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Novelty and impact: Applying our proposed method to the exome sequence data from four
colorectal cancer patients, we showed the ‘multi-cellular origin’, not the classical ‘single-cell
origin’, of metastasis is correct, with founder sizes quantified in the range of 3 to 15 cells.
These wide-ranging founder sizes suggest large variation in genetic similarity between both
tumors, which may affect the (dis)similarity of drug response in primary and metastatic

tumors.
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Abstract

Metastasis is a major cause of cancer-related mortality, and it is essential to understand how
metastasis occurs in order to overcome it. One relevant question is the origin of a metastatic
tumor cell population. Although the hypothesis of a single-cell origin for metastasis from a
primary tumor has long been prevalent, several recent studies using mouse models have
supported a multi-cellular origin of metastasis. Human bulk whole-exome sequencing (WES)
studies also have demonstrated a multiple ‘clonal’ origin of metastasis, with different
mutational compositions. Specifically, there has not yet been strong research to determine
how many founder cells colonize a metastatic tumor. To address this question, we developed
a method to quantify the ‘founder cell population size’ in a metastasis using paired WES data
from primary and metachronous metastatic tumors. Simulation studies demonstrated the
proposed method gives unbiased results with sufficient accuracy in the range of realistic
settings. Applying the proposed method to real WES data from four colorectal cancer patients,
all samples supported a multi-cellular origin of metastasis and the founder size was quantified,
ranging from 3 to 15 cells. Such a wide-ranging founder sizes estimated by the proposed
method suggests that there are large variations in genetic similarity between primary and
metastatic tumors in the same subjects, which might be involved in (dis)similarity of drug

responses between tumors.
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Introduction

Metastasis is the main cause of cancer-related death. Although it is essential to understand its
mechanisms and dynamics of distant site colonization in order to properly treat it, until
recently little has been known. The founder cell population size of a metastatic tumor is one
of the most important parameters for metastasis dynamics, which involves the change of
mutational compositions from the primary to metastatic tumors (Figure 1). The drastic
genetic changes in the metastatic tumor from the primary one, brought by the limited cell
migration, i.e., ‘bottleneck effect’, might result in a difference in drug response between both
tumors in the same patients.

Although the hypothesis that a metastatic tumor originates from a single tumor cell
has been long prevalent 13, several recent studies using mouse models of cancer demonstrated
multicellular seeding *°. In humans, bulk whole-exome sequencing (WES) studies of
metastatic tumors, often including primary tumors from the same individuals, demonstrated
metastases to have originated from multiple clones, where a ‘clone’ was a cluster of tumor
cells belonging to the same phylogenetic clade estimated by the variant allele frequency
information 7 8. While founder ‘cells’, but not ‘clones’, in the metastatic tumor have another
clear meaning in understanding metastatic dynamics, the quantification of multicellular
colonization has not been attempted so far in human metastatic tumors.

Here, we propose a method to quantify the founder cell population size of a
metastatic tumor using a paired WES data from the primary and metachronous metastatic
tumors. The method uses the outputs from commonly used mutation callers, i.e., variant allele
frequencies (mutant allele counts and sequence depths), and quickly estimates the founder
size unbiasedly in a realistic range. We applied our proposed method to the high-depth WES

data from a study for four colorectal cancer (CRC) patients.

Methods

Overview for quantifying founder cell population size in metastasis

We use paired WES data of a primary and metachronous metastatic tumors together with the
data from the normal tissue (Figure 1A). The input file is composed of sequence depths, D,
and D,, and the mutation read counts, m; and m, for each called mutation in the primary
and metastatic tumors, respectively (Table 1 and Figure 1B; See supplementary Appendix
and supplementary Figure S1 for more details of the input file). When the founder population
size is large, the variant allele frequencies (VAFs) for called mutations in the metastatic show
high similarity to those in the primary tumor (Figure 1C). Conversely, when the size of
founder cells is small, the VAFs in the primary and metastatic tumors are not so correlated

(Figure 1C). In this case, due to the severe ‘bottleneck effect’, many variants can become
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extinct or have a significantly higher VAF in the metastatic tumor.

