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Novelty and impact: Applying our proposed method to the exome sequence data from four 
colorectal cancer patients, we showed the ʻmulti-cellular originʼ, not the classical ʻsingle-cell 
originʼ, of metastasis is correct, with founder sizes quantified in the range of 3 to 15 cells. 
These wide-ranging founder sizes suggest large variation in genetic similarity between both 
tumors, which may affect the (dis)similarity of drug response in primary and metastatic 
tumors.  
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Abstract 
Metastasis is a major cause of cancer-related mortality, and it is essential to understand how 
metastasis occurs in order to overcome it. One relevant question is the origin of a metastatic 
tumor cell population. Although the hypothesis of a single-cell origin for metastasis from a 
primary tumor has long been prevalent, several recent studies using mouse models have 
supported a multi-cellular origin of metastasis. Human bulk whole-exome sequencing (WES) 
studies also have demonstrated a multiple ʻclonalʼ origin of metastasis, with different 
mutational compositions. Specifically, there has not yet been strong research to determine 
how many founder cells colonize a metastatic tumor. To address this question, we developed 
a method to quantify the ʻfounder cell population sizeʼ in a metastasis using paired WES data 
from primary and metachronous metastatic tumors. Simulation studies demonstrated the 
proposed method gives unbiased results with sufficient accuracy in the range of realistic 
settings. Applying the proposed method to real WES data from four colorectal cancer patients, 
all samples supported a multi-cellular origin of metastasis and the founder size was quantified, 
ranging from 3 to 15 cells. Such a wide-ranging founder sizes estimated by the proposed 
method suggests that there are large variations in genetic similarity between primary and 
metastatic tumors in the same subjects, which might be involved in (dis)similarity of drug 
responses between tumors. 
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Introduction 
Metastasis is the main cause of cancer-related death. Although it is essential to understand its 
mechanisms and dynamics of distant site colonization in order to properly treat it, until 
recently little has been known. The founder cell population size of a metastatic tumor is one 
of the most important parameters for metastasis dynamics, which involves the change of 
mutational compositions from the primary to metastatic tumors (Figure 1). The drastic 
genetic changes in the metastatic tumor from the primary one, brought by the limited cell 
migration, i.e., ʻbottleneck effectʼ, might result in a difference in drug response between both 
tumors in the same patients.  

Although the hypothesis that a metastatic tumor originates from a single tumor cell 
has been long prevalent 1-3, several recent studies using mouse models of cancer demonstrated 
multicellular seeding 4-6. In humans, bulk whole-exome sequencing (WES) studies of 
metastatic tumors, often including primary tumors from the same individuals, demonstrated 
metastases to have originated from multiple clones, where a ʻcloneʼ was a cluster of tumor 
cells belonging to the same phylogenetic clade estimated by the variant allele frequency 
information 7, 8. While founder ʻcellsʼ, but not ʻclonesʼ, in the metastatic tumor have another 
clear meaning in understanding metastatic dynamics, the quantification of multicellular 
colonization has not been attempted so far in human metastatic tumors. 

Here, we propose a method to quantify the founder cell population size of a 
metastatic tumor using a paired WES data from the primary and metachronous metastatic 
tumors. The method uses the outputs from commonly used mutation callers, i.e., variant allele 
frequencies (mutant allele counts and sequence depths), and quickly estimates the founder 
size unbiasedly in a realistic range. We applied our proposed method to the high-depth WES 
data from a study for four colorectal cancer (CRC) patients. 
 
Methods 
Overview for quantifying founder cell population size in metastasis 
We use paired WES data of a primary and metachronous metastatic tumors together with the 
data from the normal tissue (Figure 1A). The input file is composed of sequence depths, 𝐷" 
and 𝐷#, and the mutation read counts, 𝑚" and 𝑚# for each called mutation in the primary 
and metastatic tumors, respectively (Table 1 and Figure 1B; See supplementary Appendix 
and supplementary Figure S1 for more details of the input file). When the founder population 
size is large, the variant allele frequencies (VAFs) for called mutations in the metastatic show 
high similarity to those in the primary tumor (Figure 1C). Conversely, when the size of 
founder cells is small, the VAFs in the primary and metastatic tumors are not so correlated 
(Figure 1C). In this case, due to the severe ʻbottleneck effectʼ, many variants can become 
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extinct or have a significantly higher VAF in the metastatic tumor. 
 
