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22 Abstract

23

24 Here we present a spatiotemporal dissection of proteome single cell heterogeneity in
25  human cells, performed with subcellular resolution over the course of a cell cycle. We
26  identify 17% of the human proteome to display cell-to-cell variability, of which we could
27  attribute 25% as correlated to cell cycle progression, and present the first evidence of
28  cell cycle association for 258 proteins. A key finding is that the variance, of many of
29  the cell cycle associated proteins, is only partially explained by the cell cycle, which
30 hints at cross-talk between the cell cycle and other signaling pathways. We also
31 demonstrate that several of the identified cell cycle regulated proteins may be clinically
32  significant in proliferative disorders. This spatially resolved proteome map of the cell
33 cycle, integrated into the Human Protein Atlas, serves as a valuable resource to
34  accelerate the molecular knowledge of the cell cycle and opens up novel avenues for
35  the understanding of cell proliferation.

36


https://doi.org/10.1101/543231
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/543231; this version posted February 7, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

37  Introduction

38  Cellular processes are, to a great extent, driven by the presence and activity of specific
39 proteins. Essential processes, such as the cell division cycle, require precise
40  coordination of the expression of hundreds of genes and the activity of their
41  corresponding proteins in both time and space. The cell division cycle is tightly

3-7

42  controlled at specific checkpoints "2 by regulated transcription 37, intricate feed-

43  forward and feedback loops of protein post-translational modifications, and protein

8-12

44  degradation Its dysregulation has devastating consequences, such as

45  uncontrolled cell proliferation, genomic instability ', and cancer "'°.

46

47  Given the fundamental role of the cell cycle, its regulation with cyclins and cyclin
48  dependent kinases (CDKs) has been extensively studied '®. Recent efforts have
49  focused on the investigation of genome-wide effects of cell cycle progression.

720 and mass

50  Transcriptomics studies have revealed 400-1,200 human genes
51  spectrometry-based proteomics studies have revealed 300-700 human proteins that
52  show variation in abundance over the cell cycle '?*. These studies have commonly
53  been performed in bulk, with cells sorted into synchronized populations 7192528 This

29

54 is a disruptive procedure, shown to alter gene expression “°, and perturb cellular

30-32

55  morphology as well as metabolism *. In addition, the achieved synchrony could

56  be contaminated with cells from other phases **¢.

57

58  Single-cell sequencing now allow the analysis of transcriptional changes without the
59 need for synchronized cells. Recent single-cell transcriptomic studies presented the
60 first efforts to update the decade old catalogues of periodic gene expression patterns
61 that were based on bulk analysis *~*°. For instance, in a study using human myxoid
62  sarcoma cell line (MSL) cells, 472 genes with periodic expression were identified %, of
63  which 269 had no prior association to the cell cycle, indicating the potential of single-
64  cell level studies to deepen our knowledge of the cell cycle.

65

66  Microscopy offers an attractive approach to study cell cycle dynamics in asynchronous
67 cells at a single-cell level. The readout of such studies has so far been focused only
68 on cellular growth phenotypes, as conferred by genetically encoded fluorescent
69 indicators **3. Due to technological limitations, studies of single cell variations at the
70  proteome level have not yet been feasible. The few studies that exist “*° have been
71  limited to a low number of proteins and none provides a complete view of temporal cell

72 cycle dynamics of the human proteome with single cell resolution.
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73  Here we report on a systematic characterization of temporal protein expression
74  patterns with single-cell resolution in unsynchronized human cells, and present the first
75  spatially resolved map of human proteome dynamics during the cell cycle. By
76  leveraging the Human Protein Atlas (HPA) antibody resource *° and the high-resolution
77  image collection within its Cell Atlas *’, we provide a catalogue of human proteins with
78  temporal and spatial variation correlating to cell cycle progression. This spatially
79  resolved proteome map of the cell cycle, integrated into the HPA database, is a
80  complement to the existing human cell cycle gene expression resources. Altogether
81 this study has important implications for mechanistic insights into cellular proliferation

82  as well as the contribution of its miss-regulation to tumorigenesis and disease.
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83  Results

84

85  Single-cell variations of the human proteome

86  The HPA Cell Atlas aims to localize all human proteins at a subcellular level using
87  immunofluorescence and confocal microscopy (45). To date, 12,390 (v.19) proteins
88  have been localized to 33 subcellular structures. This high-resolution image collection
89  contains protein expression in a variety of human cell lines, always non-synchronized
90 and in log-phase growth, and provides an unprecedented resource to explore protein
91  expression variation at single-cell level. Out of these 12,390 proteins mapped in the
92  HPA Cell Atlas, 2,195 (17%, Supplementary Table 1) showed cell-to-cell variations
93  based on visual inspection, either in terms of variation in protein expression level or
94  variation in spatial distribution. As exemplified in Figure 1A, CCNB1, an important cell
95  cycle regulator *® localized to the cytosol, shows variation in abundance, whereas
96 MRTO4, a protein with unknown function, shows spatial variation in its expression
97  between the nucleus and nucleoli. Out of these 2,195 proteins, 69% showed similar
98  cell-to-cell variations in more than one human cell line (Supplementary Table 2), as
99 exemplified for RACGAP1 in three different cell lines (Figure 1B). This suggests that
100  these proteome variations might be to a large extent controlled by preserved regulatory
101  mechanisms. We investigate to what extent these observed protein variations
102  represent temporally controlled expression patterns correlating to cell cycle
103 progression.
104
105 Proteins spatiotemporally restricted to mitotic cellular structures
106  The cell cycle dependency of a protein can be inferred directly, if it localizes to a mitotic
107  structure (i.e. kinetochores, mitotic spindle, midbody, midbody ring, cleavage furrow,
108  or cytokinetic bridge). For example, the mitotic regulators INCENP *° and SGO1 *°
109  appear at the kinetochores during mitosis; KIF20A °' localizes to the cleavage furrow;
110 and TACC3 *? to the mitotic spindles (Figure 1C). Of the 2,195 proteins identified to
111  show cell-to-cell variability, a total of 166 mapped to one or several of the mitotic
112 structures (99 to cytokinetic bridge, 45 to mitotic spindle, 40 to midbody, 17 to midbody
113 ring, 5 to kinetochores, and 3 to cleavage furrow). Among these proteins, 99 were not
114  previously annotated to have an association with the cell cycle by a biological process
115 (BP) term in Gene Ontology (GO) >* or Reactome ?, nor did they have any cell cycle
116  phenotype registered in Cyclebase ** (Supplementary Table 3). Among the proteins
117  spatiotemporally restricted to mitotic substructures were e.g. BIRC5, a well

t55

118  characterized protein essential for chromosome alignment *°, which localizes to the

