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Abstract

The Ngorongoro Crater is an intact caldera with an area of approximately 310 km?. Long term
records on herbivore populations, vegetation and rainfall made it possible to analyze historic and
project future herbivore population dynamics. In 1974 there was a perturbation in that resident
Maasai and their livestock were removed from the Crater. Vegetation structure changed in 1967
from predominately short grassland to mid and tall grasses dominating in 1995. Even with a
change in grassland structure, total herbivore biomass remained relatively stable from 1963 to
2012, implying that the crater has a stable multi-herbivore community. However, in 1974,
Maasai pastoralists were removed from the Ngorongoro Crater and there were significant
changes in population trends for some herbivore species. Buffalo, elephant and ostrich numbers
increased significantly during 1974-2012. The zebra population was stable from 1963 to 2012
whereas numbers of other eight species declined substantially between 1974 and 2012 relative to

their peak numbers during 1974-1976. Numbers of Grant’s and Thomson’s gazelles, eland,
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kongoni, waterbuck (wet season only) declined significantly in the Crater in both seasons after
1974. Wildebeest numbers decreased in the Crater between 1974 and 2012 but this decrease was
not statistically significant. In addition, some herbivore species were consistently more abundant
inside the Crater during the wet than the dry season. This pattern was most evident for the large
herbivore species requiring bulk forage, comprising buffalo, eland, and elephant. Analyses of
rainfall indicated that there was a persistent annual cycle of 4.83 years. Herbivore population size
was correlated with rainfall in both the wet and dry seasons. The relationships established
between the time series of historic animal counts in the wet and dry seasons and lagged wet and
dry season rainfall series were used to forecast the likely future trajectories of the wet and dry

season population size for each species under three alternative climate change scenarios.

Key words: Wildlife; ungulates; wildlife conservation; population trends; population dynamics;
population status; Population modelling; climate change and variability; Climate change
Scenarios; RCP 2.6; RCP 4.5; RCP 8.5; rainfall; temperature; protected areas, Ngorongoro

Crater, Ngorongoro Conservation Area, Serengeti-Ngorongoro Ecosystem; African savannas

Introduction

The Ngorongoro Crater, Tanzania is known world-wide for the abundance and diversity of its
wildlife. It is situated in the Crater Highlands and is linked both to this area and the Serengeti
Plains by the seasonal migration of several herbivores [1,2] and the emigration and immigration

of large carnivores [4-8].
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Since 1963, the herbivore population of Ngorongoro Crater has been monitored by the
Ngorongoro Conservation Area Authority (NCAA), The College of African Wildlife
Management and research scientists [1-3,9-12]. Since 1978, the Ngorongoro Ecological
Monitoring Program has been responsible for conducting the wet and dry season censuses. The
complete data set covers a period of 50 years (1963-2012). This data set makes it possible to
assess long-term population trends and the stability of this multi-species wild herbivore

community.

Earlier analyses indicated that the eviction of Maasai, the removal of their livestock and changes
in rangeland management correlated with complex changes in vegetation composition and
structure and wild herbivore populations. Previous papers have hypothesized that the removal of
the Maasai pastoralists was a key factor in changes observed in herbivore populations. Pastoral

pasture management may have affected vegetation structure and species composition [12,13].

This paper further examines the hypothesis that the removal of the Maasai and their livestock
from the Crater in 1974 affected the plant structure in the crater and the population dynamics of
the resident wild herbivore species depending on their life-history traits (body size, gut

morphology) and life-history strategies (feeding style, foraging style, and movement patterns).

In addition we examine the hypothesis that rainfall variation influences the herbivore population
dynamics and density, differentiated by life-history traits and strategies. Extreme rainfall in the
Crater, which waterlogs large parts of the Crater should adversely affect wildlife, just like

droughts, if large parts of the Crater become waterlogged. Additionally, high rainfall promotes
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excessive grass growth and dilutes plant nutrients, hence reducing vegetation quality for

herbivores.

Relationships established between historic population abundance and historic rainfall are used to
project the impacts of three different future rainfall scenarios on wild herbivore population

dynamics to 2100.

Methods

Study Area

Ngorongoro Crater, Tanzania is known world-wide for the abundance and diversity of its
wildlife. The crater (3°10" S, 35° 35" E) is a large intact caldera with an area of approximately
310 km?. The floor of the crater is about 250 km? (1,700 m above sea level) and the sides rise
steeply 500 meters to the rim. The geology, soils and vegetation of the crater were described by
Herlocker and Dirschl [14] and Anderson and Herlocker [15]. The crater has the largest
catchment basin in the Ngorongoro Highlands [16] and receives water from Lalratati and Edeani
streams and Lerai spring from Oldeani Mountain to the south. Seneto spring provides water to
Seneto swamp and Lake Magadi from the southwest. Olmoti Crater provides runoff to Laawanay
and Lemunga rivers in the north, which supply Mandusi swamp and Lake Magadi. Lljoro Nyuki
river, in the northeast provides water to Gorigor swamp. Ngaitokitok spring in the eastern part of
the crater also supplies Gorigor swamp and Lake Magadi. Soil characteristics and drainage affect
vegetation species and during the dry season soil moisture is dependent on the crater’s catchment
system (Fig. 1). The wildlife of Ngorongoro Crater has had a protected status since 1921. In

1974, resident Maasai pastoralists, their bomas and livestock were removed from the crater
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115  [10,17]. The area has been administered by the Ngorongoro Conservation Unit since 1959 and by
116  the Ngorongoro Conservation Area Authority since 1975 as part of a protected multiple land use
117  area (8,292 km?).

118

119  Wild herbivore populations

120  Long term data sets were available for eleven mammalian herbivores, i.e. Wildebeest

121 (Connochaetes taurinus), Plains Zebra (Equus quagga), Cape Buffalo (Syncerus caffer),

122 Thomson's gazelle (Eudorcas thomsonii), Grant's gazelle (Nanger granti), Eland (Tragelapus
123 oryx), Kongoni (Alcelaphus buselaphus), Waterbuck (Kobus ellipsiprymnus), Warthog

124 (Phacochoerus aethiopicus), Elephant (Loxodonta africana) and Black Rhino (Diceros bicornis)
125  and one bird, the Ostrich (Struthio camelus).

126

127  Zebra are mid-sized herbivores, but they are non-ruminants. Hence they are not limited by a

128  four-chambered stomach system and can opt to consume larger amounts of higher fiber (lower
129  quality) grasses to meet their nutritional requirements [18].

130

131  Buffalo are large bodied ruminants and although they require a larger amount of food per

132 individual, the quality can be lower and they can tolerate a higher proportion of fiber in their diet
133 [18,19]. Buffalo prefer longer grass and select for a high ratio of leaf to stem [20].

134

135  The herbivores were classified into functional categories, i.e., grazers (Thomson’s gazelle,

136  kongoni, wildebeest, eland, buffalo, and zebra) and mixed browsers/grazers (Grant’s gazelle,
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137  waterbuck, black rhino and elephant) [21-27]. The ostrich is primarily a herbivore, but will also
138  eat invertebrates and occasionally rodents [28].

139

140  Herbivore Total Counts

141  Since 1963, the herbivore population of Ngorongoro Crater has been monitored by the

142 Ngorongoro Conservation Area Authority (NCAA), The College of African Wildlife

143  Management and research scientists [1-3,9-12]. Since 1987, the Ngorongoro Ecological

144 Monitoring Program has been responsible for conducting the wet and dry season censuses. This
145  data set makes it possible to assess long-term population trends and the stability of this multi-
146  species wild herbivore community. Here, we consider the data set covering a period of 50 years
147 (1963-2012).

148

149  Total counts of large mammals in the wet and dry seasons have been done in the crater since the
150  1963. The floor of the crater was divided into six blocks (Fig 1) that cover the entire area except
151  for inaccessible areas, i.e., Lake Magadi, Lerai Forest and the Mandusi and Gorigor swamps. The
152 ground censuses are done by one team per block composed of one driver, one observer and one
153  recorder in a four-wheel drive vehicle driving along line transects that are one kilometer apart.
154  Since 1987 each of the six teams has been supplied with a 1:50,000 map marked with the

155  transects, a compass, binoculars and a mechanical counter. Each block takes six to eight hours to
156  complete and all blocks are censused simultaneously [12, 29-34]. Unpublished records of NCAA
157 and NEMP 1963 - 2012 provide most of the seasonal data on animal numbers.

158
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From 1981 to 1985 there were no censuses. In 1986 the total counts were resumed and strip
counts were used for counting gazelles and warthog and analyzed with Jolly’s method 2 [35].
Strip counts were discontinued after 1989 because of unacceptably large confidence limits and
the difficulty of maintaining absolutely straight transects in the wet season. Data from strip
counts were not used in the analyses. However, ‘transects’ are still used to ensure complete
coverage of each block. Total aerial counts were conducted in 1964, 1965, 1966, 1977, 1978 and
1988 [12]. A systematic reconnaissance flight count was done in 1980 which included warthogs
for the first time [36]. Total counts of warthogs started in 1986 [12]. The count totals for the 12
most common large herbivore species for the Ngorongoro Crater during 1963-2012 are provided
in S1 Data. The same data set with the missing counts imputed using a state space model is

provided in S2 Data.