Model and estimation methods 

Consider a diploid tumor cell population in a primary tumor. One somatic variant in 
the population has the VAF, 	𝑝" , or the cancer cell fraction (CCF), 2𝑝"(see Table 1 for 
notations). The models assume no recurrence mutation at the same sites and therefore the 
VAF is at most 0.5, 𝑝" ≤ 0.5. The VAF follows some distribution, 𝑝"	~	𝑓(𝑝"), as is properly 
assumed in the present implementation assuming the ʻneutralʼ evolution with high cell birth 
rate for tumor population9, 10 (see Implementation section in supplementary Appendix; and 
see Results section for the robustness of the assumptions). In bulk-WES of the primary tumor, 
the sampled mutation read count, 𝑚", at the variant site with sequence depth, 𝐷", follows a 
binomial distribution with parameters, 𝐷" and 𝑝",  

𝑚"	~	𝐵𝑖𝑛(𝑚"|𝐷", 𝑝"). 
In bulk-WES of the metastatic tumor, the sampled mutation read count, 𝑚#, at the 

variant site with sequence depth, 𝐷# , is generated by a composite process of metastatic 
colonization and exome sequencing as follows: 

𝑚#	~5 {𝐵𝑖𝑛(𝑀8|𝑁8, 2𝑝")𝐵𝑖𝑛(𝑚#|𝐷#, 𝑝#)},
;<

=<>?
 

where the 𝑁8 , 	𝑀8  and 𝑝#  are the number of founder cells (founder population size) in 
metastatic colonization, the number of mutant cells in the 𝑁8 founder cells, and the VAF in 
the metastatic tumor, respectively. In the above distribution for 𝑚#, the 𝑁8 founder cells are 
randomly selected from the primary tumor and colonize a metastatic site. The 𝑀8 mutant 
cells in the metastatic site follows a binomial distribution with parameters 𝑁8  and 2𝑝" 
(mutant cell fraction). The sampled mutation read count, 𝑚#, follows a binomial distribution 

with parameter 𝐷# and 𝑝#, where 𝑝# is given by 𝑝# =
=<
#;<

. 

Taken together, the probability of observing 𝑚" and 𝑚# mutations in the primary 
and metastatic exome with depths 𝐷" and 𝐷#, respectively, is given by 

A 𝑓(𝑝")𝐵𝑖𝑛(𝑚"|𝐷", 𝑝")5 B𝐵𝑖𝑛(𝑀8|𝑁8, 	2𝑝")𝐵𝑖𝑛(𝑚#|𝐷#,
𝑀8

2𝑁8
)C

;<

=<>?

"

DE>?
𝑑𝑝". 

For quality control, we use only the sites with or more than 𝑚"(GHI) (>0) mutant reads in the 
primary tumor. Note that, in the metastatic tumor, all mutations called in the primary tumor 
are tracked in order to use greater information on VAF change from the primary to the 
metastatic tumor. Finally, the probability of observing 𝑚"(≥ 𝑚"(GHI))  and 𝑚#(≥ 0) 
mutation reads in the primary and metastatic tumors, respectively, is expressed as 
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∫ 𝑓(𝑝")𝐵𝑖𝑛(𝑚"|𝐷", 	𝑝")∑ M𝐵𝑖𝑛(𝑀8|𝑁8, 2𝑝")𝐵𝑖𝑛(𝑚#|𝐷#,
𝑀8
2𝑁8

)N;<
=<>?

"
DE>?

𝑑𝑝"

∑ ∫ 𝑓(𝑝")𝐵𝑖𝑛(𝑚O
"|𝐷", 𝑝")

"
DE>?

𝑑𝑝"
PEQ
GR

E>GE(SQT)

, 

where 𝑚O
"  is possible read counts in the primary tumor. Explicitly, let 𝑝"H, 	𝐷"H,

𝑚"H, 𝐷#H 	and	𝑚#H denote 𝑝", 𝐷", 𝑚", 𝐷#	and	𝑚# for the specific i-th variant site, respectively. 
Assuming independencies among all 𝑅 variants, each with 𝑚"H(≥ 𝑚"(GHI)) mutation reads 
in the metastatic tumor, the likelihood of the founder size, 𝑁8, is given by 
𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝑁8)

=_
∫ 𝑓(𝑝"H)𝐵𝑖𝑛(𝑚"H|𝐷"H, 𝑝"H)∑ M𝐵𝑖𝑛(𝑀8|𝑁8, 	2𝑝"H)𝐵𝑖𝑛 `𝑚#Ha𝐷#H,

𝑀8
2𝑁8

bN;<
=<>?

