

1 **Title:**
2 Spatiotemporal dissection of the cell cycle regulated human proteome
3
4 **Authors:**
5 Diana Mahdessian¹, Devin Sullivan¹, Frida Danielsson¹, Muhammad Arif¹, Cheng
6 Zhang¹, Lovisa Åkesson¹, Christian Gnann¹, Rutger Shutten¹, Peter Thul¹, Oana
7 Carja^{3,4}, Burcu Ayoglu¹, Adil Mardinoglu^{1,2}, Fredrik Pontén⁵, Mathias Uhlen¹, Cecilia
8 Lindskog⁵, Emma Lundberg^{1,3,4*†}
9
10 ¹ Science for Life Laboratory, School of Engineering Sciences in Chemistry,
11 Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, 17121,
12 Sweden.
13 ² Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial
14 Sciences, King's College London, London, SE1 9RT, United Kingdom
15 ³ Department of Genetics, Stanford University, Stanford, CA 94305, USA. [‡]
16 ⁴ Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA.
17 ⁵ Department of Immunology, Genetics and Pathology, Science for Life Laboratory,
18 Uppsala University, SE-751 85 Uppsala, Sweden.
19 *Correspondence to: emma.lundberg@scilifelab.se
20 † Visiting appointment, current address.
21

22 **Abstract**

23

24 Here we present a spatiotemporal dissection of proteome single cell heterogeneity in
25 human cells, performed with subcellular resolution over the course of a cell cycle. We
26 identify 17% of the human proteome to display cell-to-cell variability, of which we could
27 attribute 25% as correlated to cell cycle progression, and present the first evidence of
28 cell cycle association for 258 proteins. A key finding is that the variance, of many of
29 the cell cycle associated proteins, is only partially explained by the cell cycle, which
30 hints at cross-talk between the cell cycle and other signaling pathways. We also
31 demonstrate that several of the identified cell cycle regulated proteins may be clinically
32 significant in proliferative disorders. This spatially resolved proteome map of the cell
33 cycle, integrated into the Human Protein Atlas, serves as a valuable resource to
34 accelerate the molecular knowledge of the cell cycle and opens up novel avenues for
35 the understanding of cell proliferation.

36

37 **Introduction**

38 Cellular processes are, to a great extent, driven by the presence and activity of specific
39 proteins. Essential processes, such as the cell division cycle, require precise
40 coordination of the expression of hundreds of genes and the activity of their
41 corresponding proteins in both time and space. The cell division cycle is tightly
42 controlled at specific checkpoints ^{1,2} by regulated transcription ³⁻⁷, intricate feed-
43 forward and feedback loops of protein post-translational modifications, and protein
44 degradation ⁸⁻¹². Its dysregulation has devastating consequences, such as
45 uncontrolled cell proliferation, genomic instability ¹³, and cancer ^{14,15}.

46

47 Given the fundamental role of the cell cycle, its regulation with cyclins and cyclin
48 dependent kinases (CDKs) has been extensively studied ¹⁶. Recent efforts have
49 focused on the investigation of genome-wide effects of cell cycle progression.
50 Transcriptomics studies have revealed 400-1,200 human genes ¹⁷⁻²⁰, and mass
51 spectrometry-based proteomics studies have revealed 300-700 human proteins that
52 show variation in abundance over the cell cycle ²¹⁻²⁴. These studies have commonly
53 been performed in bulk, with cells sorted into synchronized populations ^{17,19,25-28}. This
54 is a disruptive procedure, shown to alter gene expression ²⁹, and perturb cellular
55 morphology ³⁰⁻³² as well as metabolism ³³. In addition, the achieved synchrony could
56 be contaminated with cells from other phases ³³⁻³⁶.

57

58 Single-cell sequencing now allow the analysis of transcriptional changes without the
59 need for synchronized cells. Recent single-cell transcriptomic studies presented the
60 first efforts to update the decade old catalogues of periodic gene expression patterns
61 that were based on bulk analysis ³⁷⁻³⁹. For instance, in a study using human myxoid
62 sarcoma cell line (MSL) cells, 472 genes with periodic expression were identified ³⁷, of
63 which 269 had no prior association to the cell cycle, indicating the potential of single-
64 cell level studies to deepen our knowledge of the cell cycle.

65

66 Microscopy offers an attractive approach to study cell cycle dynamics in asynchronous
67 cells at a single-cell level. The readout of such studies has so far been focused only
68 on cellular growth phenotypes, as conferred by genetically encoded fluorescent
69 indicators ⁴⁰⁻⁴³. Due to technological limitations, studies of single cell variations at the
70 proteome level have not yet been feasible. The few studies that exist ^{44,45} have been
71 limited to a low number of proteins and none provides a complete view of temporal cell
72 cycle dynamics of the human proteome with single cell resolution.

73 Here we report on a systematic characterization of temporal protein expression
74 patterns with single-cell resolution in unsynchronized human cells, and present the first
75 spatially resolved map of human proteome dynamics during the cell cycle. By
76 leveraging the Human Protein Atlas (HPA) antibody resource ⁴⁶ and the high-resolution
77 image collection within its Cell Atlas ⁴⁷, we provide a catalogue of human proteins with
78 temporal and spatial variation correlating to cell cycle progression. This spatially
79 resolved proteome map of the cell cycle, integrated into the HPA database, is a
80 complement to the existing human cell cycle gene expression resources. Altogether
81 this study has important implications for mechanistic insights into cellular proliferation
82 as well as the contribution of its miss-regulation to tumorigenesis and disease.

83 **Results**

84

85 **Single-cell variations of the human proteome**

86 The HPA Cell Atlas aims to localize all human proteins at a subcellular level using
87 immunofluorescence and confocal microscopy (45). To date, 12,390 (v.19) proteins
88 have been localized to 33 subcellular structures. This high-resolution image collection
89 contains protein expression in a variety of human cell lines, always non-synchronized
90 and in log-phase growth, and provides an unprecedented resource to explore protein
91 expression variation at single-cell level. Out of these 12,390 proteins mapped in the
92 HPA Cell Atlas, 2,195 (17%, **Supplementary Table 1**) showed cell-to-cell variations
93 based on visual inspection, either in terms of variation in protein expression level or
94 variation in spatial distribution. As exemplified in **Figure 1A**, CCNB1, an important cell
95 cycle regulator ⁴⁸ localized to the cytosol, shows variation in abundance, whereas
96 MRTO4, a protein with unknown function, shows spatial variation in its expression
97 between the nucleus and nucleoli. Out of these 2,195 proteins, 69% showed similar
98 cell-to-cell variations in more than one human cell line (**Supplementary Table 2**), as
99 exemplified for RACGAP1 in three different cell lines (**Figure 1B**). This suggests that
100 these proteome variations might be to a large extent controlled by preserved regulatory
101 mechanisms. We investigate to what extent these observed protein variations
102 represent temporally controlled expression patterns correlating to cell cycle
103 progression.

104

105 **Proteins spatiotemporally restricted to mitotic cellular structures**

106 The cell cycle dependency of a protein can be inferred directly, if it localizes to a mitotic
107 structure (*i.e.* kinetochores, mitotic spindle, midbody, midbody ring, cleavage furrow,
108 or cytokinetic bridge). For example, the mitotic regulators INCENP ⁴⁹ and SGO1 ⁵⁰
109 appear at the kinetochores during mitosis; KIF20A ⁵¹ localizes to the cleavage furrow;
110 and TACC3 ⁵² to the mitotic spindles (**Figure 1C**). Of the 2,195 proteins identified to
111 show cell-to-cell variability, a total of 166 mapped to one or several of the mitotic
112 structures (99 to cytokinetic bridge, 45 to mitotic spindle, 40 to midbody, 17 to midbody
113 ring, 5 to kinetochores, and 3 to cleavage furrow). Among these proteins, 99 were not
114 previously annotated to have an association with the cell cycle by a biological process
115 (BP) term in Gene Ontology (GO) ⁵³ or Reactome ², nor did they have any cell cycle
116 phenotype registered in Cyclebase ⁵⁴ (**Supplementary Table 3**). Among the proteins
117 spatiotemporally restricted to mitotic substructures were *e.g.* BIRC5, a well
118 characterized protein essential for chromosome alignment ⁵⁵, which localizes to the
119 cytokinetic bridge as well as two other uncharacterized proteins, GLI4 and C12orf66

120 (**Figure 1D**). C12orf66 localizes to the lysosomes during interphase⁵⁶. DVL3, a Wnt
121 signaling component known to be involved in cell proliferation⁵⁷, localized to the
122 midbody ring, which is the final bridge between dividing cells (**Figure 1D**). It is plausible
123 to hypothesize that the proteins which localized to the mitotic spindle are involved in
124 the process of chromosome segregation; these include KIF11 and KNSTRN, both of
125 which are well-studied components of the mitotic spindle^{58,59}. We also identified novel
126 proteins localizing to the mitotic spindle, such as MGAT5B, a glycosyltransferase for
127 which downregulation has been shown to inhibit cell proliferation⁶⁰; and FKBPL, a
128 crucial protein for response to high dose radiation stress⁶¹ (**Figure 1D**). Altogether,
129 these 166 proteins serve as potentially interesting targets for development of novel
130 antimitotic drugs for cancer therapy.

131
132 **Proteins with temporal expression variation correlated to cell cycle interphase**
133 **progression**

134 To determine if the observed cell-to-cell variations correlate to interphase progression,
135 the FUCCI cell cycle marker system was used (**Figure 1E**)^{42,62}. Of the 2,195 proteins
136 identified to show cell-to-cell variability, 1,188 proteins that were expressed and
137 exhibited variations in the U-2 OS cell line were selected for further analysis with the
138 FUCCI system (**Supplementary Table 4**). The expression of each protein was
139 quantified across the cell cycle by immunostaining in U-2 OS FUCCI cells. Gaussian
140 mixture modelling was used to define three clusters representing G1, the S-transition
141 (denoted G1/S) and the remaining S and G2 phases (denoted S/G2), and the
142 subsequent assignment of cells to each cluster. A polar coordinate system was used
143 to transfer the FUCCI marker information into a linear model of interphase pseudo-
144 time (**Figure 1E**). Examples of this analysis are given in **Figure 1F**: ANLN, a well-
145 characterized cell cycle regulator⁶³, showed a significant (Kruskal Wallis $p<0.01$ &
146 FDR<0.05) increase in abundance during cell cycle progression in the nucleus. On the
147 other hand, FAM71F, an uncharacterized protein localized to the cytosol, revealed
148 variation that did not correlate to the cell cycle, meaning that both high and low
149 expressing cells are present in all phases of the cell cycle. Expression of DUSP18, a
150 member of the DUSP family⁶⁴ with no prior association to the cell cycle, was found to
151 strongly correlate to cell cycle progression. In this analysis, staining of microtubules
152 with alpha-tubulin in all samples served as a negative control, with no significant
153 variation of expression during cell cycle progression.

154
155 Based on this analysis, at an FDR of 5%, we identified 298 out of 1,188 proteins (25%)
156 to have variance in expression levels temporally correlated to cell cycle progression,

157 and for which the cell-cycle explained more than 10% of the variance in expression.
158 (**Supplementary Table 5 and Supplementary Figure S1**). This cutoff was set as
159 being significantly above the negative control. It is noteworthy that the majority of the
160 proteins analyzed (75%) showed cell-to-cell variations that were largely unexplained
161 by cell cycle progression. Enrichment analysis of GO BP terms was performed for the
162 genes encoding cell cycle dependent and independent proteins. The set of genes
163 identified as cell cycle regulated was highly enriched for functions related to
164 chromosome organization and segregation, regulation of cell cycle processes,
165 cytoskeleton organization, cell division and cytokinesis (**Figure 2A**). Interestingly, the
166 set of genes, with variations not correlating to the cell cycle, was not enriched for any
167 GO BP terms at all. This shows that the identified proteins are indeed involved in cell
168 cycle processes whereas the proteins not correlated to cell cycle are likely involved in
169 a variety of different biological processes.

