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The mechanical response of single cells and tissues exhibits a broad distribution
of time scales that gives often rise to a distinctive power-law regime. Such complex
behaviour cannot be easily captured by traditional rheological approaches, making
material characterisation and predictive modelling very challenging. Here, we present
a novel model combining conventional viscoelastic elements with fractional calculus
that successfully captures the macroscopic relaxation response of epithelial mono-
layers. The parameters extracted from the fitting of the relaxation modulus allow
prediction of the response of the same material to slow stretch and creep, indicating
that the model captured intrinsic material properties. Two characteristic times can be
derived from the model parameters, and together these explain different qualitative
behaviours observed in creep after genetic and chemical treatments. We compared the
response of tissues with the behaviour of single cells as well as intra and extra-cellular
components, and linked the power-law behaviour of the epithelium to the dynamics
of the cell cortex. Such a unified model for the mechanical response of biological
materials provides a novel and robust mathematical approach for diagnostic methods
based on mechanical traits as well as more accurate computational models of tissues
mechanics.

As part of their physiological function, single cells and tissues are continuously exposed to
mechanical stress. For example, leukocytes circulating in the blood must squeeze through small
capillaries, and the epidermis must deform in response to movements of our limbs. During devel-
opment, mechanical forces initiate morphogenetic processes involving epithelial growth, elongation
or bending, acting as cues to coordinate morphogenetic events [1]. Epithelial cell sheets are also
continuously subjected to deformation as part of normal physiology. For instance, lung epithelial
cells are exposed to fast cyclical mechanical stress during respiration [2], while epithelia lining the
intestinal wall or those in the skin can experience long lasting strain [3]. Failure to withstand phys-
iological forces results in fracture of monolayers which may lead to severe clinical conditions, such
as hemorrhage or pressure ulcers [3]-[6]. Despite significant progress with the experimental charac-
terization of cell and tissue mechanics, understanding the role of mechanical forces in development
and pathology is hampered by the lack of a unified quantitative approach to capture, compare and
predict the complex mechanical behaviours of tissues, cells, and sub-cellular components across all
physiologically relevant time-scales. Such a framework would also enable us to assess the effects
of pharmacological treatments on tissue mechanical response without necessitating experimental
characterization of the tissue response to all loading conditions, something important for tissue
engineering and the design of palliative treatment strategies.

In recent years, experimental characterization of the mechanical behaviour of single cells and
tissues has revealed a complex set of mechanical behaviours in response to deformation [7]-[10]. For
example, both single cells and tissues often display multiphasic responses in stress relaxation and
creep tests, which comprise a combination of power-law and exponential behaviours. Power-law
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responses are commonly observed in biomaterials and are thought to originate from their complex
hierarchical structure [11]-[14]. These behaviours cannot be easily modelled using traditional
linear viscoelasticity, where constitutive rheological models result from combinations of elastic
springs and viscous dashpots that translate into sets of linear ordinary differential equations [9],
[15]-[18]. In this framework, power laws can only be implemented through a large numbers of
linear elements [19], making this approach impractical and uninformative. Empirical functions
have been introduced to overcome this challenge [11], [20], [21], but the lack of underlying material
model, in the form of a computable differential equation, prevents the direct comparison of data
collected under different loading conditions.

One potential approach for modelling the mechanics of materials presenting power-law be-
haviours is fractional calculus [22]. This relies on the introduction of a mechanical viscoelastic
element called a spring-pot whose behaviour is intermediate between a spring and a dashpot [23].
This element based on fractional derivatives captures, with only two parameters, the broad distri-
bution of characteristic times [24] typical of the mechanical response of cellularised materials. This
element has recently been combined with traditional elements to model more complex rheological
behaviours, referred to as generalized viscoelastic models [25].

In this paper, we examine the potential of generalized viscoelastic models for modelling bi-
ological materials by combining traditional rheological elements with the springpot. With only
four parameters, we capture the time-dependent response of single cells and epithelial monolayers.
Using parameters extracted from relaxation tests, we are able to predict the response of the same
material to creep and ramp deformations with no further fitting, and relate the model parameters
to single cell characteristics as well as recent measurements of cortical rheology.

A constitutive model for epithelial monolayers

One widely used model system for studying tissue mechanics is the epithelium monolayer. We
focused on MDCK cell monolayers devoid of substrate, of typical width of 2 mm and suspended
between two rods at a distance of 1.5 mm. Despite the absence of a substrate, cells still retain
epithelial characteristics [9]. Such a material has now been extensively studied [26], [27], and the
effect of pharmacological treatments on rheological properties characterized [20]. The advantage of
such a simplified system lies in the fact that the tension is transmitted only through the intercellular
junctions and the cytoskeleton, but not the extracellular matrix. The relaxation response (response
to a step in strain, see experimental details in section 1 in Supplementary materials) consists of an
initial power-law phase in the first 5 s, followed by an exponential phase that reaches a plateau at
~ 60 s (figure 1) [20]. This description establishes the minimum number of parameters needed to
describe such a rich behaviour: (i) the level of the final plateau, (ii) the exponential decay time,
(iii) the power-law exponent and (iv) the transition time between the two phases. This qualitative
analysis will now inform the development of a novel rheological model tailored to capture these
four components of the response using the minimum number of parameters.

A branch of Mathematics called Fractional Calculus provides conceptual and numerical tools
well suited to capture power law behaviours (28], [29]. In traditional calculus, a function can
be differentiated n times, where n is an integer. For viscous (fluid-like) materials, the stress
is proportional to the first time derivative of the strain, where n = 1. For elastic (solid-like)
materials, the stress is proportional to the strain, which can be seen as the zero-th time derivative
of the strain n = 0. Fractional calculus generalizes the differentiation process such that the number
n can now be real (see Supplementary materials section 2). With the spring-pot fractional element,
the stress is proportional to the 8 derivative of the strain, where 0 < g < 1:

ﬂﬁ
o(t) = cﬁddtg), (1)

where cg is a constant dependent on the material and dP /dt? is the fractional derivative operator.
When 5 = 0, the material behaves like a spring, and, when 8 = 1, like a dash-pot. As 3 varies from
0 to 1, the response of the material continuously transitions from elastic to viscous behaviour and
if a step change in stress or strain is applied, the response exhibits a power-law. Mathematically,
the response is only defined by an integral over time, leading to strong history dependence, referred
to as the hereditary phenomena (Supplementary materials section 2). Despite this complexity, the
spring-pot still lies in the linear viscoelastic framework, enabling us to greatly simplify the analysis
of the data and make predictions. For dimensional consistency, the unit of the constant cg is (Pa
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Figure 1: Representative experimental data of the stress relaxation of epithelial mono-
layers depleted of substrate (previously reported in [20]). (a) An example of relaxation curve
which highlights the final plateau. After removing the plateau, the relaxation curve is plotted in
semilogarithmic scale (b) and logarithmic scale (c) to identify respectively the exponential and
power-law behaviours.

s7#), and therefore it does not have a straightforward physical meaning, although, it has been
argued that it may represent a measurement of the firmness of the material [30].