"
DEQ>?

𝑑𝑝"H

∑ ∫ 𝑓(𝑝"H)𝐵𝑖𝑛(𝑚O
"H|𝐷"H, 𝑝"H)

"
DEQ>?

𝑑𝑝"H
PEQ
GREQ>GE(SQT)H∈d

	⋯(1). 

By maximizing the likelihood (1), we obtain the maximum likelihood estimate of 𝑁8  (for 
implementation details, see supplementary Appendix). In reality, the independence 
assumption among variants does not hold since the unit of the tumor evolution is the cell, and 
mutations in the same cell evolve and colonize a metastatic site together. The effect of the 
independence assumption on the estimation of 𝑁8 is investigated below using simulations. 

The tumor purities, the fraction of cancer cells, in the primary (𝛾") and metastatic 
tumor tissue samples (𝛾#), are incorporated into the model simply by replacing 𝑝"H in the 

term 𝐵𝑖𝑛(𝑚"H|𝐷"H, 𝑝"H) with 𝛾"𝑝"H and =<
#;<

 in the term 𝐵𝑖𝑛 `𝑚#Ha𝐷#H,
=<
#;<
b with 𝛾#

=<
#;<

, 

respectively. 
 
Results 
Validation of our proposed method by simulations 
Pure birth model 

We assessed our proposed method using simulated data, generated by a ʻpure birth 
modelʼ for tumor evolution (see Methods and supplementary Appendix for details; see also 
Table 1 for notations). Briefly, a single tumor cell with 𝐾 mutations generates two daughter 
cells, each with average 𝜇 new mutations, and cell divisions repeat until the population has 
grown to the final primary tumor size, 𝑁". 𝑁8 cells from the 𝑁" cells make up a metastatic 
tumor. Exome samples in the primary and metastatic tumor have depth 𝐷j and purity 𝛾. Our 
proposed method was applied to the sites with ≥ 𝑚"(GHI) mutant reads in the primary tumor. 
We ran 100 simulation for each parameter sets. Mouse models have suggested that metastasis 
occurs via colonization of one CTC cluster rather than serial arrivals of CTC clusters (or single 
CTCs) and that the most CTC clusters contain between 2 to 20 tumor cells, with median of 
6 6. We mainly focused on this range of founder sizes in the simulations. 
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 In Figure 2A-D, all simulations were performed under the conditions of 𝑁" =
100,000, 𝜇=2.5. Firstly, the effect of varying mean depth, 𝐷j, on the estimation of 𝑁8, was 
investigated under 𝐾=50, 𝛾=1, and 𝑚"(GHI) =2 (Figure 2A). The number of variants 
generated in the exome samples in the simulations were realistic, ranging from one to around 
five hundred (Supplementary Figure S2B). In cases of 𝑁8=2, 5, 10 and 20, when 𝐷j ≥50, the 
medians of estimates were very close to the true values, i.e., the estimator is median-unbiased, 
and the estimation accuracy is good. For example, when the depth was 50, the medians of the 
estimates (and interquartile ranges; IQRs) were 5.0 (4.0, 6.0), 10.0 (8.0, 13.0), and 20.0 (15.0, 
28.25) for the true 𝑁8=5, 10 and 20, respectively. The unbiasedness with 𝐷j ≥50 held for 
larger 𝑁8  (for 𝑁8=1-100, see supplementary Figure S2B). The estimation accuracy got 
better as sequence depth increased. Even when the depth was 𝐷j = 30, the precision and 
accuracy were acceptable, the medians of estimates (IQRs) were 5.0 (5.0, 6.0), 12.0 (8.0, 
18.25), and 21.0 (14.0, 35.0) for the true 𝑁8=5, 10 and 20, respectively. Under 𝐷j = 30, 
particularly for larger 𝑁8 ≥ 30, 𝑁8  was biasedly estimated and a reliable estimation was 
difficult to obtain (for 𝑁8=1-100, see supplementary Figure S2A). Note that, for all depth 
settings, the relative estimation errors were better for smaller 𝑁8, as you can see from the 
smaller log-scaled boxplots of the estimated 𝑁8 in Figure 1A (see also supplementary Figure 
S2A). 