170

171 **Population distribution and fraction of variance explained by the cell cycle**

172 To investigate the pattern of variability for these 1,188 proteins, k-means clustering
173 was performed using the kurtosis and skewness features of the distribution of the
174 mean intensity per cell for each protein. The mean fold-change between high and low
175 expressing cells per protein were 7.97. Three clusters were found to represent distinct
176 variation patterns (**Figure 2B**): Cluster 1, the largest cluster (n=1,018), contained most
177 cell cycle dependent and independent proteins, 92% and 83%, respectively. The lower
178 segment of Cluster 1 contained some proteins with a bimodal distribution (**Figure 2B**,
179 exemplified by GATA6), but the majority of the proteins in this cluster had a unimodal
180 normal distribution (**Figure 2B**, exemplified by CCNB1). Cluster 2, the second largest
181 cluster (n=153), contained proteins with slightly skewed distribution profiles with a
182 sharp peak distribution, as exemplified by DEF6. Cluster 3 (n=17) mostly contained
183 proteins not correlated to the cell cycle, where the variation was highly skewed and
184 tailed with few cells expressing the protein. These results show that cell cycle
185 dependent variations are mostly unimodal with a normal distribution across a log-
186 phase growing population of cells.

187

188 In addition to identifying the proteins that are regulated by the cell cycle, the single-cell
189 resolution of our dataset allowed us to also calculate the fraction of variance that is
190 determined by the cell cycle. To our knowledge, such analysis has been done neither
191 at transcriptome, nor at proteome level previously. Here, the Gini index⁶⁵ was
192 calculated and used as a metric for the variance of these 1,188 proteins (**Figure 2C**).
193 All the proteins analyzed had a Gini index significantly higher than the negative control

194 (alpha tubulin) used, which serve as yet another check that we are indeed analyzing
195 proteins with heterogeneous expression. The percentage of variance explained by the
196 cell cycle ranged between 10%-91% (the FUCCI markers themselves were controlled
197 at green: 80% and red: 65%) and two distinct populations were identified (**Figure 2C**):
198 one where the variance was determined by the cell cycle (CCD), and one where the
199 variance was independent of the cell cycle (Non-CCD). Interestingly, the majority of
200 the observed cell cycle regulated variations appeared to be controlled by the cell cycle
201 at a low degree (on average 21%). We hypothesize that these cell cycle regulated
202 proteins, where the percentage of variance explained by the cell cycle is low, are
203 important for the cross-talk between the cell cycle and other signaling processes.

204

205 **Organelle specific differences in temporal cell cycle protein variations**

206 The high subcellular resolution of our analysis allows us to study the role of subcellular
207 localization in cell cycle regulation. We found significant differences in the localization
208 of proteins that show cell cycle dependent or independent expression (**Figure 2D**).
209 Proteins with variations independent of the cell cycle were significantly enriched for
210 localization to the intermediate filaments, nucleoli, nuclear bodies, and mitochondria
211 (binomial one sided test, $p < 0.01$, mapped proteome as background), whereas proteins
212 with cell cycle dependent variation were significantly enriched for localization to
213 nucleoli, nuclear bodies and mitotic structures, constituting 33% of the cell cycle
214 dependent proteins (binomial one sided test, $p < 0.01$, mapped proteome as
215 background). Half (50%) of the cell cycle dependent proteins resided in the nuclear
216 compartment (2% nuclear speckles, 11% nuclear bodies, 24% nucleoli and 63%
217 nucleus), not surprisingly given that one of the main functions of the nucleus is to
218 perform and control the replication of DNA during the cell cycle.

219

220 In our analysis, we find many functionally uncharacterized proteins that share the same
221 subcellular localization as some previously well characterized cell cycle dependent
222 proteins (**Figure 2E**). It is plausible to assume that proteins expressed in the same
223 organelle with similar temporal profiles may be involved in similar cell cycle processes.
224 For example, two mitochondrial proteins with known association to cell proliferation -
225 Pyruvate Carboxylase (PC), involved in gluconeogenesis and shown to be upregulated
226 in several types of cancer⁶⁶⁻⁶⁸, and XAF1, whose inhibition is known to prevent cell
227 cycle progression⁶⁹ were both shown to peak in the S/G2 phase (0.78 and 0.80 in
228 pseudotime, respectively). We could also identify two proteins without a prior
229 association to the cell cycle. PC and XAF1 shared the same subcellular location and
230 temporal expression profile as TTC21B (0.8 pseudotime) and SLIRP (0.8 pseudotime),

231 both with no previously described association to the cell cycle or cell proliferation. In
232 this manner, we could associate novel and known cell cycle associated proteins with
233 similar temporal profiles in organelles such as the cytosol, nucleus, nucleoli and the
234 Golgi apparatus (**Figure 2E**).

235

236 **Temporal protein expression patterns through interphase**

237 We next sorted the proteins based on the time of peak expression in order to study the
238 temporal dynamics of the cell cycle dependent proteome (**Figure 3A**). Despite G1
239 being the longest period of the cell cycle (G1 10.8h; G1/S 2.6h; S&G2 together 11.9h
240 in U-2 OS FUCCI cells), the majority (85%) of the proteins peaked towards the end of
241 the cell cycle corresponding to the S&G2 phases. This analysis enabled identification
242 of proteins which share a highly similar temporal pattern to well-known cell cycle
243 regulators, but with no prior association to the cell cycle. For instance, in the G1 group,
244 well-known cell cycle dependent proteins such as ORC6 (**Figure 3B**), required for the
245 cell entry into S phase ⁷⁰, and MCM10, required for DNA replication ⁷¹, were identified
246 to have similar patterns as those with no prior association to the cell cycle, such as
247 ZNF32. Recently, overexpression of ZNF32 was associated with a shorter survival
248 time in lung adenocarcinoma cells ^{72,73}. The group peaking in the end of G1 contained
249 proteins such as JUN, required for progression through the G1 phase of cell cycle ⁷⁴;
250 the G1/S specific cyclin CCNE1⁷⁵; and DUSP19 (**Figure 3B**), a phosphatase whose
251 depletion results in increased mitotic defects ⁷⁶. In the SG2 group, several known cell
252 cycle dependent proteins were identified: CCNB1, a G2/M specific cyclin ⁴⁸, AURKB,
253 a protein involved in the regulation of alignment and segregation of the chromosomes,
254 and BUB1B (**Figure 3B**), a mitotic checkpoint kinase ⁷⁷. This group also contained
255 proteins such as PAPSS1, an estrogen sulfating enzyme with no previously described
256 association to the cell cycle, although its overexpression was reported to affect
257 proliferation ⁷⁸. Other proteins in the SG2 group were N6AMT1, a methyltransferase
258 ⁷⁹; PHLDB1, an uncharacterized protein; DPH2 (**Figure 3B**), required for the synthesis
259 of diphthamide; and FLI1, a transcription factor associated to Ewing sarcoma ⁸⁰
260 (**Figure 3B**).

261

262 Several of the proteins identified as cell cycle dependent, such as ORC6, RBL2,
263 BUB1B, CCNA2 and HORMAD1 have been reported to be involved in cell cycle
264 processes, yet their temporal expression profile across the interphase, which can
265 provide insight into their functionality, has so far remained uncharacterized
266 (**Supplementary Figure S2**). In addition, knowledge about the temporal expression

267 patterns and the timing of peak expression relative to other proteins is valuable for a
268 deeper causal understanding of the molecular effects of cell cycle progression.

269

270 **An extended network of cell cycle genes**

271 Of the 464 proteins (298 in interphase and 166 in mitotic structures) identified to
272 correlate to cell cycle progression, 206 (44%) had a known association to the cell cycle
273 as determined either by a GO BP term related to cell cycle processes ⁵³ or Reactome
274 ², or a cell cycle phenotype registered in Cyclebase ⁵⁴. The remaining 258 proteins
275 (56%), had no previous association to the cell cycle (**Supplementary Table 6**). To
276 investigate whether the proteins, identified to be cell cycle regulated in this study, are
277 connected to proteins previously known to be cell cycle regulated, we analyzed
278 protein-protein interactions using the STRING database ⁸¹. This analysis revealed
279 significantly more interactions than expected for a random set of proteins of similar
280 size (Lambda calculations PPI enrichment p-value <1e-16; 1855 interactions; 649
281 expected number of edges), indicating that the proteins are likely involved in similar
282 biological processes. The known cell cycle dependent proteins were tightly clustered
283 together and made up the core of the network, whereas the newly identified cell cycle
284 regulated proteins formed an extended network (**Figure 3C**). For instance, KIF23 is an
285 essential protein for the microtubule bundling during cytokinesis via its interaction with
286 RACGAP1 ⁸² and it is known to oscillate temporally in the nucleus during the cell cycle
287 ⁸³. In our interaction analysis (**Figure 3C**), KIF23 showed a number of interactions with
288 known cell cycle regulators, but also with proteins with no prior association to the cell
289 cycle such as DRG1; MICAL3, which further interacts with the known NINL protein
290 required for cytokinesis ⁸⁴; and RAD51AP1, which further interacts with RACGAP1 and
291 KIF20A required for cytokinesis ⁸⁵. This implies that these three proteins with unknown
292 function, DRG1, MICAL3, and RAD51AP1, are involved in the same process as their
293 known interaction partners, in this case cytokinesis.

294

295 **Poor overlap between the cell cycle dependent proteome and transcriptome**

296 We performed a comparative analysis between the cell cycle regulated proteome
297 identified in our study and the cell cycle transcriptome of U-2 OS osteosarcoma cells
298 obtained by bulk RNA-sequencing of synchronized cells (26), as well as the
299 transcriptome of another type of sarcoma cells (myxoid sarcoma cells) obtained by
300 single-cell RNA-sequencing of non-synchronized cells (36). Both comparisons
301 revealed a poor overlap of 19% and 10%, respectively (**Supplementary Table 7**). This
302 indicates that the temporal dynamics of proteome regulation may be to a large extent
303 maintained at a translational or post-translational level.

304

305 **Gene expression patterns across tissues and cancers results in clusters**
306 **reflecting proliferative activity**

307 To further understand whether the identified proteins are functionally important for cell
308 proliferation in a more native context than cell lines, we investigated the mRNA
309 expression across cohorts of normal and cancer tissue. Hierarchical clustering of the
310 transcript data from bulk RNA-sequencing of normal and cancer tissues from HPA
311 (**Figure 4A**) resulted in four major clusters. The first cluster contained normal tissues
312 with low proliferative activity, such as heart muscle, skeletal muscle and pancreas. The
313 different cerebral tissues formed the second cluster, together with testis, which
314 appeared as an outlier, most likely due to being the only sample with meiotic activity.
315 The third cluster contained mostly normal tissues, such as kidney and breast, and
316 showed mid-range expression level of the proliferation markers Ki67, MCM2, PCNA,
317 CDK1 and MCM6. The fourth cluster contained mostly cancer tissues, such as skin
318 and breast cancer, but also normal tissues with high proliferative activity, such as bone
319 marrow, tonsil and fetal lung. The tissues in this cluster showed high expression of the
320 abovementioned proliferation markers. Most importantly, gene expression levels were
321 significantly higher in the proliferative tissues than the non-proliferative tissues
322 (Kruskal Wallis test p-value $<2e^{-16}$) (**Figure 4B**).

323

324 To further strengthen the conclusion that the novel cell cycle regulated proteins are
325 important for cellular proliferation, we used the RNA-sequencing data from The Cancer
326 Genome Atlas (TCGA)⁸⁶ to create genome wide co-expression networks downloaded
327 from TCSBN⁸⁷, in which the shortest path between the novel cell cycle regulated
328 genes identified in our study and known cell cycle genes were measured and
329 compared to a randomly sampled set of genes. The novel genes indeed had a
330 significantly (Kolmogorov-Smirnov one-sided test, FDR < 0.05) shorter path to the
331 known cell cycle genes in all cancer tissues and the normal proliferative tissues such
332 as skin, spleen and colon (**Figure 5A**), whereas there was no significant difference
333 (Kolmogorov-Smirnov one-sided test, FDR < 0.05) of the path length in low- or non-
334 proliferating tissues such as adipose, brain, heart and muscle tissues. This shows that
335 even though most of these proteins are not temporally regulated at the gene
336 expression level, their overall gene expression level is still of importance for cellular
337 proliferation.

338

339 **Genes encoding cell cycle regulated proteins often have an expression**
340 **correlating to patient survival in cancer**

341 To further test if the level of expression of genes encoding cell cycle regulated proteins
342 is associated to cancer patient outcome, the TCGA data incorporated in the cancer
343 pathology atlas of HPA was used ⁸⁸, where genes with a statistically significant
344 differential expression between patient populations with long and short survival were
345 identified ⁸⁶. Genes with expression levels correlated with long survival time were
346 denoted as favorable, and with shorter survival time were denoted as unfavorable.
347 Globally, over half of all human genes (54%) were shown to have a prognostic
348 association in this manner, as previously described ⁸⁸. Interestingly, prognostic genes
349 were significantly overrepresented among the cell cycle regulated proteins identified
350 in our study (67% prognostic) and the majority of these genes (61%) were associated
351 with an unfavorable outcome, further supporting the hypothesis of an important role of
352 these genes in cellular proliferation.

