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Abstract

The composition of the cell nucleus is highly heterogeneous, with different constituents forming
complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes
remain poorly understood. Here we focus on two different interactomes, chromatin interaction net-
work and gene regulatory network, as a proof-of-principle, to identify heterogeneous interactome
modules (HIMs) in the nucleus. Each HIM represents a cluster of gene loci that are in spatial con-
tact more frequently than expected and that are regulated by the same group of transcription factor
proteins. We develop a new algorithm MOCHI to facilitate the discovery of HIMs based on network
motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types,
we found that HIMs have strong spatial preference within the nucleus and exhibit distinct functional
properties. Through integrative analysis, this work demonstrates the utility of MOCHI to identify
HIMs, which may provide new perspectives on 3D genome organization and function.

Introduction

The cell nucleus is an organelle that contains heterogeneous components such as chromosomes, pro-
teins, RNAs, and subnuclear compartments. These different constituents form complex organizations
that are spatially and temporally dynamic (Lanctot et al., 2007; Bonev and Cavalli, 2016). Interphase
chromosomes are folded and organized in three-dimensional (3D) space by compartmentalizing the
cell nucleus (Cremer and Cremer, 2001; van Steensel and Belmont, 2017), and different chromoso-
mal loci also interact with each other (Bonev and Cavalli, 2016). The development in whole-genome
mapping approaches such as Hi-C (Lieberman-Aiden et al., 2009) to probing chromatin interactome
has enabled comprehensive identification of genome-wide chromatin interactions, revealing important
nuclear genome features such as loops (Rao et al., 2014; Tang et al., 2015), topologically associating
domains (TADs) (Dixon et al., 2012; Nora et al., 2012), and A/B compartments (Lieberman-Aiden et al.,
2009). Nuclear genome organization has intricate connections with gene regulation (Cremer and Cremer,
2001; Misteli, 2007). In particular, correlations between higher-order genome organization (including
chromatin interactions and chromosome compartmentalization) and transcriptional activity have been
demonstrated (Guelen et al., 2008; Rao et al., 2014; Chen et al., 2018).

Systems level transcriptional machinery can often be represented by gene regulatory networks (GRNs),
which are dynamic among various cellular conditions (Gerstein et al., 2012; Marbach et al., 2016). GRN
models the phenomena of selective binding of transcription factor (TF) proteins to cis-regulatory ele-
ments in the genome to regulate target genes (Davidson, 2006; Lambert et al., 2018). Transcription of
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co-regulated genes in GRN can be facilitated by long-range chromosomal interactions (Fanucchi et al.,
2013) and chromatin interactome has been shown to exhibit strong correlations with GRN (Kosak et al.,
2007; Neems et al., 2016). Indeed, network-based representation of both chromatin interactome and
GRN has been suggested to consider different subnuclear components holistically (Rajapakse et al.,
2010; Chen et al., 2015). The paradigm of viewing the nucleus as a collection of interacting networks
among various constituents can potentially be extended to account for other types of related interactomes
in the nucleus. However, whether these interactomes, in particular chromatin interactome and GRN, are
organized to form functionally relevant, global patterns remains unknown.

In this work, as a proof-of-principle, we specifically consider two different types of interactomes
in the nucleus: (1) chromatin interactome — a network of chromosomal interactions between different
genomic loci — and (2) a GRN where TF proteins bind to the genomic loci to regulate target genes’ tran-
scription. Many studies in the past have analyzed the structure and dynamics of chromatin interactomes
and GRNs as well as the coordinated binding of transcription factors on folded chromatin (Rao et al.,
2014; Tang et al., 2015; Marbach et al., 2016; Ma et al., 2018; Cortini and Filion, 2018). However, the
global network level patterns between chromatin interactome and GRN are still unclear, and algorithms
that can simultaneously analyze these heterogeneous networks in the nucleus to discover important net-
work structures have not been developed.

Here we aim to identify mesoscale network structures where nodes of TFs (from GRN) and gene
loci (from both chromatin interactome and GRN) cooperatively form distinct types of modules (i.e.,
clusters). We develop a new algorithm, MOCHI (MOtif Clustering in Heterogeneous Interactomes),
that can effectively uncover such network modules, which we call heterogeneous interactome modules
(HIMs), based on network motif clustering using a 4-node motif specifically designed to reveal HIMs.
Each identified HIM represents a collection of gene loci and TFs for which (1) the gene loci have higher
than expected chromatin interactions between themselves, and (2) the gene loci are regulated by the same
group of TFs. To demonstrate the utility of MOCHI to identify HIMs based on complex heterogeneous
interactomes in the nucleus, we apply MOCHI to five different human cell types, identifying patterns of
HIMs and their functional properties through integrative analysis. HIMs have the potential to provide
new insights into the nucleome structure and function, in particular, the interwoven interactome patterns
from different components of the nucleus. The source code of our MOCHI method can be accessed at:
https://github.com/ma-compbio/MOCHI.

Results
Overview of the MOCHI algorithm

The overview of our method is illustrated in Fig. 1, with detailed algorithms described in the Methods
section. Our goal is to reveal network clusters in a heterogeneous network such that certain higher-order
network structures (e.g., the network motif M in Fig. 1A) are frequently contained within the same clus-
ter. The input heterogeneous network in this work considers two types of interactomes: a GRN (directed)
between TF proteins and target genes; and chromatin interaction network (undirected) between gene loci
on the genome. For chromatin interactome, for each pair of gene loci within 10Mb, we use the “observed
over expected” (O/E) quantity in the Hi-C data (we use O/E>1 as the cutoff in this work, but we found
that our main results are largely consistent with different cutoffs; see Supplemental Information B.1) to
define the edges in the chromatin interaction network. For GRN, we use the transcriptional regulatory
networks from (Marbach et al., 2016), which were constructed by combining enrichment of TF binding
sites in enhancer and promoter regions and co-expression between TFs and genes. If a TF protein regu-
lates a gene, we add a directed edge from the TF to the gene. We then merge the chromatin interaction
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network and the GRN from the same cell type to form a network G with nodes that are either TF proteins
or gene loci together with the directed and undirected edges defined above (Fig. 1B).