Next, the effects of the tumor purity, 𝛾, on the estimation were investigated under 
𝐾=50, 𝐷j=100, and 𝑚"(GHI)=2 (Figure 2B). When 𝛾 ≥ 50%, the estimation was median-
unbiased and the accuracy was acceptable. The medians of the estimates (IQRs) were 5.0 (5.0, 
6.0), 10.0 (8.0, 12.0), and 20.0 (15.0, 28.0) for the true 𝑁8=5, 10 and 20, respectively. In 
conjunction with the result of Figure 1A, defining the ʻeffective sequence depthʼ as the depth 
multiplied by tumor purity, the proposed method gave unbiased results with acceptable 
accuracy when the effective sequence depth was 50. In the case of less purity, and large 
founder size e.g., 𝛾 ≤ 40%  and 𝑁8 ≥ 30 , a reliable estimation was difficult obtain (for 
𝑁8=1-100, see supplementary Figure S3). 

In the algorithm for 𝑁8  estimation, the proportion of clonal mutations in the 
primary tumors are fixed at 10%. However, true clonal mutations vary among tumors. Thus, 
the impacts of the number of clonal mutations were investigated under 𝐷j = 100, 𝛾=1 and 
𝑚"(GHI)=2 (Figure 2C). The number of clonal mutations in the population, 𝐾, had no effect 
on both the unbiasedness and the accuracy of estimation of 𝑁8. The same is true for larger 
𝑁8  with various number of variants in WES samples (for 𝑁8=1-100, see supplementary 
Figure S4). 

As input of the proposed method, we use variants with 𝑚"(GHI) or more mutation 
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reads in the primary tumor. Then, the effects of various values of 𝑚"(GHI) on the estimation 
of 𝑁8	were investigated under 𝐾=50, 𝐷j=100, and 𝛾=1 (Figure 2D). The estimation results 
for up to 𝑁8=100 were also assessed (supplementary Figure S5). In the case of 𝑚"(GHI) = 5, 
the estimation accuracy was worse than those for 𝑚"(GHI) < 5. The worse accuracy was not 
due to lower numbers of variants used for input (for the case of larger number of variants, see 
supplementary Figure S6 replacing 𝜇=2.5 with	𝜇=12.5). For the case of including singletons 
in the input (𝑚"(GHI) = 1), a small upward bias can occur (for more clear bias in the large 𝑁8, 
see supplementary Figure S5). Thus, we recommend the criteria of ʻat least 2 or 3 mutation 
read countsʼ, 𝑚"(GHI)=2 or 3, for the input of the proposed method. 

Simulations were performed mainly under the conditions of the primary tumor size, 
𝑁" = 100,000 and mutation rate, 𝜇=2.5. When values of 𝑁" ranging from 1,000 to 300,000 
were used under 𝐷j=100, 𝜇=2.5, 𝐾=50, 𝛾=1, and 𝑚"(GHI)=2, the behavior of estimates 
were generally the same as that under 𝑁" = 100,000  (supplementary Figure S7). When 
values of 𝜇 ranging from 0.5 to 10 were used under 𝐷j=100, 𝑁" = 100,000	, 𝐾=50, 𝛾=1, 
and 𝑚"(GHI)=2, the behavior of estimates were generally the same as that under 𝜇 = 2.5 
although the estimation accuracy was a little lower as the mutation rate is small 
(supplementary Figure S8). 
 
Robustness for cell death and selection 
So far, in the development of primary tumor, it was assumed there was no cell death and no 
difference in cell division rates. The violation of the assumptions might make estimation of 
𝑁8  difficult, since VAF distribution, 𝑓(𝑝"), possibly become different from the postulated 
distribution under ʻneutralʼ evolution with high cell birth rate of tumor population. Here, we 
investigated the consequences of the violation, keeping the other settings as Figure 1, i.e., 
𝜇=2.5, 𝐾=50, 𝛾=1, and 𝑚"(GHI)=2, 𝐷j = 100 , 𝑁" = 100,000 . We ran 100 simulation for 
each parameter set. 