119  cytokinetic bridge as well as two other uncharacterized proteins, GLI4 and C120rf66
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120  (Figure 1D). C120rf66 localizes to the lysosomes during interphase *. DVL3, a Wnt
121  signaling component known to be involved in cell proliferation *, localized to the
122 midbody ring, which is the final bridge between dividing cells (Figure 1D). It is plausible
123 to hypothesize that the proteins which localized to the mitotic spindle are involved in
124 the process of chromosome segregation; these include KIF11 and KNSTRN, both of
125  which are well-studied components of the mitotic spindle **°°. We also identified novel
126  proteins localizing to the mitotic spindle, such as MGAT5B, a glycosyltransferase for
127 which downregulation has been shown to inhibit cell proliferation °; and FKBPL, a
128  crucial protein for response to high dose radiation stress °' (Figure 1D). Altogether,
129  these 166 proteins serve as potentially interesting targets for development of novel
130  antimitotic drugs for cancer therapy.

131

132  Proteins with temporal expression variation correlated to cell cycle interphase
133  progression

134  To determine if the observed cell-to-cell variations correlate to interphase progression,
135  the FUCCI cell cycle marker system was used (Figure 1E) **®2, Of the 2,195 proteins
136 identified to show cell-to-cell variability, 1,188 proteins that were expressed and
137  exhibited variations in the U-2 OS cell line were selected for further analysis with the
138  FUCCI system (Supplementary Table 4). The expression of each protein was
139  quantified across the cell cycle by immunostaining in U-2 OS FUCCI cells. Gaussian
140  mixture modelling was used to define three clusters representing G1, the S-transition
141  (denoted G1/S) and the remaining S and G2 phases (denoted S/G2), and the
142 subsequent assignment of cells to each cluster. A polar coordinate system was used
143 to transfer the FUCCI marker information into a linear model of interphase pseudo-
144  time (Figure 1E). Examples of this analysis are given in Figure 1F: ANLN, a well-
145  characterized cell cycle regulator %, showed a significant (Kruskal Wallis p<0.01&
146  FDR<0.05) increase in abundance during cell cycle progression in the nucleus. On the
147  other hand, FAM71F, an uncharacterized protein localized to the cytosol, revealed
148  variation that did not correlate to the cell cycle, meaning that both high and low
149  expressing cells are present in all phases of the cell cycle. Expression of DUSP18, a
150  member of the DUSP family ® with no prior association to the cell cycle, was found to
151  strongly correlate to cell cycle progression. In this analysis, staining of microtubules
152  with alpha-tubulin in all samples served as a negative control, with no significant
153  variation of expression during cell cycle progression.

154

155 Based on this analysis, at an FDR of 5%, we identified 298 out of 1,188 proteins (25%)

156  to have variance in expression levels temporally correlated to cell cycle progression,
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157  and for which the cell-cycle explained more than 10% of the variance in expression.
158  (Supplementary Table 5 and Supplementary Figure S1). This cutoff was set as
159  being significantly above the negative control. It is noteworthy that the majority of the
160  proteins analyzed (75%) showed cell-to-cell variations that were largely unexplained
161 by cell cycle progression. Enrichment analysis of GO BP terms was performed for the
162  genes encoding cell cycle dependent and independent proteins. The set of genes
163  identified as cell cycle regulated was highly enriched for functions related to
164  chromosome organization and segregation, regulation of cell cycle processes,
165  cytoskeleton organization, cell division and cytokinesis (Figure 2A). Interestingly, the
166  set of genes, with variations not correlating to the cell cycle, was not enriched for any
167 GO BP terms at all. This shows that the identified proteins are indeed involved in cell
168  cycle processes whereas the proteins not correlated to cell cycle are likely involved in
169  a variety of different biological processes.

170

171  Population distribution and fraction of variance explained by the cell cycle

172 To investigate the pattern of variability for these 1,188 proteins, k-means clustering
173  was performed using the kurtosis and skewness features of the distribution of the
174  mean intensity per cell for each protein. The mean fold-change between high and low
175  expressing cells per protein were 7.97. Three clusters were found to represent distinct
176  variation patterns (Figure 2B): Cluster 1, the largest cluster (n=1,018), contained most
177  cell cycle dependent and independent proteins, 92% and 83%, respectively. The lower
178  segment of Cluster 1 contained some proteins with a bimodal distribution (Figure 2B,
179  exemplified by GATAG), but the majority of the proteins in this cluster had a unimodal
180  normal distribution (Figure 2B, exemplified by CCNB1). Cluster 2, the second largest
181  cluster (n=153), contained proteins with slightly skewed distribution profiles with a
182  sharp peak distribution, as exemplified by DEF6. Cluster 3 (n=17) mostly contained
183  proteins not correlated to the cell cycle, where the variation was highly skewed and
184 tailed with few cells expressing the protein. These results show that cell cycle
185  dependent variations are mostly unimodal with a normal distribution across a log-
186  phase growing population of cells.

187

188  In addition to identifying the proteins that are regulated by the cell cycle, the single-cell
189  resolution of our dataset allowed us to also calculate the fraction of variance that is
190 determined by the cell cycle. To our knowledge, such analysis has been done neither

191  at transcriptome, nor at proteome level previously. Here, the Gini index °

was
192 calculated and used as a metric for the variance of these 1,188 proteins (Figure 2C).

193  All the proteins analyzed had a Gini index significantly higher than the negative control
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194  (alpha tubulin) used, which serve as yet another check that we are indeed analyzing
195  proteins with heterogeneous expression. The percentage of variance explained by the
196  cell cycle ranged between 10%-91% (the FUCCI markers themselves were controlled
197  atgreen: 80% and red: 65%) and two distinct populations were identified (Figure 2C):
198  one where the variance was determined by the cell cycle (CCD), and one where the
199  variance was independent of the cell cycle (Non-CCD). Interestingly, the majority of
200 the observed cell cycle regulated variations appeared to be controlled by the cell cycle
201  at a low degree (on average 21%). We hypothesize that these cell cycle regulated
202  proteins, where the percentage of variance explained by the cell cycle is low, are
203  important for the cross-talk between the cell cycle and other signaling processes.