Model and estimation methods

Consider a diploid tumor cell population in a primary tumor. One somatic variant in
the population has the VAF, p;, or the cancer cell fraction (CCF), 2p, (see Table 1 for
notations). The models assume no recurrence mutation at the same sites and therefore the
VAF is at most 0.5, p; < 0.5. The VAF follows some distribution, p; ~ f(p,), as is properly
assumed in the present implementation assuming the ‘neutral’ evolution with high cell birth
rate for tumor population” 1 (see Implementation section in supplementary Appendix; and
see Results section for the robustness of the assumptions). In bulk-WES of the primary tumor,
the sampled mutation read count, m,, at the variant site with sequence depth, D,, follows a
binomial distribution with parameters, D; and p,,

my ~ Bin(my|D;, p1).

In bulk-WES of the metastatic tumor, the sampled mutation read count, m,, at the
variant site with sequence depth, D,, is generated by a composite process of metastatic
colonization and exome sequencing as follows:

Ny )
me~ ) BN, 2p)Bin(mID, P}
where the N,, M, and p, are the number of founder cells (founder population size) in
metastatic colonization, the number of mutant cells in the N, founder cells, and the VAF in
the metastatic tumor, respectively. In the above distribution for m,, the N, founder cells are
randomly selected from the primary tumor and colonize a metastatic site. The M, mutant
cells in the metastatic site follows a binomial distribution with parameters N, and 2p,

(mutant cell fraction). The sampled mutation read count, m,, follows a binomial distribution

with parameter D, and p,, where p, is given by p, = zMTb'
b

Taken together, the probability of observing m; and m, mutations in the primary

and metastatic exome with depths D, and D,, respectively, is given by

1

. mo . M
F0BinGm D, p) Y. " {Bin(MyINy, 2p,)Bin(myID, ) dp,.
p1=0 MbZO b

For quality control, we use only the sites with or more than m; ;) (>0) mutant reads in the
primary tumor. Note that, in the metastatic tumor, all mutations called in the primary tumor
are tracked in order to use greater information on VAF change from the primary to the
metastatic tumor. Finally, the probability of observing m;(= mygin)) and m,(= 0)

mutation reads in the primary and metastatic tumors, respectively, is expressed as
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where m'; is possible read counts in the primary tumor. Explicitly, let py;, Dy,
my;, Dy; and m,; denote p,, D;, my, D, and m, for the specific /-th variant site, respectively.
Assuming independencies among all R variants, each with m,;(= m;yn)) mutation reads
in the metastatic tumor, the likelihood of the founder size, N, is given by

Likelihood(Ny)
1 . . . M
fplizof(Pu)Bm(mUWw P1i) Zm:o {Bln(Mbler 2py;)Bin (m2i|D2ir 2—1\;;)} dpy;

_ - - — e (D).
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By maximizing the likelihood (1), we obtain the maximum likelihood estimate of N, (for
implementation details, see supplementary Appendix). In reality, the independence
assumption among variants does not hold since the unit of the tumor evolution is the cell, and
mutations in the same cell evolve and colonize a metastatic site together. The effect of the
independence assumption on the estimation of N, is investigated below using simulations.
The tumor purities, the fraction of cancer cells, in the primary (y;) and metastatic

tumor tissue samples (y,), are incorporated into the model simply by replacing p,; in the

term Bin(my|Dy;, py;) With y;p;; and —2 in the term Bin (m2i|D2i, ﬂ) with y, =2,
2Ny 2Np 2Ny

respectively.

Results
Validation of our proposed method by simulations
Pure birth model

We assessed our proposed method using simulated data, generated by a ‘pure birth
model’ for tumor evolution (see Methods and supplementary Appendix for details; see also
Table 1 for notations). Briefly, a single tumor cell with K mutations generates two daughter
cells, each with average u new mutations, and cell divisions repeat until the population has
grown to the final primary tumor size, N;. N, cells from the N; cells make up a metastatic
tumor. Exome samples in the primary and metastatic tumor have depth D and purity y. Our
proposed method was applied to the sites with > m, (;,) mutant reads in the primary tumor.
We ran 100 simulation for each parameter sets. Mouse models have suggested that metastasis
occurs via colonization of one CTC cluster rather than serial arrivals of CTC clusters (or single
CTCs) and that the most CTC clusters contain between 2 to 20 tumor cells, with median of