We specifically consider the network motif M which has four nodes, i.e., two gene loci and two TFs
in the heterogeneous network with two genes whose genomic loci are spatially more proximal to each
other (than expected) within the nucleus and that are also co-regulated by the two TFs (Fig. 1A) (see
the Methods section and Supplemental Information for the justification of this motif). Our goal is to
reveal higher-order network clusters based on this particular network motif. In other words, we want to
partition the nodes in the network such that this 4-node network motif occurs mostly within the same
cluster. Based on the motif, our MOCHI algorithm, which extends the original algorithm in (Benson
et al., 2016), constructs an undirected, weighted network G, (Fig. 1D) based on subgraph adjacency
matrix Wy, (Fig. 1C). We then apply recursive bipartitioning in G5, to find multiple clusters (Fig. 1E).
We call such clusters HIMs, which, in this work, represent network structures containing the same group
of TFs that regulate many target genes whose spatial contact frequencies are higher than expected. Since
TFs can regulate multiple sets of genes that may belong to different clusters, different HIMs may overlap
by sharing TFs. The algorithm details of MOCHI are in the Methods section.

MOCHI identifies HIMs in multiple cell types

We applied MOCHI to five different human cell types: GM12878, HeLLa, HUVEC, K562, and NHEK.
The input heterogeneous network of each cell type has 591 TFs, ~12,000 expressed genes, and ~1
million regulatory interactions (Table S1). A few examples of HIMs identified in GM 12878 are shown
in Fig. 1F-H, including overlapping HIMs in Fig. 1H. We found that the identified HIMs in five cell types
share several basic characteristics. The number of identified HIMs ranges from 650 to 806 in different
cell types, with at least 71.9% of the HIMs sharing TFs with other HIMs in each cell type. Notably, HIMs
cover a majority (62.1-77.2%) of the genes in the heterogeneous networks (Table S1). For example, in
GM12878, there are 591 TFs co-regulating 7,617 (69.1%) genes in 650 HIMs. The HIMs have, on
average, 9-17 TFs regulating 9 genes in different cell types (Table S2). In addition, we found that the
identified HIMs in different cell types share similar connections to 3D genome features (Supplemental
Information B.3, Table S2).

To further assess that the genes in a HIM are indeed co-regulated by the same TF, we used the
available ChIP-seq data of 26 TFs in GM 12878 and K562 cells from the ENCODE project (Consortium
et al., 2012). We found that for all the HIMs in GM12878 or K562 with these 26 TFs, more than half
(55.85%) of them have > 50% of their genes with corresponding TF ChIP-seq peaks within 10kb of the
transcription start site, further suggesting that the genes in HIMs identified by MOCHI share regulatory
TFs. In addition, MOCHI can reliably identify HIMs with different parameters in various cell types
(Supplemental Information B.1). Importantly, we justified the choice of the 4-node motif M by showing
its advantages over a triangle motif and a bifan motif (Supplemental Information B.2). The triangle and
bifan motifs do not explicitly encode the co-regulation between TFs and the spatial proximity between
genes. These results demonstrate that MOCHI can reliably identify HIMs across multiple cell types.

HIMs show strong preference in spatial location relative to subnuclear structures

Next, we specifically analyzed the spatial localization of HIM in the nucleus. Recently published SON
TSA-seq and Lamin B TSA-seq datasets quantify cytological distance of chromosome regions to nuclear
speckles and nuclear lamina, respectively (Chen et al., 2018). In K562, which is currently the only cell
type with TSA-seq data, 60.7% of the HIMs have mean SON TSA-seq score higher than 0.284 (80-th
percentile of the SON TSA-seq score), suggesting that the genes in these HIMs, on average, are within
0.518um (estimated in Chen et al. (2018)) of nuclear speckles (Fig. 2A). Compared to the genes in the
K562 heterogeneous network but not assigned to HIMs, the genes in HIMs have higher SON TSA-seq
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score and lower Lamin B TSA-seq score (p<2.22e-16; Fig. S1).

We specifically looked at the HIMs that are away from the nuclear interior. Fig. 2B shows one HIM
(#541) that is close to nuclear lamina (mean Lamin B TSA-seq score 0.593, mean SON TSA-seq score
-0.642). This HIM has 9 TFs co-regulating 6 genes that span 6.78 Mb on chromosome 3. The Hi-C edge
density (see Supplemental Information A.4) among these genes is 0.667, suggesting that these 6 genes
as a group are spatially closer to each other than expected (i.e., connected with chromatin interaction).
The SON TSA-seq scores of the 6 genes are low but tend to be the local maxima (i.e., small peaks within
valleys), while the Lamin B TSA-seq scores are high but tend to be the local minima (i.e., small valleys
within peaks), suggesting that these gene loci are localized more towards the nuclear interior than their
surrounding chromatin. Five out of the 6 genes are expressed with FPKM>=3.4. The gene RPL15 in
this HIM is a K562 essential gene (Wang et al., 2015). The TF proteins CDX1, HOXA9, and HOXA10
are involved in leukemia and hematopoietic lineage commitment provided by Genecards (Safran et al.,
2010). This suggests that even though HIM #541 is a HIM away from nuclear speckle, it may play
relevant functional roles in K562.