Firstly, to investigate the effect of ʻcell deathʼ, death rate, 𝑑, and, birth rate, 𝑏, per 
unit time were introduced. Limiting the case to	𝑑 < 𝑏, which means steady growth of tumor 
population, various values, 𝑑=0.01, 0.1 and 0.2, against unit birth rate, 𝑏 = 1, were assumed 
(the ratio of 𝑑 to 𝑏 define the evolutional system). For any death rates, 𝑑=0.01, 0.1 and 0.2, 
the estimator for the founder size, 𝑁8, is median-unbiased and the estimation accuracy is 
sufficient, as with the case of no death (𝑑=0) (supplementary Figure S9A). This is due to the 
fact that VAF distribution for 𝑑 ≠ 0 is not so far that for no death case as long as 𝑑 ≪ 𝑏 10 
(supplementary Figure S9B-D). 

Secondly, we considered the case that one positively selective subclone in the 
primary tumor appears in the WES samples11. One starting primary tumor cell with 	𝑏 = 1, 
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𝑑 = 0.1 are assumed to evolve and at the time when the population reach to a particular 
population size, 𝑁rs8.tuu., one selectively advantageous mutation occurs. The subclone with 
the advantageous mutation have large birth rate, 𝑏=2, 5 or 10. The values of 𝑁rs8.tuu. are 
determined so that corresponding frequencies of the selective mutation are low (~2%), 
middle (~16%) and high (~30%) at the WES sampling point. Although distributions of VAF 
were shifted to the frequency of the selective mutation (supplementary Figure S10-12B, C, 
D), the estimator for the founder size, 𝑁8, is median-unbiased and the estimation accuracy is 
sufficient, as well as for case of no selective subclone (supplementary Figure S10-12A). 

Lastly, we considered the case that many mutations with small effects are 
accumulated in the developmental process of the primary tumor. Neutral mutations and non-
neutral mutations occur with the probabilities of 0.3 and 0.7, respectively, which mimics 
synonymous and non-synonymous mutation rates in the exon region. The birth rate of a cell 
acquiring a new non-neutral mutation (𝑏Ivw) is given by multiplying the present birth rate 
(𝑏Dxv) by (1 + 𝑎), i.e., 𝑏Ivw = 𝑏Dxv(1 + 𝑎), where 𝑎 is a coefficient for birth rate and set as 
𝑎 = ±0.01, ±0.05, ±0.1, ±0.15	and	 ± 	0.2 . Positive and negative value of 𝑎  mean 
deleterious and advantageous mutations, respectively. The death rate is always set to be one-
tenth of population mean of birth rates. Advantageous mutations, particularly when 𝑎 ≥ 0.1, 
shift VAF distribution toward intermediate frequency (supplementary Figure S13B-K). When 
deleterious or advantageous mutations with 𝑎 ≤ 0.1, the estimator for the founder size, 𝑁8, 
is median-unbiased and the estimation accuracy is sufficient, as with the case of no selection, 
𝑎 = 0 (supplementary Figure S13A). When strong selection with 𝑎 ≥ 0.15, the estimator is 
biased upward and the accuracy is not so good. But it is unrealistic that one-third of all 
mutations would have such strong effects. 
 
Real data analysis 

We used the high-depth WES data from a study for four colorectal cancer (CRC) 
patients, which included at least one primary and metachronous metastatic tumor sample per 
patient 8. For each patient, the metastatic tumor(s) were sampled 1-3 years after the removal 
of the primary tumor(s). Called mutation summary information for each tumor were derived 
from the article 8. Our method was applied to the four paired primary and metastatic tumorsʼ 
data in the four patients, the data from Pri-1 and Met-1 for each patient (the primary and 
metastatic tumors were arbitrarily labeled Pri-x and Met-x, respectively, per patient). We 
conducted quality-controls and used the called mutations satisfying the following criteria: 
within 1,000 sequencing depths in the primary and metastatic tumors, having at least two 
mutation reads in the primary tumor, i.e., 𝑚"(GHI)=2, having no mutation read in the normal 
sample in the primary and metastatic tumors, and without no copy number aberrations. The 
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last criterion ensured diploid tumor populations, which is assumed in the current model, and 
copy number aberrations were retrieved from the article 8. 