353

354 We next incorporated this classification into the generated co-expression networks for
355 different human cancer tissue types. In these networks, an enrichment analysis was
356 further subjected for each genetic community: communities were denoted as
357 favorable, unfavorable or not enriched. All communities contained a mixture of known
358 and novel cell cycle proteins, further strengthening their functional associations.
359 Strikingly, these networks revealed that the association into clusters were highly
360 different for different tumors (**Figure 5B** and **Supplementary Figure S3**), with proteins
361 being in a favorable community in one cancer type while being in an unfavorable
362 community in another cancer type, emphasizing the complexity of cell cycle regulation
363 from a systems perspective.

364

365 Many of the proteins identified here as cell cycle regulated are interesting candidates
366 for in-depth studies of their roles in tumorigenesis, and for potential use as biomarkers.
367 For instance, the gene RACGAP1, known to regulate cytokinesis, and DLGAP5, which
368 has been reported to have a role in carcinogenesis ⁸⁹⁻⁹¹. In the co-expression network
369 analysis, these genes showed interactions with known cell cycle related genes and
370 were enriched in an unfavorable prognostic cluster in breast cancer and pancreatic
371 cancer, respectively (**Figure 6A**). Immunohistochemical (IHC) analysis showed that
372 these proteins are expressed at low levels in normal tissues (**Figure 6B**) and high
373 levels in corresponding tumor tissues (**Figure 6C**). Their expression profile is shown
374 in **Figure 6D**. To gain an insight into their potential pathway involvement, STRING
375 analysis was performed (**Figure 6E**). RACGAP1 showed physical interaction with
376 several members of the mitotic kinesin family required for cytokinesis ⁹², whereas

377 DLGAP5 showed direct interaction with AURKA, a protein involved in several mitotic
378 events ⁹³.

379

380 A portion of the genes encoding proteins identified in our study (39%) were associated
381 with a favorable outcome, such as SYNE2 and FAM50B (**Figure 6A**). Comparison of
382 IHC staining of these two proteins revealed high expression in normal tissue (**Figure**
383 **6B**), and low expression in the respective cancers (**Figure 6C**). This suggests that
384 these proteins might function in anti-tumor activities. For example, SYNE2 is a nuclear
385 membrane protein ⁹⁴, for which we demonstrated temporal expression variation
386 peaking in G2. FAM50B is expressed in the nucleus in interphase and translocates to
387 the cytokinetic bridge in mitosis (**Figure 6D**). SYNE2 shows interaction with genes
388 enriched in cell cycle processes, such as STAG1, SUN2, TERF1 and TERF2 and
389 FAM50B shows a physical interaction with HDAC2 (**Figure 6E**), which is involved in
390 the regulation of cell cycle progression ⁹⁵.

391

392 We conclude that these novel proteins identified to be cell cycle regulated have the
393 potential of serving as novel diagnostic or therapeutic targets for a variety of human
394 cancers.

395 **Discussion**

396 In this study, we find that a large extent (17%) of the human proteome displays cell-to-
397 cell heterogeneity in terms of level of expression. We present the first temporal analysis
398 of the cell cycle regulated human proteome in unsynchronized cells, mapped at a
399 single cell level with subcellular resolution. Surprisingly, the majority of the variations
400 were not correlated to the cell cycle, which opens up intriguing avenues for further
401 exploration of the deterministic factors that might control these stochastic variations in
402 expression.

403

404 We present 258 novel cell cycle regulated proteins, and show that despite a poor
405 overlap with cell cycle transcriptome studies, these genes are expressed significantly
406 higher in proliferating tissues and tumors. The poor overlap to prior transcriptome-
407 based studies of the human cell cycle points towards massive regulation of protein
408 levels at a translational or post-translational level. Another key finding of this study is
409 that the variance of many cell cycle regulated proteins, in particular the newly identified
410 proteins, are only partially explained by the cell cycle. We hypothesize that these
411 proteins are deterministically controlled by other cellular mechanisms which open the
412 door to further follow up work on the role of various signaling pathways in cell cycle
413 regulation.

414

415 Finally, we demonstrate that several of the newly identified cell cycle regulated proteins
416 may be clinically significant and have oncogenic or anti-oncogenic functions. We
417 believe that this comprehensive dissection of the cell cycle regulated human proteome,
418 now integrated into the HPA database, will serve as a valuable resource to accelerate
419 studies towards a greater functional understanding of the human cell cycle, the role of
420 these proteins in tumorigenesis and identification of novel clinical markers for cellular
421 proliferation.

422 **Material and Methods**

423

424 **Initial identification of proteins with cell-to-cell heterogeneity**

425 Protein cell-to-cell heterogeneity was identified in the images from the Cell Atlas of the
426 Human Protein Atlas ⁴⁶ either in terms of variation in abundance, defined as the change
427 of protein expression levels between single cells within the same field of view, or
428 variations in spatial distribution, defined as translocation of the protein between
429 different subcellular compartments or independent regulation of the protein in two
430 different compartments.

431

432 **Cell cultivation**

433 U2- OS FUCCI cells were developed and kindly provided by Dr. Miyawaki ⁴². These
434 cells are endogenously tagged with two fluorescent proteins fused to cell cycle
435 regulators to allow cell cycle monitoring; CDT1 (mKO2-hCdt1⁺) accumulates in G1
436 phase, while Geminin (mAG-hGem⁺) accumulates in S and G2 phases. Cells
437 expressing FUCCI probes are divided into red mKO2(+)mAG(-), yellow
438 mKO2(+)mAG(+), and green mKO2(-)mAG(+) emitting populations. The cells were
439 cultivated in Petri dishes at 37 °C in a 5.0 % CO₂ humidified environment in McCoy's
440 5A (modified) medium GlutaMAX supplement, (ThermoFisher, 36600021, MA, USA)
441 supplemented with 10% fetal bovine serum (FBS, VWR, Radnor, PA, USA). The cells
442 were maintained sub-confluent and harvested by trypsinization at log-phase growth
443 (60% confluency) for subsequent analysis.

444

445 **Live cell imaging**

446 U-2 OS FUCCI cells were grown on a 96-well glass bottom plates (Whatman, Cat#
447 7716-2370, GE Healthcare, UK, and Greiner Sensoplate Plus, Cat# 655892, Greiner
448 Bio-One, Germany). Approximately 6,000 cells were seeded in the wells and subjected
449 to long-term time-lapse imaging using the molecular device instrument ImageXpress
450 Micro XL (Molecular Device) high content screening equipped with a 20 x Plan Apo
451 objective and supported with the MetaXpress software. Three Wavelengths were
452 acquired; W1 transmitted light, W2 FITC-3540C filter, W3 CY3-4040C filter. Images
453 were collected every 30 minutes over a course of 72h.

454

455 **Antibodies**

456 The rabbit polyclonal antibodies used in this study (**Supplementary Table 8**) were
457 generated within the HPA project. The antibodies were designed to target as many
458 different isoforms of the target protein as possible and were affinity purified using

459 antigen fragments ⁹⁶. Furthermore, the antibodies were validated and quality assured
460 for sensitivity and lack of cross-reactivity using the HPA standard quality assurance
461 including microarray analyses.

462

463 **Immunostaining**

464 Immunostaining of the cells ⁹⁷ was performed in 96-well glass bottom plates (Whatman,
465 GE Healthcare, UK, and Greiner Sensoplate Plus, Greiner Bio-One, Germany) coated
466 with 50 µl of 12.5 µg/ml human fibronectin (Sigma Aldrich, Darmstadt, Germany).
467 Approximately 8,000 cells were seeded in each well and incubated at 37 °C for 24
468 hours. After washing with Phosphatase Buffered Saline (PBS, PH=7), cells were fixed
469 with 40 µl 4% ice cold PFA (Sigma Aldrich, Darmstadt, Germany) dissolved in growth
470 medium supplemented with 10 % serum for 15 minutes and permeabilized with 40 µl
471 0.1% Triton X-100 (Sigma Aldrich) in PBS for 3x5 minutes. Rabbit polyclonal HPA
472 antibodies targeting the proteins of interest were dissolved to 2-4 µg/ml in blocking
473 buffer (PBS + 4% FBS) containing 1 µg/ml mouse anti-tubulin (Abcam, ab7291,
474 Cambridge, UK). After washing with PBS, the diluted primary antibodies were added
475 (40 µl/well) and the plates were incubated over night at 4 °C. After overnight incubation,
476 wells were washed with PBS for 3x10 minutes. Secondary antibodies, goat anti-mouse
477 Alexa405 (A31553, ThermoFisher) and goat anti-rabbit Alexa647 (A21245,
478 ThermoFisher) diluted to 2,5 µg /ml in blocking buffer were added and the plates were
479 incubated for 90 minutes at room temperature. After washing with PBS, all wells were
480 mounted with PBS containing 78 % glycerol before sealed.

481

482 **Image acquisition**

483 Image acquisition was performed using ImageXpress Micro XL (Molecular Device)
484 high content screening equipped with a 40 x Plan Apo objective and supported with
485 the MetaXpress software for automated acquisition. Images of the four channels were
486 acquired at room temperature from six positions per sample. Four wavelengths were
487 acquired; W1 for the microtubules DAPI-5060C filter, W2 FITC-3540C filter, W3 CY3-
488 4040C filter and W4 CY5-4040C for the protein of interest. The images were unbinned
489 with a pixel size of 0.1625x0.1625 µm.

490

491 **Image processing and analysis**

492 The segmentation of each cell was performed using the Cell Profiler software ⁹⁸, where
493 the overlay of the FUCCI tags were used for the nuclei identification and the
494 microtubule staining was used for identification of the cell outline. Size exclusion was
495 used to prune image mitotic cells from the population.

496 For each cell, the green and red tag mean intensity value was used and the cells were
497 clustered in one of the cell cycle clusters using the Gaussian Clustering. The mean
498 intensity of the target protein was measured in one of the three main compartments;
499 nucleus, cytosol or cell, based on the a priori-known subcellular localization of the
500 target protein from the HPA Cell Atlas.

501

502 Statistical analysis was performed using Kruskal-Wallis statistical test to determine the
503 p-values that significantly differed between the three cell cycle groups. An arbitrary cut-
504 off, based on a negative control, $p < 0.01$ was chosen. FDR was calculated to adjust for
505 multiple comparisons ⁹⁹. The plots were generated using R studio v1.1.423 ¹⁰⁰. The
506 image montages were created using Image J and FIJI ¹⁰¹. k-means clustering was
507 performed using the features kurtosis and skewness, where each gene was assigned
508 to a specific K-cluster. The optimal number of clusters was chosen using the Elbow
509 method, where it looks at the percentage of variance explained as a function of the
510 number of clusters. The bimodal distribution of the protein expression was indicated
511 by Hartigan's dip test.

512

513 **Polar-coordinate pseudo time model**

514 In this work we utilized the FUCCI system to model cell cycle position. To generate a
515 continuous representation of cell cycle position we utilized a polar regression based
516 on a log-scale scatter plot of GMNN (FUCCI-green) and CDT1 (FUCCI-red) where
517 each point represents a single cell (**Supplementary Figure S4**). This data was shifted
518 such that the origin point lay at the center of mass. This allowed us to use the fractional
519 radius of the circle could be used to estimate time for each cell as traced by a ray from
520 the origin generating a polar regression representing continuous cell cycle position.
521 The cell-division point was selected by using the area of lowest cell density on the
522 polar ray from the origin. This is justified by the knowledge that M phase (where cells
523 express neither GMNN nor CDT1 highly) is much shorter than all other phases. The
524 selected point was validated via visual inspection of nearby cells. This allowed us to
525 linearize the progression of time from 0 to 1 representing the fractional distance along
526 this polar axis from 0 to 360 degrees. This fit was done on a per-plate basis to account
527 for batch-variance observed in the data.

528

529 **Moving average model**

530 Cell-cycle correlation was measured using a moving-average model within the
531 linearized time from the polar fit described above. A range of window sizes were tested
532 from 5-30. The analysis proved robust to this range of window size, and results

533 reported are for a window size of 20 cells which was chosen to balance the robustness
534 to outliers with potentially destroying signal.