Total biomass for the wet and dry seasons for each year were calculated using unit weights in
Coe et al. [37]. Biomass was calculated separately for each species and season. The fact that
black rhinos, elephants and warthogs move into the forest at the edge of the crater and into Lerai

forest make them more difficult to count and may affect their contribution to biomass.

Vegetation

Changes in vegetation composition and structure were measured by digitizing and comparing
vegetation maps that were done in 1966-67 and 1995 [14,38]. Maps were digitized in ArcGIS 9.1
(ESRI, Redlands, California) and projected to UTM Zone 36, WGS 1984 datum. Attributes on
the maps were digitized, and in both maps the plant height for primary and secondary canopy

species was used to determine the presence of short, mid, mid-tall and tall grass structure.
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Fires were suppressed from 1974, when the Maasai were removed, until 2001 [39]. Prescribed
burning started in 2001. Transects were used to measure canopy height and biomass in kg/ha
estimated by linear regression. Starting in 2001, areas with more than 4000 kg/ha were burned
every year at the end of the dry season (September/October). It was recommended that 10-20%
of the crater floor was burned on a rotational basis. Highest tick density occurred in the peak dry
season (September/October) in the longest grass. Twenty-seven months after the start of
prescribed burning, there was a significant decrease in tick density in burned areas. Short grass
(<10 cm) areas with a fuel load of less than 4000 kg/ha appear to correlate with limited tick
survival [39]. From 2002 to 2011 there was prescribed burning but no records were maintained.
From 2012 to 2017 approximately 10 to 15 km? were burned each year in different areas. In
2012-2015 burning was done in the northern and northeastern portion of the crater. In 2016 and
2017 burning was conducted in the eastern and then the east central portion of the crater (Pers

comm NCAA 2018).

Rainfall

Long-term rainfall data was not available for the crater floor. We therefore used monthly rainfall
measured from 1964 to 2014 at Ngorongoro Headquarters on the southern rim of the crater. The
rainfall recorded at the Ngorongoro Conservation Area Authority (NCAA) headquarters during

1963-2014 is provided in S3 Data.

Projection of rainfall and temperature
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204  Total monthly rainfall and average monthly minimum and maximum temperatures for

205  Ngorongoro Crater were projected over the period 2013-2100 based on regional downscaled
206  climate model data sets from the Coordinated Regional Climate Downscaling Experiment

207  (CORDEX). Downscaling is done using multiple regional climate models as well as statistical
208  downscaling techniques. Three climate scenarios defined in terms of Representative

209  Concentration Pathways (RCPs) were used to project rainfall and temperatures for the

210  Ngorongoro Crater. The three RCPs are RCP2.6, RCP4.5 and RCP8.5 in which the numeric
211  suffixes denote radiative forcings (global energy imbalances), measured in watts/m?, by the year
212 2100. The RCP2.6 emission pathway (best case scenario) is representative for scenarios leading
213 to very low greenhouse gas concentration levels [40]. RCP4.5 (intermediate scenario) is a

214  stabilization scenario for which the total radiative forcing is stabilized before 2100 by

215  employment of a range of technologies and strategies for reducing greenhouse gas emissions
216  [41]. RCP8.5 (worst case scenario) is characterized by increasing greenhouse gas emission over
217  time representative for scenarios leading to high greenhouse gas concentration levels [42].

218  Rainfall, minimum and maximum temperature projections were made for a 50 x 50 km box
219  defined by longitudes (34.97, 35.7) and latitudes (-3.38, -2.787).

220

221  Ethics Statement

222 All the animal counts in the Ngorongoro Crater were carried out as part of a long-term

223 monitoring Program under the auspices of the Ngorongoro Conservation Area Authority

224  (NCAA).

225

226  Statistical modeling and analysis

10
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227  Modeling trends in animal population size and biomass

228  Time trends in count totals for all the 12 most common large herbivore species were modeled
229  simultaneously using a multivariate semiparametric generalized linear mixed model assuming a
230  negative binomial error distribution and a log-link function. The variance of the negative

231 binomial distribution model vyar(y) was specified as a quadratic function of the mean (y),

232 var(y) = w(1 + p/k), where k is the scale parameter. The semi-parametric model is highly
233 flexible and able to accommodate irregularly spaced, non-normal and overdispersed count data
234 with many zeroes or missing values. The parametric part of the model contains only the main
235  effect of animal species to allow direct estimation of the average population sizes for the

236  different species in each season. The non-parametric part of the model contains two continuous
237  random effects, each of which specifies a penalized spline variance-covariance structure. The
238  first random spline effect fits a penalized cubic B-spline (P-spline, [43] with a third-order

239  difference penalty to random spline coefficients common to all the 12 species and therefore
240  models the temporal trend shared by all the species. The second random spline effect fits a

241  penalized cubic B-spline with random spline coefficients specific to each species and thus

242 models the temporal trend unique to each species. Each random spline effect had 20 equally
243 spaced interior knots placed on the running date of the surveys (1963,..., 2012) plus three evenly
244 spaced exterior knots placed at both the start date (1963) and end date (2012) of the surveys. De
245  Boor [44] describes the precise computational and mathematical properties of B-splines. The
246  specific smoothers we used derive from the automatic smoothers described in Ruppert, Wand
247  and Carrol [45].

248

11
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The full model contains three variance components to be estimated, corresponding to the random
spline time trend common to all species, random spline effects for the time trend specific to each
species and the scale parameter for the negative binomial distribution. The full trend model was
fitted by the residual penalized quasi-likelihood (pseudo-likelihood) method [46] in the SAS
GLIMMIX procedure [47]. More elaborate details on this approach to modelling animal
population trends can be found in Ogutu et al. [48]. Separate trend models were fit to the wet and
dry season count totals for simplicity. The denominator degrees of freedom for Wald-type F-tests
were approximated using the method of Kenward and Roger [49]. Temporal trends in total
biomass calculated using unit weights in Coe et al. [37] were similarly modeled, separately for

each season.

We used constructed spline effects to estimate and contrast population sizes for each species
between 1964 versus 1974 when the Maasai and their livestock were evicted from the Crater and
1974 versus 2012. The constructed spline effects consisted of a cubic B-spline basis with three
equally spaced interior knots. A constructed regression spline effect expands the original time
series of animal survey dates into a larger number of new variables (seven in this specific case).
Each of the new variables is a univariate spline transformation. The constructed spline effects are
special model effects, in contrast to classical classification or continuous effects, and can be
constructed using various other basis functions, including the truncated power function basis.
These special model effects allowed estimation of the expected counts of each animal species at
specified values of time (1964, 1974 and 2012). Because of the two comparisons made for each
species, a multiplicity correction was made to control the familywise Type I error rate. We thus

computed simulation-based step-down-adjusted p-values [50].

12
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Modeling temporal variation in rainfall
The time series of rainfall was analyzed by using the unobserved components model (UCM),
which is a special case of the linear Gaussian state space or structural time series model, to

decompose the annual, wet season and dry season rainfall time series (r,) into their trend (y,),

cyclical (¢,), seasonal (§,) and irregular (¢,) components

re= Ut + 0 + 6t + at + Zfz 19irt_i + ijz 1ﬂjxj‘t + Et; t= 1, 2, wy n (1)

in which g, is the autoregressive component, Zf: Oire—i is the autoregressive regression terms,

B; are the explanatory regression coefficients, Xj are regression variables treated as fixed effects
and (¢,) are independent and identically (i.i.d.) normally distributed errors or disturbances having
zero mean and variance 4. This is equivalent to assuming that ¢, is a Gaussian white noise

process. The different model components are assumed to be statistically independent of each

other.

We first assume a random walk (RW) model for the time trend, or equivalently that the trend (y,)

remains approximately constant through time. The RW trend model can be specified as

Ue=Ut-1+ 1 (2)

where 5~ i.i.d. N(0, g;;). Note that g, = ( implies that ;. = q constant-

13
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295 Additionally, we assume a stochastic cycle (¢p,) with a fixed period (p > 2), a damping factor (p
296 ) and a time-varying amplitude and phase given by

297

3)

oy -sinw cosw||@: 4

208 [fpt] =,0[ coOSw sinw][fﬂt 17,
vt

299
300 whereg<p<l.w=2x n/p is the angular frequency of the cycle, ¢, and y ; are independent
301  Gaussian disturbances with zero mean and variance 4, and 0 < » < 7. Values of p> p and g, are

302 estimated from the data alongside the other model parameters. The damping factor , governs the

303 stationarity properties of the random sequence ¢, such that o, has a stationary distribution with

304 mean zero and variance g,/ (1- p2) if p < 1 but is nonstationary if p = 1, We specified and

305  tested for significance of up to three cycles in the annual, wet season and dry season rainfall

306 components.

307

308  Besides the random walk model (2), we modelled the trend component using a locally linear time

309 trend incorporating the level and slope components and specified by

310

31 py=peo1+Be-1+ne ne~iid. (0,07) )
312 By=By_1+ & &~ iid. (0,07)s

313

314  where the disturbance variances g; and gg are assumed to be independent. The UCM models (1)

315  and (4), without the seasonal and regression components, were fitted by the diffuse Kalman

316  filtering and smoothing algorithm [51] in the SAS UCM procedure [47].