The spring-pot can be combined with other rheological elements to generate a rich set of be-
haviours [31]. Configurations explored so far were mostly selected for their mathematical simplicity,
rather than relevance to particular physical systems [25], [32]. Here, we adopt a phenomenological
approach based on our qualitative description of the material’s behaviour, aiming to capture both
its short and long time-scale response. At long time scale, the stress response shows a plateau
(figure 1 (a)). Hence the model requires a spring in parallel with a dissipative branch that would
not carry any tension in steady state. At intermediate time scales, the stress relaxes exponentially
towards the plateau (figure 1 (b)). Hence the dissipative branch should behave as a dash-pot in se-
ries with an element that would transiently store deformation, for instance a spring as in a Maxwell
model [33]. However, at short time scale (0.1-10 s), the dissipative branch exhibits a power-law.
The presence of a power-law relaxation response immediately after application of strain, rather
than a specific jump in stress, indicates that we should replace the spring in the dissipative branch
with a spring-pot (see figure 2 (a)). The fractional model introduced in the dissipative branch is a
special case of a known combination referred to as a Fractional Maxwell Model (FMM) [31]. The
constitutive equation for the fractional material model introduced here in figure 2 (a) is reported
in the Supplementary materials section 2. In what follows, such a qualitative approach is validated
against experimental data, leading to a predictive model of the material’s behaviour.

The generalized fractional viscoelastic model characterizes the biphasic stress relax-
ation response

The relaxation modulus (stress response to a unit strain of deformation) of the fractional network
model introduced above can be derived analytically. Since the relaxation modulus of two elements
in parallel is given by the sum of their relaxation moduli, the relaxation modulus G(t) of the novel
viscoelastic model presented in figure 2 (a) is obtained by adding the relaxation modulus of the
Fractional Maxwell Model (FMM) to the stiffness of the spring, which results in

G(t) = CgtiBElfg’lfg (—Cnﬁtlﬂ> + k, (2)

where E, 4 (z) is the Mittag-Leffler function, a special function that arises from the solution of
fractional differential equations (see Supplementary materials section 2). The qualitative behaviour
of the relaxation modulus is plotted in log-log scale in figure 2 (a). Since the argument of the
Mittag-Leffler function is non-dimensional, we can identify a first characteristic time 71, given by
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Figure 2: Fractional viscoelastic model for epithelial monolayers: constitutive model
and stress relaxation behaviour. (a) Diagrammatic representation of the fractional rheological
model and qualitative behaviour of its stress relaxation modulus. The spring combined with the
spring-pot gives the initial response to a step in strain occurring at t=0 s. After the power-law
decay, the curve converges to a plateau set by the stiffness of the spring. The characteristic time 71
dictates the transition between power-law and exponential regimes. The three-element fractional
model is fitted to the relaxation data for (b) untreated epithelial monolayers (black curves are
the experimental data, while the red curves represent the fit) and (¢) monolayers treated with an
inhibitor of contractility, Y27632 (the black curves are the experimental data, while the blue curves
are the fits).

which approximates the transition time between the power-law and the exponential regime. The
significance of 7 as a characteristic relaxation time will be evident when the model is used to
analyze real data.

To assess the validity of the fractional model, we used it to fit the relaxation response of ep-
ithelial monolayers (see Supplementary materials section 1 for details of the experimental set up).
In agreement with the qualitative analysis of the curves (figure 1), the four parameters involved
in equation 2 account for the experimental data (see figure 2 (b)), successfully capturing all time
domains: the power-law regime (for t < 10 s), the exponential behaviours and the steady-state
stress. We further examined if the model could capture the relaxation response of epithelial sheets
in which myosin contractility, one of the most important component controlling cellular mechanical
properties, was inhibited [34]. We observed indeed that the same four parameters could fit well
the experimental data (figure 2 (c)). This allows us to compare the parameters extracted from
treated monolayers with their control (DMSO treated, figure S6 in Supplementary materials). The
viscosity 7 of treated monolayers doubles compared to the DMSO treated monolayers (figure S6 (c)
in Supplementary materials), in line with cell-scale findings suggesting that dynamic contraction
of actin filaments increases cell fluidity [7]. By contrast, a reduction of the stiffness k& was observed
(figure S6 (d) in Supplementary materials), which suggests that acto-myosin contractility mainly
plays a role in stress dissipation at long time-scale, consistent with the conclusions previously pre-
sented by [7], [20]. Other treatments have been applied to monolayers to examine the role of actin
network organization and crosslinkers, without observing significant variations in the relaxation
response of monolayers (see figures S6 and S7 in Supplementary materials).

The generalised fractional viscoelastic model predicts the response to different loading
conditions with no further fitting

The model relies on the assumption that the material behaves linearly. To identify the linear
domain, we examined the stress response at different strain amplitudes ranging from 20% to 50%.
We can observe that the material parameters are almost constant until roughly 30% (see figure
S8 in Supplementary materials), which provides an upper bound of the linear domain where we
expect the model to be valid. Within this range, we can assess the predictive power of our rhe-
ological description of epithelial monolayers. We extracted a distribution of parameters from the
stress relaxation data and used them to estimate the response of the material to different forms
of mechanical stimulation. Good agreement between predictions and experiments over a broad
range of testing protocols would signify that our description represents a constitutive model whose
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Figure 3: Prediction of epithelial monolayers response to different mechanical stimuli
using the mechanical parametrization determined from stress relaxation experiments
with no further fitting. (a) Predicted stress response of the untreated monolayers when sub-
jected to a slow stretch (1%/s). The predicted responses (95% confidence interval red areas and
70% yellow areas) are in good agreement with the experimental data (black curves). The upper
and lower limits of the predicted response are obtained by considering the standard error for each
mechanical parameter. (b) The creep response of epithelial monolayers: fractional model response
and experimental data. Sketch of the creep compliance of the generalized fractional viscoelastic
model. Three possible qualitative behaviours can arise dependent on the relative values of the two
characteristic times. (¢) Creep response of the untreated epithelial monolayers. Two loadings are
tested, 170 Pa (blue area) and 470 Pa (green area). These loads correspond to an initial strain
respectively of 5% and 20%; therefore, the linearity assumption still holds. Note that the initial
response of the creep is different from (b). This is due to the ramp during the initial phase (see
section 1 Supplementary materials).

parameters can be seen as material properties. We first consider the stress response to a strain
ramp applied at constant strain rate (1%/s). The predicted response for the untreated monolayers
is shown in figure 3 (a), with 95% confidence interval (see sections 3 and 5 Supplementary mate-
rials for details about prediction and statistical analysis, and see figure S5 (a) for Y27632 treated
monolayers). The experimental results and the analytical predictions are in excellent agreement
with no free parameters.