204

205  Organelle specific differences in temporal cell cycle protein variations

206  The high subcellular resolution of our analysis allows us to study the role of subcellular
207 localization in cell cycle regulation. We found significant differences in the localization
208  of proteins that show cell cycle dependent or independent expression (Figure 2D).
209  Proteins with variations independent of the cell cycle were significantly enriched for
210 localization to the intermediate filaments, nucleoli, nuclear bodies, and mitochondria
211  (binomial one sided test, p<0.01, mapped proteome as background), whereas proteins
212 with cell cycle dependent variation were significantly enriched for localization to
213 nucleoli, nuclear bodies and mitotic structures, constituting 33% of the cell cycle
214  dependent proteins (binomial one sided test, p<0.01, mapped proteome as
215  background). Half (50%) of the cell cycle dependent proteins resided in the nuclear
216  compartment (2% nuclear speckles, 11% nuclear bodies, 24% nucleoli and 63%
217  nucleus), not surprisingly given that one of the main functions of the nucleus is to
218  perform and control the replication of DNA during the cell cycle.

219

220  Inouranalysis, we find many functionally uncharacterized proteins that share the same
221  subcellular localization as some previously well characterized cell cycle dependent
222 proteins (Figure 2E). It is plausible to assume that proteins expressed in the same
223 organelle with similar temporal profiles may be involved in similar cell cycle processes.
224 For example, two mitochondrial proteins with known association to cell proliferation -
225  Pyruvate Carboxylase (PC), involved in gluconeogenesis and shown to be upregulated

6668 ‘and XAF1, whose inhibition is known to prevent cell

226  in several types of cancer
227  cycle progression ® were both shown to peak in the S/G2 phase (0.78 and 0.80 in
228  pseudotime, respectively). We could also identify two proteins without a prior
229  association to the cell cycle. PC and XAF1 shared the same subcellular location and

230  temporal expression profile as TTC21B (0.8 pseudotime) and SLIRP (0.8 pseudotime),
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231  both with no previously described association to the cell cycle or cell proliferation. In
232 this manner, we could associate novel and known cell cycle associated proteins with
233 similar temporal profiles in organelles such as the cytosol, nucleus, nucleoli and the
234  Golgi apparatus (Figure 2E).

235

236  Temporal protein expression patterns through interphase

237  We next sorted the proteins based on the time of peak expression in order to study the
238  temporal dynamics of the cell cycle dependent proteome (Figure 3A). Despite G1
239  being the longest period of the cell cycle (G1 10.8h; G1/S 2.6h; S&G2 together 11.9h
240  in U-2 OS FUCCI cells), the majority (85%) of the proteins peaked towards the end of
241  the cell cycle corresponding to the S&G2 phases. This analysis enabled identification
242 of proteins which share a highly similar temporal pattern to well-known cell cycle
243 regulators, but with no prior association to the cell cycle. For instance, in the G1 group,
244 well-known cell cycle dependent proteins such as ORCG6 (Figure 3B), required for the
245  cell entry into S phase °, and MCM10, required for DNA replication ’', were identified
246  to have similar patterns as those with no prior association to the cell cycle, such as
247  ZNF32. Recently, overexpression of ZNF32 was associated with a shorter survival
248  time in lung adenocarcinoma cells "™, The group peaking in the end of G1 contained
249  proteins such as JUN, required for progression through the G1 phase of cell cycle ™;
250 the G1/S specific cyclin CCNE1%; and DUSP19 (Figure 3B), a phosphatase whose
251  depletion results in increased mitotic defects . In the SG2 group, several known cell
252  cycle dependent proteins were identified: CCNB1, a G2/M specific cyclin *¢, AURKB,
253  aprotein involved in the regulation of alignment and segregation of the chromosomes,
254  and BUB1B (Figure 3B), a mitotic checkpoint kinase "’. This group also contained
255  proteins such as PAPSS1, an estrogen sulfating enzyme with no previously described
256  association to the cell cycle, although its overexpression was reported to affect
257  proliferation 8. Other proteins in the SG2 group were N6GAMT1, a methyltransferase
258 " PHLDB1, an uncharacterized protein; DPH2 (Figure 3B), required for the synthesis
259  of diphthamide; and FLI1, a transcription factor associated to Ewing sarcoma
260 (Figure 3B).

261

262  Several of the proteins identified as cell cycle dependent, such as ORC6, RBL2,
263 BUB1B, CCNA2 and HORMAD1 have been reported to be involved in cell cycle
264  processes, yet their temporal expression profile across the interphase, which can
265 provide insight into their functionality, has so far remained uncharacterized

266  (Supplementary Figure S2). In addition, knowledge about the temporal expression
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267  patterns and the timing of peak expression relative to other proteins is valuable for a
268  deeper causal understanding of the molecular effects of cell cycle progression.

269

270  An extended network of cell cycle genes

271  Of the 464 proteins (298 in interphase and 166 in mitotic structures) identified to
272  correlate to cell cycle progression, 206 (44%) had a known association to the cell cycle
273  as determined either by a GO BP term related to cell cycle processes *® or Reactome
274 2, or a cell cycle phenotype registered in Cyclebase . The remaining 258 proteins
275 (56%), had no previous association to the cell cycle (Supplementary Table 6). To
276  investigate whether the proteins, identified to be cell cycle regulated in this study, are
277  connected to proteins previously known to be cell cycle regulated, we analyzed
278  protein-protein interactions using the STRING database ®'. This analysis revealed
279  significantly more interactions than expected for a random set of proteins of similar
280  size (Lambda calculations PPl enrichment p-value <1e-16; 1855 interactions; 649
281  expected number of edges), indicating that the proteins are likely involved in similar
282  biological processes. The known cell cycle dependent proteins were tightly clustered
283  together and made up the core of the network, whereas the newly identified cell cycle
284  regulated proteins formed an extended network (Figure 3C). For instance, KIF23 is an
285  essential protein for the microtubule bundling during cytokinesis via its interaction with
286 RACGAP1 #and it is known to oscillate temporally in the nucleus during the cell cycle
287  ®.In ourinteraction analysis (Figure 3C), KIF23 showed a number of interactions with
288  known cell cycle regulators, but also with proteins with no prior association to the cell
289  cycle such as DRG1; MICALS3, which further interacts with the known NINL protein
290  required for cytokinesis 24; and RAD51AP1, which further interacts with RACGAP1 and
291  KIF20A required for cytokinesis . This implies that these three proteins with unknown
292  function, DRG1, MICAL3, and RAD51AP1, are involved in the same process as their
293  known interaction partners, in this case cytokinesis.