14
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317

318  We grouped years with the annual rainfall falling within the 0-10, 11-25, 2640, 41-75, 76-90,
319  91-95 and 96-100™ percentiles of the frequency distribution of the annual rainfall as extreme,
320  severe or moderate drought years, normal, wet, very wet or extremely wet years, respectively.
321  The dry (June to October) and wet (November to May) seasons were similarly grouped [52].
322 These percentiles allowed us to quantify the degree of rainfall deficit or surfeit and represent the
323  expected broad transitions in rainfall influences on vegetation production and quality in each
324  year and season.

325

326  Relating animal population size to rainfall

327  Rainfall primarily governs vegetation production and quality in savannas [53-55], and therefore
328  also the aggregate and species-specific biomass levels of large African savanna ungulates [37,56-
329  58]. Population size was related to moving averages of the annual, wet season and dry season
330 rainfall components each computed over 1, 2,..., 6 years for a total of six different moving

331 averages per rainfall component. The maximum of 6-year window was chosen to match the

332  approximately 5-year dominant periodicity or quasi-cyclical pattern estimated for the time series
333  of the wet season and annual rainfall components (Fig S3), based on the UCM model and

334  spectral functions evaluated by the finite Fourier transform method. Spectral densities were

335  obtained by smoothing the raw spectra or periodograms using moving average smoothing with
336  weights derived from the Parzen kernel [47].

337

338  The moving rainfall averages index changing habitat suitability for ungulates associated with

339  carry-over effects of prior rainfall on vegetation conditions. Population sizes was related to each
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of the 18 moving averages using a generalized linear model assuming a negative binomial error
distribution and a log link function. The following six different functional forms were used for

each of the 18 moving averages [58]:

u = exp(ar) (5)
u = exp(ar + pr?) (6)
u = exp(ain(r)) (7)
= exp(or + Bn(r)) (8)
u = exp(ar + Br® + yn(r)) )

= exp(ar + Bin(r) + yrin(r)) (10)

These models were selected to represent (1) a linear increase or decrease in animal population
size with increasing rainfall, (2) an increase in animal abundance with increasing rainfall up to
some asymptote, or (3) an increase in animal abundance with increasing rainfall up to a peak at
some intermediate levels of rainfall, followed by decline with further increase in rainfall [58].
The most strongly supported rainfall component, specific moving average and functional form
were then selected using the corrected Akaike Information Criterion (AICc, [59] Tables S13-

S14).
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Forecasting animal population dynamics using projected future climate

The relationships established between the time series of historic animal counts in the wet and dry
seasons and lagged wet and dry season rainfall series were used to forecast the likely future
trajectories of the wet and dry season population size for each species under three alternative
climate change scenarios. We used the (Vector Autoregressive Moving Average Processes)
VARMAX model to model the dynamic relationships between the wet and dry season counts of
each species and the lagged wet and dry season rainfall and to forecast the seasonal animal
counts. The model is very general and highly flexible and allows for the following among other
features. 1) Modelling several time series of animal counts simultaneously. 2) Accounting for
relationships among the individual animal count component series with current and past values
of the other series. 3) Feedback and cross-correlated explanatory series. 4) Cointegration of the
component animal series to achieve stationarity. 5) Seasonality in the animal count series. 6)
Autoregressive errors. 7) Moving average errors. 8) Mixed autoregressive and moving average
errors. 9) Distributed lags in the explanatory variable series. 10). Unequal or heteroscedastic

covariances for the residuals.

The VARMAX model incorporating an autoregressive process of order p, moving average
process of order g and in which the number of lags of exogenous (independent) predictor
variables g is denoted as VARMAX(p,q,s)- Since some animals move seasonally between the
Ngorongoro Crater and the surrounding multiple use areas, the wet and dry season counts do not
estimate the same underlying population size. We therefore treat the wet and dry season counts
as two separate but possibly correlated variables and use a bivariate VARMAX(p,q,s) model. We
allow variation in herbivore numbers in the wet and dry season to depend on the total wet and

dry season rainfall in the current year (¢ ) and in the preceding five years (¢-1,..., ¢-5). The model
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thus allows the current wet and dry season rainfall components and their lagged values up to five
years prior to the current count year to influence the population size of herbivores in the current
wet and dry season. The model can also therefore be viewed as a multiple (or distributed) lag
regression model. The VARMAX (p,q,s), model we used to forecast the future population

dynamics of the five most abundant herbivore species can thus be cast as:

p

N:= j:1¢th—j+2]s-:oQ;xt—j+ft—zqzlﬂjft—j (11)

J

where N, = (Nyerr, N dry,t)T are the population sizes of the same species in the wet and dry
seasons at time ¢, x, = (wet; _,..,wet; _5,dry¢_ 0,...dTy; - S)T are the wet and dry season
rainfall components divided by their long-term means and lagged over 0 to 5 years. ¢, =
(Ewet‘t’edry’t)Tare a two-dimensional vector white noise process. It is assumed that E(¢,) = 0, E
(Etez) =¥ and E(eteﬂ) for ¢ # . We further assume that p and ¢ are each equal to either 1 or 2
whereas g is set equal to 5. Accordingly, the model can be denoted symbolically as a VARMAX
(2,2,5) model. In other words, in order to project the population dynamics of the Ngorongoro
large herbivores, we built a model relating the population size of each herbivore species in the
current year (t) to the population size in the past one to two years (year t-1 and t-2; i.e.,
autoregressive process of order p = 1 or 2). The model also allows residuals for the current year
to depend on the residuals for the previous one to two years (i.e. a moving average process of

order g =1 or 2). Since herbivore numbers are counted once in the wet season and once in the dry

season of each year we did not allow for seasonal variation in the counts.
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The VARMAX (p,q,s) model can be represented in various forms, including in state space and
dynamic simultaneous equation or dynamic structural equations forms. We used bivariate
autoregressive moving average models with the wet and dry season rainfall as the explanatory
variables. We tested and allowed for various lags in rainfall so that the models can be
characterised as autoregressive and moving-average regression with distributed lags. We also
used dead-start models that do not allow for present (current) values of the explanatory variables.
We tested for heteroscedasticity in residuals and tested the appropriateness of GARCH-type
(generalized autoregressive conditional heteroscedasticity) conditional heteroscedasticity of
residuals. We used several information-theoretic model selection criteria as aids to determine the
autoregressive (AR) and moving average (MA) orders of the models. The specific criteria we
used were the Akaike information criterion (AIC), the corrected AIC (AICc) and the final
prediction error (FPE). As additional AR order identification aids, we used partial cross-
correlations for the response variable, Yule-Walker estimates, partial autoregressive coefficients
and partial canonical correlations. Parameters of the selected full models were estimated using
the maximum likelihood (ML) method. Roots of the characteristic functions for both the AR and
MA parts (eigenvalues) were evaluated for the proximity of the roots to the unit circle to infer
evidence for stationarity of the AR process and inevitability of MA process in the response

series.

The adequacy of the selected models was assessed using various diagnostic tools. The specific
diagnostic tools we used are the following. 1) Durbin-Watson (DW) test for first-order
autocorrelation in the residuals. 2) Jarque-Bera normality test for determining whether the model

residuals represent a white noise process by testing the null hypothesis that the residuals are
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normally distributed. 3) F tests for autoregressive conditional heteroscedastic (ARCH)
disturbances in the residuals. This F statistic tests the null hypothesis that the residuals have
equal covariances. 4) F tests for AR disturbance computed from the residuals of the univariate
AR(1), AR(1,2), AR(1,2,3) and AR(1,2,3,4) models to test the null hypothesis that the residuals
are uncorrelated. 5) Portmanteau test for cross correlations of residuals at various lags. Final
forecasts and their 95% confidence intervals were then produced for the animal population size
series for each of the five most common species in each season for lead times running from 2013

up to 2100.

In the table of the parameter estimates for the bivariate VARMAX (2,2,5) model fitted to the two
time series of herbivore population size in the wet and dry seasons (Table S1), the five lagged
dry and wet season rainfall components (rightmost column labelled variable) for the current year
(year ¢) up to five years prior to the current year (years ¢-1,..., ¢-5) are denoted by dry (¢),..., dry
(¢-5) and wet (¢),..., wet (¢-5), respectively. Analogously, for the dry season counts, the
autoregressive process of order 2 is denoted by, e.g., wildebeest dry (¢-1) and wildebeest dry (¢
-2) while the moving average process of order 2 by el(¢-1) and e2 (¢-2). A parallel notation is
used for the wet season counts. The estimated regression coefficients (estimate) for the
parameters associated with each of these variables plus the intercept (Const1), the standard
errors of the estimates and a ¢-test (¢ -value) of the null hypothesis that each coefficient is not
significantly different from zero (Pr >|¢|) are also provided in Table S1. Furthermore, the
estimated roots of the autoregressive (Table S2) and moving average (Table S3) processes are
provided. It is important to note that the population of each herbivore species in the wet season

of the current year depends not only on its lagged values in the preceding one to two years and
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on the current and past values of rainfall but also on the population of the same herbivore species
in the dry season lagged over the past one to two years. The same applies to the population of
each herbivore species in the current dry season. This interdependence of the two series on each
other is made possible because of the bivariate nature of the VARMAX (p,q,s) model. This
model was fitted to the population counts of the herbivores for the wet and dry seasons for the
period 1964-2012 based on historic station rainfall data for 1963 to 2012. Note that the historic
total wet season rainfall component was divided by its mean for use in the model. The same was
done for the total dry season rainfall component. Future forecasts were then produced by
supplying the projected wet and dry season rainfall values, each divided by its mean, for

Ngorongoro for 2013 to 2100.