Similarly, we can challenge the model by predicting and validating the deformation response
J(t) of the epithelial monolayers to a unit step in stress, a test usually referred to as a creep
experiment (see section 3 Supplementary materials). For linear viscoelastic materials the relation
between relaxation G(s) and creep J(s) moduli in the Laplace domain is relatively simple, and
given by G(s)J(s) = s~2. After transforming the relaxation modulus in equation (2) in the Laplace
domain, we find:

Ty L 1+ (ns)t=? A
(s) = ks (n/k)s + 1+ (r18)1-8 )

To obtain the solution in the time domain J(t), the inverse Laplace transform of the equation
above is performed numerically.

The creep response is richer than the relaxation response, for which k£ only added a simple
offset to the stress. Here, because the imposed load can continuously redistribute between the
two branches of the model, k is involved in the dynamics. We can indeed identify in the creep
response an additional time-scale 75 involved in the response: 7o = . We therefore have one
additional dimensionless parameter which controls the shape of the creep response & = 71 /7s.
The value of ¢ leads to qualitatively different responses as plotted in figure 3 (b). (i) If £ < 1,
at short times we first observe a power-law behaviour arising from the spring-pot followed by an
exponential regime where the dashpot dominates. The transition from spring-pot-dominated to
dashpot-dominated regime is governed by the characteristic time 71, as for the relaxation response.
While the deformation increases, the spring eventually becomes relevant and the system tends
towards the plateau as a Kelvin-Voigt model with a characteristic time 7. (ii) If £ > 1, the spring
saturates before the transition to the dashpot occurs in the dissipative branch. Hence, the model
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behaves as a Fractional Kelvin-Voigt model with a characteristic time 75 = (cg/ k)l/ # which can
be expressed as 75 = 7'1(671)/5 S 721/&. 71 is irrelevant in this regime. (iii) If £ ~ 1 the transition
from the spring-pot to the dashpot corresponds to the time at which the spring becomes relevant.
Therefore, the transition from the spring-pot to the Kelvin-Voigt model occurs with characteristic
time 7 &= To.

The model is now used to predict the response of monolayers when subjected to a step in
stress using the material parameters derived from the relaxation experiments. We performed new
experiments to test our model’s predictive power (see section 1 in Supplementary materials). In
these experiments, we subjected monolayers to a stress which was maintained constant after an
initial short ramp in strain (see inset figure 3 (c)). Strikingly, the experimental data falls well
within the 95% confidence interval of the predicted response with no free parameters (details in
section 3 and 5 in Supplementary materials) (figure 3 (c)).

MDCK monolayers seem to exhibit very different creep behaviour when myosin II activity is
reduced. Whilst untreated monolayers reach a steady strain value after about 100 s, Y-27632
treated tissues continue to flow in a power-law manner (see figure S5), suggesting a qualitative
difference between the two systems. This apparent contrast is however properly accounted for by
the model. The predicted creep responses, calculated using the parameters obtained from figure
2, are in good agreement with the experimental data with no free parameters. Based on the
parameters obtained form relaxation experiments on Y-27632 treated monolayers, 7 and 75 are
both much larger than in the untreated case, and now comparable in value with the duration of the
measurement (see table S2 in Supplementary materials). Furthermore, the reduction of £ in the
treated case, down to 0.7 compared to about 1 in the untreated case (figure S5 (c)), would change
the shape of creep curve and give the impression that creep accelerates rather than saturates at
times close to 71 (figure 3(b)). This analysis illustrates how modelling can bring consistency across
systems that may at first appear qualitatively different, in particular when observed over a finite
experimental time.

Usage of the model beyond epithelial monolayers

Building on the work on MDCK monolayers, we may now consistently analyze data across biologi-
cal systems, and pull information from different research groups, working with different mechanical
testing protocols. For instance, we can show that the model successfully captures the relaxation
response of single isolated cells, such as epithelial MDCK cells (figure 4 (a) [20], details on ex-
perimental setup in section 6) and articular chondrocytes (figure 4 (b), original data presented by
Darling et. al. [35]).

Looking at sub-cellular components, the main factors controlling the mechanical properties of
cells and tissues have been characterized experimentally already. Fischer-Friedrich et al. [7] have
recently performed oscillatory compressions of HeLa Kyoto cells during mitosis by using an AFM
cantilever and analysed the data to extract the rheological behaviour of the cell’s cortical actin
network. To allow the direct comparison between our constitutive model and the rheological data
introduced by Fischer-Friedrich et al. [7], we calculated the analytical expression of the complex
modulus G’ (w) +1G"(w) associated with our model (see section 7 in Supplementary materials) and
fitted the experimental data again with an excellent agreement as shown in figure 4 (c).

Likewise, with the modelling framework presented here we have been able to capture the relax-
ation response of collagen fibrils (figure 4 (d)-top). Furthermore, using the parameters extracted
from fitting the relaxation data, we have been able to predict their creep behaviour (figure 4
(d)-bottom); a quantitative link that was absent in the original paper presented by Shen et al.
[36].