The proposed method was applied to the mutations that passed the quality-controls 
using the estimated tumor purities by PurBayes 12. Mutations considered to be possible errors, 
many of which had higher VAFs (supplementary Figure S14) were removed. We then 
performed the definitive analyses to estimate the founder population size of metastatic tumors. 
The average number of variants used ranged from 79-195 for the four samples, with average 
sequence depths of 83.4-146.7 and 83.4-146.7 in the primary and metastatic tumor exomes, 
respectively (Table 2). The tumor purities were 0.23‒0.72 and 0.29-0.85 in the primary and 
metastatic tumor samples, respectively (Table 2). The observed VAFs looked to be somewhat 
correlated in the primary and metastatic tumor in each patient (supplementary Figure S15). 
Estimated founder population sizes (80% confidence intervals) were estimated to be 15 (13.0, 
17.0), 3 (2.0, 4.0), 8 (6.0, 9.0), and 14 (9.0, 21.1) for subject A01, A02, A03, A04, respectively 
(Figure 3). Consistent results were obtained when the same analyses were carried out using 
all variations without limiting diploid regions (Table 2 for the mutation summary, 
supplementary Figure S14 for removed outliers, supplementary Figure S15 for VAFs, and 
Figure 3 for the estimated founder sizes). 
 
Discussion 
We developed a method to quantify the founder population size in metastasis using a paired 
WES data from primary and metachronous metastatic tumors. This method, implicitly using 
the fact that higher (lower) genetic similarity between the primary and metastatic tumors 
results from a larger (smaller) founder size (Figure 1C), enables us to unbiasedly estimate the 
founder population size with sufficient accuracy in the range of realistic founder size and 
settings, e.g., sequencing depth, purity and number of variations (Figure 2 and supplementary 
Figure S1-7). The method is also robust to the realistic model of primary tumor evolution, 
including cell death and several selective differences in cell birth (supplementary Figure S9-
13). Although relative estimation errors become worse as the founder size became larger, this 
weakness is overcome by deeper sequencing, i.e., WES data with × 150 depth give sufficient 
accuracy even for the founder size 100 (supplementary Figure S1). The proposed method also 
shows the advantage of using VAF information (mutation read counts and depths) rather than 
using only the presence or absence of mutations, to infer the tumor evolutionary process, as 
has been applied so far 9, 11, 13. 

In real data analysis of four colorectal cancer patients, our method supported the 
multi-cellular origin of metastatic tumors, which is consistent with the observation of recent 
mouse model studies 4-6 and the suggestion from WES studies 7, 8. Our method further 
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quantified the founder population sizes ranging 3 to 15 cells for CRC subjects 8. The wide-
ranging founder size in metastasis might result in large variations of genetic similarity 
between primary and metastatic tumors, which might cause variation in drug responses 
between primary and metastatic tumors. In particular, when the founder population size is 
small, variants with drastically increased VAFs in the metastatic tumors might lead to 
difficulty in treatment. 

In the context of population genetics, demographic history is a confounding factor 
for detecting and quantifying natural selection acting on the genome 14, 15. The same should 
be true for the evolution of a tumor population. A potential advantage of the proposed method 
is to identify selectively recruited mutations in the metastatic tumors under the inferred 
demographic model for tumor populations, i.e., the estimated founder size. 
 The limitations of our method are that it does not consider the time between the 
first exome sampling and metastatic occurrence and the time between metastatic occurrence 
and the second exome sampling. Particularly, in latter time periods, genetic drift in a small 
population of new metastatic tumor might not negligible. Our model does not distinguish 
between such genetic drift and the bottleneck effect of metastatic colonization, and the 
estimate of ʻthe founder sizeʼ reflects both these effects. A method that distinguishes both 
effects will be future work. In addition, there are possibly more complex cell migration 
patterns than our model, including reseeding or multisource seeding 16, 17, which are beyond 
the present study but worth investigating. 
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Figure legends 
Figure 1. A schematic view of the proposed methodology. (A) Exome data from paired 
primary and metastatic tumors, and normal tissue. (B) Input of the method. (C) Illustration 
of basic premise for the estimation of founder sizes by computer simulations. Low correlation 
of observed VAFs in exome between the primary and the metastatic tumors in the small 
founder size, 𝑁8=2 (left). High correlation of observed VAFs between the primary and 
metastatic tumors in the large founder size, 𝑁8=50 (right).  
 