Several univariate model diagnostics were used to extensively assess how well the selected
bivariate VARMAX (p,q,s) model fitted the count data (Tables S4-S7). The first model
diagnostic tool, the Portmanteau Test for Cross Correlations of Residuals (Table S4) was
significant, considering only up to lag 5 residuals. This test of whether the residuals are white
noise residuals (i.e. uncorrelated) based on the cross correlations of the residuals, suggests that
the residuals were apparently correlated, when only up to lag 5 residuals are considered. Even so,
results of the univariate model ANOVA diagnostics suggest that the models for both the dry and
wet season counts were highly significant and had high predictive power (32, Table S5). Results
of the Univariate Model White Noise Diagnostics (Table S6) suggest that the residuals are
normally distributed (Jarque-Bera normality test) and have equal covariances (ARCH (1)
disturbances test). The Univariate AR Model Diagnostics indicate that the residuals are
uncorrelated, contrary to the finding of the multivariate Portmanteau test (Table S7). The

modulus of the roots (eigenvalues) of the AR characteristic polynomial are less than 1 suggesting
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that the series are stationary. These tests suggests that the fitted models are reasonable. The log-
transformed animal count totals, rainfall deviates, projected rainfall and forecast animal count
totals (log scale) are provided in S4 Data. The SAS program codes used to analyze the rainfall
data are provided in S1 Text while the code for analyzing the animal counts is provided in S2

Text.

Results

Rainfall

Rainfall can be subdivided into the dry and wet season components. The dry season occurs from
June to October whereas the wet season occurs from November to May. The wet season rainfall
component is strongly bimodal, with the two modes corresponding to peaks in the long rains and
the short rains. The major peak in rainfall occurs in April during the long rains (January-May)
whereas the minor peak occurs in December during the short rains (November-December, Fig
2a). The total monthly rainfall averaged 78.3 &+ 84.2 mm and was highly variable (%CV =
107.5%) during 1963-2014 (Fig 2a). The total annual rainfall averaged 937.5 + 300.7 mm during
1963-2014 (Fig. 2b) out of which the wet season rainfall (851.7 + 297.3 mm) contributed 90.9%
(Fig 2c) and the dry season rainfall (85.5 + 65.2 mm) a mere 10.1% (Fig 2d). There were also
considerable interannual variations in the annual, wet and dry season rainfall components (Figs
2b-d). Smoothing of the time series of the total monthly rainfall exposed substantial variation

with periods of below-average rainfall centered around 1966, 1975, 1980 and 1999 (Fig S1).

Analysis of the annual rainfall showed that extreme droughts occurred in 1966, 1980, 1993,
1995, 1999 and 2000 while severe droughts were recorded in 1974-1976, 1981, 1991, 2004 and

2014. Further, the extremely wet years were 1983 and 2007 whereas very wet years were 1964,
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1997 and 1998. Analysis of the wet season rainfall identified the same extreme and severe
droughts and very wet years as the annual rainfall did (Table S8, Fig S2). In addition, the wet
season of 1969 experienced an extreme drought while the 1982 wet season was a severe drought.
The dry seasons of 1968, 1985, 1987, 1990, 1992 and 1993 were extremely dry and the dry
seasons of 1970, 1973, 1995, 1996, 1999, 2001 and 2010 were severe droughts. By contrast the
dry seasons of 1967, 1969, 1982, 1989 and 2011 were either extremely wet or very wet (Table

S8, Fig S2).

There were significant quasi-cyclic oscillations in the three rainfall components with
approximate cycle periods of 4.64, 4.64 and 2.47 years for the annual, wet season and dry season
rainfall components, respectively, based on spectral analysis (Table S9, Fig S3). Based on the
unobserved components model (UCM), the oscillations in the annual, wet season and dry season
rainfall components had dominant cycle periods of 4.83, 3.82 and 2.45 years, respectively (Table
S10, Fig S4). In addition, there were secondary cycles in the wet and dry season rainfall
components with approximate cycle periods of 2.2 years for the wet season component and 11.3
years for the dry season component (Table S10, Figs S4). The estimated damping factors for the
cycles were all less than 1 except for the cycle for the annual rainfall component with a period of
4.83 years and the cycle with a period of 2.2 years for the wet season rainfall component both of
which had damping factors equal to 1 (Table S10, Fig S4). The two cycles with damping factors
equal to 1 are persistent whilst the remaining cycles with damping factors smaller than 1 are

transient.
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The disturbance variances for the irregular components for the wet and dry season rainfall, but
not for the annual rainfall, were close to zero and statistically insignificant. This implies that the
irregular components for the two seasonal rainfall components were deterministic whereas the
irregular component for the annual rainfall was stochastic. Moreover, the estimated disturbance
(error) variances for the cyclical components were significant for the 3.83-year cycle for the wet
season and for both cycles for the dry season but not for the 4.83-year cycle for the annual
rainfall (Table S10, Figs S4). These features jointly imply that the 4.83-year cycle identified for
the annual rainfall is persistent and deterministic whereas the cycles identified for both the wet
and dry season rainfall are stochastic and transient (Table S10, Figs S4). Even so, significance
analysis of the disturbance (error) variances of the cyclical components in the model at the end of
the estimation span indicate that the disturbance variances for the cycle in the annual rainfall
component and both cycles in the wet season rainfall component were significant but those for
the two cycles in the dry season rainfall component were insignificant (Table S11). Since the
4.83-cycle in the annual rainfall component is deterministic the additional significant test result
means that the annual cycle is indeed significant. The significant disturbance variances for the
two stochastic cycles in the wet season rainfall component (Table S11) applies only to the part of

the time series of wet season rainfall near the end of the estimation span.

The disturbance terms for the level component for all the three rainfall components were
significant only for the wet season but not for the annual or dry season rainfall. As well, the slope
component was significant only for the wet season rainfall (Table S11, Fig S4). This implies that,
of the three rainfall components, only the wet season rainfall increased systematically over time

in Ngorongoro (Table S11, Fig S4). The smoothed rainfall cycles in the three rainfall
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components further reinforce the conclusion that the oscillation in annual rainfall is persistent
and deterministic whereas the oscillations in the wet and dry season rainfall are transient and

stochastic (Fig S4).

Projected rainfall and temperatures

The projected annual rainfall showed no evident systematic trend under all the three scenarios.
However, the general average rainfall level is consistently and substantially higher under the
RCP2.6 than the RCP4.5 and 8.5 scenarios. The RCP4.5 and 8.5 scenarios have comparable
average levels but RCP4.5 is expected to receive somewhat more rainfall. Notably, rainfall
shows marked inter-annual variation characterized by sustained quasi-cyclic oscillations during

2006-2100 regardless of scenario (Fig S5).

The minimum and maximum temperatures are expected to rise during 2006-2100, on average, by
1, 2 and 6 °C under the RCP2.6, 4.5 and 8.5 scenarios, respectively. Consequently, the average
maximum temperature is expected to increase during 2006-2100 from 23 to 24 °C under
RCP2.6, 24 to 26 °C under RCP4.5 and 23 to 29 °C under RCP8.5. The average minimum
temperature is similarly anticipated to rise during 2006-2100 from 14 to 15 °C under RCP2.6, 14

to 16 °C under RCP4.5 and 14 to 20 °C under RCP8.5 (Fig S5).

Changes in vegetation composition and structure

From 1966/67 [14] to 1995 [38] there have been significant changes in the structure of the major

and secondary herbaceous species. In 1966/67 the Crater floor was dominated by short grass
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567  herbaceous species. By 1995, most of the short grasslands had been replaced by mid to tall plant

568  species.

569

570  Table 1. Changes in vegetation structure from 1966/67 to 1995.

Major Herbaceous Species (ha)
Herlocker Chuwa
Short 20868 10626
Mid 2110 9540
Mid-tall 5794 4506
Tall 1377 4227
Secondary Herbaceous Species (ha)

Short 18584 4794
Mid 2812 3905
Mid-tall 2004 9096
Tall 1317 2258

571

572  Historic herbivore population dynamics

573  The population size of wildebeest, zebra, Thomson’s gazelle, Grant’s gazelle, kongoni (Coke’s
574  hartebeest), and black rhino increased from 1964 to a peak around 1974-1976 and then declined
575  thereafter in both the wet and dry seasons. Eland and waterbuck had a general downward trend
576  from the early 1970's. Zebra numbers increased again from 1995 to 2012 whereas Grant’s

577  gazelle and kongoni numbers in the dry season increased again from 1995 to 2000 before

578  declining further (Fig 3). In stark contrast to the other species, numbers of buffalo increased
579  markedly following the removal of Maasai livestock from the Crater in 1974. Elephant and

580  ostrich numbers have similarly increased in the Crater, with substantial increase apparent in
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ostrich numbers following the extreme 1993 dry season drought (Fig 3). Buffalo, eland, elephant
and black rhino were more abundant in the Crater in the wet than the dry season. There were far
more eland and black rhino in the Crater in the wet season compared to the dry season in the
1970s than in the 2000s. Conversely, there were far more buffalo and elephants in the Crater in
the wet season compared to the dry season in the 2000s than there were in the 1970s (Fig 3).

Zebra were the only species to have maintained similar population sizes from 1964 to 2012.