As many biomaterials exhibit power law rheology, examples where the generalized fractional
viscoelastic model successfully captures their behaviour abound in literature—e.g. blastomere cyto-
plasm and yolk cell rheology (see figure S12 (c)-(d) in Supplementary materials). Studies available
in the literature have reported simpler qualitative creep and relaxation behaviour for single cells,
such as a single power-law or a two-power-law behaviour [37]. These responses are embodied as
special cases of the presented generalized model (negligible stiffness and/or large viscosity). To
illustrate this, we fitted the power-law response of single immune cells (figure S13). We could
also capture the creep response of a single muscle cell exhibiting a two-power-law behaviour, and
predict its storage and loss modulus (figure S12 (a)-(b)). This sets the fractional viscoelastic model
presented here as a promising tool to support a unified description of the mechanical response of
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a broad variety of biological tissues.
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Figure 4: The unified model captures the mechanical behaviour regardless of the ex-
perimental set-up, the type of material and the length-scale. (a) Fitting of the relaxation
response of single epithelial cells presented by Khalilgharibi et.al [20]. Each line is a different cell.
(b) Fitting of the relaxation response of articular zone chondrocytes (original data from [35]) (c)
Fitting of the storage and loss modulus of HeLa Kyoto cells (original data from [7]) using the model
presented here. The blue and red dashed lines are respectively the fitted storage and loss modulus
while the dots are the experimental data. (d) Fitting of the relaxation response of collagen fibrils
(top graph) and prediction of the creep response (bottom graph). Original data from [36]. Fitted
parameters in Table S2 in Supplementary materials.

Links with biophysical analysis

Fractional models capture with a few parameters complex power law behaviours commonly asso-
ciated with a broad distribution of relaxation times. A single spring-pot element is for instance
sufficient to model a power law response, with two parameters. The complexity and richness of the
spring-pot is apparent in the way the fractional derivatives are calculated, requiring an integration
over the whole deformation history of the material, whereas the response of traditional elements
only depend on the instantaneous values or rate of change of the strain. This integral expression
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of the derivative is responsible for the strong history dependent effects associated with power law
rheology. The approach becomes even more powerful when combining the spring-pot element with
other rheological components. Based on dimensional analysis, we identified two characteristic times
and an effective stiffness involved in master curves for both the relaxation and creep functions. In
the case of creep, the ratio of the two time-scales controls the qualitative shape of the response,
accounting for seemingly different responses of the material with and without contractility. This
provides ways to bridge our mathematical framework with more physical descriptions of the rhe-
ology of cells and tissues. For example, Fischer-Friedrich et al. [7], after observing that a simple
power law function failed to capture the dynamic response of HeLa Kyoto cells, built a physical
model based on a flat distribution of relaxation times up to a certain cut-off time. The model we
present here captures a similar phenomenology by introducing a dashpot in series with a spring-
pot. The characteristic time 7 defined for the fractional model acts as a cut-off in the relaxation
spectrum, causing a transition from a power-law to an exponential behaviour in the relaxation
function. In both studies, a reduction of myosin activity leads to an increase of the characteristic
or cut-off time scale. The model proved to be useful to compare two different biological systems,
Hela and MDCK, and identify similar behaviours despite the use of distinct testing approaches.

More generally, having a unified language to consistently capture the response of materials over
a broad range of time scales is a significant step towards the understanding of the physical and
biological significance of rheological behaviours, one of the current key challenges in Mechanobiol-
ogy [38]. For instance, by comparing the relaxation response of single MDCK cells with MDCK
monolayers, we noticed that they display similar behaviours (figure 4 (a)). However, looking at
the parameter values (see table S2) reveals that monolayers exhibit a higher stiffness k, "firm-
ness" cg, and viscosity 7. Quantifying these mechanical properties raises novel questions, and
we can only speculate at this stage about the reasons. The increment in stiffness k displayed by
the suspended monolayers compared to single cells may for instance be ascribed to an increase in
cortical contractility as previously reported [20]. By contrast, the origin of the higher "firmness"
of the spring-pot and viscosity n could be related to changes in the internal cell organization when
cells form intercellular junctions to integrate into a monolayer. In the context of single cells, the
relaxation plateau observed when cells are deformed could be associated with cortical tension [7],
confirming further a strong link between k£ and cortical activity.

Although cells often exhibit non-linear behaviours, the model provides a rich base line from
which to assess unusual traits of their response. Recently, Bonakdar et al. [21] performed local
measurements of the rheology of mouse embryonic fibroblasts by imposing cycles of loading at
constant force and relaxation using a magnetic particle linked to the cytoskeleton through the cell
membrane by a fibronectin coating (figure 5 (a)). They observed a power law response coupled
with an incomplete cell recovery suggesting plastic deformations that tend to decrease in amplitude
with the number of loading cycles. Such a local mode of deformation is difficult to model quanti-
tatively due to the complex and undetermined interaction between the bead and cytoskeleton. We
nonetheless simulated such cycles of loading for an arbitrary amplitude of imposed stress, using
the model parameters previously obtained from the MDCK cells. At first, we only considered a
simple power-law behaviour (i.e. a single spring-pot) and confirmed the results of Bonakdar et
al. that a power-law alone cannot reproduce the progressive drift of the bead displacement or cell
deformation observed experimentally (figure 5 (b)). We then tested the full model obtained for
MDCK cells; here again, the model provides deformation that quickly return to 0, missing the
deformation drift visible in the experimental data (figure 5 (c)). However, as discussed earlier, the
spring k appears to be primarily linked to the overall deformation of the cell cortex, providing a
restoring force if the cell is squashed or elongated. Given the local nature of Bonakdar et al.’s
measurements, we expect that the elastic term & originating from cortical tension is likely to be
irrelevant as a first approximation. By removing accordingly the contribution of the spring, the
response to cycles of loading does provide a drift that is more consistent with experimental data,
albeit growing linearly with time and exceeding the experimental trend (figure 5 (d)). However,
it has been shown previously that during application of a local stress through fibronectin coated
beads, cells respond with a local strengthening of the cytoskeleton linkages [39]. By reinstating a
small proportion of the spring value to account for such local stiffening we could generate a series of
curves consistent with the experimental data over the first 80 seconds. Although this analysis may
not fully account for the non-linear plastic behaviour reported in mouse embryonic fibroblasts, it
illustrates very clearly that a number of qualitative distinctive traits, reported in different systems
and under different experimental conditions, may be in fact largely consistent with each other.
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Figure 5: Analysis of local rheological data. (a) Incomplete recovery of a single cell defor-
mation to alternating force cycles. Digitized data from Bonakdar et al. [21]. A magnetic bead is
attached to the cytoskeleton via integrin-type adhesion receptors through which a force parallel to
the cell is applied (force on in dark areas). Note that the displacement is normalized respect to
the first peak value because it is difficult to identify the interaction of the bead with the cell and
therefore convert the displacement into strain. By using the material parameters of MDCK cells
(table S2), we predict the response to cycles of loading using the fractional models and we compare
the qualitative responses normalized respect to the first peak (b)-(e) with the experimental data
(a). Prediction of the response to cyclic loading with the spring-pot only (b), with the novel model
(c), without cell contractility (thus k¥ = 0) and with a small cell contractility (thus & = 20 Pa, 10%
of the fitted value of k).
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Conclusions