Recently, Quinodoz et al. (2018) reported that inter-chromosomal interactions are clustered around
two distinct nuclear bodies as hubs, including nuclear speckles and nucleoli. By comparing with the ge-
nomic regions organized around nucleolus based on data from the SPRITE method in GM 12878 (Quin-
odoz et al., 2018), we found that vast majority (85.4%) of the GM 12878 HIMs do not have genes close to
the nucleolus. Earlier work estimated that only 4% of the human genome is within nucleolus-associated
domains (Németh et al., 2010). It is therefore expected that only a small number of HIMs would be close
to the nucleolus. Indeed, we found that there are only 30 (4.62%) GM12878 HIMs with all their genes
near the nucleoli. Notably, 16 out of these 30 HIMs have at least one TF protein located close to nucleoli
according to protein subcellular locations from the human protein atlas (Thul et al., 2017). For example,
HIM #267 has 4 TF regulators: ETS1, ETV6, PPARG, and PTEN, where ETV6 is known to localize to
the nucleoli.

Earlier work from Hi-C data showed that at megabase resolution the interphase chromosomes are
segregated into A and B compartments that are largely active and inactive in transcription, respec-
tively (Lieberman-Aiden et al., 2009). Chromosome regions in B and A compartments have nearly
identical agreements with lamina associated domains (LADs) and inter-LADs (i.e., more towards inte-
rior) (van Steensel and Belmont, 2017). Compartment A regions also replicate earlier than compartment
B regions (Pope et al., 2014). We found that the genes in HIMs are preferentially in A compartments and
replicated earlier across cell types. Specifically, 57.4% of HIMs have genes that are all in A compart-
ments in K562. Only a small proportion (4.49%) of HIMs have over 50% of genes in B compartments
(Fig. 2C). We found that the genes in HIMs as a whole are more enriched in A compartments, with 89.1%
of them in A compartments (p<2.22e-16, hypergeometric test; Fig. 2D). Compartment A can be further
subdivided into A1 and A2 subcompartments in GM 12878 (Rao et al., 2014) at a finer scale. Among
the 369 GM 12878 HIMs with genes all in A compartments, 198 (53.66%) HIMs have >80% of their
genes in Al subcompartments, 60 (16.26%) HIMs are in A2 subcompartments, and the rest 111 HIMs
span both Al and A2 compartments. Additionally, we found that the genes assigned to HIMs have much
earlier replication timing than the other genes (p<2.22e-16; Fig. 2E). We also observed that the genes on
the same chromosome that are in HIMs tend to have more similar replication timing as compared to the
genes (on the same chromosome) that are not in HIMs (Fig. S2). These patterns can also be observed in
other cell types (Fig. S2).

Taken together, these results suggest that HIMs have strong preference to localize towards the nuclear
interior in active compartments with the majority of them being in proximity of the nuclear speckles and
replicating earlier.
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HIMs are enriched with essential genes, super-enhancers, and PPls

Next, we explored the functional properties of HIMs. We again grouped the genes assigned to HIMs
into one set and the genes in the heterogeneous network but are not assigned to HIMs into another set.
For a fair comparison, we also stratify the gene sets by chromosome number. We call these clusters
merged-HIM clusters and non-HIM clusters accordingly. We first compared with the information of
gene essentiality (Wang et al., 2015) (see Supplemental Information A.5). We found that genes assigned
to HIMs are enriched with essential genes across all five cell types. For example, 12.7% of the genes
assigned to HIMs in K562 are K562 essential genes, which is significantly higher than the proportion
(7.79%) of the genes not assigned to HIMs (p=1.13e-12; Fig. 3A). This observation is also present
across chromosomes (Fig. S3A). Across the cell types, genes assigned to HIMs consistently have higher
proportions of essential genes than genes not assigned to HIMs (p<2.17e-6; Fig. S3B). Regarding gene
expression level, we found that genes assigned to HIMs are more highly expressed and expressed at
similar levels (Fig. 3B, Fig. S4).

Super-enhancers are known to be associated with many cell type-specific functions (Hnisz et al.,
2013). To study the connections between HIMs and super-enhancers, we computed the cluster-size
normalized number of super-enhancers annotated in (Hnisz et al., 2013) that (1) have Hi-C contacts
with, and (2) are close to (window size=50kb) at least one gene in each cluster. We found that HIMs are
enriched with spatial contacts with super-enhancers. Specifically, the merged-HIMs have at least 6-fold
higher normalized number of super-enhancers than the non-HIMs across cell types (Fig. 3C, Fig. S5).
The significant pattern is consistent with a varied window size from 20kb to 1Mb (Fig. S5).

Protein-protein interactions (PPIs) can further stabilize TF-DNA binding of the interacting TFs (Lam-
bert et al., 2018). We ask whether TFs in the same HIM tend to have more PPIs with each other. We
computed the density of the sub-PPI network induced by the TFs in a HIM, where the PPI network is
based on 591 TF proteins used in this study (see Supplemental Information A.5). We found that TFs
within HIMs are enriched with PPIs among themselves as compared to random cases selected from the
591 TFs. For example, in GM 12878, TFs NR3C1 and TFEB, which are master regulators (Hnisz et al.,
2013), co-regulate 8 genes with the other 7 TFs proteins in a HIM (Fig. 3D). This particular sub-PPI
network of the 9 TFs has 14 interactions. The density of this sub-PPI network is 0.389 which is 2.46
times higher than the average density (0.158) of the random cases. Overall, the median density of the
sub-PPI networks induced by TFs in the identified HIMs in GM12878 is 0.214, much higher than the
random cases (p<2.22e-16; Fig. 3E). This observation is also consistent in other cell types in this study
(Fig. S6). We also found that the significance is not affected by a varied number of TFs across HIMs
(Fig. S6).