535

536 **Percent explained variance**

537 We used the metric percent explained variance to describe the goodness of our model
538 fit. This metric is appealing as it is scale-invariant. That is, unlike a p-value significance
539 metric which becomes more significant as sample size increases, the percent-variance
540 converges to a stable solution as more cells are sampled. The percent explained
541 variance is calculated as:

542
$$(1) \% \sigma_{prot} = 1 - \frac{\sigma_{residual}}{\sigma_{total}}$$

543 Here, σ_{polar} represents the variance of the protein of interest for an experiment and
544 $\sigma_{residual}$ represents the variance remaining calculated from the moving average line
545 along the pseudo-time axis.

546

547 **Periodic regression model**

548 To model protein response over time, a novel continuous-time periodic regression
549 model was developed. This model made the following assumptions.

550 1. Protein expression is smoothly differentiable
551 2. Protein expression in continuously dividing cells must be periodic
552 3. Cell cycle-dependent protein expression shows a single peak as is commonly
553 assumed for gene expression ^{102,103}.

554 To model the asymmetric nature of protein accumulation and depletion over the cell
555 cycle we developed a sin-based equation of fit describing the expression of protein χ
556 over the cell cycle as seen in equation (2) below.

557

558
$$(2) f(x) = b \cdot \sin(\pi \cdot x^\alpha)^\gamma + C$$

559 Where b describes the magnitude and sign of response, α describes the position of
560 extremeum, γ defines the steepness of response, and C defines the y-intercept. Here
561 we use π to define the single-extremum period 0-1 as represented by the normalized
562 relative time since division. This function is fit to the normalized protein expression in
563 the relevant meta-compartment where protein expression is observed (nucleus,
564 cytoplasm, or both). Parameters of these functions are bounded to ensure reasonable
565 differentiability as follows.

566
$$0 < b \leq 1$$

567
$$\frac{1}{6} < \alpha \leq 100$$

568
$$\frac{1}{2} < \gamma \leq 100$$

569
$$0 \leq C \leq 1$$

570 It is worth noting that these functions do not have a stable period and may behave
571 erratically outside the defined 0-1 interval, however they are not designed to be
572 evaluated outside this interval.

573

574 **Gene set enrichment and interaction analysis**

575 Functional enrichment analysis for the GO domain biological process was performed
576 using the Database for Annotation, Visualization and Integrative Discovery (DAVID)
577 tool¹⁰⁴ and Cytoscape v3.6.1¹⁰⁵ was used for the network visualization. Enrichment
578 map plugin was used to visualize the results of the highly significant gene-set
579 enrichment as a network¹⁰⁶.

580

581 The interaction analysis was done using the Search Tool for the Retrieval of Interacting
582 Genes/Proteins (STRING) database v10.5⁸¹, where a medium confidence (0.4) score
583 was used to highlight the protein-protein interaction edges.

584

585 The open sources Cyclebase v3.0⁵⁴; Reactome and QuickGO¹⁰⁷ were used for
586 downloading the previously characterized cell cycle regulators.

587

588 **RNA extraction and RNA sequencing**

589 The RNA extraction and sequencing were performed as previously reported^{46,47,88}.
590 Briefly, for cell lines early-split samples and duplicates were used for total RNA
591 extraction. Tissue samples were embedded in Optimal Cutting Temperature
592 compound and stored at -80°C. HE-stained frozen sections (4 µm) were prepared
593 from each sample using a cryostat and the CryoJane® Tape-Transfer System
594 (Instrumedics, St. Louis, MO, USA). Three sections (10 µm) were cut from each frozen
595 tissue block and collected in a tube for subsequent RNA extraction¹⁰⁸. Total RNA was
596 extracted from the cell lines and tissue samples using the RNeasy Mini Kit (Qiagen,
597 Hilden, Germany) according to the manufacturer's instructions. Only samples of high-
598 quality RNA (RNA Integrity Number ≥ 7.5) were used in the following mRNA sample
599 preparation for sequencing.

600

601 A total of 172 samples from 37 tissues and organs was sequenced using Illumina
602 Hiseq2000 and Hiseq2500, and the standard Illumina RNAseq protocol with a read
603 length of 2x100 bases. Briefly, the reads were mapped to the human genome
604 (GRCh37) using Tophat v2.0.8b ¹⁰⁹. Transcript abundance estimation was performed
605 using Kallisto v0.42.4 ¹¹⁰. For each gene, the abundance was reported in 'Transcript
606 Per Million' (TPM) as the sum of the TPM values of all its protein-coding transcripts.
607 For each cell line and tissue type, the average TPM value for replicate samples was
608 used as abundance score. The threshold level to detect presence of a transcript for a
609 particular gene was set to ≥ 1 TPM.

610

611 **Co-Expression Network Analysis**

612 The co-expression networks for different tissues and cancer were downloaded from
613 TCSBN website ⁸⁷. The nodes (genes) in the networks were classified into three
614 categories: i) candidate cell-cycle genes (T1), ii) known cell-cycle genes (T2) and iii)
615 other genes (T3). Following that, the shortest path in the co-expression network was
616 compared between each category by using simple Breadth-First Search (BFS)
617 method. The distribution between shortest path of T1-T2 was compared with T3-T2 by
618 FDR-Adjusted Kolmogorov-Smirnov one-sided test (FDR < 0.05).

619

620 For the next step, we then incorporated the cancer pathology data from the HPA ⁸⁸ into
621 the cancer co-expression networks. The significant prognostic property ("favorable" or
622 "unfavorable") was mapped into the nodes of the networks. We then employed Louvain
623 community detection algorithm¹¹¹ to identify the communities in the network, to
624 maximize the modularity score. For each community, we calculated hypergeometric
625 test to understand further the behavior of each community. A community was
626 considered as showing specific behavior if it fulfilled p-value < 0.01 . Each community
627 was mapped into one of the four categories: i) Favorable, ii) Unfavorable, iii) Both, iv)
628 Not significant.

629

630 The aforementioned analyses were performed with in-house Python script, with Scipy
631 module¹¹² for the statistical analysis and Igraph¹¹³ for the network analysis and
632 manipulation.

633

634 **Immunohistochemical staining**

635 Immunohistochemical (IHC) staining of tissue microarray (TMA) sections and slide
636 scanning were performed essentially as previously described ¹¹⁴. In brief, normal and
637 cancer tissues were derived from surgical material obtained from the Department of

638 Pathology, Uppsala University Hospital, Uppsala, Sweden as part of the sample
639 collection governed by the Uppsala Biobank (<http://www.uppsalabiobank.uu.se/en/>).
640 All human tissue samples used in the present study were anonymized in accordance
641 with approval and advisory report from the Uppsala Ethical Review Board (Reference
642 # 2002-577, 2005-338 and 2007-159). Representative tissue cores (1 mm diameter)
643 were sampled from formalin fixed and paraffin embedded (FFPE) blocks and
644 assembled into six TMAs, containing normal tissue samples from 144 individuals, as
645 well as cancer tissue samples from 216 individuals. TMA blocks were cut in 4 μ m thick
646 sections using waterfall microtomes (Microm HM 355S, Thermo Fisher Scientific,
647 Freemont, CA, USA), dried in RT overnight and baked in 50°C for 12-24 hours prior to
648 IHC staining. Automated immunohistochemistry was performed using Autostainer
649 480® instruments (Lab Vision, Freemont, CA, USA), followed by slide scanning using
650 Aperio AT2 (Leica Biosystems, Wetzlar, Germany). The high-resolution images of IHC
651 stained TMA sections were evaluated and annotated by certified pathologists (Lab
652 SurgPath, Mumbai, India).

653 **References**

654 1 Barnum, K. J. & O'Connell, M. J. in *Cell Cycle Control* 29-40 (Springer, 2014).

655 2 Croft, D. *et al.* Reactome: a database of reactions, pathways and biological processes. *Nucleic acids research* **39**, D691-D697 (2010).

656 3 Crosby, M. E. Cell cycle: principles of control. *The Yale journal of biology and medicine* **80**, 141 (2007).

657 4 Weinberg, R. A. The retinoblastoma protein and cell cycle control. *Cell* **81**, 323-330 (1995).

658 5 Morgan, D. O. Principles of CDK regulation. *Nature* **374**, 131 (1995).

659 6 Nurse, P. A long twentieth century of the cell cycle and beyond. *Cell* **100**, 71-78 (2000).

660 7 Ly, T., Endo, A. & Lamond, A. I. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. *eLife* **4**, e04534, doi:10.7554/eLife.04534 (2015).

661 8 Teixeira, L. K. & Reed, S. I. Ubiquitin ligases and cell cycle control. *Annual review of biochemistry* **82**, 387-414 (2013).

662 9 Eifler, K. & Vertegaal, A. C. SUMOylation-mediated regulation of cell cycle progression and cancer. *Trends in biochemical sciences* **40**, 779-793 (2015).

663 10 King, R. W., Deshaies, R. J., Peters, J.-M. & Kirschner, M. W. How proteolysis drives the cell cycle. *Science* **274**, 1652-1659 (1996).

664 11 Skaar, J. R. & Pagano, M. Control of cell growth by the SCF and APC/C ubiquitin ligases. *Current opinion in cell biology* **21**, 816-824 (2009).

665 12 Reed, S. I. in *Cell Cycle Regulation* 147-181 (Springer, 2006).

666 13 Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. *Nature reviews cancer* **9**, 153 (2009).

667 14 Massagué, J. G1 cell-cycle control and cancer. *Nature* **432**, 298 (2004).

668 15 Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. *Science* **266**, 1821-1828 (1994).

669 16 Orlando, D. A. *et al.* Global control of cell-cycle transcription by coupled CDK and network oscillators. *Nature* **453**, 944, doi:10.1038/nature06955
<https://www.nature.com/articles/nature06955#supplementary-information> (2008).

670 17 Cho, R. J. *et al.* Transcriptional regulation and function during the human cell cycle. *Nature Genetics* **27**, 48, doi:10.1038/83751 (2001).

671 18 Rustici, G. *et al.* Periodic gene expression program of the fission yeast cell cycle. *Nature genetics* **36**, 809 (2004).

688 19 Whitfield, M. L. *et al.* Identification of Genes Periodically Expressed in the
689 Human Cell Cycle and Their Expression in Tumors. *Molecular Biology of the*
690 *Cell* **13**, 1977-2000, doi:10.1091/mbc.02-02-0030 (2002).

691 20 Boström, J. *et al.* Comparative cell cycle transcriptomics reveals
692 synchronization of developmental transcription factor networks in cancer cells.
693 *PloS one* **12**, e0188772 (2017).

694 21 Lane, K. R. *et al.* Cell cycle-regulated protein abundance changes in
695 synchronously proliferating HeLa cells include regulation of pre-mRNA splicing
696 proteins. *PloS one* **8**, e58456 (2013).

697 22 Ohta, S. *et al.* The protein composition of mitotic chromosomes determined
698 using multiclassifier combinatorial proteomics. *Cell* **142**, 810-821 (2010).

699 23 Ly, T. *et al.* A proteomic chronology of gene expression through the cell cycle
700 in human myeloid leukemia cells. *Elife* **3** (2014).

701 24 Pagliuca, F. W. *et al.* Quantitative proteomics reveals the basis for the
702 biochemical specificity of the cell-cycle machinery. *Molecular cell* **43**, 406-417
703 (2011).

704 25 Bar-Joseph, Z. *et al.* Genome-wide transcriptional analysis of the human cell
705 cycle identifies genes differentially regulated in normal and cancer cells.
706 *Proceedings of the National Academy of Sciences* **105**, 955 (2008).

707 26 Dominguez, D. *et al.* A high-resolution transcriptome map of cell cycle reveals
708 novel connections between periodic genes and cancer. *Cell Research* **26**, 946,
709 doi:10.1038/cr.2016.84

710 <https://www.nature.com/articles/cr201684#supplementary-information> (2016).

711 27 Grant, G. D. *et al.* Identification of cell cycle-regulated genes periodically
712 expressed in U2OS cells and their regulation by FOXM1 and E2F transcription
713 factors. *Mol Biol Cell* **24**, 3634-3650, doi:10.1091/mbc.E13-05-0264 (2013).

714 28 Peña-Díaz, J. *et al.* Transcription profiling during the cell cycle shows that a
715 subset of Polycomb-targeted genes is upregulated during DNA replication.
716 *Nucleic Acids Research* **41**, 2846-2856, doi:10.1093/nar/gks1336 (2013).

717 29 Cooper, S. *et al.* Membrane-elution analysis of content of cyclins A, B1, and E
718 during the unperturbed mammalian cell cycle. *Cell Division* **2**, 28,
719 doi:10.1186/1747-1028-2-28 (2007).