6 °. We mainly focused on this range of founder sizes in the simulations.
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In Figure 2A-D, all simulations were performed under the conditions of N; =
100,000, u=2.5. Firstly, the effect of varying mean depth, D, on the estimation of N, was
investigated under K =50, y=1, and mynm) =2 (Figure 2A). The number of variants
generated in the exome samples in the simulations were realistic, ranging from one to around
five hundred (Supplementary Figure S2B). In cases of N,=2, 5, 10 and 20, when D >50, the
medians of estimates were very close to the true values, i.e., the estimator is median-unbiased,
and the estimation accuracy is good. For example, when the depth was 50, the medians of the
estimates (and interquartile ranges; IQRs) were 5.0 (4.0, 6.0), 10.0 (8.0, 13.0), and 20.0 (15.0,
28.25) for the true N,=5, 10 and 20, respectively. The unbiasedness with D >50 held for
larger N, (for N,=1-100, see supplementary Figure S2B). The estimation accuracy got
better as sequence depth increased. Even when the depth was D = 30, the precision and
accuracy were acceptable, the medians of estimates (IQRs) were 5.0 (5.0, 6.0), 12.0 (8.0,
18.25), and 21.0 (14.0, 35.0) for the true N, =5, 10 and 20, respectively. Under D = 30,
particularly for larger N, > 30, N, was biasedly estimated and a reliable estimation was
difficult to obtain (for N,=1-100, see supplementary Figure S2A). Note that, for all depth
settings, the relative estimation errors were better for smaller N,, as you can see from the
smaller log-scaled boxplots of the estimated N, in Figure 1A (see also supplementary Figure
S2A).

Next, the effects of the tumor purity, y, on the estimation were investigated under
K=50, D=100, and My (min) =2 (Figure 2B). When y > 50%, the estimation was median-
unbiased and the accuracy was acceptable. The medians of the estimates (IQRs) were 5.0 (5.0,
6.0), 10.0 (8.0, 12.0), and 20.0 (15.0, 28.0) for the true N,=5, 10 and 20, respectively. In
conjunction with the result of Figure 1A, defining the ‘effective sequence depth’” as the depth
multiplied by tumor purity, the proposed method gave unbiased results with acceptable
accuracy when the effective sequence depth was 50. In the case of less purity, and large
founder size e.g., y <40% and N, > 30, a reliable estimation was difficult obtain (for
N,=1-100, see supplementary Figure S3).

In the algorithm for N, estimation, the proportion of clonal mutations in the
primary tumors are fixed at 10%. However, true clonal mutations vary among tumors. Thus,
the impacts of the number of clonal mutations were investigated under D = 100, y=1 and
My niny=2 (Figure 2C). The number of clonal mutations in the population, K, had no effect
on both the unbiasedness and the accuracy of estimation of N,,. The same is true for larger
N, with various number of variants in WES samples (for N,=1-100, see supplementary
Figure S4).

As input of the proposed method, we use variants with m; ;) or more mutation
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reads in the primary tumor. Then, the effects of various values of m;y;,) on the estimation
of N, were investigated under K=50, D=100, and y=1 (Figure 2D). The estimation results
for up to N,=100 were also assessed (supplementary Figure S5). In the case of m;piny =5,
the estimation accuracy was worse than those for m; ;) < 5. The worse accuracy was not
due to lower numbers of variants used for input (for the case of larger number of variants, see
supplementary Figure S6 replacing u=2.5 with yu=12.5). For the case of including singletons
in the input (my i) = 1), a small upward bias can occur (for more clear bias in the large N,
see supplementary Figure S5). Thus, we recommend the criteria of ‘at least 2 or 3 mutation
read counts’, mynim)=2 or 3, for the input of the proposed method.