Comparisons of the expected population sizes between 1964 and 1974 as well as between 1974
and 2012 based on constructed spline effects showed that while some species increased
significantly over time, others did not, or even declined. Species that increased but not
significantly between 1964 and 1974 in the wet season were wildebeest, Grant’s gazelle,
waterbuck and ostrich (Table S12, Fig 3). Only buffalo, Thomson’s gazelle and kongoni
numbers increased significantly between 1964 and 1974 in the wet season. Species that
decreased in numbers but not significantly between 1964 and 1974 in the wet season were zebra,
eland, elephant and black rhino. Between 1974 and 2012, the numbers of Thomson’s gazelle,
Grant’s gazelle, black rhino, eland, kongoni and waterbuck decreased significantly in the wet
season. In the same season and period, the numbers of buffalo and elephant increased
significantly. Zebra, wildebeest, and ostrich had no significant change (Table S12, Fig 3). In the
dry season, by contrast, numbers of some species either increased significantly between 1964
and 1974 (buffalo, elephant, eland, kongoni), increased but not significantly (waterbuck) or
decreased but not significantly (wildebeest, zebra, Thomson’s gazelle, Grant’s gazelle, ostrich).
However, between 1974 and 2012 in the dry season, numbers of some species either increased

significantly (buffalo, ostrich), increased but not significantly (waterbuck), decreased
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significantly (Thomson’s gazelle, Grant’s gazelle, black rhino, eland, kongoni), or decreased but

not significantly (wildebeest, zebra, elephant, Table S12, Fig 3).

Herbivore biomass dynamics

Herbivore biomass in the wet season was initially dominated by wildebeest, followed by zebra.
Following the eviction of the Maasai and their livestock from the Crater in 1974, buffalo biomass
increased relative to wildebeest and zebra to a peak during 1999-2000. After the 1999-2000
drought, the biomass of buffalo and the other herbivore species declined to the pre-drought
levels. Nevertheless, wildebeest still makes a smaller contribution to the total biomass currently
than they did before cattle left the Crater and buffalo numbers were still low (Fig 4a). The
relative increase of buffalo biomass compared to wildebeest and zebra was also apparent in the

dry season biomass (Fig 4b).

The total herbivore biomass trends in the Crater have been dynamic and relatively stable. During
the dry season from 1964 to 1974 there was no significant change and this trend was also non-
significant for the dry season from 1974 to 2011 (Table 2). This scenario of a non-significant
trend from 1964 to 1974 and again from 1974 to 2011 was also consistent for the wet season

(Table 2).
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Table 2. The expected aggregate biomass in the wet and dry seasons of 1964, 1974 and 2011 and the difference between the

1964 vs 1974 and 1974 vs 2011 estimates and test of significance of their difference based on constructed penalized cubic B-

splines.
Statement Label Estimate Standard DF tValue Pr>|t] Adjustment AdjP
Number Error

1 [ Dry Season at time=1964 -63.3804 265.19 2.326 -0.24  0.8306

2 | Dry Season at time=1974 -41.5788 146.46 2.349 -0.28  0.7996

3 | Dry Season at time=2011 8.0933 0.1129 47.44 71.67 <0.0001

5 | Wet Season at time=1964 -64.2763 265.14 2.326 -0.24  0.8282

6 | Wet Season at time=1974 -41.5482 146.46 2.349 -0.28  0.7998

7 | Wet Season at time=2011 8.4434 0.1336 50.95 63.2 <0.0001

4 | Diff for Dry Season at time= 1964 vs time= 21.8017 123.24 2.309 0.18 0.8739 Simulated 0.9479
1974

4 | Diff for Dry Season at time= 1974 vs time= 49.6721 146.46 2.349 0.34 0.7625 Simulated 0.8474
2011

8 | Diff for Wet Season at time= 1964 vs time= 22.7281 123.16 2.309 0.18 0.8686 Simulated = 0.9447
1974

8 | Diff for Wet Season at time= 1974 vs time= 49.9916 146.46 2.348 0.34 0.761 Simulated 0.8463

2011
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Relationship between herbivore population size and rainfall

Herbivore population size was correlated with rainfall in both the wet and dry seasons. The
particular rainfall component most strongly correlated with population size as well the specific
functional form of the relationship both varied with species and season (Figs 5 and 6, Tables
S13-S14). In the wet season, population size was most tightly correlated with 1) 6-year moving
averages of the wet season rainfall (wildebeest, zebra, buffalo, eland, kongoni, waterbuck,
ostrich, elephant, black rhino), 2) 6-year moving average of the annual rainfall (Thomson’s and
Grant’s gazelles), or 3) the current annual rainfall (warthog). In the dry season, population size
had the strongest correlation with 1) 6-year moving average of the wet season rainfall
(Thomson’s and Grant’s gazelle, buffalo, waterbuck, ostrich), 2) 5-6-year moving average of the
dry season rainfall (wildebeest, zebra, warthog), 3) 6-year moving average of the annual rainfall
(eland, kongoni), or 4) 3-4-year moving average of dry season rainfall (elephant, black rhino,
Figs 5 and 6, Tables S13-S14). The dependence of population size on rainfall followed three
general patterns. The first pattern is characterized by a decline in population size with increasing
rainfall and is shown by wildebeest, eland, kongoni, waterbuck and black rhino in the wet
season, and Thomson’s gazelle, Grant’s gazelle and waterbuck in the dry season. The second
pattern consists of an increase in population size with increasing rainfall and is shown by zebra,
buffalo, ostrich and elephant in the wet season and wildebeest, zebra, buffalo, ostrich and
warthog in the dry season. The third and last pattern is characterized by a humped relationship
between population size and rainfall in which population size peaks at intermediate levels of
rainfall and is shown by Thomson’s and Grant’s gazelles and warthog in the wet season and

eland, kongoni, elephant and black rhino in the dry season (Figs 5 and 6, Tables S13-S14).
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Projected herbivore population dynamics

The projected ungulate population dynamics should mirror the pronounced and sustained
oscillations in the projected rainfall. Further, large-sized herbivores dependent on bulk, low-
quality forage should prosper under the wet and cooler conditions expected under RCP2.6.
Likewise, small-sized herbivores requiring high-quality forage should thrive under the relatively
low rainfall and warmer conditions anticipated under RCP4.5 and 8.5. The warmer temperatures
expected under RCP8.5 than under RCP4.5 imply that conditions should be most arid under this

scenario.

The projected population trajectories suggest that under the RCP2.6 scenario, buffalo numbers
will likely continue to increase after 2012, albeit at a decelerating rate, towards 7000-11000
animals by 2100 (Fig 7). But the Crater buffalo population is likely approaching its upper bound
of about 4000 animals and will likely fluctuate about this number (4000) till 2100 under the
RCP4.5 and 8.5 scenarios regardless of season (Fig 7). As expected, the population of this large-
sized bulk grazer is projected to be highest on average under RCP2.6, least under RCPS8.5 and

intermediate under RCP4.5 for both the wet and dry seasons (Fig 7).

For wildebeest, the projected trajectories suggest strong and sustained oscillations in population
size under all the three scenarios and both seasons, reflecting the strong projected rainfall
oscillations (Fig 8). The oscillatory population dynamics in both the wet and dry seasons
exhibited by wildebeest reveal extended periods of population increase followed by prolonged
periods of persistent population declines. Nevertheless, there are also discernible differences in
the projected population trajectories under the three climate change scenarios. The projected
wildebeest population trajectories suggest that the population will continue to fluctuate widely

between 5000 and 15000 animals in all the scenarios and seasons. It is only under the RCP2.6
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scenario that the dry season population shoots beyond 20000 animals around 2070 and 2090 (Fig
8). In the wet season, the projected average wildebeest abundance is highest under RCP4.5,
intermediate under RCP8.5 and lowest under RCP2.6. In the dry season, however, wildebeest

abundance is highest on average under RCP2.6, intermediate under RCP4.5 and lowest under

RCPS.5 (Fig 8).

The zebra population trajectories also reveal striking oscillations in population size under all the
three scenarios, a general increase in population size under RCP2.6 scenario in both seasons and
a decrease and then increase in the RCP8.5 scenario in the wet season (Fig 9). The zebra
population size is projected to decline in the long term under the RCP4.5 scenario in both
seasons and the RCP8.5 scenario in the dry season (Fig 9). In general, zebra will perform the best
under RCP2.6 and the worst under RCP8.5. The performance of zebra under RCP4.5 will be
intermediate between RCP2.6 and 8.5 from 2006 to around 2070 after which it will drop below

that expected under RCP8.5 (Fig 9).

The decline observed in historic Thomson’s gazelle numbers is projected to be persistent and to
remain below the peak attained historically around 1974 under all scenarios and both seasons
(Fig 10). Besides the general decline, Thomson’s gazelle numbers are projected to show
persistent and marked oscillations irrespective of scenario or season. As predicted by their small
body size and selective grazing, Thomson gazelles will likely perform the best under RCP8.5

with the least rainfall, intermediately under RCP4.5, and the worst under RCP2.6 (Fig 10).