720 30 Mgbonyebi, O. P., Russo, J. & Russo, I. H. Roscovitine induces cell death and
721 morphological changes indicative of apoptosis in MDA-MB-231 breast cancer
722 cells. *Cancer research* **59**, 1903-1910 (1999).

723 31 Wright, J. Morphology and growth rate changes in Chinese hamster cells
724 cultured in presence of sodium butyrate. *Experimental cell research* **78**, 456-
725 460 (1973).

726 32 Maltese, W. A. & Sheridan, K. M. Isoprenylated proteins in cultured cells:
727 subcellular distribution and changes related to altered morphology and growth
728 arrest induced by mevalonate deprivation. *Journal of cellular physiology* **133**,
729 471-481 (1987).

730 33 Davis, P. K., Ho, A. & Dowdy, S. F. Biological methods for cell-cycle
731 synchronization of mammalian cells. *Biotechniques* **30**, 1322-1331 (2001).

732 34 Cooper, S. Rethinking synchronization of mammalian cells for cell cycle
733 analysis. *Cellular and Molecular Life Sciences CMLS* **60**, 1099-1106,
734 doi:10.1007/s00018-003-2253-2 (2003).

735 35 Cooper, S., Iyer, G., Tarquini, M. & Bissett, P. Nocodazole does not
736 synchronize cells: implications for cell-cycle control and whole-culture
737 synchronization. *Cell and Tissue Research* **324**, 237-242, doi:10.1007/s00441-
738 005-0118-8 (2006).

739 36 Cooper, S. & Shedden, K. Microarray analysis of gene expression during the
740 cell cycle. *Cell & Chromosome* **2**, 1, doi:10.1186/1475-9268-2-1 (2003).

741 37 Karlsson, J., Kroneis, T., Jonasson, E., Larsson, E. & Ståhlberg, A.
742 Transcriptomic Characterization of the Human Cell Cycle in Individual
743 Un同步ized Cells. *Journal of molecular biology* **429**, 3909-3924 (2017).

744 38 Liu, Z. *et al.* Reconstructing cell cycle pseudo time-series via single-cell
745 transcriptome data. *Nature communications* **8**, 22 (2017).

746 39 Scialdone, A. *et al.* Computational assignment of cell-cycle stage from single-
747 cell transcriptome data. *Methods* **85**, 54-61 (2015).

748 40 Sigal, A. *et al.* Dynamic proteomics in individual human cells uncovers
749 widespread cell-cycle dependence of nuclear proteins. *Nature Methods* **3**, 525
750 (2006).

751 41 Neumann, B. *et al.* Phenotypic profiling of the human genome by time-lapse
752 microscopy reveals cell division genes. *Nature* **464**, 721 (2010).

753 42 Sakaue-Sawano, A. *et al.* Visualizing spatiotemporal dynamics of multicellular
754 cell-cycle progression. *Cell* **132**, 487-498 (2008).

755 43 Mukherji, M. *et al.* Genome-wide functional analysis of human cell-cycle
756 regulators. *Proceedings of the National Academy of Sciences* **103**, 14819-
757 14824 (2006).

758 44 Gut, G., Tadmor, M. D., Pe'er, D., Pelkmans, L. & Liberali, P. Trajectories of
759 cell-cycle progression from fixed cell populations. *Nature methods* **12**, 951
760 (2015).

761 45 Gookin, S. *et al.* A map of protein dynamics during cell-cycle progression and
762 cell-cycle exit. *PLoS biology* **15**, e2003268 (2017).

763 46 Thul, P. J. *et al.* A subcellular map of the human proteome. *Science* **356**,
764 eaal3321 (2017).

765 47 Uhlen, M. *et al.* Towards a knowledge-based human protein atlas. *Nature
766 biotechnology* **28**, 1248 (2010).

767 48 Brown, N. R. *et al.* Cyclin B and cyclin A confer different substrate recognition
768 properties on CDK2. *Cell Cycle* **6**, 1350-1359 (2007).

769 49 Li, X. *et al.* Direct association with inner centromere protein (INCENP) activates
770 the novel chromosomal passenger protein, Aurora-C. *Journal of Biological
771 Chemistry* **279**, 47201-47211 (2004).

772 50 Wang, X., Yang, Y. & Dai, W. Differential subcellular localizations of two human
773 Sgo1 isoforms: implications in regulation of sister chromatid cohesion and
774 microtubule dynamics. *Cell Cycle* **5**, 636-641 (2006).

775 51 Neef, R. *et al.* Phosphorylation of mitotic kinesin-like protein 2 by polo-like
776 kinase 1 is required for cytokinesis. *The Journal of cell biology* **162**, 863-876
777 (2003).

778 52 Gangisetty, O., Lauffart, B., Sondarva, G. V., Chelsea, D. M. & Still, I. H. The
779 transforming acidic coiled coil proteins interact with nuclear histone
780 acetyltransferases. *Oncogene* **23**, 2559 (2004).

781 53 Botstein, D. *et al.* Gene Ontology: tool for the unification of biology. *Nat genet*
782 **25**, 25-29 (2000).

783 54 Santos, A., Wernersson, R. & Jensen, L. J. Cyclebase 3.0: a multi-organism
784 database on cell-cycle regulation and phenotypes. *Nucleic acids research* **43**,
785 D1140-D1144 (2014).

786 55 Vong, Q. P., Cao, K., Li, H. Y., Iglesias, P. A. & Zheng, Y. Chromosome
787 alignment and segregation regulated by ubiquitination of survivin. *Science* **310**,
788 1499-1504 (2005).

789 56 Wolfson, R. L. *et al.* KICSTOR recruits GATOR1 to the lysosome and is
790 necessary for nutrients to regulate mTORC1. *Nature* **543**, 438 (2017).

791 57 Kikuchi, K., Niikura, Y., Kitagawa, K. & Kikuchi, A. Dishevelled, a Wnt signalling
792 component, is involved in mitotic progression in cooperation with Plk1. *The
793 EMBO journal* **29**, 3470-3483 (2010).

794 58 Fang, L., Seki, A. & Fang, G. SKAP associates with kinetochores and promotes
795 the metaphase-to-anaphase transition. *Cell cycle* **8**, 2819-2827 (2009).

796 59 Rapley, J. *et al.* The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5
797 at a novel site necessary for mitotic spindle formation. *Journal of cell science*
798 **121**, 3912-3921 (2008).

799 60 Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation
800 of T-cell activation and autoimmunity by Mgat5N-glycosylation. *Nature* **409**,
801 733 (2001).

802 61 Robson, T. & James, I. F. The therapeutic and diagnostic potential of FKBPL;
803 a novel anticancer protein. *Drug discovery today* **17**, 544-548 (2012).

804 62 Zielke, N. & Edgar, B. FUCCI sensors: powerful new tools for analysis of cell
805 proliferation. *Wiley Interdisciplinary Reviews: Developmental Biology* **4**, 469-
806 487 (2015).

807 63 Suzuki, C. *et al.* ANLN plays a critical role in human lung carcinogenesis
808 through the activation of RHOA and by involvement in the phosphoinositide 3-
809 kinase/AKT pathway. *Cancer research* **65**, 11314-11325 (2005).

810 64 Patterson, K. I., Brummer, T., O'brien, P. M. & Daly, R. J. Dual-specificity
811 phosphatases: critical regulators with diverse cellular targets. *Biochemical
812 Journal* **418**, 475-489 (2009).

813 65 O'Hagan, S., Muelas, M. W., Day, P. J., Lundberg, E. & Kell, D. B. GeneGini:
814 Assessment via the Gini Coefficient of Reference "Housekeeping" Genes and
815 Diverse Human Transporter Expression Profiles. *Cell systems* **6**, 230-244.
816 e231 (2018).

817 66 Phannasil, P. *et al.* Pyruvate carboxylase is up-regulated in breast cancer and
818 essential to support growth and invasion of MDA-MB-231 cells. *PLoS one* **10**,
819 e0129848 (2015).

820 67 Sellers, K. *et al.* Pyruvate carboxylase is critical for non-small-cell lung cancer
821 proliferation. *The Journal of clinical investigation* **125**, 687-698 (2015).

822 68 Christen, S. *et al.* Breast cancer-derived lung metastases show increased
823 pyruvate carboxylase-dependent anaplerosis. *Cell reports* **17**, 837-848 (2016).

824 69 Wang, J. *et al.* Identification of XAF1 as a novel cell cycle regulator through
825 modulating G 2/M checkpoint and interaction with checkpoint kinase 1 in
826 gastrointestinal cancer. *Carcinogenesis* **30**, 1507-1516 (2009).

827 70 Semple, J. W. *et al.* An essential role for Orc6 in DNA replication through
828 maintenance of pre-replicative complexes. *The EMBO journal* **25**, 5150-5158
829 (2006).

830 71 Izumi, M. *et al.* The Mcm2-7-interacting domain of human mini-chromosome
831 maintenance 10 (Mcm10) protein is important for stable chromatin association
832 and origin firing. *Journal of Biological Chemistry*, jbc. M117. 779371 (2017).

833 72 Li, Y. *et al.* ZNF32 inhibits autophagy through the mTOR pathway and protects
834 MCF-7 cells from stimulus-induced cell death. *Scientific reports* **5**, 9288 (2015).

835 73 Li, J. *et al.* ZNF32 contributes to the induction of multidrug resistance by
836 regulating TGF- β receptor 2 signaling in lung adenocarcinoma. *Cell death &*
837 *disease* **7**, e2428 (2016).

838 74 Wisdom, R., Johnson, R. S. & Moore, C. c-Jun regulates cell cycle progression
839 and apoptosis by distinct mechanisms. *The EMBO journal* **18**, 188-197 (1999).

840 75 Pils, D. *et al.* Cyclin E1 (CCNE1) as independent positive prognostic factor in
841 advanced stage serous ovarian cancer patients—A study of the OVCAD
842 consortium. *European journal of cancer* **50**, 99-110 (2014).

843 76 St-Denis, N. *et al.* Phenotypic and interaction profiling of the human
844 phosphatases identifies diverse mitotic regulators. *Cell reports* **17**, 2488-2501
845 (2016).

846 77 Shin, H.-J. *et al.* Dual roles of human BubR1, a mitotic checkpoint kinase, in
847 the monitoring of chromosomal instability. *Cancer cell* **4**, 483-497 (2003).

848 78 Xu, Y. *et al.* Effect of estrogen sulfation by SULT 1 E 1 and PAPSS on the
849 development of estrogen-dependent cancers. *Cancer science* **103**, 1000-1009
850 (2012).

851 79 Figaro, S., Scrima, N., Buckingham, R. H. & Heurgué-Hamard, V. HemK2
852 protein, encoded on human chromosome 21, methylates translation
853 termination factor eRF1. *FEBS letters* **582**, 2352-2356 (2008).

854 80 Javaheri, T. *et al.* Increased survival and cell cycle progression pathways are
855 required for EWS/FLI1-induced malignant transformation. *Cell death & disease*
856 **7**, e2419 (2016).

857 81 Szklarczyk, D. *et al.* STRING v10: protein–protein interaction networks,
858 integrated over the tree of life. *Nucleic acids research* **43**, D447-D452 (2014).

859 82 Hutterer, A., Glotzer, M. & Mishima, M. Clustering of centralspindlin is essential
860 for its accumulation to the central spindle and the midbody. *Current biology* **19**,
861 2043-2049 (2009).

862 83 Fischer, M. *et al.* p53 and cell cycle dependent transcription of kinesin family
863 member 23 (KIF23) is controlled via a CHR promoter element bound by
864 DREAM and MMB complexes. *PloS one* **8**, e63187 (2013).

865 84 Wang, Y. & Zhan, Q. Cell cycle-dependent expression of centrosomal ninein-
866 like protein in human cells is regulated by the anaphase-promoting complex.
867 *Journal of Biological Chemistry* **282**, 17712-17719 (2007).

868 85 Morita, H. et al. KIF20A, highly expressed in immature hematopoietic cells,
869 supports the growth of HL60 cell line. *International journal of hematology* **108**,
870 607-614 (2018).

871 86 Weinstein, J. N. et al. The cancer genome atlas pan-cancer analysis project.
872 *Nature genetics* **45**, 1113 (2013).

873 87 Lee, S. et al. TCSBN: a database of tissue and cancer specific biological
874 networks. *Nucleic acids research* **46**, D595-D600 (2017).

875 88 Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. *Science*
876 **357**, eaan2507 (2017).