Figure 2. Valid quantification of founder size, 𝑁8, confirmed by simulations. All simulations 
used the same primary tumor population size, 𝑁" = 100,000 , and mutation rate per cell 
division per exome, 𝜇 = 2.5.  (A) Varying mean sequencing depth, 𝐷j for 𝐾=50, 𝛾=1, and 
𝑚"(GHI)=2. (B) Varying tumor purity, 𝛾, for 𝐾=50, 𝐷j=100, and 𝑚"(GHI)=2. (C) Varying 
number of clonal mutations, 𝐾, for 𝐷j = 100, 𝛾=1 and 𝑚"(GHI)=2. (D) Varying minimum 
number of mutation reads, 𝑚"(GHI), for 𝐾=50, 𝐷j=100, and 𝛾=1. (Variants with 𝑚"(GHI) or 
more mutation reads were used.) 
 
Figure 3. Estimated founder sizes (𝑁8) for the four colorectal cancer reported by Wei et al. 
(2017). Results using only diploid regions (excluding copy number aberrations) are shown in 
red. Results using all exome regions (including copy number aberrations) are shown in blue. 
Circles with bars indicate maximum likelihood estimates of 𝑁8 and these 80% confidence 
intervals, based on 100 non-parametric bootstrap samples. 
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Table 1. Notations in the Model and the simulation study.

Notation Description

!" Founder cell population size, to be estimated.

# Number of mutations with or more than$%('()) mutation reads 

in the primary tumor.

$%, $+ Mutation read counts for the primary ($%) and metastatic tumors 

($+).

$%('()) Minimum mutation read count in WES data from the primary 

tumor.  For estimating !", we use only the sites with or more 

than $%('()) mutant reads.

,%, ,+ Sequence depths for the primary (,%) and metastatic tumors (,+).

-%, -+ Population VAFs in the primary (-%) and metastatic tumor (-+).

.(-%) Probability density of -%.

/" Number of mutant cells among !" founders.

0%, 0+ Tumor purity in the WES samples from the primary (0%) and 

metastatic tumors (0+).

Additional notations in the simulation study.

2 Number of clonal mutations in the initial primary tumor.

3 Mutation rate per tumor-cell division in the primary tumor.

!% Cell population size in the final primary tumor. 

4, Mean sequence depth in the primary and metastatic tumor.

0 Tumor purity in the WES samples from the primary and 

metastatic tumors (0%=0+).
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Subject # of SNV (R) Tumor
Mean 
Depth

Purity (95%CI)

A01 
- Diploid

195
Pri-1 (colon) 137.6 0.46 (0.44, 0.48)

Met-1 (liver) 153.1 0.48 (0.47, 0.50)

- All 233
Pri-1 (colon) 138.4 0.46 (0.44, 0.48)

Met-1 (liver) 154.4 0.48 (0.46, 0.49)

A02 
- Diploid

165
Pri-1 (colon) 130.3 0.23 (0.22, 0.24) 

Met-1 (lung) 129.7 0.29 (0.28, 0.30)

- All 209
Pri-1 (colon) 139.5 0.45 (0.43, 0.48)

Met-1 (lung) 141.1 0.29 (0.28, 0.30)

A03 
- Diploid

72
Pri-1 (colon) 83.4 0.25 (0.23, 0.26)

Met-1 (liver) 102.6 0.59 (0.58, 0.61)

- All 110
Pri-1 (colon) 87.4 0.46 (0.43, 0.49)

Met-1 (liver) 105.2 0.80 (0.76, 0.85)

A04 
- Diploid

193
Pri-1 (colon) 146.7 0.72 (0.68, 0.76)

Met-1 (lung) 148.2 0.85 (0.81, 0.89) 

- All 224
Pri-1 (colon) 149.6 0.70 (0.65, 0.74)

Met-1 (lung) 150.0 0.84 (0.80, 0.88)

Table 2. Summary of WES data for CRC subjects from Wei et al. (2017).

Purities and 95% credible intervals (CIs) were estimated by PurBayes [9]. Diploid:
Results using only diploid regions (excluding copy number aberrations). All: Results
using all exome regions (including copy number aberrations).
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