294

295  Poor overlap between the cell cycle dependent proteome and transcriptome
296  We performed a comparative analysis between the cell cycle regulated proteome
297 identified in our study and the cell cycle transcriptome of U-2 OS osteosarcoma cells
298 obtained by bulk RNA-sequencing of synchronized cells (26), as well as the
299  transcriptome of another type of sarcoma cells (myxoid sarcoma cells) obtained by
300 single-cell RNA-sequencing of non-synchronized cells (36). Both comparisons
301 revealed a poor overlap of 19% and 10%, respectively (Supplementary Table 7). This
302 indicates that the temporal dynamics of proteome regulation may be to a large extent

303 maintained at a translational or post-translational level.

10
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304

305 Gene expression patterns across tissues and cancers results in clusters
306 reflecting proliferative activity

307  To further understand whether the identified proteins are functionally important for cell
308 proliferation in a more native context than cell lines, we investigated the mRNA
309  expression across cohorts of normal and cancer tissue. Hierarchical clustering of the
310 transcript data from bulk RNA-sequencing of normal and cancer tissues from HPA
311  (Figure 4A) resulted in four major clusters. The first cluster contained normal tissues
312 with low proliferative activity, such as heart muscle, skeletal muscle and pancreas. The
313  different cerebral tissues formed the second cluster, together with testis, which
314  appeared as an outlier, most likely due to being the only sample with meiotic activity.
315  The third cluster contained mostly normal tissues, such as kidney and breast, and
316 showed mid-range expression level of the proliferation markers Ki67, MCM2, PCNA,
317 CDK1 and MCM6. The fourth cluster contained mostly cancer tissues, such as skin
318 and breast cancer, but also normal tissues with high proliferative activity, such as bone
319  marrow, tonsil and fetal lung. The tissues in this cluster showed high expression of the
320 abovementioned proliferation markers. Most importantly, gene expression levels were
321  significantly higher in the proliferative tissues than the non-proliferative tissues
322 (Kruskal Wallis test p-value <2e™'®) (Figure 4B).

323

324  To further strengthen the conclusion that the novel cell cycle regulated proteins are
325 important for cellular proliferation, we used the RNA-sequencing data from The Cancer
326  Genome Atlas (TCGA) % to create genome wide co-expression networks downloaded
327 from TCSBN ¥, in which the shortest path between the novel cell cycle regulated
328 genes identified in our study and known cell cycle genes were measured and
329  compared to a randomly sampled set of genes. The novel genes indeed had a
330  significantly (Kolmogorov-Smirnov one-sided test, FDR < 0.05) shorter path to the
331  known cell cycle genes in all cancer tissues and the normal proliferative tissues such
332  as skin, spleen and colon (Figure 5A), whereas there was no significant difference
333  (Kolmogorov-Smirnov one-sided test, FDR < 0.05) of the path length in low- or non-
334  proliferating tissues such as adipose, brain, heart and muscle tissues. This shows that
335 even though most of these proteins are not temporally regulated at the gene
336  expression level, their overall gene expression level is still of importance for cellular
337  proliferation.

338

339 Genes encoding cell cycle regulated proteins often have an expression

340 correlating to patient survival in cancer

11
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341  To further test if the level of expression of genes encoding cell cycle regulated proteins
342  is associated to cancer patient outcome, the TCGA data incorporated in the cancer
343  pathology atlas of HPA was used %, where genes with a statistically significant
344  differential expression between patient populations with long and short survival were
345 identified %. Genes with expression levels correlated with long survival time were
346  denoted as favorable, and with shorter survival time were denoted as unfavorable.
347  Globally, over half of all human genes (54%) were shown to have a prognostic
348  association in this manner, as previously described . Interestingly, prognostic genes
349  were significantly overrepresented among the cell cycle regulated proteins identified
350 in our study (67% prognostic) and the majority of these genes (61%) were associated
351  with an unfavorable outcome, further supporting the hypothesis of an important role of
352  these genes in cellular proliferation.

353

354  We next incorporated this classification into the generated co-expression networks for
355  different human cancer tissue types. In these networks, an enrichment analysis was
356  further subjected for each genetic community: communities were denoted as
357  favorable, unfavorable or not enriched. All communities contained a mixture of known
358 and novel cell cycle proteins, further strengthening their functional associations.
359  Strikingly, these networks revealed that the association into clusters were highly
360 different for different tumors (Figure 5B and Supplementary Figure S3), with proteins
361 being in a favorable community in one cancer type while being in an unfavorable
362  community in another cancer type, emphasizing the complexity of cell cycle regulation
363 from a systems perspective.