We have presented a constitutive model for epithelial monolayers that captures the biphasic nature
of their stress relaxation dynamics over their full physiological functional range. From a qualitative
analysis of the monolayers’ relaxation response, we determined the number of parameters required
to account for the behaviour observed, and combined traditional viscoelastic elements with the
fractional spring-pot to fit tissue responses. The particular rheological model introduced here has
been validated for the first time against experimental data for the relaxation response of suspended
MDCK monolayers. Strikingly, the values for the parameters obtained by fitting the relaxation
response could predict the monolayer’s response to other mechanical tests with excellent accuracy.
This confirms that our model provides a constitutive description of the material and that the
fitting parameters are proper material properties independent of the type of deformation or force
applied to the material. We further demonstrated the model’s suitability to analyse and compare
rheological behaviour across many systems and length scales, within the same unifying framework.
It greatly facilitates a biophysical analysis by enabling a more intuitive approach to power-law
modelling, and allowing us to ask more direct questions regarding the biological significance of the
parameters involved.

Beyond enhancing our understanding of biological systems, a unified rheological model for bio-
materials is also crucial in the medical and engineering fields. Correlating changes in the mechanical
response of tissues to their biological state has been long considered as a promising marker-free
method for cancer diagnosis [40]-[42]. In the context of regenerative medicine, rheological phe-
notypes provide a suitable metric to assess the similarity between tissue engineered constructs
produced in vitro and their natural counterparts. As the parameters of the model are material
properties that are independent of the method of measurement, they are promising mechanical
signatures of the tissue and its condition to be used for diagnosis or as a target for regenerative
medicine.

A practical limiting factor for the widespread application of the model presented here is the
mathematical complexity of fractional derivatives, and the current lack of user-friendly numerical
methods to perform such analysis without expertise in fractional calculus. Such tools have been
recently released in the public domain by our group [43]. This will ensure a broader adoption
of fractional models for a rapid and systematic analysis of experimental data, as well as future
integration within numerical packages and finite element software.
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Supplementary materials of "A unified rheological model for
cells and cellularised materials"

A Bonfanti, J Fouchard, N Khalilgharibi, G Charras, A Kabla

1 Mechanical testing of suspended epithelial monolayers

Experiments were performed on suspended MDCK II epithelial monolayers generated as described
in [1]. Cells stably expressing E-Cadherin-GFP were used. After digestion of collagen substrate,
monolayers were tested at room temperature in Leibovitz’s L15 medium (Gibco, ThermoFisher)
supplemented with 10% FBS (Sigma).

Relaxation experiments were performed as described in [2]|. Briefly, a mechanical testing setup
assembled on top of an inverted microscope (Olympus IX-71) was used. First, the Petri dish
containing the stretcher device was secured to the microscope stage. Next, an opto-mechanical
force transducer (SI-KG7A, WPI) with a tweezer-shaped mounting hook (SI-TM5-KGT7A-97902,
WPI) was mounted on a motorized translation stage (M126-DG1, Physike Instrumente). The
tip of the mounting hook was then brought into contact with the flexible arm of the stretcher
device. The monolayer, suspended between the two arms of the device, was stretched by moving
the flexible arm away from the rigid arm, using the motorized stage. Monolayers were extended
to 30% strain at a rate of 75%/s. The deformation was then maintained constant during stress
relaxation. The force applied to the monolayer was calculated by subtracting the force applied by
the flexible arm from the total measured force. Ramp experiments were conducted on the same
setup and monolayers were extended at a rate of 1%/s. Force measurements in both tests was
acquired at 6.7 Hz.

For creep experiments, the setup was slightly adapted (figure S1). The deformation was con-
trolled by moving the rigid arm connected to one extremity of the monolayer while the force was
measured on the other static arm. Monolayers were prestretched by 10% prior to experiments and
left to rest for 5 minutes before starting testing. Then, an initial stretch step was applied at 1.5
mm/s (about 100%/s) and the force reached was clamped using a feedback algorithm (Labview,
National Instruments) and updated at 7.5 Hz.

To monitor the shape of the tissue and ensure its integrity during the tests, bright-field images
were taken at a rate of 1 image/s using a 2X objective (2X PLN, Olympus) and a CCD camera
(PointGrey, Grasshopper 3).

2 The fractional element: springpot

The spring-pot rheological element exploits the mathematical concept of fractional derivative to
model behaviours that are intermediate between a spring and a dashpot (see figure S2). Different
definitions of fractional differentiation are available. Here we use the Caputo’s derivative definition;
it has shown a better applicability to real problems, where initial conditions are known in terms of
derivative of integer index [1]. If we assume that the system is at rest for time ¢ < 0, the fractional

derivative is given by [2]
dPe(t) 1 ! _pde(t) -
dth T T(1-p) /o SR o

where T'(-) is the Gamma function and 0 < § < 1. Note that in order to get the value of the
derivative at a given time ¢, it is necessary to integrate from ¢ = 0. Thus, the response of the
springpot is determined by its whole deformation history. This highlights the hereditary feature
of such an element.

From a graphical representation of the linear viscoelastic model as a network of springs, dash-
pots and springpots, we can establish the time-dependent differential equation describing the re-
lation between stress and strain. For the model presented here the temporal evolution is given by
3]

n d'=Pa(t) de(t) nk d'=Pe(t)
t — = ke(t —_—— 2
oW+ s g TR0 (52)
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Figure S1: Set up of the creep experiment. (a) A millimetric MDCK epithelial monolayer devoid
of substrate is suspended between two test rods. The device is glued to the Petri dish. The force
is monitored on one side of the tissue, while the deformation is imposed on the other side. (b) A
constant stress in the tissue is maintained by monitoring the traction force on the tissue through a
force transducer (right) and adjusting its length in real time via a motorized stage. A PID feedback
algorithm ensures the control of the stress

where 7 is the viscosity of the dashpot, cg and 8 are the parameters of the spring-pot and & the
stiffness of the spring.

Many solutions of fractional differential equations obtained based on generalized viscoelastic
models admit a closed form involving the Mittag-Leffler function [3]. Such a function is defined as

(a>0,b>0). (S3)

Mg

— Tr ak; +b)
Its qualitative behaviour for the parameters of the soft material analyzed here is plotted in
figure S3.

3 Curve fitting and prediction

Relaxation curves collected during stress relaxation tests were analyzed using the open source
library RHEOS [4] developed in Julia language [5].