Simulations were performed mainly under the conditions of the primary tumor size,
N; = 100,000 and mutation rate, u=2.5. When values of N; ranging from 1,000 to 300,000
were used under D=100, pu=2.5, K=50, y=1, and M1 (min) =2 the behavior of estimates
were generally the same as that under N; = 100,000 (supplementary Figure S7). When
values of u ranging from 0.5 to 10 were used under D=100, N; = 100,000, K=50, y=1,
and My nin)=2, the behavior of estimates were generally the same as that under u = 2.5
although the estimation accuracy was a little lower as the mutation rate is small

(supplementary Figure S8).

Robustness for cell death and selection

So far, in the development of primary tumor, it was assumed there was no cell death and no
difference in cell division rates. The violation of the assumptions might make estimation of
N, difficult, since VAF distribution, f(p,), possibly become different from the postulated
distribution under ‘neutral’ evolution with high cell birth rate of tumor population. Here, we
investigated the consequences of the violation, keeping the other settings as Figure 1, i.e.,
u=2.5, K=50, y=1, and my(min)=2, D =100, N, = 100,000. We ran 100 simulation for
each parameter set.

Firstly, to investigate the effect of ‘cell death’, death rate, d, and, birth rate, b, per
unit time were introduced. Limiting the case to d < b, which means steady growth of tumor
population, various values, d=0.01, 0.1 and 0.2, against unit birth rate, b = 1, were assumed
(theratio of d to b define the evolutional system). For any death rates, d=0.01, 0.1 and 0.2,
the estimator for the founder size, N,, is median-unbiased and the estimation accuracy is
sufficient, as with the case of no death (d=0) (supplementary Figure S9A). This is due to the
fact that VAF distribution for d # 0 is not so far that for no death case as long as d < b '°
(supplementary Figure S9B-D).

Secondly, we considered the case that one positively selective subclone in the

primary tumor appears in the WES samples!!. One starting primary tumor cell with b =1,
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d = 0.1 are assumed to evolve and at the time when the population reach to a particular
population size, N, occ.» One selectively advantageous mutation occurs. The subclone with
the advantageous mutation have large birth rate, b=2, 5 or 10. The values of Ng, occ. are
determined so that corresponding frequencies of the selective mutation are low (~2%),
middle (~16%) and high (~30%) at the WES sampling point. Although distributions of VAF
were shifted to the frequency of the selective mutation (supplementary Figure S10-12B, C,
D), the estimator for the founder size, N, is median-unbiased and the estimation accuracy is
sufficient, as well as for case of no selective subclone (supplementary Figure S10-12A).
Lastly, we considered the case that many mutations with small effects are
accumulated in the developmental process of the primary tumor. Neutral mutations and non-
neutral mutations occur with the probabilities of 0.3 and 0.7, respectively, which mimics
synonymous and non-synonymous mutation rates in the exon region. The birth rate of a cell
acquiring a new non-neutral mutation (b,,,,) is given by multiplying the present birth rate
(bpre) by (14 a), i.e., byew = bpre(1+ a), where a is a coefficient for birth rate and set as
a = +0.01, +£0.05, +0.1, +0.15and + 0.2 . Positive and negative value of a mean
deleterious and advantageous mutations, respectively. The death rate is always set to be one-
tenth of population mean of birth rates. Advantageous mutations, particularly when a > 0.1,
shift VAF distribution toward intermediate frequency (supplementary Figure S13B-K). When
deleterious or advantageous mutations with a < 0.1, the estimator for the founder size, Ny,
is median-unbiased and the estimation accuracy is sufficient, as with the case of no selection,
a =0 (supplementary Figure S13A). When strong selection with a > 0.15, the estimator is
biased upward and the accuracy is not so good. But it is unrealistic that one-third of all

mutations would have such strong effects.

Real data analysis

We used the high-depth WES data from a study for four colorectal cancer (CRC)
patients, which included at least one primary and metachronous metastatic tumor sample per
patient 8. For each patient, the metastatic tumor(s) were sampled 1-3 years after the removal
of the primary tumor(s). Called mutation summary information for each tumor were derived
from the article 8. Our method was applied to the four paired primary and metastatic tumors’
data in the four patients, the data from Pri-1 and Met-1 for each patient (the primary and
metastatic tumors were arbitrarily labeled Pri-x and Met-x, respectively, per patient). We
conducted quality-controls and used the called mutations satisfying the following criteria:
within 1,000 sequencing depths in the primary and metastatic tumors, having at least two
mutation reads in the primary tumor, i.e., My @nin)=2, having no mutation read in the normal

sample in the primary and metastatic tumors, and without no copy number aberrations. The
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last criterion ensured diploid tumor populations, which is assumed in the current model, and
copy number aberrations were retrieved from the article 8.