364

365 Many of the proteins identified here as cell cycle regulated are interesting candidates
366 forin-depth studies of their roles in tumorigenesis, and for potential use as biomarkers.
367  Forinstance, the gene RACGAP1, known to regulate cytokinesis, and DLGAPS, which
368 has been reported to have a role in carcinogenesis . In the co-expression network
369 analysis, these genes showed interactions with known cell cycle related genes and
370  were enriched in an unfavorable prognostic cluster in breast cancer and pancreatic
371  cancer, respectively (Figure 6A). Immunohistochemical (IHC) analysis showed that
372  these proteins are expressed at low levels in normal tissues (Figure 6B) and high
373 levels in corresponding tumor tissues (Figure 6C). Their expression profile is shown
374 in Figure 6D. To gain an insight into their potential pathway involvement, STRING
375 analysis was performed (Figure 6E). RACGAP1 showed physical interaction with

2

376  several members of the mitotic kinesin family required for cytokinesis %, whereas
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377  DLGAPS showed direct interaction with AURKA, a protein involved in several mitotic
378  events %,

379

380 A portion of the genes encoding proteins identified in our study (39%) were associated
381  with a favorable outcome, such as SYNE2 and FAM50B (Figure 6A). Comparison of
382  IHC staining of these two proteins revealed high expression in normal tissue (Figure
383  6B), and low expression in the respective cancers (Figure 6C). This suggests that
384  these proteins might function in anti-tumor activities. For example, SYNE2 is a nuclear
385 membrane protein %, for which we demonstrated temporal expression variation
386  peaking in G2. FAM50B is expressed in the nucleus in interphase and translocates to
387  the cytokinetic bridge in mitosis (Figure 6D). SYNE2 shows interaction with genes
388  enriched in cell cycle processes, such as STAG1, SUN2, TERF1 and TERF2 and
389  FAMS50B shows a physical interaction with HDAC2 (Figure 6E), which is involved in
390 the regulation of cell cycle progression %.

391

392  We conclude that these novel proteins identified to be cell cycle regulated have the
393  potential of serving as novel diagnostic or therapeutic targets for a variety of human

394  cancers.
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395 Discussion

396 In this study, we find that a large extent (17%) of the human proteome displays cell-to-
397  cell heterogeneity in terms of level of expression. We present the first temporal analysis
398  of the cell cycle regulated human proteome in unsynchronized cells, mapped at a
399  single cell level with subcellular resolution. Surprisingly, the majority of the variations
400  were not correlated to the cell cycle, which opens up intriguing avenues for further
401  exploration of the deterministic factors that might control these stochastic variations in
402  expression.

403

404  We present 258 novel cell cycle regulated proteins, and show that despite a poor
405  overlap with cell cycle transcriptome studies, these genes are expressed significantly
406  higher in proliferating tissues and tumors. The poor overlap to prior transcriptome-
407  based studies of the human cell cycle points towards massive regulation of protein
408 levels at a translational or post-translational level. Another key finding of this study is
409 that the variance of many cell cycle regulated proteins, in particular the newly identified
410  proteins, are only partially explained by the cell cycle. We hypothesize that these
411  proteins are deterministically controlled by other cellular mechanisms which open the
412  door to further follow up work on the role of various signaling pathways in cell cycle
413  regulation.

414

415  Finally, we demonstrate that several of the newly identified cell cycle regulated proteins
416 may be clinically significant and have oncogenic or anti-oncogenic functions. We
417  believe that this comprehensive dissection of the cell cycle regulated human proteome,
418  now integrated into the HPA database, will serve as a valuable resource to accelerate
419  studies towards a greater functional understanding of the human cell cycle, the role of
420  these proteins in tumorigenesis and identification of novel clinical markers for cellular

421  proliferation.
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422 Material and Methods
423

424 Initial identification of proteins with cell-to-cell heterogeneity

425  Protein cell-to-cell heterogeneity was identified in the images from the Cell Atlas of the
426  Human Protein Atlas *° either in terms of variation in abundance, defined as the change
427  of protein expression levels between single cells within the same field of view, or
428  variations in spatial distribution, defined as translocation of the protein between
429  different subcellular compartments or independent regulation of the protein in two
430  different compartments.

431

432 Cell cultivation

433 U2- OS FUCCI cells were developed and kindly provided by Dr. Miyawaki *2. These
434  cells are endogenously tagged with two fluorescent proteins fused to cell cycle
435  regulators to allow cell cycle monitoring; CDT1 (mKO2-hCdt1*) accumulates in G1
436  phase, while Geminin (mMAG-hGem®) accumulates in S and G2 phases. Cells
437  expressing FUCCI probes are divided into red mKO2(+)mAG(-), yellow
438  mKO2(+)mAG(+), and green mKO2(-)mAG(+) emitting populations. The cells were
439  cultivated in Petri dishes at 37 °C in a 5.0 % CO2 humidified environment in McCoy’s
440  5A (modified) medium GlutaMAX supplement, (ThermoFisher, 36600021, MA, USA)
441  supplemented with 10% fetal bovine serum (FBS, VWR, Radnor, PA, USA). The cells
442  were maintained sub-confluent and harvested by trypsinization at log-phase growth
443  (60% confluency) for subsequent analysis.

444

445  Live cell imaging

446  U-2 OS FUCCI cells were grown on a 96-well glass bottom plates (Whatman, Cat#
447 7716-2370, GE Healthcare, UK, and Greiner Sensoplate Plus, Cat# 655892, Greiner
448  Bio-One, Germany). Approximately 6,000 cells were seeded in the wells and subjected
449  to long-term time-lapse imaging using the molecular device instrument ImageXpress
450  Micro XL (Molecular Device) high content screening equipped with a 20 x Plan Apo
451 objective and supported with the MetaXpress software. Three Wavelenghts were
452  acquired; W1 transmitted light, W2 FITC-3540C filter, W3 CY3-4040C filter. Images
453  were collected every 30 minutes over a course of 72h.

454

455  Antibodies

456  The rabbit polyclonal antibodies used in this study (Supplementary Table 8) were
457  generated within the HPA project. The antibodies were designed to target as many

458  different isoforms of the target protein as possible and were affinity purified using
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459  antigen fragments %. Furthermore, the antibodies were validated and quality assured
460  for sensitivity and lack of cross-reactivity using the HPA standard quality assurance
461  including microarray analyses.