These results suggest that the genes and TFs involved in HIMs likely perform critical roles, which
are manifested by the level of gene essentiality of target genes, engagement of super-enhancers, and
enrichment of PPI among TFs.

Genes in HIMs exhibit stability and variability across cell types

To study how HIMs change across different cell types, we first focused on the assignment of genes to
HIMs in different cell types. Through pairwise comparison, we found that the genes assigned to HIMs
have the highest degree of overlap between GM 12878 and K562 as compared to the other cell types,
which is consistent with the fact that both GM12878 and K562 are from human hematopoietic cells
(Fig. S7TA). Comparisons among all five cell types showed that 3,025 genes are consistently assigned to
HIMs, accounting for 30.91% to 40.06% of genes that are in the HIMs in each cell type (Fig. 4A). In
contrast, only a small fraction (<5.93%) of genes are uniquely assigned to the HIMs in each cell type.
For example, out of the 8,034 genes in the GM 12878 HIMs, only 344 (4.28%) genes are not assigned to
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HIMs in other cell types (Fig. 4A).

The genes consistently and uniquely assigned to HIMs are enriched with distinct functional terms
using DAVID (Huang et al., 2008) (Table S5). The genes consistently assigned to HIMs are strongly
enriched with functions related to essential cellular machinery, whereas the genes uniquely assigned
to HIMs in a particular cell type are enriched with more cell type-specific functions. An example is
NHEK HIM #107 (Fig. 4B). Among the 6 genes in this HIM, DSC1, DSC3, DSGI are not assigned
to HIMs in the other cell types. These 6 genes are involved in the keratinization pathway based on
GeneCards (Safran et al., 2010). We further assessed the assignment of housekeeping genes (Eisenberg
and Levanon, 2013) and essential genes to HIMs. We found that for both sets of genes, the majority
(>84%) of them are assigned to HIMs consistently or in at least 3 out of the 5 cell types (Fig. 4C),
suggesting that the genes with crucial functions tend to form spatial clusters across multiple cell types.

We next analyzed the variability of HIMs in terms of spatial proximity to subnuclear compartments.
We found that 15 out of the 30 HIMs close to nucleoli in GM 12878 (based on the data from (Quinodoz
et al., 2018)) have mean SON TSA-seq score > 0.284 in K562 (based on the data from (Chen et al.,
2018)) (Fig. 4D), in other words, these HIMs are involved in a change of spatial position from nucleoli
to speckle between GM 12878 and K562. One notable example is HIM #267 in GM 12878 which has the
highest mean SON TSA-seq score (2.41) in K562. Interestingly, the 10 genes (in HIM #267 in GM12878)
together with another 8 genes form a new HIM (#628) in K562. This GM12878 HIM #267 has four TFs:
ETS1, ETV6, PPARG, and PTEN. On the other hand, the K562 HIM #628 has four different TFs: KLLF4,
NFKBI1, STAT3, and WT1, where KLLF4, STAT3, and WT1 are known to be involved in the progression
of leukemia.

To compare the detailed membership changes of HIMs across cell types, we computed Jaccard in-
dices, denoted by JIrx and Jlg,., of the TF members and gene members between HIMs from two
different cell types, respectively. We found that the gene members undergo a moderate change from
one cell type to another, whereas the TF members change at a much higher rate. JI ... has a median of
0.096 and it is higher than expected Jl ., between random gene sets while controlling the set size and
chromosome number (median ratio=14.12, Fig. 4E). On the other hand, JI;» has a median of 0.017 and
it is close to expected JIrr between randomly selected control TF sets (median ratio=0.878, Fig. 4E).
There are at least two phenomena jointly contributing to these observations. First, the Hi-C interaction
networks and GRNs are highly cell type-specific, as 66% Hi-C interactions and 31.4% GRN interactions
only exist in one cell type (Table S3). Second, given a HIM identified in a cell type, the motif M density
of the HIM (see Supplemental Information A.4) has higher fold change than the Hi-C edge density of
the HIM in another cell type (p<2.22e-16; Fig. 4F). In other words, the co-regulation relationships of the
TFs on the genes in HIMs change more often across cell types than the spatial proximity relationships
between the gene loci. However, we observed that if HIMs from two different cell types share a higher
number of housekeeping genes, they tend to have a higher JI;r (Fig. 4G). We found a similar pattern for
essential genes (Fig S7B).

Conserved and cell type-specific HIMs have distinct properties

Motivated by the gene membership dynamics of HIMs across cell types, we further classified HIMs into
conserved and cell type-specific HIMs. For HIMs in a given cell type, we call a HIM conserved if it
shares a significantly high proportion of genes (JIge,. > 1/3, p<0.001, Bonferroni adjusted hypergeo-
metric test) with at least one HIM in other cell types (i.e., the HIM is recurrent). Note that JIgc,. >1/3
represents that two equal-sized gene sets share than half of their genes. The rest are called cell type-
specific HIMs. As a result, 40.69-47.38% of the identified HIMs in each cell type are cell type-specific
HIMs. Fig. 5 shows a cell type-specific HIM, HIM #712, in K562 and its changes in other cell types.
This HIM covers 9 genes on chromosome 11. These genes spatially contact each other at higher frequen-
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cies than expected (Fig. SA) and are co-regulated by TF protein BCL6B and CPEB1 in K562 (Fig. 5B).
In other cell types, at most 4 out of the 9 genes are assigned to HIMs (Fig. 5C). We found that this HIM
has K562-specific chromosomal structures and functional annotations. The genomic region covering
the genes in the HIM is in A compartment in K562 but switches to B compartment in other cell types
(Fig. 5D). One nearby upstream region is annotated as a super-enhancer only in K562 (Hnisz et al., 2013)
(Fig. 5E). Many sites are annotated as transcriptionally active states, such as enhancers, promoters, or
transcribed states in K562, but not in other cell types based the results from ChromHMM (Ernst and Kel-
lis, 2012) (Fig. 5F). The genes MRPL16, OSBP, and PATL1 are essential genes in K562. This example
demonstrates that the K562-specific HIM has specific chromatin organization and biological functions.