The proposed method was applied to the mutations that passed the quality-controls
using the estimated tumor purities by PurBayes 2. Mutations considered to be possible errors,
many of which had higher VAFs (supplementary Figure S14) were removed. We then
performed the definitive analyses to estimate the founder population size of metastatic tumors.
The average number of variants used ranged from 79-195 for the four samples, with average
sequence depths of 83.4-146.7 and 83.4-146.7 in the primary and metastatic tumor exomes,
respectively (Table 2). The tumor purities were 0.23-0.72 and 0.29-0.85 in the primary and
metastatic tumor samples, respectively (Table 2). The observed VAFs looked to be somewhat
correlated in the primary and metastatic tumor in each patient (supplementary Figure S15).
Estimated founder population sizes (80% confidence intervals) were estimated to be 15 (13.0,
17.0),3(2.0,4.0), 8 (6.0,9.0), and 14 (9.0, 21.1) for subject A01, A02, A03, A04, respectively
(Figure 3). Consistent results were obtained when the same analyses were carried out using
all variations without limiting diploid regions (Table 2 for the mutation summary,
supplementary Figure S14 for removed outliers, supplementary Figure S15 for VAFs, and

Figure 3 for the estimated founder sizes).

Discussion
We developed a method to quantify the founder population size in metastasis using a paired
WES data from primary and metachronous metastatic tumors. This method, implicitly using
the fact that higher (lower) genetic similarity between the primary and metastatic tumors
results from a larger (smaller) founder size (Figure 1C), enables us to unbiasedly estimate the
founder population size with sufficient accuracy in the range of realistic founder size and
settings, e.g., sequencing depth, purity and number of variations (Figure 2 and supplementary
Figure S1-7). The method is also robust to the realistic model of primary tumor evolution,
including cell death and several selective differences in cell birth (supplementary Figure S9-
13). Although relative estimation errors become worse as the founder size became larger, this
weakness is overcome by deeper sequencing, i.e., WES data with x 150 depth give sufficient
accuracy even for the founder size 100 (supplementary Figure S1). The proposed method also
shows the advantage of using VAF information (mutation read counts and depths) rather than
using only the presence or absence of mutations, to infer the tumor evolutionary process, as
has been applied so far %1113,

In real data analysis of four colorectal cancer patients, our method supported the
multi-cellular origin of metastatic tumors, which is consistent with the observation of recent

4-6

mouse model studies and the suggestion from WES studies " 8. Our method further
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quantified the founder population sizes ranging 3 to 15 cells for CRC subjects 8. The wide-
ranging founder size in metastasis might result in large variations of genetic similarity
between primary and metastatic tumors, which might cause variation in drug responses
between primary and metastatic tumors. In particular, when the founder population size is
small, variants with drastically increased VAFs in the metastatic tumors might lead to
difficulty in treatment.

In the context of population genetics, demographic history is a confounding factor
for detecting and quantifying natural selection acting on the genome '* 15, The same should
be true for the evolution of a tumor population. A potential advantage of the proposed method
is to identify selectively recruited mutations in the metastatic tumors under the inferred
demographic model for tumor populations, i.e., the estimated founder size.

The limitations of our method are that it does not consider the time between the
first exome sampling and metastatic occurrence and the time between metastatic occurrence
and the second exome sampling. Particularly, in latter time periods, genetic drift in a small
population of new metastatic tumor might not negligible. Our model does not distinguish
between such genetic drift and the bottleneck effect of metastatic colonization, and the
estimate of ‘the founder size’ reflects both these effects. A method that distinguishes both
effects will be future work. In addition, there are possibly more complex cell migration
patterns than our model, including reseeding or multisource seeding '® 7, which are beyond

the present study but worth investigating.
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Figure legends

Figure 1. A schematic view of the proposed methodology. (A) Exome data from paired
primary and metastatic tumors, and normal tissue. (B) Input of the method. (C) Illustration
of basic premise for the estimation of founder sizes by computer simulations. Low correlation
of observed VAFs in exome between the primary and the metastatic tumors in the small
founder size, N,=2 (left). High correlation of observed VAFs between the primary and

metastatic tumors in the large founder size, N, =50 (right).