462

463  Immunostaining

464  Immunostaining of the cells % was performed in 96-well glass bottom plates (Whatman,
465 GE Healthcare, UK, and Greiner Sensoplate Plus, Greiner Bio-One, Germany) coated
466  with 50 pl of 12.5 pg/ml human fibronectin (Sigma Aldrich, Darmstadt, Germany).
467  Approximately 8,000 cells were seeded in each well and incubated at 37 °C for 24
468  hours. After washing with Phosphatase Buffered Saline (PBS, PH=7), cells were fixed
469  with 40 yl 4% ice cold PFA (Sigma Aldrich, Darmstadt, Germany) dissolved in growth
470  medium supplemented with 10 % serum for 15 minutes and permeabilized with 40 pl
471  0.1% Triton X-100 (Sigma Aldrich) in PBS for 3x5 minutes. Rabbit polyclonal HPA
472  antibodies targeting the proteins of interest were dissolved to 2-4 ug/ml in blocking
473  buffer (PBS + 4% FBS) containing 1 pg/ml mouse anti-tubulin (Abcam, ab7291,
474  Cambridge, UK). After washing with PBS, the diluted primary antibodies were added
475 (40 pl/well) and the plates were incubated over night at 4 °C. After overnight incubation,
476  wells were washed with PBS for 3x10 minutes. Secondary antibodies, goat anti-mouse
477  Alexad05 (A31553, ThermoFisher) and goat anti-rabbit Alexa647 (A21245,
478  ThermoFisher) diluted to 2,5 ug /ml in blocking buffer were added and the plates were
479  incubated for 90 minutes at room temperature. After washing with PBS, all wells were
480  mounted with PBS containing 78 % glycerol before sealed.

481

482 Image acquisition

483 Image acquisition was performed using ImageXpress Micro XL (Molecular Device)
484  high content screening equipped with a 40 x Plan Apo objective and supported with
485  the MetaXpress software for automated acquisition. Images of the four channels were
486  acquired at room temperature from six positions per sample. Four wavelengths were
487  acquired; W1 for the microtubules DAPI-5060C filter, W2 FITC-3540C filter, W3 CY3-
488  4040C filter and W4 CY5-4040C for the protein of interest. The images were unbinned
489  with a pixel size of 0.1625x0.1625 pm.

490

491 Image processing and analysis

492  The segmentation of each cell was performed using the Cell Profiler software %, where
493  the overlay of the FUCCI tags were used for the nuclei identification and the
494  microtubule staining was used for identification of the cell outline. Size exclusion was

495  used to prune image mitotic cells from the population.

16


https://doi.org/10.1101/543231
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/543231; this version posted February 7, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

496  For each cell, the green and red tag mean intensity value was used and the cells were
497  clustered in one of the cell cycle clusters using the Gaussian Clustering. The mean
498 intensity of the target protein was measured in one of the three main compartments;
499  nucleus, cytosol or cell, based on the a priori-known subcellular localization of the
500 target protein from the HPA Cell Atlas.

501

502  Statistical analysis was performed using Kruskal-Wallis statistical test to determine the
503  p-values that significantly differed between the three cell cycle groups. An arbitrary cut-
504  off, based on a negative control, p<0.01 was chosen. FDR was calculated to adjust for
505 multiple comparisons %.The plots were generated using R studio v1.1.423 ' The
506 image montages were created using Image J and FIJI . k-means clustering was
507  performed using the features kurtosis and skewness, where each gene was assigned
508 to a specific K-cluster. The optimal number of clusters was chosen using the Elbow
509  method, where it looks at the percentage of variance explained as a function of the
510  number of clusters. The bimodal distribution of the protein expression was indicated
511 by Hartigan’s dip test.

512

513 Polar-coordinate pseudo time model

514  In this work we utilized the FUCCI system to model cell cycle position. To generate a
515  continuous representation of cell cycle position we utilized a polar regression based
516 on a log-scale scatter plot of GMNN (FUCCI-green) and CDT1 (FUCCI-red) where
517  each point represents a single cell (Supplementary Figure S4). This data was shifted
518  such that the origin point lay at the center of mass. This allowed us to use the fractional
519 radius of the circle could be used to estimate time for each cell as traced by a ray from
520  the origin generating a polar regression representing continuous cell cycle position.
521  The cell-division point was selected by using the area of lowest cell density on the
522 polar ray from the origin. This is justified by the knowledge that M phase (where cells
523  express neither GMNN nor CDT1 highly) is much shorter than all other phases. The
524  selected point was validated via visual inspection of nearby cells. This allowed us to
525 linearize the progression of time from 0 to 1 representing the fractional distance along
526  this polar axis from 0 to 360 degrees. This fit was done on a per-plate basis to account
527  for batch-variance observed in the data.

528

529  Moving average model

530 Cell-cycle correlation was measured using a moving-average model within the
531 linearized time from the polar fit described above. A range of window sizes were tested

532 from 5-30. The analysis proved robust to this range of window size, and results
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533  reported are for a window size of 20 cells which was chosen to balance the robustness
534  to outliers with potentially destroying signal.

535

536  Percent explained variance

537  We used the metric percent explained variance to describe the goodness of our model
538 fit. This metric is appealing as it is scale-invariant. That is, unlike a p-value significance
539  metric which becomes more significant as sample size increases, the percent-variance
540 converges to a stable solution as more cells are sampled. The percent explained

541 variance is calculated as:

542 (1) %O-prot =1- Oresidual

Ototal
543  Here, opoar represents the variance of the protein of interest for an experiment and
544 oresiqual represents the variance remaining calculated from the moving average line
545  along the pseudo-time axis.
546
547  Periodic regression model
548  To model protein response over time, a novel continuous-time periodic regression
549  model was developed. This model made the following assumptions.
550 1. Protein expression is smoothly differentiable
551 2. Protein expression in continuously dividing cells must be periodic
552 3. Cell cycle-dependent protein expression shows a single peak as is commonly
102,103

553 assumed for gene expression

554  To model the asymmetric nature of protein accumulation and depletion over the cell
555  cycle we developed a sin-based equation of fit describing the expression of protein

556  over the cell cycle as seen in equation (2) below.

557

558 2) f(x)=b-sin(r-x*) +C

559  Where b describes the magnitude and sign of response, a describes the position of
560 extremeum,y defines the steepness of response, and C defines the y-intercept. Here

561  we use 7 to define the single-extremum period 0-1 as represented by the normalized
562  relative time since division. This function is fit to the normalized protein expression in
563 the relevant meta-compartment where protein expression is observed (nucleus,
564  cytoplasm, or both). Parameters of these functions are bounded to ensure reasonable
565 differentiability as follows.

566 0<b<1
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1
567 g<a£100
1
568 E<y£100
569 0<C<s1

570  Itis worth noting that these functions do not have a stable period and may behave
571  erratically outside the defined 0-1 interval, however they are not designed to be

572 evaluated outside this interval.