During a typical experimental test, the strain €(¢) is rapidly applied at a constant rate until it
reaches 30% and then maintained constant. The stress is obtain from the Boltzman integral, given
by the convolution between the relaxation modulus and the derivative of the strain

o(t) = /O t Gt — 1) d‘;(? dt. (S4)

where G(t) is the relaxation modulus which takes the form reported in equation (2) in the
manuscript.
The viscoelastic model presented here is consistent with the empirical function introduced in
[6]
o(t) = At™%¢"7 + B, (S5)

where B is the residual stress, a is the power exponent and 7 is the characteristic time. To
demonstrate this, we first re-fited the relaxation response using the same fitting procedure as in
[6]. Thus k is fixed at the residual stress after reaching the plateau defined as the average of the
stress for 70 s < t < 75 s. The parameters obtained for the viscoelastic model and the empirical
expression are similar (see table S1). If k is left free during the fitting, a variation in the relaxation
characteristic time is noticed between the two approaches, especially in the Y27632 parameters.
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Figure S2: (a) Sketch of the fractional element—spring-pot. The spring-pot interpolates between
a spring and a dashpot. When S = 0, the spring-pot reduces to a spring; whilst when g =
it becomes a dashpot. Consequently, the material constant cg represents respectively the elastic
constant of a spring, k (Pa) and the viscosity of a dashpot,  (Pa s). (b) Normalized responses of
a springpot when subjected to a step in stress and (c) to a step in strain. The red curves are for a
spring (8 = 0), the black curves are for increasing values of 8 from 0.1 to 0.9 and the blue curves
are for a dashpot (8 =1).

This discrepancy could be associated to the lack of a clear plateau in the experimental time-window.
For the analysis presented in this work, we have used those parameters obtained by letting k free
during the fitting.

To predict the response to a slow ramp, the Boltzman integral reported in equation S4 is used.
The relaxation modulus G(t) takes the form reported in equation (2) in the manuscript, while the
derivative of the strain will be equal to the applied strain rate. Note that the parameters of the
relaxation modulus are those predicted from the fitting of the relaxation experiments.

The prediction of the creep response is obtained by solving the Boltzman integral

€(t) = /O Jt—1) dig) . (S6)

where J(t) is the creep modulus. To calculate the creep modulus we use the same parameters
as extracted from the fitting of the relaxation experiments. The predicted creep response for the
treated monolayers Y27632 is reported in figure S5 in the Supplementary materials.
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Figure S3: Mittag-Leffler function. Plot of the Mittag-Leffler function with parameters similar to
those obtained for epithelial sheets (8 = 0.22, ¢5 = 1.3 x 103 Pa %, n = 1.0 x 10* Pa s) in (a)
linear, (b) semilogarithmic and (c¢) logarithmic scales.

Table S1: Comparison within the parameters 8 power exponent, k stiffness of the spring and 7
characteristic relaxation time obtained from the fitting of: (a) the empirical function in [6], (b) the
model presented here when k is fixed, as done in [6] and (¢) when k is free.

Sample Control DMSO Y27362 CK666 SMIFH2
Empirical | 0.28 +0.02 | 0.29 +0.03 0.26 £ 0.05 0.31£0.01 | 0.29 £0.02
Jé] k fixed 0.30+£0.03 | 0.27 +£0.02 0.287+0.01 | 0.29£0.02 | 0.28 £0.02
k free 0.28+0.03 | 0.27 +£0.02 0.296 £0.05 | 0.30£0.02 | 0.29 £ 0.03
Empirical | 820 £ 373 1130 £ 327 303 £ 97 1290 340 | 1213 £ 323
k (Pa) | k fixed 850 + 364 1270 £ 492 300 + 101 1286 £+ 340 | 1212 £ 321
k free 840 £ 376 1200 £ 428 187 + 101 1290 £ 337 | 1194 £ 348
Empirical | 11.3 + 3.8 13.3£5.5 23.3£74 16.8 6.2 19.5 £ 3.5
7 (s) k fixed 172+£7.1 11.8 £4.31 24.24+12.7 20.42+£13 | 21.2£11.5
k free 20£15.2 13.58 £11.6 | 213.83 £246 | 19.51 £ 14 | 34.27 + 34
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Figure S4: Master curve for the relaxation response. (a) Experimental relaxation curves scaled
using the characteristic time 7 and the effective stiffness of the Fractional Maxwell Model kg.
The red curves are the experimental data for the untreated monolayers, while the blue curves are
the experimental data for the Y27632 treated monolayers. All the data collapse onto a master
curve demonstrating that they possess a similar value of 5. (b) Scaling of the relaxation responses
for the other treatments: black DMSO, red CK666, green SMIFH2. All curves collapse to one
master curve since they possess a similar value of 3, the springpot exponent.

4 Master curve for the relaxation response

The fact that untreated and treated monolayer can be fitted with the same model, sharing similar
values of the exponent 3, suggests the possibility of identifying a master curve that describes all
the experimental data. For this purpose, we simplify the analysis by assuming that the loading
is instantaneously applied, thus the stress can be written as o(t) = G(t)eg, where G(t) is the
relaxation modulus and ¢p the applied stress. By re-writing the relaxation modulus in equation
2 in the main manuscript in terms of the characteristic relaxation time and removing the shift
introduced by the addition of a spring in parallel

Glt)* = G(t) — k = cur? (Ti) - Er s (- (;) 16) , (S7)

we can identify the additional non-dimensionalising factor for the relaxation modulus keg

s cs 1/(1-8)
k‘eff =C3T; = <17ﬁ> s (SS)
which represents the effective stiffness of the Fractional Maxwell Model (FMM), the dissipative
branch. Note that 7 can be also derived from the definition of the characteristic relaxation time
for the Maxwell model as 71 = n/kegr. 71 is independent from the spring stiffness since the stiffness
k only shifts the stress towards higher values, as seen in equation 2.

The nondimensionalized relaxation modulus G(t)* = (G(t)—k) /keg is now a function of only two
parameters G(t)* = g(t/71, ), where the time has been nondimensionalized using the characteristic
relaxation time 71, while the relaxation modulus has been normalized using the effective stiffness
ke Consistent with the observation that their short time-scale response is comparable, after
rescaling the relaxation curves in figure 2 (b)-(c), all the curves collapse onto one master curve
(see figure S4 (a)). From the fitting of the relaxation responses of treated monolayers, we observe
that 8 remains constant. Therefore, the nondimensional relaxation modulus can be considered a
function of only one parameter G(t)* = g(t/71), because 3 remains constant. Because of this, all
the responses obtained for the other treatments collapse to one master curve (figure S4 (b)).