877 89 Yang, X.-M. et al. Overexpression of Rac GTPase activating protein 1
878 contributes to proliferation of cancer cells by reducing hippo signaling to
879 promote cytokinesis. *Gastroenterology* **155**, 1233-1249. e1222 (2018).

880 90 Hirose, K., Kawashima, T., Iwamoto, I., Nosaka, T. & Kitamura, T. MgRacGAP
881 is involved in cytokinesis through associating with mitotic spindle and midbody.
882 *Journal of Biological Chemistry* **276**, 5821-5828 (2001).

883 91 Schneider, M. A. et al. AURKA, DLGAP5, TPX2, KIF11 and CKAP5: Five
884 specific mitosis-associated genes correlate with poor prognosis for non-small
885 cell lung cancer patients. *International journal of oncology* **50**, 365-372 (2017).

886 92 Vanneste, D., Ferreira, V. & Vernos, I. (Portland Press Limited, 2011).

887 93 Mosquera, J. M. et al. Concurrent AURKA and MYCN gene amplifications are
888 harbingers of lethal treatmentrelated neuroendocrine prostate cancer.
889 *Neoplasia* **15**, IN1-IN4 (2013).

890 94 Zhen, Y.-Y., Libotte, T., Munck, M., Noegel, A. A. & Korenbaum, E. NUANCE,
891 a giant protein connecting the nucleus and actin cytoskeleton. *J Cell Sci* **115**,
892 3207-3222 (2002).

893 95 Li, S. et al. HDAC2 regulates cell proliferation, cell cycle progression and cell
894 apoptosis in esophageal squamous cell carcinoma EC9706 cells. *Oncology
895 letters* **13**, 403-409 (2017).

896 96 Nilsson, P. et al. Towards a human proteome atlas: high-throughput generation
897 of mono-specific antibodies for tissue profiling. *Proteomics* **5**, 4327-4337
898 (2005).

899 97 Stadler, C., Skogs, M., Brismar, H., Uhlén, M. & Lundberg, E. A single fixation
900 protocol for proteome-wide immunofluorescence localization studies. *Journal
901 of proteomics* **73**, 1067-1078 (2010).

902 98 Carpenter, A. E. *et al.* CellProfiler: image analysis software for identifying and
903 quantifying cell phenotypes. *Genome biology* **7**, R100 (2006).

904 99 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
905 and powerful approach to multiple testing. *Journal of the royal statistical
906 society. Series B (Methodological)*, 289-300 (1995).

907 100 Team, R. C. R: A language and environment for statistical computing. (2013).

908 101 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25
909 years of image analysis. *Nature methods* **9**, 671 (2012).

910 102 de Lichtenberg, U., Jensen, L. J., Brunak, S. & Bork, P. Dynamic complex
911 formation during the yeast cell cycle. *science* **307**, 724-727 (2005).

912 103 Spellman, P. T. *et al.* Comprehensive identification of cell cycle-regulated
913 genes of the yeast *Saccharomyces cerevisiae* by microarray hybridization.
914 *Molecular biology of the cell* **9**, 3273-3297 (1998).

915 104 Sartor, M. A. *et al.* ConceptGen: a gene set enrichment and gene set relation
916 mapping tool. *Bioinformatics* **26**, 456-463 (2009).

917 105 Shannon, P. *et al.* Cytoscape: a software environment for integrated models of
918 biomolecular interaction networks. *Genome research* **13**, 2498-2504 (2003).

919 106 Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map:
920 a network-based method for gene-set enrichment visualization and
921 interpretation. *PLoS one* **5**, e13984 (2010).

922 107 Binns, D. *et al.* QuickGO: a web-based tool for Gene Ontology searching.
923 *Bioinformatics* **25**, 3045-3046 (2009).

924 108 Uhlén, M. *et al.* Tissue-based map of the human proteome. *Science* **347**,
925 1260419 (2015).

926 109 Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions
927 with RNA-Seq. *Bioinformatics* **25**, 1105-1111 (2009).

928 110 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic
929 RNA-seq quantification. *Nature biotechnology* **34**, 525 (2016).

930 111 Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of
931 communities in large networks. *Journal of statistical mechanics: theory and
932 experiment* **2008**, P10008 (2008).

933 112 Jones, E., Oliphant, T. & Peterson, P. {SciPy}: open source scientific tools for
934 {Python}. (2014).

935 113 Csardi, G. & Nepusz, T. The igraph software package for complex network
936 research. *InterJournal, Complex Systems* **1695**, 1-9 (2006).

937 114 Kampf, C., Olsson, I., Ryberg, U., Sjöstedt, E. & Pontén, F. Production of tissue
938 microarrays, immunohistochemistry staining and digitalization within the
939 human protein atlas. *Journal of visualized experiments: JoVE* (2012).
940

941 **Acknowledgements**

942 We acknowledge the entire staff of the Human Protein Atlas program. We
943 acknowledge Dr. Hisao Masai (Tokyo Metropolitan Institute of Medical Science) for
944 providing the stable U-2 OS FUCCI cell line. We also acknowledge Dr. Magdalena
945 Otracka from the National Laboratories for Chemical Biology at Karolinska Institutet
946 (LCBKI) for access to imaging infrastructure; Dr. Petter Ranefall and Dr. Carolina
947 Wählby for providing support for establishing the Cell Profiler pipeline. Funding was
948 provided by the Knut and Alice Wallenberg Foundation (2016.0204) and Swedish
949 Research Council (2017-05327) to E.L. The data is available for download in the
950 supplementary material. Images and Cell Atlas transcriptome and proteome data is
951 available in the Human Protein Atlas (www.proteinatlas.org/humancell).

952

953 **Life Sciences Reporting Summary.**

954 Further information on experimental design is available in the Nature
955 Research Reporting Summary linked to this article.

956 **Data availability statement.**

957 The images from the Human Protein Atlas are available at:
958 [https://www.proteinatlas.org](http://www.proteinatlas.org). The images from the FUCCI screening is available
959 upon request, and will be made publicly available in the Human Protein Atlas
960 database in the release of version 19. The RNA-sequencing data is available at
961 www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2836/

962 **Code availability statement.**

963 The cell profiler pipeline for image analysis and the code for generating the polar-
964 coordinate pseudotime model and the periodic regression model are available at:
965 https://github.com/CellProfiling/fucci_screen

966

967 **Author contributions**

968 E.L. conceived the study. D.M., D.P.S. and E.L. developed the methodology for the
969 study. D.M., L.Å., R.S., C.G, and P.T. carried out the experimental work and
970 contributed to the cell atlas implementation. D.M., D.P.S. and E.L. carried out data
971 analysis and investigation. F.D. analyzed the RNA-seq data, M.A., C.Z. and A.M.
972 carried out analysis for the co-expression network analysis and generated the
973 corresponding figures. C.L. and F.P. provided the tissue data. D.M. and E.L. wrote the
974 manuscript. B.A., D.P.S, O.C and P.T revised the manuscript. D.M and D.P.S. created

975 the figures. M.U. initiated the HPA project and provided antibodies. E.L. supervised
976 and administered the project and acquired funding. All authors reviewed and approved
977 the final manuscript.

978

979 **Competing interests**

980 The authors declare that they have no conflict of interest.

981

982 **Corresponding author**

983 Correspondence and requests for materials should be addressed to E.L.

984 **Figure legends**

985

986 **Figure 1: Temporal dissection of cell-to-cell heterogeneity of the human**
987 **proteome**

988 In A-D the target protein is shown in green, microtubules in red and the nucleus in
989 blue. The scalebars in A-F represents 10 μ m.

990 A: Example images of proteins with observed cell-to-cell heterogeneity in
991 immunostained U-2 OS cells in terms of variation in protein abundance (CCNB1) and
992 in spatial distribution (MRTO4) respectively.

993 B: The RACGAP1 protein shows the same type of cell-to-cell heterogeneity in several
994 different cell types (U-2 OS, A-431 and MCF7).

995 C: Example images of proteins localized to one of the mitotic substructures
996 (Kinetochores, Cytokinetic bridge, Cleavage furrow, Mitotic spindle, Midbody ring and
997 Midbody). INCENP localized to kinetochores in MCF-7 cells, SGO1, KIF20A and
998 TACC3 localized to the kinetochores, the cleavage furrow and the mitotic spindle in U-
999 2 OS cells, respectively.

1000 D: Proteins localized to the cytokinetic bridge (BIRC5, GLI4, C12orf66) midbody ring
1001 (DVL3), and mitotic spindle (KIF11, KNSTRN, MGAT5B and FKBPL) in U-2 OS cells.

1002 E: U-2 OS FUCCI cells allow monitoring the cell cycle by expressing two fluorescently-
1003 tagged cell cycle markers, CDT1 expressed during G1 phase (red) and Geminin
1004 expressed during S and G2 phases (green) and their co-expression during G1/S
1005 transition (yellow). Intensity map of the FUCCI cells defined in three clusters
1006 representing G1, G1/S and SG2 phases by Gaussian clustering. The polar coordinate
1007 model transfers the FUCCI marker information into a linear model of pseudo-time.

1008 F: Examples images of the analyzed proteins ANLN, FAM171F1, DUSP18 and alpha-
1009 tubulin (MT) as negative control combined with their respective boxplot, intensity plot
1010 and expression profile. In the boxplots the cells expressing the different markers (G1,
1011 G1S and SG2) are grouped and the mean intensity of the target protein is plotted.
1012 Kruskal-Wallis statistical test was used to check the significance variation across the
1013 different groups. In the intensity plot, the cells corresponding to the specific target
1014 protein is highlighted using a gradient color code of the mean intensity of the target.

1015

1016 **Figure 2: Variation distribution and organelle proteomes**

1017 A: Gene ontology (BP) based enrichment analysis for cell cycle regulated proteins
1018 showing significantly enriched terms for the domain biological process. Each node
1019 represents a GO term and edge size corresponds to the number of genes that overlap
1020 between the two connected gene sets.

1021 B: Scatterplot showing the three different clusters generated by K mean clustering
1022 based on Kurtosis and skewness as features for the cell cycle regulated proteins (dark
1023 blue) and the ones not correlated to cell cycle (grey).
1024 Violin-plots and histograms showing the distinct distributions of the normalized mean
1025 intensity of each cell per protein of selected examples (GTA6; CCNB1 and DEF6).
1026 C: Scatterplot of percentage explained variance and Gini index for each investigated
1027 protein color coded by -log10(FDR).
1028 D: Bar plot showing the distribution of the cell cycle regulated proteins (dark blue) and
1029 the ones not correlated to cell cycle (grey) proteins to the different subcellular
1030 compartments. Asterisk marks statistically significant deviations from the mapped
1031 human proteome ($p<0.01$) based on a binomial test.
1032 E: Examples of cell cycle correlated proteins localized to the different subcellular
1033 structures respectively: Cytosol, Mitochondria, Nucleus, Nucleoli, Nuclear sub-
1034 compartments and Secretory pathway. The scalebar represents 10 μ m. The target
1035 protein is shown in green and microtubules in red.
1036

1037 **Figure 3: Temporal profiles of the cell cycle regulated human proteome**

1038 A: Heat map of the cell cycle regulated proteins showing the relative expression levels
1039 of the protein across the cell cycle. Yellow represents high expression level and blue
1040 represents low expression levels. The heatmap is sorted by the timepoint of their peak
1041 of expression.
1042 B: Examples of selected cell cycle regulated proteins peaking in different phases of
1043 the cell cycle. ORC6 peaking in G1, DUSP19 peaking end of G1, BUB1B, DPH2 and
1044 FLI1 peaking in S&G2 phases.
1045 C: Protein-Protein interactions network plot of the 464 CCD proteins using the STRING
1046 database. The proteins with a known association to the cell cycle (GO BP terms) are
1047 shown as squares.
1048

1049 **Figure 4: Gene expression across normal and cancer tissues**

1050 A: Hierarchical clustering of transcript levels (TPM values) for the cell cycle regulated
1051 proteins derived from bulk RNA sequencing of various normal and cancer tissue types.
1052 The expression level of the proliferation markers MCM6, CDK1, PCNA, MCM2 and
1053 KI67 is highlighted on top, as a general measure of the proliferative activity of the
1054 tissues. Four clusters are identified; Cluster 1 contains normal tissues with low
1055 proliferative activity, 2 contains cerebral tissues with testis, 3 contains mostly normal
1056 tissues with midrange expression level of the proliferation markers and 4 contains
1057 tissues with high expression of the proliferation markers, including tumors.