As with Thomson’s gazelles, the projected population trajectories for Grant’s gazelle show
marked and sustained oscillations (Fig 11). Despite these persistent oscillations, Grant’s gazelle

numbers will likely remain lower than the historically attained peak numbers around 1974-1976.
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Moreover, the declining trend in Grant’s gazelle numbers is projected to be replaced by an
increasing trend after some time under the RCP4.5 and 8.5 scenarios for both seasons. Even, so
Grant’s gazelle numbers, are less likely to increase up to the highest historically recorded
numbers around 1974-1976 (Fig 11). Consistent with their small body size and selective grazing,
Grant’s gazelles will also likely flourish the best under RCP8.5 with the least rainfall,

intermediately under RCP4.5, and the worst under RCP2.6 (Fig 11).

Discussion

Rainfall

Drought is a recurrent feature of the Ngorongoro Conservation Area. The annual rainfall shows
evident persistent and deterministic quasi-periodic oscillation with a cycle period of about 5
years. Oscillations in the wet and dry season rainfall were stochastic and transient. The quasi-
cyclic oscillations in annual, wet and dry season rainfall were statistically significant. The
oscillations are associated with recurrent severe droughts that cause food scarcity and hence
nutritional stress for the large herbivores. The wet season rainfall increased systematically in
Ngorongoro between 1964 and 2014 but the annual or dry season rainfall did not increase. The
oscillations in rainfall imply that the large herbivores are exposed to above average food supply
for about 2.5 years and to below average food supply for the subsequent 2.5 years. The rainfall
patterns also imply that portions of the Crater may be waterlogged or flooded during the high
rainfall years. High rainfall supports above-average production of plant biomass. But the forage
produced during high rainfall years is likely to be of low quality due to the dilution of plant
nutrients. Predation risk for herbivores is also likely to rise due to poor visibility associated with
tall grass growth during periods of high rainfall [60].
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Long-term Vegetation Trends

Vegetation maps from before and after the removal of pastoralists and their livestock indicate
that major changes in vegetation structure occurred. Maasai pastoralists manage their grazing
areas with movement of livestock and fire [16, 61,62]. This type of range management selects for
shorter grasses and more palatable species [63,64]. The 1995 vegetation map shows that there
was a significant change in the vegetation structure of the Crater floor, such that there was a

decrease in the availability of short grasses and an increase in medium and tall grassland.

Historic herbivore population dynamics

Temporal variation in herbivore numbers in the Crater followed four general patterns. First,
buffalo, elephant and ostrich numbers increased significantly in the Crater from 1974-2012. The
transition of the Crater grasslands to a majority of the area being mid to tall-grass would have
favored Cape buffalo reproduction and survivorship. The increase in ostrich and elephant
numbers in both seasons became more marked after the severe 1993 drought. Second, the overall
average number of zebra in the Crater appeared stable whereas numbers of the other eight
species declined substantially between 1974 and 2012 relative to their peak numbers during
1974-1976. Third, numbers of both gazelles, eland, kongoni, waterbuck (wet season only) and
black rhino declined significantly in the Crater in both seasons following the removal of the
Maasai and their cattle from the Crater in 1974. The decline in black rhino is mainly attributed to
poaching in the 1970's and 1980's which reduced the population to 10 individuals [65]. Fourth,
wildebeest numbers decreased in the Crater between 1974 and 2012 but this decrease was not

statistically significant. In addition, some herbivore species were consistently more abundant
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inside the Crater during the wet than the dry season. This pattern was most evident for the large
herbivore species requiring bulk forage, comprising buffalo, eland, elephant and black rhino. The
latter may spend less time in the swamps and the forest during the wet season and may be easier

to count.

Herbivore biomass

Despite the significant changes in the population sizes of individual species in the Crater, the
total herbivore biomass remained relatively stable from 1963 to 1974 and from 1974-2012,
implying that the Crater has a stable multi-herbivore community. There is a tendency towards a
higher biomass during the wet season, but it is not significant. Total wild herbivore biomass has
not been significantly affected by the removal of the pastoralists and their livestock. The change
in the grassland structure from mainly short grasses to mid to tall grasses after the removal of the
Maasai and their livestock may have enhanced the forage availability for Cape buffalo, a large-
bodied ruminant. The biomass of buffalo had the most dramatic increase post 1974 to become a
major constituent of the total large herbivore biomass after the elimination of cattle from the
Crater in 1974. A similar increase in buffalo numbers at the expense of small and medium
herbivores has also been documented for Nairobi and Lake Nakuru National Parks in Kenya

[66,67].

Relationship between herbivore population size and rainfall
Rainfall significantly influenced herbivore abundance in Ngorongoro Crater and this influence
varied with species and season and partly reflect functional distinctions between the species

based on their life-history traits (body size, gut morphology) or life-history strategies (feeding
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and foraging styles). Herbivores responded to rainfall variation in three different ways in both
seasons. In the wet season, numbers of herbivore species either decreased (wildebeest, eland,
kongoni, waterbuck and rhino), increased (zebra, buffalo, ostrich and elephant) or increased up
to intermediate levels of rainfall and then decreased with further increase in rainfall (both
gazelles and warthog). Similarly, in the dry season the numbers of the herbivore species either
decreased (both gazelles and waterbuck), increased (wildebeest, zebra, buffalo, ostrich and
warthog) or increased up to intermediate levels of rainfall and then decreased with further

increase in rainfall (eland, kongoni, elephant and rhino).

Forecasted herbivore population dynamics

The projected population trends suggest strong interspecific contrasts regarding the scenario
under which each species will likely perform best but broad similarities exist between seasons
for each scenario. Except for buffalo whose numbers appear to approach asymptotes, population
trajectories for wildebeest, zebra and both gazelles exhibit pronounced and sustained oscillatory
dynamics, reflecting rainfall oscillations. The projected population trajectories for buffalo and
zebra suggest that both species will be most abundant in the Crater under the RCP2.6 scenario,
intermediate under RCP4.5 and least abundant under RCP8.5 in both seasons. This is expected
since buffalo is a large-sized bulk grazer and zebra is a large-sized non-ruminant able to process
large quantities of low quality forage expected to be most abundant under the wetter and cooler
conditions anticipated under RCP2.6 relative to RCP4.5 and 8.5. Moreover, for both buffalo and
zebra, the projected trajectories are generally similar between the RCP4.5 and 8.5 scenarios for

both seasons.
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By contrast, the wildebeest that requires short, green grass is anticipated to be more abundant
under the RCP4.5 and 8.5 scenarios than under the RCP2.6 scenario with wetter conditions in the
wet season. In the more arid dry season conditions, wildebeest should however thrive better

under the more moist RCP2.6 scenario than under RCPs 4.5 and 8.5.

Trajectories for both gazelles suggest that both species will be most abundant under RCP8.5 with
the lowest average rainfall, intermediate under RCP4.5 with intermediate rainfall and least
abundant under RCP2.6 with the highest rainfall. This is consistent with the preference of both
species for high-quality, short grasses and forbs. For both gazelles numbers will likely increase
from about 2050-2060 to 2100 under RCP4.5. Also, for both gazelles, the projections suggest
persistent and similar population oscillations between both seasons under each of the three
scenarios. The oscillations suggest extended periods of population decline followed by increase
for both gazelles in both seasons. We reiterate that these projections are based solely on rainfall
influences on large herbivore population dynamics, yet the dynamics of large herbivores are

often influenced by a multitude of other factors.

Predation
The major predators in Ngorongoro Crater are lions and spotted hyenas. These species, their

population dynamics and feeding ecology have been studied since the 1960°s [4-8, 68-70].

In the 1960’s the Ngorongoro Crater had a population of approximately 298 spotted hyenas [4].
When Honer et al [70] started their research in 1996 the population was about 117 hyenas and

the recruitment rate was higher and the mortality was lower than during Kruuk’s study period in
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the 1960’s. Herbivore census data indicates that there had been a decline in the spotted hyena
prey populations, i.e. wildebeest, zebra, Thomson’s gazelle, and Grant’s gazelle by 1996. From
1996 to 2002, there was an increase in the hyena population to 333 individuals. From 1996 to
2002 there was an increase in the abundance of these prey species with an average prey density
of 139 + 76 prey animals per km?. Honer et al [70] attribute the decline in the hyena population
from the 1960°s to 1996 to the decline in their prey populations. However, from 1996 to 2002,
the major predictor for the spotted hyena population increase was the increase in their prey
population. Subsequently there was a reduction and then recovery of the population during an
outbreak of Streptococcus equi ruminatorum in 2001 to 2003. Mortality was higher in adult
males and yearlings in territories where prey densities were low. In the short term the bacterial
infection had a top-down impact on sex and age classes that had relatively poor nutrition. In the
longer-term after the disease perturbation, the reduced population growth was due to lower
juvenile survival. By 2008 the population had recovered and was approximately 450 [71] and in

2012 the population was estimated at 508 of which 364 were adults (pers com Honer 2018).