Overall, we found that the conserved and cell type-specific HIMs have distinct properties of in-
teractomes across cell types. Compared to cell type-specific HIMs, conserved HIMs exhibit stronger
clustering features with higher Hi-C edge density, higher GRN edge density, and higher motif M density
(p<8.15e-4; Fig. S8). Also, conserved HIMs tend to be closer to the nuclear interior with a higher pro-
portion of their genes in A compartment, and their genes replicate earlier and synchronously (Fig. S8).
Moreover, we found that conserved HIMs and cell type-specific HIMs tend to have large differences
in gene expression level and cell type-specific genes. The conserved HIMs have higher mean gene ex-
pression level than the cell type-specific HIMs in 3 cell types except for NHEK and HUVEC (p<0.05;
Fig. S9). On the other hand, cell type-specific HIMs have a higher proportion of cell type-specific genes
(p<0.02; see Supplemental Information A.5) than conserved HIMs across five cell types (Fig. S9). Taken
together, our results demonstrate that conserved and cell type-specific HIMs, in general, have distinct
network properties, spatial location preference, and functional characteristics.

Discussion

To better understand the heterogeneous nature of different components in the nucleus, new computa-
tional models are needed to consider different types of molecular interacting networks. In this work, we
developed MOCHI to specifically consider two types of different interactomes in the cell nucleus: (1)
a network of chromosomal interactions between different gene loci, and (2) a GRN where TF proteins
bind to the genomic loci to regulate target genes. MOCHI is able to identify network structures where
nodes of TFs (from GRN) and gene loci (from both chromatin interactome and GRN) cooperatively
form distinct network clusters, which we call HIMs, by utilizing a new motif clustering framework for
heterogeneous networks. To the best of our knowledge, this is the first algorithm that can simultane-
ously analyze these heterogeneous networks within the nucleus to discover important network structures
and properties. By applying MOCHI to five different human cell types, we made new observations to
demonstrate the biological relevance of HIMs in 3D nucleome.

Our method has multiple methodological contributions. We further extended the motif conductance
clustering method (Benson et al., 2016) to find overlapping HIMs in heterogeneous networks. Our study
shows the utility of our new algorithm to identify HIMs based on complex heterogeneous molecular
interactomes. In addition, our method can be further modified to identify other types of potentially inter-
esting HIMs in heterogeneous networks by replacing the 4-node motif M with relevant motifs, especially
when additional types of interactomes are included. For example, in addition to considering chromatin
interactions and protein-DNA interactions as we did in this work, it would be of interest to incorporate
other types of relevant interactomes in the nucleus, such as the RNA-chromatin interactome (Nguyen
et al., 2018).

How can we explain the formation of HIMs? In Fig. 6, we illustrate a possible model of HIMs
within the nucleus. HIMs (light pink domains) are toward the interior with a group of interacting TFs
and chromatin loci. The set of TFs in a HIM cooperatively regulate target genes, which also have higher
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contact frequency than expected. Note that this is conceptually consistent with recently reported co-
localization of TF pairs (Ma et al., 2018). Some of these TF clusters may be related to the localization
preferences of TF proteins in nuclear compartments, such as nuclear speckles that are enriched with
various transcriptional activities (Spector and Lamond, 2011; Chen et al., 2018). Indeed, we found that
the majority of the identified HIMs are close to nuclear speckles. The definitions of HIMs may also
have intrinsic connections with the emerging findings on the mechanism of nuclear subcompartment
formation, where TFs and their potential regulating genes/chromatin are trapped by localized liquid-like
chambers through the phase separation (Shin and Brangwynne, 2017; Hnisz et al., 2017). Evidence
has been shown that phase separation can help explain the formation of super-enhancer mediated gene
regulation (Hnisz et al., 2017; Boija et al., 2018). From our analysis, we found that genes assigned
to HIMs are enriched with contacts with super-enhancers. The genes consistently assigned to HIMs
are enriched with essential biological processes related to chromosomal organization and transcription.
However, the detailed formation mechanisms for HIMs, which may involve both cis elements and trans
factors, remain to be investigated. It would also be important to delineate the different roles of both
different TFs and different genes in forming the HIMs, as some of them may be necessary and others
may be redundant for the stability of HIMs. In addition, more experimental data are needed to further
evaluate the functional significance of HIMs. For example, although we observed connections between
HIMs and 3D genome organization features, the intricate functional relevance among these different
higher-order nucleome units that jointly contribute to gene regulation in different cellular conditions is
yet to be revealed. Nevertheless, HIMs may become a useful type of nuclear genome unit in integrating
heterogeneous nucleome mapping data, which has the potential to provide new insights into the interplay
among different constituents in the nucleus and their roles in 3D nucleome structure and function.
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Methods