1058 B: Box plots of the average transcript level corresponding to the cell cycle regulated
1059 proteins for the four different clusters from A.

1060

1061 **Figure 5: Co-expression networks of the cell cycle regulated proteome**

1062 A: Bar plot showing the path distance from gene co-expression networks between
1063 novel cell cycle proteins and previously known cell cycle proteins in different normal
1064 and cancer tissues.

1065 B: Co-expression network analysis of the cell cycle regulated proteins in pancreatic,
1066 breast and colorectal cancer. The network is clustered into communities using
1067 mathematical models. Each community has been classified as favorable (green),
1068 unfavorable (red) or both based on an enrichment / hypergeometric analysis.

1069

1070 **Figure 6: Novel cell cycle regulated proteins as potential clinical biomarkers**

1071 A: Kaplan-Meier plots showing the correlation between survival and gene expression
1072 (FPKM) for four cell cycle regulated proteins. For RACGAP1 and DLGAP5 a high
1073 expression was associated to a shorter survival (unfavorable), whereas for SYNE2 and
1074 FAM50B a high expression was associated to a longer survival (favorable). Purple and
1075 blue lines show high and low expression, respectively.

1076 B: Images of immunohistochemically stained proteins in normal tissue. RACGAP1 in
1077 breast, DLGAP5 in pancreas, SYNE2 and FAM50B in kidney. The target protein is
1078 shown in brown and the nuclei in blue.

1079 C: Images of immunohistochemically stained proteins in the corresponding tumor
1080 tissue as to in B. RACGAP1 in breast cancer, DLGAP5 in pancreatic cancer, SYNE2
1081 and FAM50B in renal cancer. The target protein is shown in brown and the nuclei in
1082 blue.

1083 D: Temporal interphase expression profile of RACGAP1, DLGAP5, SYNE2 and the
1084 localization of FAM50B to the Cytokinetic bridge during mitosis.

1085 E: Interaction networks for each of the proteins, using a medium confidence score with
1086 a minimum interaction score of 0.4 and showing not more than 10 interactors.

Figure 1

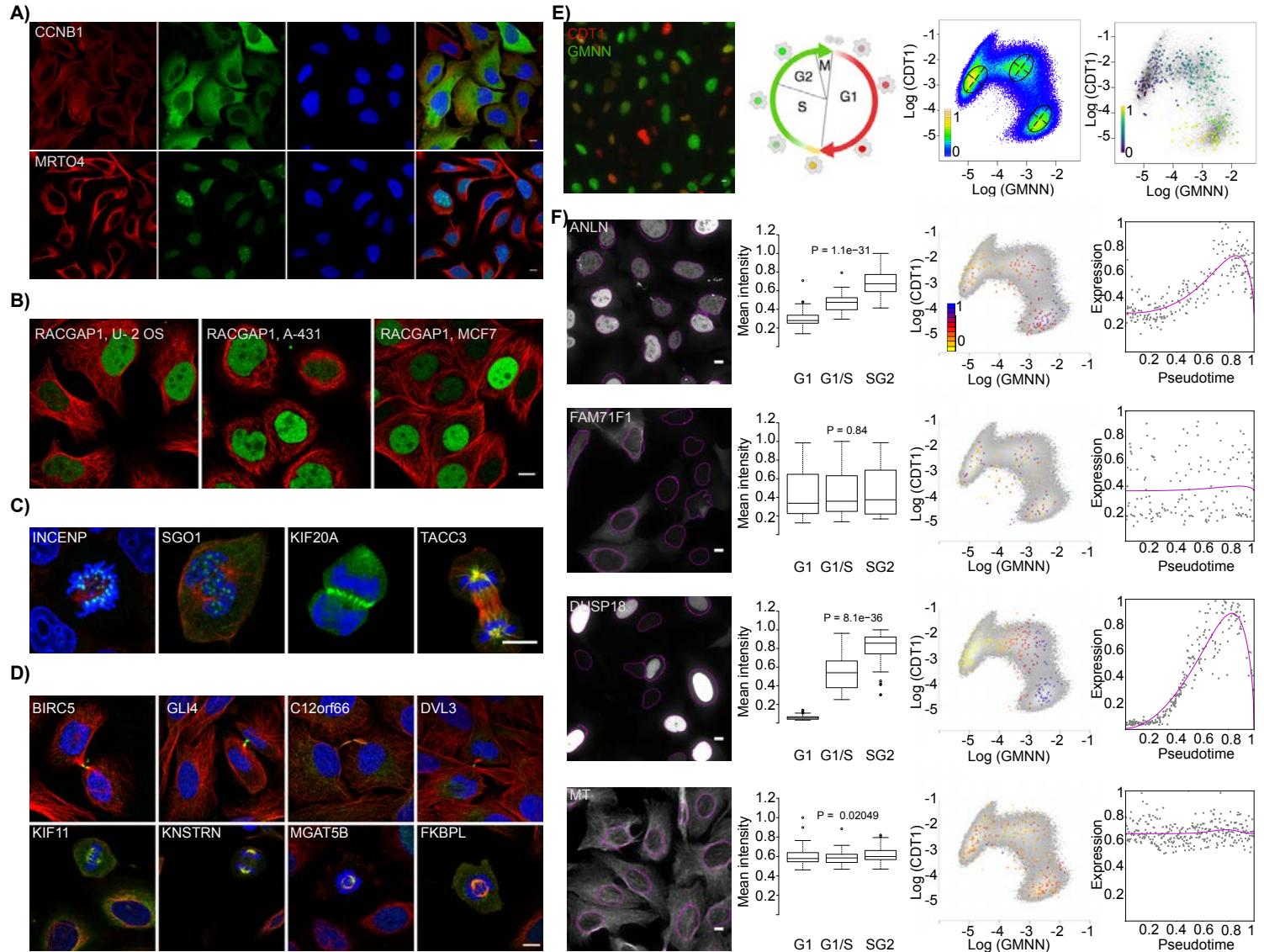


Figure 2

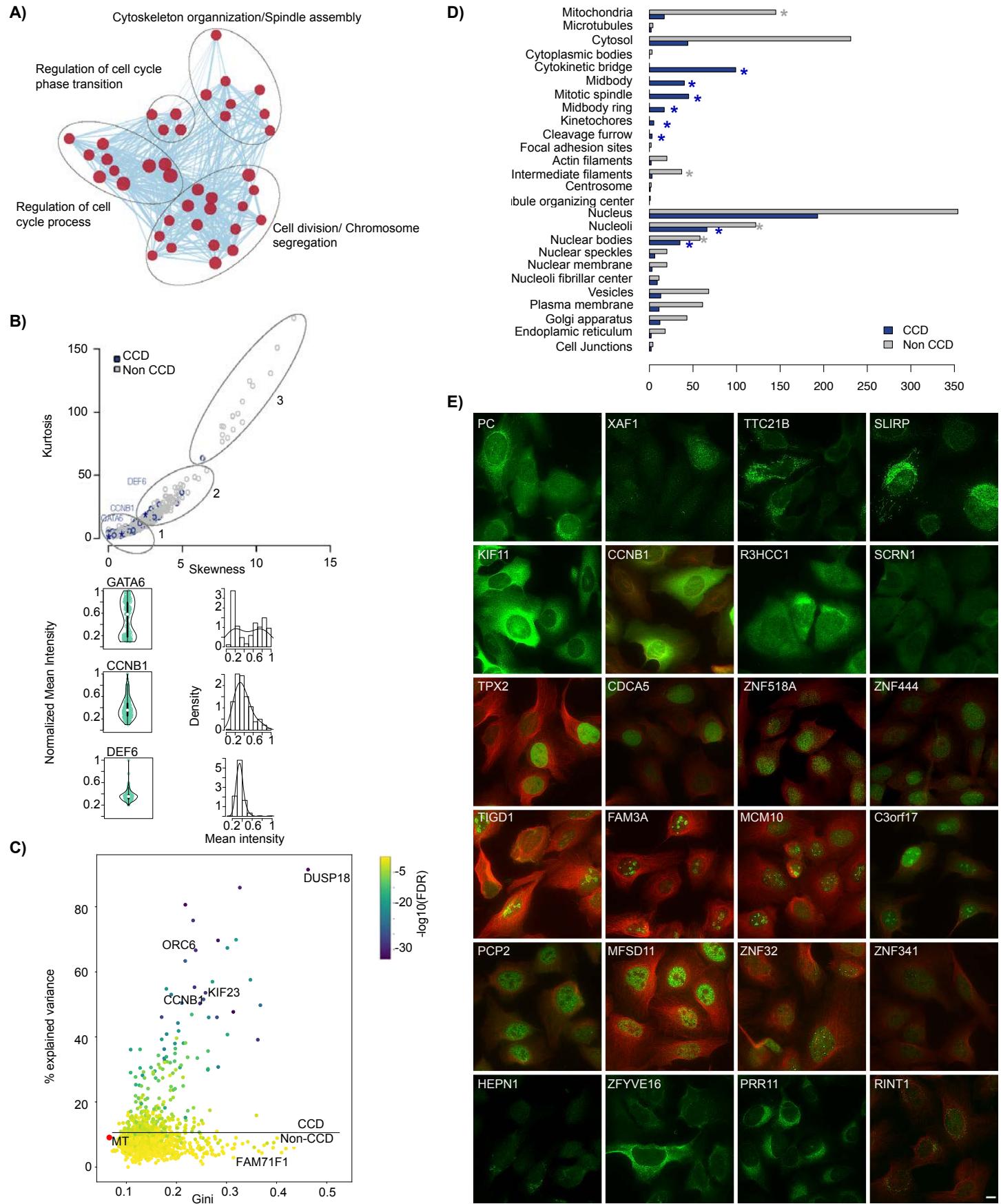
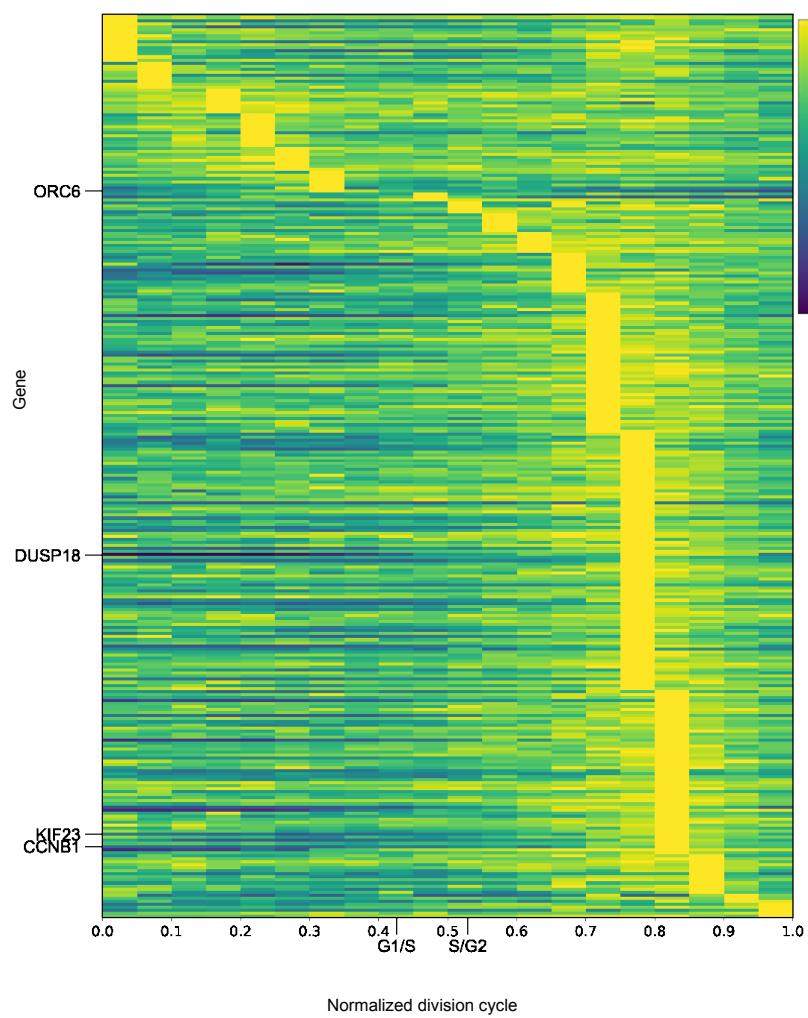
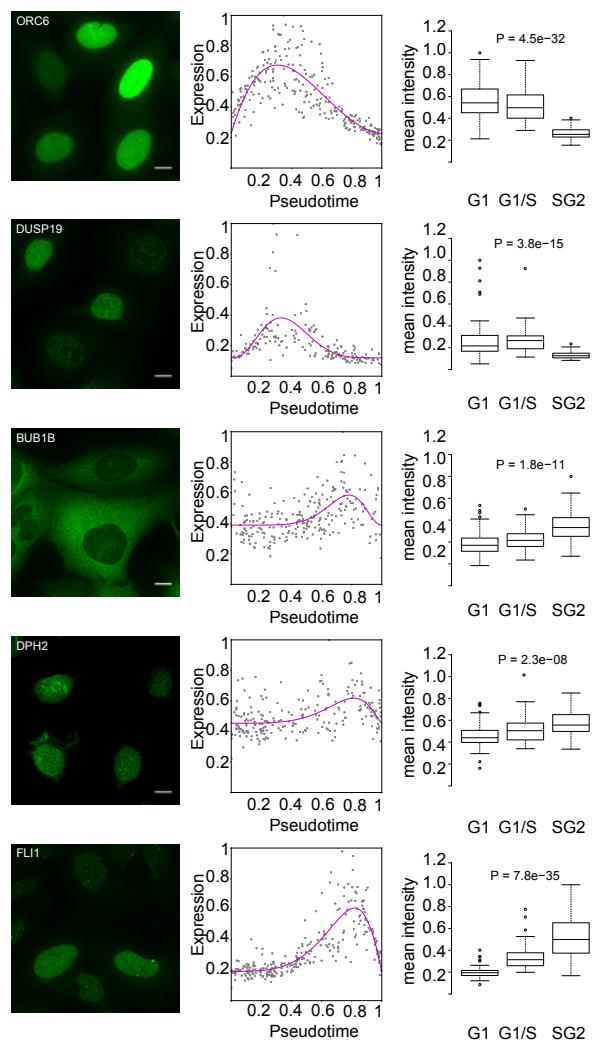