5 Statistical analysis

Statistical analysis of the data was performed in Julia language using a Wilcoxon rank-sum test.
Changes with statistical power greater than 0.01 were considered non-significant (ns). Dataset
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Figure S5: (a) Predicted stress response of the Y27632 treated monolayers when subjected to
a slow stretch (1%/s) using the mechanical parametrization determined from stress relaxation
experiments. The predicted responses (95% confidence interval red areas and 70% yellow areas)
are in good agreement with the experimental data (black curves). (b) The creep response of
epithelial monolayers in which actomyosin contractility is inhibited. The creep is performed at 60
Pa (blue area) and 230 Pa (green area). The black lines are the experimental results. (c) £ value for
untreated and treated monolayers which give raise to different qualitative behaviours (p < 0.01).

different p< 0.01 are denoted by an asterisk (*).

The material parameters measured from the relaxation experiment show some variability. We
assume that they follow a Gaussian distribution. To take this into account, we take an interval
for each of the parameters equal to Mean +1.960/1/n, where ¢ here is the standard deviation and
n the number of samples. The colored areas within the two curves obtained by taking lower and
upper bounds of the parameters is where the predicted response of the material will lay.

6 Mechanical testing of single epithelial cells

Experiments were performed on MDCK II epithelial cells previously trypsinised and plated in a
Petri dish and left to settle for 10-30 minutes. Before cells started to spread, they were tested
while still in rounded shape.

Relaxation experiments were performed as described in [6]. A CellHesion 200 Atomic Force
Microscope was mounted on a scanning laser confocal microscope. Tipless silicon SPM-Sensor
cantilevers with nominal spring constant of 0.03N m~! were used to perform the experiments. The
cantilever spring constant for each experiment was calibrated using the thermal noise fluctuation
method and it ranged between 0.055-0.06 N m~".

The target force required to indent the cell by ~ 30% was estimated by approximating the cell
height. The latter was given by the difference between the force-displacement curves acquired on
the cell and a glass region close to it. Cells were subjected to the target force of 5-40 nN at a rate
of 75% s~!. The cantilever beam was maintained at constant height for 150 s while the evolution
of the force was recorded.

7 The complex modulus of the novel generalized fractional model

Although the relaxation modulus G(t) and the creep compliance J(t) each fully summarize the
viscoelastic linear response of a material, the time-dependent response is often characterized using
the complex elastic modulus, which captures the ratio and phase difference between stress and
strain under oscillatory deformation, which is particularly relevant to biomaterials because these
are often subjected to cyclical stresses. The complex modulus can be decomposed into a real G'(w)
and an imaginary G”(w) part, which represent respectively the storage modulus that accounts for
the elastic response, and the loss modulus that accounts for the dissipative response. The complex
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Figure S6: Boxplots comparing the model parameters of monolayers subjected to chemical treat-
ments targeting the actomyosin cytoskeleton. The analysis of the relaxation response of monolayers
treated with CK666 that prevents actin polymerisation through Arp2/3 and those treated with
SMIFH2 that prevents formins-mediated actin polymerisation revealed that formin inhibition in-
creases the relaxation characteristic time. We can attribute such increment to a higher viscosity
71, whilst all the other parameters remain almost unchanged. (8: p = 0.64 for Y27632, p = 0.019
for CK666, p = 0.98 for SMIFH2, cg: p = 0.015 for Y27632, p = 0.053 for CK666, p = 0.50 for
SMIFH2, n: p = 0.04 for Y27632, p = 0.053 for CK666, p = 0.022 for SMIFH2, k: p < 0.01 for
Y27632, p = 0.19 for CK666, p = 0.60 for SMIFH2, for all compared to DMSO.) All drugs were
dissolved in Dimethylsulfoxide (DMSO). Therefore, the parameters obtained from the fitting of
the relaxation response of the treated monolayers were compared to those obtained from control
experiments carried out in the presence of DMSO alone.
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Figure S7: Boxplots comparing the model parameters of monolayers in which the F-actin
crosslinkers filamin A (FLNAShRNA) or a-actinin 4 (ACTNShRNA), the two most abundant
actin crosslinkers identified in previous RNAseq experiments [6], were perturbed. We confirm
that crosslinkers do not play a role in stress dissipation following extension (8: p = 0.03 for
ACTNShRNA and p = 0.18 for FLNAShRNA, ¢g: p = 0.71 for ACTNShRNA and p = 0.018 for
FLNAShRNA, n: p = 0.28 for ACTNShRNA and p = 0.09 for FLNAShRNA, k: p = 0.78 for
ACTNShRNA and p = 0.25 for FLNAShRNA, compared to their respective controls, ACTNCtrl-
ShRNA and FLNACtrIShRNA.
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Figure S8: Test of linearity. The average parameters obtained from the fitting of the relaxation
curves for tissues subjected to different strain amplitudes (samples’ number for each value of strain
is 13): (a) power-law exponent 8 (p = 0.51 for 30%, p = 0.51 for 40%, p = 0.03 for 50%). (b)
spring-pot coefficient ¢z (p = 0.03 for 30%, p = 0.90 for 40%, p = 0.04 for 50%) (c) viscosity 1 (p
= 0.05 for 30%, p = 0.29 for 40%, p = 0.0012 for 50%) (d) stiffness k (p = 0.44 for 30%, p = 0.007

for 40%, p < 0.001 for 50%).
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Figure S9: Boxplots of the ratio of the two characteristic times for monolayers (a) in which the actin
network is perturbed. (p < 0.01 for Y27632, p = 0.07 for CK66, p = 0.37 for SMIFH2, all compared
to DMSO (b) Monolayers in which the crosslinkers are perturbed (p = 0.68 for ACTNShRNA and
p = 0.34 for FLNAShRNA both compared to their controls). A slight increase is observed when

treated with SMIFH2, whilst no effect is observed when crosslinking is perturbed.
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Figure S10: Storage and loss moduli of the fractional model shown in figure 2 (a). (a) The blue and
red lines are respectively the storage and loss modulus of the viscoelastic model introduced here
using the material parameters extracted from the relaxation experiment for epithelial monolayers
shown on figure 1 (a) (8 = 0.22, ¢ = 1.3 x 10° Pa s, k = 760 Pa, n = 1.4 x 10* Pa s, 7y /7 = 1).
(b) Moduli for two extreme cases. When 5 = 0 the model behaves as a Standard Linear Solid
model (top), when 8 = 1 the model behaves as a Kelvin mode (bottom). The other parameters
have been kept constant.