Brief introduction to homogeneous network clustering by motif conductance

We first review higher-order network clustering method that can identify a cluster of nodes S based on
motif conductance (defined below). We then introduce our algorithm MOCHI in the next subsection. Let
G be an undirected graph with N nodes and A be the adjacency matrix of G. [A];; € {0, 1} represents
the connection between nodes i and j. The conductance of a cut(S, S), where S is a subset of the nodes

is defined as: _
cutg (S, S)

walS) = min[Vole(S), Vol (S)]’ M

[A];; is the number of edges connecting nodes in S and S. Volg(S) =

where cutg (S, 5) = Y iesjes
Y ics Z?f:l[A]ij is the sum of the node degree in S. Moreover, the conductance of the graph G, ¢, is
defined as ming ¢ (S). The S that minimizes the function is the optimal solution. Finding the optimal .S
is NP-hard, but spectral methods such as Fiedler partitions can obtain clusters effectively (Chung, 2007).
Recently, the conductance metric is generalized to motif conductance (Benson et al., 2016; Tsourakakis
et al., 2017), where a motif refers to an induced subgraph. The motif conductance computes cutg (S, S)
and Vol;(S) based on a chosen n-node motif. When n = 2, the motif is an interaction that reduces
the motif conductance to conductance in Eq. (1). When n > 3, the motif conductance may reveal new
higher-order organization patterns of the network (Benson et al., 2016). A more recent network clustering
method that incorporates network higher-order structures has been developed in the setting of hypergraph
clustering (Li and Milenkovic, 2017), which includes the motif conductance as a special case. However,
one key limitation of the aforementioned methods is that they cannot identify overlapping clusters, which
is a crucial feature of the heterogeneous networks that we want to achieve in this work.

MOCHI - Higher-order network clustering to identify HIMs in a heterogeneous network

We developed a higher-order network clustering method based on network motif to identify overlapping
HIMs in a heterogeneous network by extending the approach in (Benson et al., 2016). We call our method
MOCHI (MOtif Clustering in Heterogeneous Interactomes). We illustrate the workflow of MOCHI in
Fig. 1. First, we select a specific heterogeneous 4-node network motif M (Fig. 1A). In M, two nodes are
TFs and the other two nodes are genes. Both TFs regulate the two genes and the two genes are spatially
more proximal to each other than expected. The motivation for choosing the subgraph M is that it is
the building block of HIMs given that our goal is to discover a group of genes that contact with each
other more frequently than expected and are regulated by the same set of TFs. As compared to simpler
motifs (e.g., 3-node motif where one node is TF), our 4-node motif defined here has the advantage of
simultaneously considering a pair of genomic loci that interact with each other higher than expected and
that are co-regulated by the same pair of TFs.

Conceptually, our method searches for HIMs with two goals. The TFs and genes in the same HIM
should be involved in many occurrences of M. Additionally, HIM should avoid cutting occurrences of
M, where a cut of occurrences of M means that only a subset of TFs and genes in the occurrences of
M are in the HIM node set. More formally, our method aims to find HIMs with the node set S' that
minimizes the motif conductance

cutM(S, S)
min[Voly;(S), Vol (S)]

pu(5) = @)

We first introduce some notations before we explain ,,(S). Let G be the given heterogeneous
network (e.g., Fig. 1B). Let M be the set of occurrences of the motif M in . For simplicity and without
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confusion, we also denote an occurrence 9f the motif M as M. Let V) be the vertex set of the 2 TFs and
2 genes in M € M. In Eq. (2), cuty, (S, S) is the number of occurrences of the subgraph M that are cut
by S. Formally,

cuty(S,8) = > AV NSl €{1,3}) +a Y 1L(VunS|=2), a>1, 3)

MeM MeM

where 1 is an indicator function. Here, cuty;(S, S) distinguishes the number of nodes of the 4-node
motif M being assigned to S and S. Specifically, it adds a higher penalty for the cut to the cases where
two nodes in M are assigned to S and two nodes are assigned to .S, as compared to the case where one
node or three nodes are assigned to S, by letting o > 1 in Eq. (3). This is because the 1-vs-3 split could
still keep interaction information from both GRN and chromatin interaction network, and the 2-vs-2 split
will lose either of the information. We show that when o = 4/3 in Eq. 3 the clustering results would be
near optimal (Supplemental Information A.3). Thus, « is set to 4/3 in this paper. Vol,;(.S) is the number
of nodes in the occurrences of M that are in S, which is defined as:

Vol (S) =D ) " 1(i € Viy). “4)

1i€S MeM

Similarly, we define the subgraph conductance of the graph G based on motif M, ©§; as ming ,/(.S).
In the following procedures of the algorithm, we show that the motif conductance is equivalent to the
normal conductance in a projection of the graph by calculating the subgraph adjacency matrix. Thus,
finding the set S' that achieves the minimum subgraph conductance is also NP-hard, following that it is
NP-hard to find the minimal ¢ (.S). We describe our algorithm MOCHI to find HIMs that approximate
the solution.

1 — Calculate subgraph adjacency matrix Wy (G)
We first calculate the subgraph adjacency matrix W, (G) by

Wa(G)lij = > 1(i € Var, j € Vi), (5)

MeM

where [W,,/(G)];; is the number of occurrences of the subgraph A in G that cover both ¢ and j (see
example in Fig. 1C). For example, if both 7 and j are TFs, [IVy];; reflects the number of paired gene loci
that are spatially more proximal to each other than expected and that are also co-regulated by TFs ¢ and
j. If both i and j are genes, [W)];; = 0 if 7 and j are not more spatially proximal to each other than
expected. Otherwise, [WM]U is the number of paired TFs that co-regulate ¢ and j. Generally, Wy, (G) is
symmetric and [Wy;(G)];; > 0. Thus Wy, (G) can be viewed as the adjacency matrix of an undirected
weighted network. Let GGj; denote the network with W,/ (G) as the adjacency matrix (see Fig. 1D for
example). It is important to note that there are genes or TFs that may not be in any occurrence of M,
which would lead to zero vectors in the corresponding rows and columns in W), (G). These singleton
nodes in Gj; would be removed before the next step.