573

574  Gene set enrichment and interaction analysis

575  Functional enrichment analysis for the GO domain biological process was performed
576  using the Database for Annotation, Visualization and Integrative Discovery (DAVID)
577 tool '™ and Cytoscape v3.6.1 % was used for the network visualization. Enrichment
578 map plugin was used to visualize the results of the highly significant gene-set
579  enrichment as a network '%.

580

581  The interaction analysis was done using the Search Tool for the Retrieval of Interacting
582  Genes/Proteins (STRING) database v10.5 ', where a medium confidence (0.4) score
583  was used to highlight the protein-protein interaction edges.

584

585 The open sources Cyclebase v3.0 **; Reactome and QuickGO ' were used for
586  downloading the previously characterized cell cycle regulators.

587

588  RNA extraction and RNA sequencing

589 The RNA extraction and sequencing were performed as previously reported 464788,
590 Briefly, for cell lines early-split samples and duplicates were used for total RNA
591 extraction. Tissue samples were embedded in Optimal Cutting Temperature
592  compound and stored at —-80°C. HE-stained frozen sections (4 um) were prepared
593 from each sample using a cryostat and the CryoJane® Tape-Transfer System
594  (Instrumedics, St. Louis, MO, USA). Three sections (10 um) were cut from each frozen
595 tissue block and collected in a tube for subsequent RNA extraction '°. Total RNA was
596  extracted from the cell lines and tissue samples using the RNeasy Mini Kit (Qiagen,
597  Hilden, Germany) according to the manufacturer’s instructions. Only samples of high-
598  quality RNA (RNA Integrity Number 27.5) were used in the following mRNA sample
599  preparation for sequencing.

600
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601 A total of 172 samples from 37 tissues and organs was sequenced using lllumina
602  Hiseq2000 and Hiseg2500, and the standard lllumina RNAseq protocol with a read
603 length of 2x100 bases. Briefly, the reads were mapped to the human genome
604  (GRCh37) using Tophat v2.0.8b ', Transcript abundance estimation was performed
605  using Kallisto v0.42.4 "°. For each gene, the abundance was reported in 'Transcript
606  Per Million' (TPM) as the sum of the TPM values of all its protein-coding transcripts.
607  For each cell line and tissue type, the average TPM value for replicate samples was
608 used as abundance score. The threshold level to detect presence of a transcript for a
609  particular gene was setto 21 TPM.

610

611 Co-Expression Network Analysis

612  The co-expression networks for different tissues and cancer were downloaded from
613 TCSBN website &. The nodes (genes) in the networks were classified into three
614  categories: i) candidate cell-cycle genes (T1), ii) known cell-cycle genes (T2) and iii)
615 other genes (T3). Following that, the shortest path in the co-expression network was
616 compared between each category by using simple Breadth-First Search (BFS)
617  method. The distribution between shortest path of T1-T2 was compared with T3-T2 by
618  FDR-Adjusted Kolmogorov-Smirnov one-sided test (FDR < 0.05).

619

620  For the next step, we then incorporated the cancer pathology data from the HPA 8 into
621  the cancer co-expression networks. The significant prognostic property (“favorable” or
622  “unfavorable”) was mapped into the nodes of the networks. We then employed Louvain
623  community detection algorithm'" to identify the communities in the network, to
624  maximize the modularity score. For each community, we calculated hypergeometric
625 test to understand further the behavior of each community. A community was
626  considered as showing specific behavior if it fulfilled p-value < 0.01. Each community
627  was mapped into one of the four categories: i) Favorable, ii) Unfavorable, iii) Both, iv)
628  Not significant.

629

630 The aforementioned analyses were performed with in-house Python script, with Scipy
631  module'? for the statistical analysis and Igraph'® for the network analysis and
632  manipulation.

633

634  Immunohistochemical staining

635  Immunohistochemical (IHC) staining of tissue microarray (TMA) sections and slide
636  scanning were performed essentially as previously described "*. In brief, normal and

637  cancer tissues were derived from surgical material obtained from the Department of
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638  Pathology, Uppsala University Hospital, Uppsala, Sweden as part of the sample
639  collection governed by the Uppsala Biobank (http://www.uppsalabiobank.uu.se/en/).
640  All human tissue samples used in the present study were anonymized in accordance
641  with approval and advisory report from the Uppsala Ethical Review Board (Reference
642  # 2002-577, 2005-338 and 2007-159). Representative tissue cores (1 mm diameter)
643 were sampled from formalin fixed and paraffin embedded (FFPE) blocks and
644  assembled into six TMAs, containing normal tissue samples from 144 individuals, as
645  well as cancer tissue samples from 216 individuals. TMA blocks were cut in 4 ym thick
646  sections using waterfall microtomes (Microm HM 355S, Thermo Fisher Scientific,
647  Freemont, CA, USA), dried in RT overnight and baked in 50°C for 12-24 hours prior to
648 IHC staining. Automated immunohistochemistry was performed using Autostainer
649  480® instruments (Lab Vision, Freemont, CA, USA), followed by slide scanning using
650  Aperio AT2 (Leica Biosystems, Wetzlar, Germany). The high-resolution images of IHC
651 stained TMA sections were evaluated and annotated by certified pathologists (Lab
652  SurgPath, Mumbai, India).
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984 Figure legends
985

986  Figure 1: Temporal dissection of cell-to-cell heterogeneity of the human

987  proteome

988 In A-D the target protein is shown in green, microtubules in red and the nucleus in

989  blue. The scalebars in A-F represents 10um.

990 A: Example images of proteins with observed cell-to-cell heterogeneity in

991  immunostained U-2 OS cells in terms of variation in protein abundance (CCNB1) and

992  in spatial distribution (MRTO4) respectively.

993  B: The RACGAP1 protein shows the same type of cell-to-cell heterogeneity in several

994  different cell types (U-2 OS, A-431 and MCF7).