Figure 2. Valid quantification of founder size, N,, confirmed by simulations. All simulations
used the same primary tumor population size, N; = 100,000, and mutation rate per cell
division per exome, u = 2.5. (A) Varying mean sequencing depth, D for K=50, y=1, and
My niny=2- (B) Varying tumor purity, y, for K=50, D=100, and m;p;ny=2. (C) Varying
number of clonal mutations, K, for D = 100, y=1 and m;gy)=2. (D) Varying minimum
number of mutation reads, m;niny, for K=50, D=100, and y=1. (Variants with my ¢,y or

more mutation reads were used.)

Figure 3. Estimated founder sizes (Nj,) for the four colorectal cancer reported by Wei et al.
(2017). Results using only diploid regions (excluding copy number aberrations) are shown in
red. Results using all exome regions (including copy number aberrations) are shown in blue.
Circles with bars indicate maximum likelihood estimates of N, and these 80% confidence

intervals, based on 100 non-parametric bootstrap samples.
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Table 1. Notations in the Model and the simulation study.

Notation Description
N, Founder cell population size, to be estimated.
R Number of mutations with or more than m; ;) mutation reads
in the primary tumor.

mq, my, Mutation read counts for the primary (m;) and metastatic tumors
(my).

M1 (min) Minimum mutation read count in WES data from the primary
tumor. For estimating N,, we use only the sites with or more
than my ;i) Mutant reads.

D4, D, Sequence depths for the primary (D) and metastatic tumors (D).
D1, D2 Population VAFs in the primary (p;) and metastatic tumor (p).
f(p1) Probability density of p;.

M, Number of mutant cells among N, founders.
Y1, V2 Tumor purity in the WES samples from the primary (y;) and

metastatic tumors (y,).

Additional notations in the simulation study.

K

Number of clonal mutations in the initial primary tumor.
Mutation rate per tumor-cell division in the primary tumor.
Cell population size in the final primary tumor.

Mean sequence depth in the primary and metastatic tumor.

Tumor purity in the WES samples from the primary and
metastatic tumors (y1=Y>).
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Table 2. Summary of WES data for CRC subjects from Wei et al. (2017).

. Mean . o
Subject # of SNV (R) Tumor Depth Purity (95%Cl)
Pri-1(colon)  137.6  0.46 (0.44, 0.48)
AO1 195
- Diploid Met-1 (liver)  153.1  0.48 (0.47, 0.50)
Pri-1(colon) 1384  0.46 (0.44, 0.48)
- Al 233
Met-1 (liver)  154.4  0.48 (0.46, 0.49)
Pri-1(colon)  130.3  0.23(0.22,0.24)
A02 165
- Diploid Met-1(lung)  129.7  0.29(0.28, 0.30)
Pri-1(colon)  139.5  0.45 (0.43, 0.48)
-All 209
Met-1(lung)  141.1  0.29(0.28, 0.30)
703 \ Pri-1(colon)  83.4  0.25(0.23,0.26)
- Diploid Met-1(liver) 102.6  0.59 (0.58, 0.61)
Pri-1(colon)  87.4  0.46(0.43,0.49)
- Al 110
Met-1 (liver)  105.2  0.80(0.76, 0.85)
"™ o3 Pri-1(colon)  146.7  0.72(0.68,0.76)
- Diploid Met-1(lung) 1482  0.85(0.81,0.89)
Pri-1(colon)  149.6  0.70 (0.65,0.74)
- Al 224
Met-1(lung)  150.0  0.84 (0.80, 0.88)

Purities and 95% credible intervals (Cls) were estimated by PurBayes [9]. Diploid:
Results using only diploid regions (excluding copy number aberrations). All: Results
using all exome regions (including copy number aberrations).
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