2 — Apply Fiedler partitions to find a cluster in G,

We utilize Fiedler partitions similar to the algorithm in (Benson et al., 2016) to find a cluster .S in graph
G, where @, (S) is close to the global optimal conductance of the graph: ¢(G/). Recall that (G )
is the minimum of ¢, (S1) over all possible sets S;. The method is described as follows:

e Calculate the normalized Laplacian matrix of Wy, (G):

£ =T~ Dg,"Wu(G)Dg,”, (©)
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where Z is a identity matrix, D¢, with [Dg,, | = Z;VZI(WM(G))M is the diagonal degree matrix
of GM

e (Calculate the eigenvector v of the second smallest eigenvalue of L.
1/2

e Find the index vector (o, ..., ay), where ay is the k-th smallest value of DéM V.
e S =argminyg,,(Sk), where Sy, = {aq, ..., ax}.
1<k<N

The sets S and S are two disjoint clusters for the heterogeneous network G.
3 — Apply recursive bipartitioning to find multiple HIMs

We then utilize recursive bipartitioning to find multiple HIMs. We use a very different strategy than the
one in (Benson et al., 2016) to select which cluster to split at each iteration, in order to specifically allow
overlapping motif clusters (HIMs) with shared TFs. At each iteration, we split one HIM into 2 child
HIMs. After iteration ¢ — 1, there are ¢ HIMs: S1, Ss, ..., .S

At next iteration ¢, one HIM S}, is selected if the graph it forms, GG, has the lowest subgraph con-

ductance value goAGj among gpAGj , 1 < 7 < /. We set a threshold ¢, for gpAG/f. If gpff < t1, S; will be

split into two child HIMs Si(c) and m by treating the induced heterogeneous subnetwork as a new
network G and repeating Steps (1) and (2) for graph GG. However, if the partition of graph G would
lead to zero motif occurrence in either of its child graphs, we would stop partitioning this graph, add a
large enough penalty value to its conductance value (to make sure it would not be selected to partition
again), and move on to the next iteration. Otherwise, when cpJ\Gf > 11, the recursive bipartitioning process

will stop as all the HIM’s subgraph conductance value passes the threshold.
4 — Find overlapping HIMs

Finally, we reconcile the HIMs from the clustering history tree to find overlapping HIMs. This step is
added because the HIMs after Step (3) share no TFs. To reconcile the results, we first trace back the
ancestral HIMs up to certain generations for each HIM based on the conductance value of its ancestor

goffl where i = {1,2,3...} denotes for the ‘parent’, ‘grandparent’ of the HIM. We trace along the

tree until goAGj"Ci < 15, where ¢y denotes another threshold. Clearly, ¢, has to be smaller than ¢; to
make this process practical. Next, we pool together the TFs from the HIM and from its ancestor HIMs.
We sequentially remove pooled TFs from the HIM according to their contribution to the number of
occurrences of the subgraph M based on the graph this HIM represents, and stop this process when
removing certain TF would cause a large decrease in the number of subgraphs.

Pseudocode and complexity of our algorithm

The pseudocode of our MOCHI algorithm is presented in the Supplemental Information A.1. The run-
time of the algorithm is O(t2c?), where t and ¢ (¢ < c) are the number of TFs and the number of gene loci
in the input heterogeneous network, respectively (detailed analysis in Supplemental Information A.2).

Summary of the algorithm

Given a heterogeneous network from chromatin interactome network and GRN, our algorithm MOCHI
will identify multiple and overlapping HIMs, which represent clusters of genes and TFs where the genes
are interacting more frequently than expected and are also co-regulated by the same set of TFs. MOCHI
has a few key differences as compared to the subgraph conductance method in (Benson et al., 2016).
First, the input of our algorithm is a heterogeneous network with different types of nodes (TFs and gene
loci), which are treated differently, while the input network for the method in (Benson et al., 2016) is
rather homogeneous. Second, the algorithm in (Benson et al., 2016) will not explicitly identify multiple
overlapping clusters. In MOCHI, we further developed a recursive bipartitioning method to find multiple
HIMs that may overlap. Specifically, we selected a HIM to split if it has the smallest motif conductance
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among the HIMs at each interaction. In other words, we split the HIM that has the clearest pattern
of multiple clusters. HIMs with overlapping TFs will be split in the late stage of iterations, and the
overlapping information is encoded in the clustering history tree.

The recent method on hypergraph clustering (Li and Milenkovic, 2017) can be applied to identify
non-overlapping HIMs where a hyperedge is defined as the motif M. However, similar to the method
in (Benson et al., 2016), it was not designed to identify overlapping clusters, i.e., the method would not
be able to find multiple overlapping HIMs that we would need. Our method also has clear differences
as compared to previous works on multi-layer network clustering (see review in (Kiveld et al., 2014)).
First, the inputs are different. A multi-layer network typically has only one type of nodes and different
types of interactions connecting nodes within the same layer and between layers. The heterogeneous
network in this work has different types of nodes (TF proteins and gene loci) and also edges. Previous
multi-layer network clustering methods are not directly applicable to identify HIMs. Second, the outputs
are different. The majority of multi-layer network clustering methods aim to find clusters that are either
consistently observed across multiple layers or observed only in a specific layer, which are conceptually
different from HIMs.