From 1970 to 1972, Elliot and McTaggart Cowan [68] studied lions in the Crater and estimated a
resident population of 65 lions in four prides. They estimated that lions annually killed or
scavenged approximately 7% of the wildebeest, 4.3% of the zebra and 6.2% of the Thomson’s
gazelle. Adapted from Kruuk [4] they estimated that hyenas took at least 7.6% of the wildebeest
population, 6.5% of the zebra population and 1.6% of the Thomson’s gazelle population. Thus
the estimated annual percentage of wildebeest killed or scavenged by lions and hyena was
approximately 14.6%, roughly equal to the wildebeest recruitment rate [4]. The predation and

scavenging rate on zebra was approximately 10.7%.
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Long term research on lions in the Ngorongoro Crater [7,8,69]() indicates that the lion
population may not be food limited but that weather extremes (high rainfall/drought) correlate
with disease outbreaks and pest infestations (Canine distemper virus and biting Stomoxys flys).
The resulting mortality is exacerbated by pride takeovers and infanticide. A severe infestation of
Stomoxys flys in 1962 reduced the lion population to 10 lions that were joined by seven
immigrating males in 1975. This severe population reduction may have been a ‘bottleneck’ and
the current population may be based on 15 founders [7]. The population rose to a high of 124
lions in 1983, but by 1991 there were 75 to 100 lions, and numbers dropped to 29 in 1998 [7,8].
The lion population may be density dependent since it has had positive reproductive performance
when the population has been less than 60 individuals and has had negative reproductive
performance when the population was more than 60 individuals. From 1994 to 2004, the
population had not had reduced reproductive performance. Kissui and Packer [8] attribute the
declines in the lion population to disease outbreaks that correlated with extreme weather events
that occurred in 1962, 1994, 1997, and 2001. During 2000/2001 there was a decrease in the lion

population due to death (Stomoxys flys) and emigration [70].

Poaching

The black rhino declining trend from the 1970’s to mid 1980’s was due to poaching [72]. Since
the early 1990's there has been limited poaching and the population is slowly recovering.
Conservative population projections in 1995 [65] predicted that with the best scenario, i.e. no
poaching, the population should be approximately 35 to 40 individuals by 2017. The current

Black rhino population is 59 individuals (Pers comm, M. Musuha, 2018, NCAA,).
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Disease

Before the 1960’s, rinderpest was a source of significant mortality to buffalo, wildebeest and
eland in the Crater Highlands and there was a serious outbreak affecting yearling buffalo
adjacent to the Ngorongoro Crater in 1961 [73]. The NCAA started an inoculation campaign
against rinderpest in the 1950’s and eradicated the disease by the 1960°s [73]. Inoculations
against rinderpest for cattle continued. Subsequently there was an outbreak in 1982 that affected
buffalo, eland and giraffe, but not cattle [32]. Despite the losses from rinderpest during 1982, the

buffalo population increased steadily from 1980 and had doubled by 1987.

Rinderpest was also a significant source of mortality in the adjacent Serengeti ecosystem and the
inoculation campaigns appear to have reduced mortality in both wildebeest populations. From
1963 to 1974 the Serengeti migratory wildebeest population tripled in size [74]. During the same
time the more sedentary population in Ngorongoro Crater increased from roughly 7,600

wildebeest to about 14,000.

In 2000 and 2001 there was significant mortality in buffalo (1500), wildebeest (250) and zebra
(100) apparently due to nutritional stress resulting from the severe drought in the dry season in

2000 [2, 39,75] .

In 2001, five black rhinos died in January and five lions during February [62]. The reports
indicated that three of the black rhinos died from Babesiosis [75]. Nijhof et al [75] analysed

samples from Ngorongoro (Bahati and Maggie) and a dead black rhino (Benji) from Addo
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878  Elephant National Park. Sequence analyses of the sample from Bahati’s brain revealed a novel
879  species that was named Babesia bicornis ap.nov. Subsequent analyses showed that both Maggie
880  and Benji were positive for Babesia bicornis ap.nov. Hence, Babesia bicornis ap.nov. may be a
881  species new to the Ngorongoro Crater and the Serengeti ecosystem. Two black rhino were

882  translocated from Addo Elephant National Park to Ngorongoro Crater in 1997. The translocation
883  that was done to enhance the Ngorongoro black rhino population may have had negative

884  repercussions by introducing a new tick borne disease. The impact of the novel parasite, Babesia
885  bicornis ap.nov., may have been exacerbated by drought and high tick densities. The literature
886 indicates that Babesia bicornis can cause fatal babesiosis [75].The remaining 10 black rhinos
887  were treated with a curative babesicidal drug and survived [39].

888

889  However, in the case of the buffalo mortalities, high tick burdens and tick borne protozoal

890  diseases may have been contributing factors [75]. A limited survey of the buffalo, wildebeest and
891  lions that died in 2001 did not reveal the presence of Babesia bicornis ap.nov. Lion necropsy’s
892  revealed the presence of tick borne parasites (Ehrlichia spp., Babesia and Theileria sp) but

893  canine distemper and a plague of stomoxys stinging flies were also implicated and the cause of
894  mortality has not been determined [39].

895

896  Prescribed burning was started in the dry season of 2001 and research was done on tick densities,
897  vegetation structure and tick host preference in adjacent burned and unburned areas [39]. Before
898  burning, most adult ticks were present in the wet season (May to June) and most immature ticks
899  occurred during the dry season (September, October). There were significantly more adult ticks

900 in the tall grass in the wet season and significantly more immature ticks in the less grazed areas
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in the dry season. In 2001, the mean tick density in tall grass (>50cm) was 57 + 6.93/m? (adults,
wet season) and in less grazed (>20 cm) areas 961 + 146 /m? (immature, dry season). Twenty-
seven months (2004) later there was a significant difference between burned and unburned areas,
with almost no adult ticks and relatively few immature ticks in the burned areas. However, the

unburned areas also had much lower adult tick and immature tick densities than that recorded in

2001.

Conclusions

Ngorongoro Crater has an annual rainfall cycle period of about 5 years. Oscillations in annual,
wet and dry season rainfall were statistically significant. The oscillations are associated with
recurrent severe droughts that cause food scarcity and hence nutritional stress for the large
herbivores. Rainfall oscillations imply that large herbivores are exposed to above average food
supply for about 2.5 years and to below average food supply for the subsequent 2.5 years. High
rainfall supports above-average production of plant biomass which may be of low quality due to

the dilution of plant nutrients.

In 1974 there was a perturbation in that resident Maasai and their livestock were removed from
the Crater. Vegetation maps from before and after the removal of pastoralists and their livestock
indicate that major changes in vegetation structure occurred. The 1995 vegetation map shows
that there was a significant change in the vegetation structure of the Crater floor, such that there

was a decrease in the availability of short grasses and an increase in medium and tall grassland.
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Temporal variation in herbivore numbers in the Crater followed four general patterns. First,
buffalo, elephant and ostrich numbers increased significantly in the Crater from 1974-2012.
Second, the overall average number of zebra in the Crater appeared stable whereas numbers of
the other eight species declined substantially between 1974 and 2012 relative to their peak
numbers during 1974-1976. Third, numbers of both gazelles, eland, kongoni, waterbuck (wet
season only) and black rhino declined significantly in the Crater in both seasons following the
removal of the Maasai and their cattle from the Crater in 1974. The decline in black rhino is
mainly attributed to poaching in the 1970's and 1980's. Fourth, wildebeest numbers decreased in
the Crater between 1974 and 2012 but this decrease was not statistically significant. In addition,
some herbivore species were consistently more abundant inside the Crater during the wet than
the dry season. This pattern was most evident for the large herbivore species requiring bulk
forage, comprising buffalo, eland, elephant and black rhino. The latter may spend less time in the
swamps and the forest during the wet season and may be easier to count. Even with a change in
grassland structure, total herbivore biomass remained relatively stable from 1963 to 2012,

implying that the Crater has a stable multi-herbivore community.

Rainfall significantly influenced herbivore abundance in Ngorongoro Crater and this influence
varied with species and season. Herbivores responded to rainfall variation in three different ways
in both seasons. In the wet season, numbers of herbivore species either decreased (wildebeest,
eland, kongoni, waterbuck and rhino), increased (zebra, buffalo, ostrich and elephant) or
increased up to intermediate levels of rainfall and then decreased with further increase in rainfall
(both gazelles and warthog). Similarly, in the dry season the numbers of the herbivore species

either decreased (both gazelles and waterbuck), increased (wildebeest, zebra, buffalo, ostrich and
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warthog) or increased up to intermediate levels of rainfall and then decreased with further

increase in rainfall (eland, kongoni, elephant and rhino).

The relationships established between the time series of historic animal counts in the wet and dry
seasons and lagged wet and dry season rainfall series were used to forecast the likely future
trajectories of the wet and dry season population size for each species under three alternative
climate change scenarios. They suggest strong interspecific contrasts regarding the scenario
under which each species will likely perform best but broad similarities exist between seasons

for each scenario.

There is information on the population trends of the two major predators, i.e. lions and spotted
hyenas. It would be useful to correlate predator impact on herbivore populations with rainfall.
Disease is an important perturbation in the population trends of lions and spotted hyenas and
potentially Black rhino, Cape buffalo and other herbivores. Tick borne diseases can potentially

be managed with systematic burning of some grassland areas.
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Figure legends

Fig 1. Ngorongoro Crater and Census Blocks [12]).

Fig 2. The distribution of a) total monthly rainfall (mean = 1sd = 78.3 + 84.2 mm) across
months in the Ngorongoro Crater National Park averaged over 1963-2014 and the
interannaul variation in standardized deviations of the b) annual rainfall (mean + 1SD
=937.5 £ 300.7 mm), c¢) wet season rainfall (mean+ 1SD =851.7 £ 297.3 mm), and d) dry
season rainfall (meanx 1SD =85.5 + 65.2 mm) in the Ngorongoro Crater during 1963-2014.
The vertical needles are the standardized deviates, the solid curves are the 5-year (annual and wet
season) and 2-year (dry season) moving averages and the dashed horizontal lines are percentiles

of the frequency distributions of the rainfall deviates.