Storage and loss modulus, G and G (Pa)

modulus of the viscoelastic model presented here can be derived from the Laplace transform of the
creep compliance J(s) and is given by:

k [iwry + 1+ (iwr)' 7]
1+ (iwr)1-8

G (w) +iG" (w) = (S9)

By evaluating the real and imaginary parts of the equation above, we find that the storage and
loss moduli are respectively given by

(@) = (wr1)'# (wry) sin (1 - 8)3)
Gw) =k 1+ (wr)—P [(wﬁ)lfﬁ + 2 cos ((1 — 5)%)]

+1 (S10)

and
b (wm) [T+ (W) P eos (1 - B)%)]
) = e om) 8 [ )T + 2cos (1~ B)Z)]

Storage and loss moduli predicted for the monolayers using the parameters obtained from the relax-
ation experiments both show a power-law behaviour at high frequencies with the same exponent,
as shown in figure S10. By contrast, at low frequencies the material exhibits solid-like behaviour
[13], [14]. Two special cases can be distinguished at the upper and lower limit of §; when the
two moduli reduce respectively to those of the Standard Linear Solid model and the Kelvin-Voigt
model, as confirmed in figure S10 (b). By letting 5 vary between 0 and 1, we can observe transitory
behaviours between an SLS and a Kelvin-Voigt model (see figure S11).

(S11)
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Figure S11: Intermediate behaviours from Kelvin model to Standard Linear Solid Model (cg =
1.3 x 10% Pa s, k = 800 Pa, n = 1 x 10* Pa s, 8 = 0,0.2,0.4,0.6,0.8,1. The blue and red
lines are respectively the storage and loss moduli. Note that by changing the value of 3 the
ratio between the two characteristic time scales changes and it is respectively given by 71 /7 =
0.46,0.85,2.08,12.5,270, co. The thicker curves are those presented in figure S10 in the main text.

References

[1] M. Di Paola, A. Pirrotta, and A. Valenza, “Visco-elastic behavior through fractional calculus:
An easier method for best fitting experimental results”, Mechanics of materials, vol. 43, no.
12, pp. 799-806, 2011.

[2] R. Gorenflo and F. Mainardi, “Fractional calculus: Integral and differential equations of
fractional order”, Fractals and Fractional Calculus in Continuum Mechanics, vol. 1, no. 1,
pp. 223-276, 2008.

[3] H. Schiessel, R. Metzler, A. Blumen, and T. Nonnenmacher, “Generalized viscoelastic models:
Their fractional equations with solutions”, Journal of physics A: Mathematical and General,
vol. 28, no. 23, p. 6567, 1995.

[4] L. Kaplan, A. Bonfanti, and A. Kabla, RHEOS, Rheology Open Source, https://github.
com/JuliaRheology/RHEQS. j1, Last accessed on 2018-12-07, 2018.

[5] J.Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical
computing”, SIAM review, vol. 59, no. 1, pp. 65-98, 2017.

[6] N. Khalilgharibi, J. Fouchard, N. Asadipour, A. Yonis, A. Harris, P. Mosaffa, Y. Fujita, A.
Kabla, B. Baum, J. J. Munoz, et al., “Stress relaxation in epithelial monolayers is controlled
by actomyosin”, BioRxiv, p. 302158, 2018.

[7] E. Darling, S. Zauscher, and F. Guilak, “Viscoelastic properties of zonal articular chon-
drocytes measured by atomic force microscopy”, Osteoarthritis and cartilage, vol. 14, no. 6,
pp- 571-579, 2006.

[8] Z. L. Shen, H. Kahn, R. Ballarini, and S. J. Eppell, “Viscoelastic properties of isolated
collagen fibrils”, Biophysical journal, vol. 100, no. 12, pp. 3008-3015, 2011.

[9] N. Desprat, A. Richert, J. Simeon, and A. Asnacios, “Creep function of a single living cell”,
Biophysical journal, vol. 88, no. 3, pp. 2224-2233, 2005.

[10] F. Serwane, A. Mongera, P. Rowghanian, D. A. Kealhofer, A. A. Lucio, Z. M. Hockenbery,
and O. Campas, “In vivo quantification of spatially varying mechanical properties in devel-
oping tissues”, Nature methods, vol. 14, no. 2, pp. 181-186, 2017.

12


https://github.com/JuliaRheology/RHEOS.jl
https://github.com/JuliaRheology/RHEOS.jl
https://doi.org/10.1101/543330
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/543330; this version posted February 8, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

;
10 =
&
i') ////
e °
2103+
= .
~ Phe °
O //’o
w & e o
. g . >
= = JEaed -
‘2100 Z e
E g ’/’ ’/o
n = ,// ° /’./
% e o« 7
Q .7 e .7 e
-
g i
« /// 3
<] PR )
2 |
< _
Q
10'1 H H H i i E“IJ) 102 i i
10" 10° 10" 102 10° 1072 10" 10° 10"
Time, t (s) Frequency, w (Hz)
(a) (b)
S b
Z A Z A
= g
N t(S)‘ n t(s)
25
;\3207
w 15,
=l
Z 10
wn
5
0 1 1 1 i i i i i 0 i i i i
0 20 40 60 80 100 120 140 160 180 0 100 200 300 400

Time, t (s)
(©)

Figure S12: Examples of the application of the fractional viscoelastic model for the analysis of the
mechanical response in biology. (a) Fitting of the creep response of C2-7 myogenic cells derived
from skeletal muscle of adult CH3 mice (original data from [9]) with a special case of the model
presented here. Fitted parameters: =4 x 10° Pa s, ¢z = 885 Pa s, B =0.26 (b) The prediction
of the storage and loss modulus (respectively blue and red dashed lines) of C2-7 cells using the
parameters obtained from the fitting of the creep response in (a) are in good agreement with the
experimental data obtained from [15] (c) Fitting of the creep and recovery response (red line) of
the cytoplasm of the blastomere, and (d) the yolk cell (original data from [10], black dots) using
the viscoelastic model presented here. Fitted parameters for cytoplasm: n = 35 Pa s, cg = 0.7
Pas?, 8 = 0.3, k = 0.156 Pa. Fitted parameters yolk cell: n = 16 x 10% Pa s, cs = 0.62 Pa s”,
B =0.15, k = 0.52 Pa.
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Figure S13: Fitting of storage and loss moduli from a single cell dynamic test of human primary
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