher among men compared to women. In this case,
149 lower consumption of tobacco use among females in our study, may be accentuated by a social
150 desirability bias.. The culturally tailored stigma associated with tobacco use among females may
151 also have influenced their response.

152 The lower prevalence of tobacco use among the youth compared to the general population
153 implies that there is a window of opportunity to intervene before the youth begin smoking.
154 Implementing coordinated, high-impact interventions, and stricter implementation of tobacco
155 control measures including mass media campaigns specifically targeting the youth will provide a
156 chance to prevent initiation of tobacco use.

157 This study identified various socio-demographic factors to be associated with tobacco use. These
158 included age, gender, income status and province of residence. The association with age, income
159 and gender has been observed in multiple studies [16-23]. The association with income was
160 also consistent with findings of the World Health Survey on social determinants of smoking in
161 low and middle-income countries which have shown that smoking is more prevalent among
162 people with income s compared to those without. This has been found to be significant after
163 controlling for age, education and wealth in all settings except women of the low-income country
164 group[24]. In light of existing evidence, persons with higher incomes have the likelihood to
165 avoid smoking initiation and use tobacco less[22]. Nevertheless, considering the present study, I
166 think that income may be a risk factor because tobacco taxation have increased cigarettes prices
167 on the market. Therefore, people in the poorest wealth quintile may not afford tobacco products.
168 These findings contrast with the 2015 study conducted in Ethiopia, which found that adults with
169 low income were more likely to use tobacco as compared to the high income group[18].

170 This study shows that 8% of Rwandan youth are smokers compared 13% of the general
171 population (15-64 years). This raises concern because young generation will die for tobacco if
172 they don't quit smoking. This may be attributable to the fact that tobacco industries have end
173 edge technology to market their products and recruit more users among youth. Another aspects is
174 that young people may have social networks/wrong companion to initiate them in tobacco
175 consumption hence they don't have resources and capacity to avoid initiating tobacco and make
176 necessary steps to quit smoking for those who have already using tobacco. Therefore, behavioral
177 interventions coupled with cessation programs can help these young people to avoid or quit
178 smoking.

179 This study revealed variation in tobacco use throughout Rwanda's Provinces. The highest
180 prevalence was found in Eastern Province This difference could be attributed to the availability
181 of contraband cigarettes in this region and tobacco farming at a small scale for consumption
182 purpose.

183 This study had a number of strengths. First, this was the first nationwide study that allowed the
184 assessing of factors associated with the current tobacco use in Rwandan youth aged 15-34 years.
185 Secondly, the overall response rate of 99.8% for Step 1, and 98.8% for Steps 2 and 3 in the
186 primary study was very high and allowed the findings to be generalizable to all Rwandan youth
187 aged 15-34 years.

188 The limitations of this study were that although it utilized data from the nationally representative
189 Non-Communicable Disease Risk Factors Surveillance STEPS 2013 of Rwanda, we could not
190 establish a temporal relationship between the associated factors and tobacco use.

191 In addition, limited variables were collected during the primary data collection and it was not
192 possible to assess other variables for this study. Furthermore, there is possibility of social

193 desirability bias in reporting tobacco use, especially among women and might have led to
194 underestimating of prevalence. Considering that the survey was carried out by health care
195 workers, social desirability might be even higher.

196 The study has some implications: First, considering the health consequences of tobacco use,
197 having 8% of Rwandan youth as tobacco users represents a substantial risk for morbidity and
198 mortality unless preventive measures are instituted to mitigate the challenge. Cost effective
199 interventions like health education should be prioritized to sensitize the youth on the risks
200 associated with tobacco use. Sustained efforts through price controls and tax measures,
201 comprehensive ban of tobacco smoking in public places, implementation and enforcement of
202 bans to selling tobacco to and by minors in schools and families.

203 Second, the higher tobacco use among Rwandan youth implies that tobacco initiation occurs at a
204 young age group. Implementing targeted interventions in education institutions (primary and
205 secondary schools, all high learning institutions) should be initiated and strengthened early.

206 Third, there is a need to establish tobacco cessation program in primary care settings. Tobacco
207 cessation services can be initiated and be made accessible to all who want to quit. Primary health
208 care workers including nurses at health facilities and home based health care workers and
209 teachers can be trained on counselling and other components of tobacco cessation services.

210 Fourth, as tobacco use is a behavioral problem and health workers support is proven to be useful,
211 education of the patients of any non-communicable disease during their contact with health care
212 provider should be a service of immense importance. Additionally, conventional and folk media
213 should be used to educate youth at early ages to prevent initiation of tobacco use.

214 **Conclusions**

215 The objective of the study was to assess the current smoking prevalence and associated factors
216 among Rwandan youth aged 15-34 years. This study shows that prevalence of tobacco smoking
217 is high among Rwandan youth and is estimated to 8%. The study found that the factors
218 significantly associated with tobacco use among the study population include age, gender,
219 province of residence and employment status.

220 These findings provide an opportunity for policy makers, decision makers and relevant
221 stakeholders to develop targeted interventions for young people while implementing tobacco
222 control policies and planning tobacco control interventions in general. Since Rwandan youth are
223 at the risk of using tobacco, identifying ways and means of reaching out to these group will be
224 critical to the success or failure of the tobacco control program.