Fig 3. Trends in the population sizes of the 12 most common large herbivore species in the
Ngorongoro Crater in the wet and dry seasons from 1964 to 2012. The vertical needles

denote wet season (solid) and dry season (dashed) count totals. Thick solid and dashed curves
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1238  denote the fitted wet season and dry season trend curves. The shaded regions are the 95% point
1239  wise confidence bands.

1240

1241  Fig 4. Temporal trends in the cumulative total biomass (kg) of the 12 most common large
1242 herbivore species in the Ngorongoro Crater during a) the wet season and b) the dry season
1243 during 1964 to 2012. The unit weights (kg) are 1725, 816, 450, 340, 200, 160, 125, 123, 114,
1244 45, 40 and 15 for elephant, rhino, buffalo, eland, zebra, waterbuck, kongoni, wildebeest, ostrich,
1245  warthog, Grant’s gazelle and Thomson’s gazelle, respectively. Note that wildebeest and zebra
1246  were not counted in the dry season of 1968. In years when multiple surveys were done in the
1247  same season (e.g., the wet season of 1966 or 1970), only the survey with the maximum count
1248  was used to calculate biomass.

1249

1250  Fig 5. The selected best regression relationships between the wet season and dry season
1251  count totals of wildebeest, zebra, Thomson’s gazelle, buffalo, Grant’s gazelle, and eland
1252 and the moving averages of the annual, wet season and dry season rainfall components for
1253  the Ngorongoro Crater during 1964-2012.

1254

1255  Fig 6. The selected best regression relationships between the wet season and dry season
1256  count totals of kongoni, waterbuck, ostrich, elephant, black rhino and warthog and the
1257  moving averages of the annual, wet season and dry season rainfall components for the
1258  Ngorongoro Crater during 1964-2012.

1259
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Fig 7. Historic and projected population size of buffalo in the Ngorongoro Crater during
the wet and dry seasons based on the three climate change scenarios RCP2.6, RPC4.5 and

RCP8.S.

Fig 8. Historic and projected population size of wildebeest in the Ngorongoro Crater
during the wet and dry seasons based on the three climate change scenarios RCP2.6,

RCP4.5 and RCPS8.S.

Fig 9. Historic and projected population size of zebra in the Ngorongoro Crater during the
wet and dry seasons based on the three climate change scenarios RCP2.6, RCP4.5 and

RCP8.S.

Fig 10. Historic and projected population size of Thomson’s gazelle in the Ngorongoro
Crater during the wet and dry seasons based on the three climate change scenarios

RCP2.6, RCP4.5 and RCP8.5.

Fig 11. Historic and projected population size of Grant’s gazelle in the Ngorongoro Crater
during the wet and dry seasons based on the three climate change scenarios RCP2.6,

RCP4.5 and RCPS8.S.

Supporting Information
S1 Data. The count totals for each of the 12 most common large herbivore species counted

during the wet and the dry seasons in the Ngorongoro Crater from 1964 to 2012.
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S2 Data. The count totals for each of the 12 most common large herbivore species counted
during the wet and the dry seasons in the Ngorongoro Crater from 1964 to 2012. The
missing values were imputed using a state space model, separately for each species and season

combination.

S3 Data. Total monthly rainfall in mm recorded at the Ngorongoro Conservation Area

headquarters from 1963 to 2014.

S4 Data. The logarithm of the observed and predicted population size for each of the five
most common species for the wet and dry season and the 95% pointwise prediction
confidence band for 1964 to 2012. The logarithm of the forecasted population size is also

provided for each of the five most abundant herbivore species for 2013 to 2100.

Table S1. Parameter estimates for the bivariate VARMAX (2,2,5) model for the five most
abundant herbivore species in the dry and wet seasons in the Ngorongoro Crater,
Tanzania, during 1963-2012. Model selection was based on information theory so no effort has
been made to remove insignificant coefficients. By restricting a few of the highly insignificant

coefficients to be zero, many of the apparently insignificant coefficients become significant.

Table S2. Roots of AR characteristic polynomials for the bivariate model for the five most

abundant herbivore species in the dry and wet seasons in the Ngorongoro Crater,
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Tanzania, during 1963-2012. The modulus of the roots of its AR polynomial should be less

than 1 for a time series to be stationary.

Table S3. Roots of the MA characteristic polynomials for the bivariate model for the five
most abundant herbivore species in the dry and wet seasons in the Ngorongoro Crater,

Tanzania, during 1963-2012.

Table S4. Portmanteau Test for Cross Correlations of Residuals from the bivariate

VARMAX(2,2,5) model for the five most abundant herbivore species in the dry and wet
seasons in the Ngorongoro Crater, Tanzania, during 1963-2012. The results show tests for
white noise residuals based on the cross correlations of the residuals. Insignificant test results

show that we cannot reject the null hypothesis that the residuals are uncorrelated.

Table S5. Univariate model ANOVA diagnostics for the five most abundant herbivore
species in the dry and wet seasons in the Ngorongoro Crater, Tanzania, during 1963-2012.

The results show that each model is significant.

Table S6. Univariate Model White Noise Diagnostics for the five most abundant herbivore
species in the dry and wet seasons in the Ngorongoro Crater, Tanzania, during 1963-2012.
The results show tests of whether the residuals are correlated and heteroscedastic. The Durbin-
Watson test statistics test the null hypothesis that the residuals are uncorrelated. The Jarque-Bera

normality test tests the null hypothesis that the residuals are normally distributed. The F statistics
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and their p-values for ARCH(1) disturbances test the null hypothesis that the residuals have

equal covariances.

Table S7. Univariate AR Model Diagnostics for the five most abundant herbivore species in
the dry and wet seasons in the Ngorongoro Crater, Tanzania, during 1963-2012. The F
statistics and their p-values for AR(1), AR(1,2), AR(1,2,3) and AR(1,2,3,4) models of residuals

test the null hypothesis that the residuals are uncorrelated.

Table S8. Classification of years and seasons into extreme drought, severe drought,
moderate drought, normal, wet, very wet and extremely wet years or seasons using
percentiles of the frequency distributions of the total annual, wet season or dry season

rainfall recorded at the Ngorongoro Conservation Area headquarters from 1963 to 2014.

Table S9. The estimated frequency, period, periodogram, spectral density, co-spectra,

quadrature, squared coherence, amplitude and phases of the oscillations in the annual, wet

and dry season rainfall components for the Ngorongoro Crater during 1963-2014.

Table S10. The estimated variances of the disturbance terms, the variances of the irregular

components, damping factor and periods of the cycles in the annual, wet and dry season

rainfall components recorded for the Ngorongoro Crater during 1963-2014.

Table S11. Significance analysis of components (based on the final state).
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Table S12. The expected population size of each of the 12 wildlife species in 1964, 1974 and
2012 and the difference between the two estimates for 1964 and 1974 and 1974 and 2012

and test of significance of their difference based on constructed penalized cubic B-splines.

Table S13. Selection of the rainfall component, moving average and functional form of the
relationship between population size and the moving average component for each of the 12
most common large herbivore species based on the corrected Akaike Information Criterion
(AICc). Only models with delta AICc no more than 4 are shown. Model selection was

carried out separately for the wet and dry season counts for each species.

Table S14. Parameters estimates, their standard errors and r-tests of whether the
parameters are significantly different from zero for the AICc-selected best models relating
population size and moving average rainfall, for the wet and season counts, for the 12 most

common large herbivore species in the Ngorongoro Crater.

S1 Text. SAS code used to analyze the rainfall data for the Ngorongoro Conservation Area

headquarters.

S2 Text. SAS code used to model trends in the animal counts, relate the counts to rainfall

and project population dynamics to 2013-2100.

Fig S1. Temporal variation in the original and smoothed total monthly rainfall in the

Ngorongoro Crater from 1963 to 2014.

62


https://doi.org/10.1101/542910
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/542910; this version posted February 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

aCC-BY 4.0 International license.

Fig S2. Percentiles of the annual, dry and wet season rainfall components. The percentiles
are used to classify years or seasons as extreme, severe or moderate drought years or

seasons, normal, wet, very wet or extremely wet years or seasons as described in the text.

Fig S3. Spectral density versus period of cycles (in years) for a) annual rainfall, b) wet
season rainfall, and c) dry season rainfall based on rainfall recorded for the Ngorongoro
Conservation Authority headquaters from 1963 to 2014. A large value of spectral density

means that the corresponding period has greater support in the data.

Fig S4. Smoothed cycles and trends based on the structural time series analysis versus the
year of observation for the standardized annual (annualstd), wet season (wetstd) and dry

season (drystd) rainfall for the Ngorongoro Crater for 1963-2014.

Fig S5. Projected total annual rainfall, average maximum and minimum temperatures for

Ngorongoro Crater in Tanzania under three climate scenarios (RCP2.6, RCP4.5 and

RCP8.5) for the period 2006-2100.
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Forecasting Buffalo population size in relation to rainfall
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LN (Wildebeest Population size +1)

Forecasting wildebeest population size in relation to rainfall
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LN(Zebra Population Size+1)

Forecasting Zebra population size in relation to rainfall
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LN(Thomson's gazelle Population Size +1)

Forecasting Thomson's gazelle population size in relation to rainfall
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Forecasting Grant's gazelle population size in relation to rainfall
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