12
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Figure 1: Workflow of our MOCHI algorithm and output examples of HIMs. The network has both gene-gene spatial proximity and TF-gene
regulation relationships. (A) A 4-node motif M represents the smallest HIM. Here directed interaction represents a TF-gene regulation
relationship, an undirected interaction represents that the two genes are spatially more proximal to each other than expected. (B) Given
a heterogeneous network G, we find HIMs by minimizing the motif conductance (see Eq. 2). (C) We compute the subgraph adjacency
matrix W, with [W,];; being the number of occurrences of M that have both nodes ¢ and j. (D) The weighted network G, is defined
from adjacency matrix W,. (E) Spectral clustering will find clusters in G;. We recursively apply the method to find multiple HIMs and
overlapping HIMs. (F-G) Two HIMs as examples in GM12878. (H) Example of two overlapping HIMs in GM12878 sharing 7 TFs (the group
with pink nodes). TFs in orange and pink nodes form one HIM with their target genes (bottom left). TFs in pink and blue nodes form another
HIM with their target genes (bottom right). Note that the directed interactions from TFs to their target genes are bundled.
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Figure 2: HIMs tend to be close to nuclear interior, in particular, speckles. (A) Scatter plot shows the mean SON TSA-seq score and mean
Lamin B TSA-seq score of the genes in each HIM. Each dot represents a HIM. The curves on top and right are cumulative density functions
(CDF). The red vertical dotted line represents the mean SON TSA-seq at 0.284 (approx. within 0.518 um of nuclear speckles (Chen et al.,
2018)). The black arrow points to HIM #541. (B) HIM #541 with low mean SON TSA-seq (pointed by the arrow in (A)). The heatmap
shows the upper-triangle part of the Hi-C contact matrix (O/E) of the 10kb-sized bins in the chromosome region that covers the genes in the
HIM. Target genes of different TFs, gene members of HIM, SON TSA-seq, LaminB TSA-seq, A/B compartments, and RNA-seq signals are
shown in different tracks. (C) Barplot shows the proportion of HIMs with a varied proportion of genes in A compartment. (D) Venn diagram
shows that the genes assigned to HIMs are enriched in A compartment. (E) Violin and boxplot compare the replication timing of the genes
assigned to HIMs and the other genes in the heterogeneous network of K562. Here the HIMs are identified in K562 cell line. The spatial
location features of HIMs in other cell types are in Fig. S2.
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Figure 3: HIMs are enriched with essential genes, super-enhancers, and protein-protein interactions. (A) Barplots show the proportions
of genes that are K562 essential genes among the genes assigned to HIMs and those not assigned to HIMs. (B-C) Functional properties
of the genes in the identified HIMs in K562. To make a fair comparison, we stratified the genes assigned to HIMs by chromosome number
and called resulted clusters as merged-HIM clusters. Similarly, we derived non-HIM clusters from the genes in the heterogeneous networks
but not assigned to HIMs. P-values are computed by the paired two-sample Wilcoxon rank-sum test. (B) Boxplot shows the average gene
expression level of the genes in a cluster. (C) Boxplot shows the normalized number of super-enhancers related to a cluster. (D-E) TFs in
HIMs are enriched with protein-protein interactions (PPls) among themselves. (D) One example of HIM from GM12878 cell line shows that
9 TFs in the HIM are connected by 14 PPl interactions. The sub-PPI network has a density at 0.389. The TFs NR3C1 and TFEB are master
TFs in GM12878. (E) Boxplots show the distribution of the sub-PPI network density of the HIMs and the subsets of HIMs with at least n TFs,
n = 5,10. The medians are significantly (p<2.22e-16) higher than the expected density (0.158, red line) of the sub-PPI networks induced
by randomly sampled TFs.
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Figure 4: HIM comparisons in terms of genes and TFs across the cell types. (A) Venn diagram shows the assignment of genes in HIMs
across five cell type. Numbers in each facet represent the gene number in each possible logic intersection relationship across five cell
types. (B) A NHEK HIM with 3 genes only assigned to HIMs in NHEK. All of its genes are involved in keratinization pathway. Here the top
and bottom nodes are the TFs and genes in the HIM, respectively. (C) Barplot shows the assignment of essential genes and housekeeping
genes to HIMs across five cell types. (D) Scatter plot shows the mean SON TSA-seq and Lamin B TSA-seq scores (in K562 (Chen et al.,
2018)) of the 30 GM12878 HIMs that are inferred as close to nucleoli in GM12878 (Quinodoz et al., 2018). The red vertical dotted line
represents the mean SON TSA-seq score at 0.284. (E) The log-transformed ratio of Jaccard index on the genes/TFs between paired HIMs
from different cell types over the expected Jaccard index between random control sets. (F) Fold changes of motif A/ density and Hi-C edge
density of each HIM between the cell type it is identified and another cell type. Here a vertical dash line represents the median of a variable.
(G) Boxplots show the distribution of Jaccard index on the TFs of paired HIMs with different numbers of shared housekeeping genes.
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Figure 5: A K562 specific HIM with K562 specific chromatin interactome and functional annotations. (A) The 45 degree rotated upper
triangle part of the contact matrix between the 10kb-sized bins in a chromosome region in K562. The region is segregated into 4 nested
TADs. (B) Thin bars represent the transcriptional start sites (TSSs) of the genes that are in the heterogeneous networks. Thick bars
represent the genes that are regulated by BCL6B or CPEB1 in K562. (C) The assignment of the genes to HIMs in K562 and the other
cell types. (D) The assignment of the bins to A/B compartments. (E) The regions that are annotated as super-enhancers (SE). (F) The
chromatin states inferred by ChromHMM based on multiple histone modification marks, where red and purple colors represent promoters,
orange and yellow stand for enhancers, green represents transcribed regions, gray represents other types of regions such as repressed
regions.
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Figure 6: A possible model of HIMs within the nucleus.
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