225 **References**

- 226 1. W H O. Fresh and Alive. WHO Rep th Glob Tob Epidemic 2008 MPOWER Packag fresh
227 alive [Internet]. 2008;330. Available from:
228 http://www.who.int/tobacco/mpower/mpower_report_full_2008.pdf
- 229 2. Fronczak A, Polańska K, Usidame B, Kaleta D. Comprehensive tobacco control
230 measures--the overview of the strategies recommended by WHO. Cent Eur J Public
231 Health. 2012;20(1):81–6.
- 232 3. Report WHO, The ON, Tobacco G. Monitoring tobacco use and prevention policies.
233 2017.
- 234 4. Blecher E, Ross H. Tobacco Use in Africa : Tobacco Control through Prevention. Am
235 Cancer Soc. 2013;
- 236 5. Reddy KS, Yadav A, Arora M, Nazar GP. Integrating tobacco control into health and
237 development agendas. Tob Control [Internet]. 2012 Mar [cited 2013 Jul 30];21(2):281–6.
238 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22345268>
- 239 6. Health M of. Rwanda Non-communicable Diseases Risk Factors Report. 2015.
- 240 7. Anderson CL, Becher H, Winkler V. Tobacco control progress in low and middle income
241 countries in comparison to high income countries. Int J Environ Res Public Health.
242 2016;13(10).
- 243 8. Farkas AJ, Gilpin EA, Distefan JM, Pierce JP. The effects of household and workplace
244 smoking restrictions on quitting behaviours. Tob Control. 1999;8:261–5.
- 245 9. Early H, Kids D, Smoking T, Soon H, Regular B, Smokers D. The path to tobacco

246 addiction starts at very young ages. 2013;(202):18–20.

247 10. Azagba S, Baskerville NB, Minaker L. A comparison of adolescent smoking initiation
248 measures on predicting future smoking behavior. *Prev Med Reports* [Internet].
249 2015;2:174–7. Available from: <http://dx.doi.org/10.1016/j.pmedr.2015.02.015>

250 11. NSIR. Rwanda Fourth Population and Housing Census, Rwanda. Thematic report:
251 Population size , structure and distribution. Rwanda Fourth Population and Housing
252 Census, Rwanda. Thematic report: Population size , structure and distribution. 2012.

253 12. U.S. Surgeon General. Preventing Tobacco Use Among Youth and Young Adults. A
254 report from the Surgeon General. US Dep Heal Hum Serv [Internet]. 2012;1395.
255 Available from: <http://www.surgeongeneral.gov/library/reports/preventing-youth-tobacco-use/factsheet.htm>

256 13. National Institute of statistics. Rwanda Demographic and Health Survey. Rwanda. 2015.
257 640 p.

258 14. Sitas F. Tobacco attributable deaths in South Africa. *Tob Control* [Internet].
259 2004;13(4):396–9. Available from: <http://tobaccocontrol.bmjjournals.org/cgi/doi/10.1136/tc.2004.007682>

260 15. Gatarayiha JP, Mukanyonga A, Kayirangwa E, Kabeja A, Rukundo A, Kabagwira A, et al.
261 REPUBLIC OF RWANDA Rwanda Demographic and Health Survey 2005. 2006;
262 Available from: <http://www.measuredhs.com>

263 16. NISR. Rwanda. Report [Internet]. 2010;2003:107–10. Available from:
264 http://www.journals.cambridge.org/abstract_S0266673100000246

265 17. Kanyoni M, Gishoma D, Ndahindwa V. Prevalence of psychoactive substance use among
266 youth in Rwanda. *BMC Res Notes* [Internet]. 2015;8(1):1–8. Available from: ???

267 18. Lakew Y, Haile D. Tobacco use and associated factors among adults in Ethiopia: Further
268 analysis of the 2011 Ethiopian Demographic and Health Survey. *BMC Public Health*.
269 2015;15(1):1–8.

270 19. Sreeramareddy CT, Pradhan PMS, Mir IA, Sin S. Smoking and smokeless tobacco use in
271 nine South and Southeast Asian countries: Prevalence estimates and social determinants
272 from Demographic and Health Surveys. *Popul Health Metr*. 2014;12(1).

273 20. Kahar P, Misra R, Patel TG. Sociodemographic Correlates of Tobacco Consumption in
274 Rural Gujarat, India. *Biomed Res Int*. 2016;2016.

275 21. Hosseinpoor AR, Parker LA, Tursan d'Espaignet E, Chatterji S. Social determinants of
276 smoking in low- and middle-income countries: Results from the world health survey.
277 *PLoS One*. 2011;6(5).

278 22. Tee GH, Aris T, Rarick J, Irimie S. Social determinants of health and tobacco use in five
279 low and middle-income countries - results from the Global Adult Tobacco Survey
280 (GATS), 2011 - 2012. *Asian Pacific J Cancer Prev* [Internet]. 2016;17(3):1269–76.
281 Available from: http://journal.waocp.org/article_32231_104cb760aa5e846c9b1c5f49893b7d18.pdf

282 283

284 285

286 Acknowledgments

287 The views expressed in this paper are those of the author(s) and do not necessarily represent the
288 views or policies of the Rwanda Ministry of Health. Authors acknowledge the contributions of Dr.
289 Omolo Jared from the Centers for Disease Control and Prevention (CDC), Kigali, Rwanda;

290 for his inputs and comments to the entire manuscript.

291 **Author Contributions**

292 Conceived and developed the protocol: FH. Analyzed the data: SR. Wrote the paper: FH.

293 Provided inputs into conception and development of the protocol: FH. Provided inputs and

294 comments into writing of the manuscript: CM, MAM and SR.