995 C: Example images of proteins localized to one of the mitotic substructures

996 (Kinetochores, Cytokinetic bridge, Cleavage furrow, Mitotic spindle, Midbody ring and

997  Midbody). INCENP localized to kinetochores in MCF-7 cells, SGO1, KIF20A and

998  TACCS localized to the kinetochores, the cleavage furrow and the mitotic spindle in U-

999 2 OS cells, respectively.
1000  D: Proteins localized to the cytokinetic bridge (BIRC5, GLI4, C120rf66) midbody ring
1001  (DVL3), and mitotic spindle (KIF11, KNSTRN, MGAT5B and FKBPL) in U-2 OS cells.
1002  E: U-2 OS FUCCI cells allow monitoring the cell cycle by expressing two fluorescently-
1003  tagged cell cycle markers, CDT1 expressed during G1 phase (red) and Geminin
1004  expressed during S and G2 phases (green) and their co-expression during G1/S
1005 transition (yellow). Intensity map of the FUCCI cells defined in three clusters
1006  representing G1, G1/S and SG2 phases by Gaussian clustering. The polar coordinate
1007  model transfers the FUCCI marker information into a linear model of pseudo-time.
1008  F: Examples images of the analyzed proteins ANLN, FAM171F1, DUSP18 and alpha-
1009  tubulin (MT) as negative control combined with their respective boxplot, intensity plot
1010  and expression profile. In the boxplots the cells expressing the different markers (G1,
1011  G1S and SG2) are grouped and the mean intensity of the target protein is plotted.
1012 Kruskal- Wallis statistical test was used to check the significance variation across the
1013  different groups. In the intensity plot, the cells corresponding to the specific target
1014  protein is highlighted using a gradient color code of the mean intensity of the target.
1015
1016  Figure 2: Variation distribution and organelle proteomes
1017  A: Gene ontology (BP) based enrichment analysis for cell cycle regulated proteins
1018  showing significantly enriched terms for the domain biological process. Each node
1019  represents a GO term and edge size corresponds to the number of genes that overlap

1020  between the two connected gene sets.
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1021  B: Scatterplot showing the three different clusters generated by K mean clustering
1022  based on Kurtosis and skewness as features for the cell cycle regulated proteins (dark
1023  blue) and the ones not correlated to cell cycle (grey).

1024  Violin-plots and histograms showing the distinct distributions of the normalized mean
1025  intensity of each cell per protein of selected examples (GTA6; CCNB1 and DEF®6).
1026  C: Scatterplot of percentage explained variance and Gini index for each investigated
1027  protein color coded by -log10(FDR).

1028  D: Bar plot showing the distribution of the cell cycle regulated proteins (dark blue) and
1029  the ones not correlated to cell cycle (grey) proteins to the different subcellular
1030 compartments. Asterisk marks statistically significant deviations from the mapped
1031  human proteome (p<0.01) based on a binomial test.

1032  E: Examples of cell cycle correlated proteins localized to the different subcellular
1033  structures respectively: Cytosol, Mitochondria, Nucleus, Nucleoli, Nuclear sub-
1034  compartments and Secretory pathway. The scalebar represents 10um. The target
1035  protein is shown in green and microtubules in red.

1036

1037  Figure 3: Temporal profiles of the cell cycle regulated human proteome

1038  A: Heat map of the cell cycle regulated proteins showing the relative expression levels
1039  of the protein across the cell cycle. Yellow represents high expression level and blue
1040  represents low expression levels. The heatmap is sorted by the timepoint of their peak
1041  of expression.

1042  B: Examples of selected cell cycle regulated proteins peaking in different phases of
1043 the cell cycle. ORCG6 peaking in G1, DUSP19 peaking end of G1, BUB1B, DPH2 and
1044  FLI1 peaking in S&G2 phases.

1045  C: Protein-Protein interactions network plot of the 464 CCD proteins using the STRING
1046  database. The proteins with a known association to the cell cycle (GO BP terms) are
1047  shown as squares.

1048

1049  Figure 4: Gene expression across normal and cancer tissues

1050  A: Hierarchical clustering of transcript levels (TPM values) for the cell cycle regulated
1051  proteins derived from bulk RNA sequencing of various normal and cancer tissue types.
1052  The expression level of the proliferation markers MCM6, CDK1, PCNA, MCM2 and
1053  KI67 is highlighted on top, as a general measure of the proliferative activity of the
1054  tissues. Four clusters are identified; Cluster 1 contains normal tissues with low
1055  proliferative activity, 2 contains cerebral tissues with testis, 3 contains mostly normal
1056 tissues with midrange expression level of the proliferation markers and 4 contains

1057 tissues with high expression of the proliferation markers, including tumors.
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1058  B: Box plots of the average transcript level corresponding to the cell cycle regulated
1059  proteins for the four different clusters from A.

1060

1061  Figure 5: Co-expression networks of the cell cycle regulated proteome

1062  A: Bar plot showing the path distance from gene co-expression networks between
1063  novel cell cycle proteins and previously known cell cycle proteins in different normal
1064  and cancer tissues.

1065  B: Co-expression network analysis of the cell cycle regulated proteins in pancreatic,
1066  breast and colorectal cancer. The network is clustered into communities using
1067  mathematical models. Each community has been classified as favorable (green),
1068  unfavorable (red) or both based on an enrichment / hypergeometric analysis.

1069

1070  Figure 6: Novel cell cycle regulated proteins as potential clinical biomarkers
1071  A: Kaplan-Meier plots showing the correlation between survival and gene expression
1072 (FPKM) for four cell cycle regulated proteins. For RACGAP1 and DLGAP5 a high
1073  expression was associated to a shorter survival (unfavorable), whereas for SYNE2 and
1074  FAMS50B a high expression was associated to a longer survival (favorable). Purple and
1075  blue lines show high and low expression, respectively.

1076 ~ B: Images of immunohistochemically stained proteins in normal tissue. RACGAP1 in
1077  breast, DLGAP5 in pancreas, SYNE2 and FAM50B in kidney. The target protein is
1078  shown in brown and the nuclei in blue.

1079  C: Images of immunohistochemically stained proteins in the corresponding tumor
1080 tissue as to in B. RACGAP1 in breast cancer, DLGAPS5 in pancreatic cancer, SYNE2
1081 and FAMS0B in renal cancer. The target protein is shown in brown and the nuclei in
1082  blue.

1083  D: Temporal interphase expression profile of RACGAP1, DLGAP5, SYNE2 and the
1084  localization of FAM50B to the Cytokinetic bridge during mitosis.

1085  E: Interaction networks for each of the proteins, using a medium confidence score with

1086  a minimum interaction score of 0.4 and showing not more than 10 interactors.
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Figure 6
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