Figure 3

A)



B)



C)

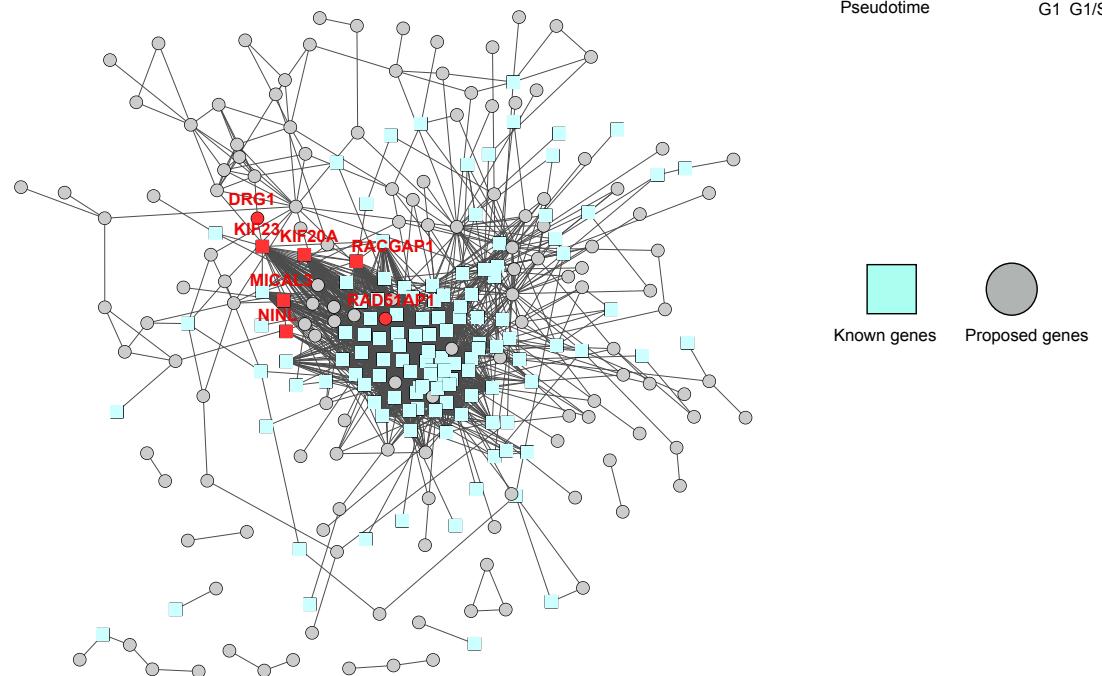
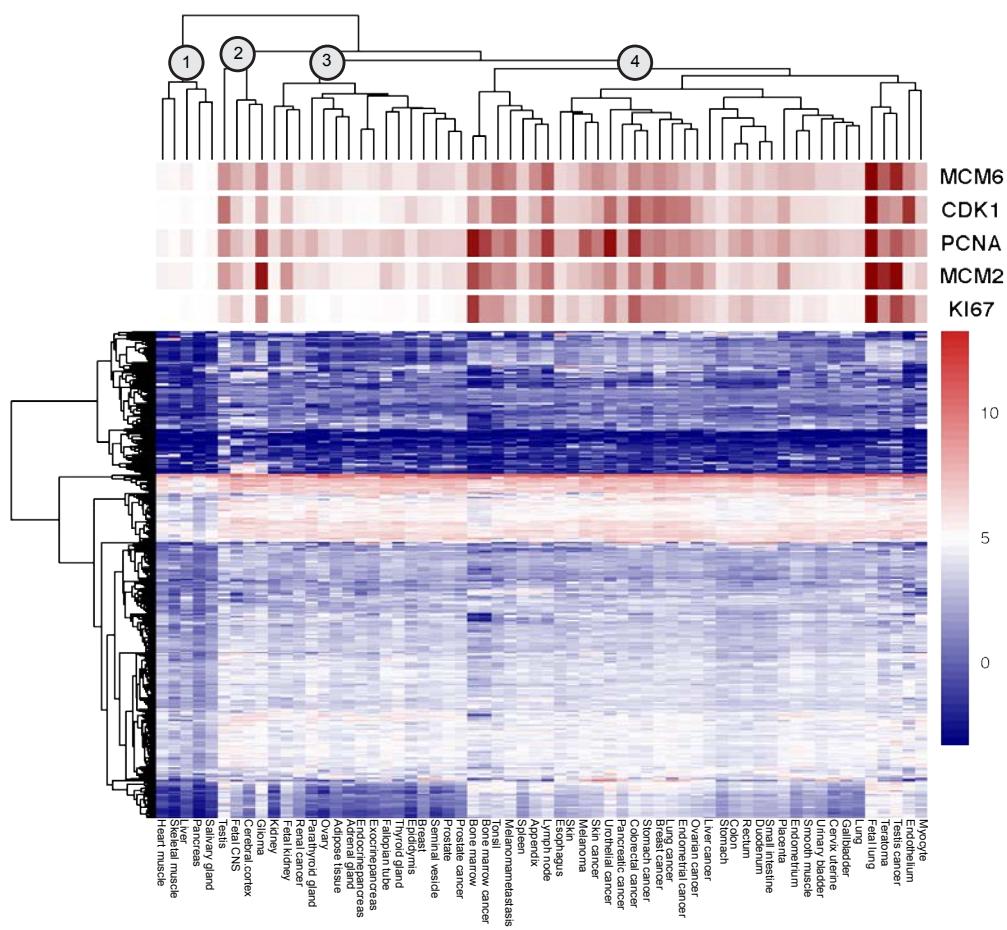


Figure 4

A)



B)

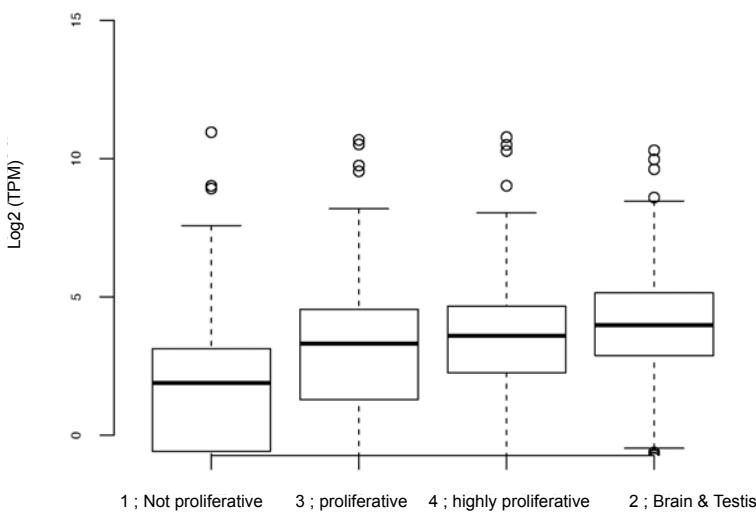


Figure 5

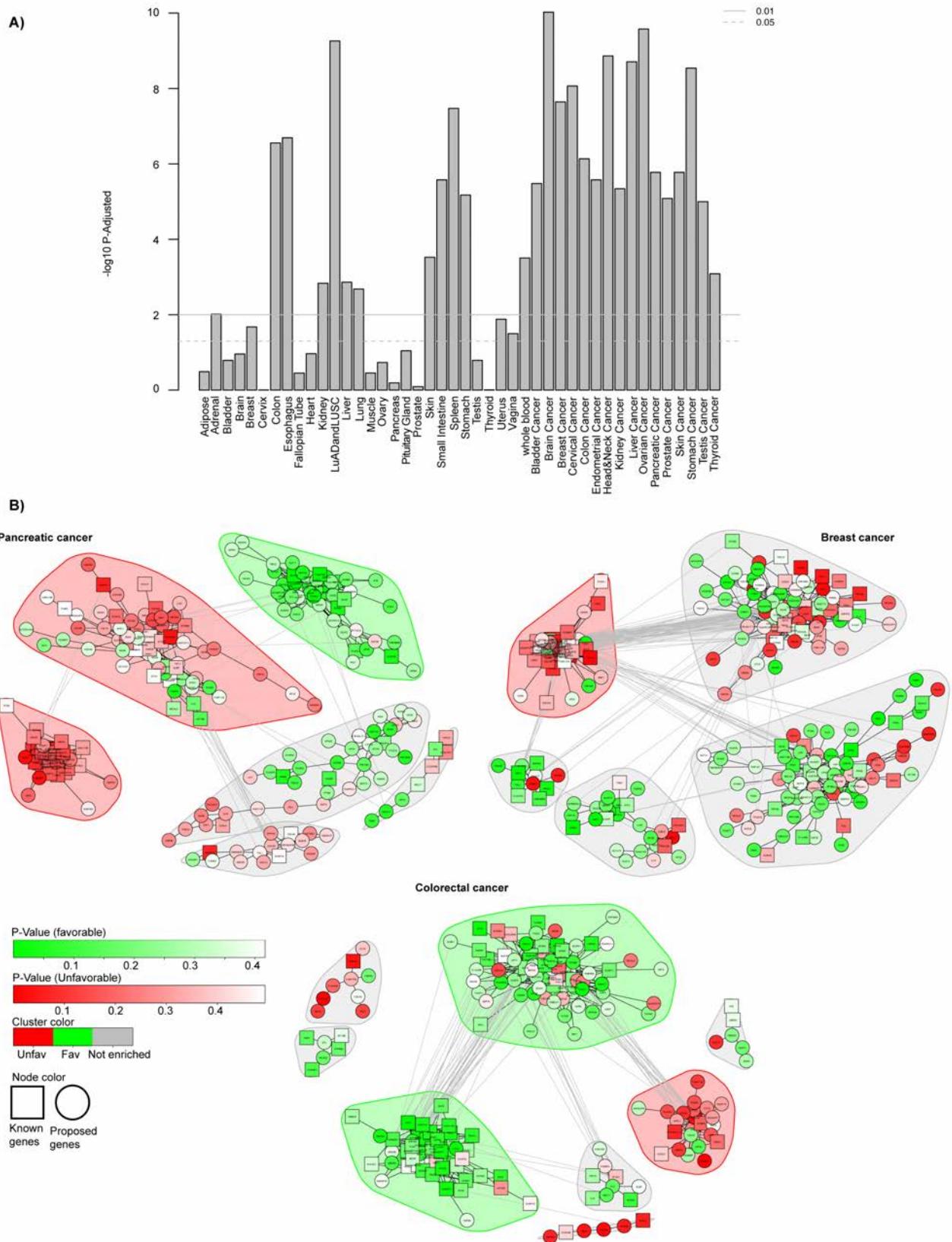


Figure 6

