

1 **Coherence of *Microcystis* species revealed through population genomics**

2

3 Olga M. Pérez-Carrascal,^{a#} Yves Terrat,^a Alessandra Giani,^b Nathalie Fortin,^c Charles W. Greer,^c

4 Nicolas Tromas,^{a#} B. Jesse Shapiro^a

5

6 ^aDépartement de Sciences biologiques, Université de Montréal, Montréal, Québec, Canada

7 ^bFederal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

8 ^cNational Research Council of Canada, Montreal, Quebec, Canada

9

10 O.M.P.C. and Y.T. contributed equally to this work.

11

12 # Address correspondence to Olga M. Pérez-Carrascal, olga.maría.perez-carrascal@umontreal.ca

13 or Nicolas Tromas, nicolas.tomas@umontreal.ca

14

15

16 **Abstract**

17

18 *Microcystis* is a genus of freshwater cyanobacteria which causes harmful blooms in ecosystems
19 worldwide. Some *Microcystis* strains produce harmful toxins such as microcystin, impacting
20 drinking water quality. *Microcystis* colony morphology, rather than genetic similarity, is often
21 used to classify *Microcystis* into morphospecies. However, colony morphology is a plastic trait
22 which can change depending on environmental and laboratory culture conditions, and is thus an
23 inadequate criterion for species delineation. Furthermore, *Microcystis* populations are thought to
24 disperse globally and constitute a homogeneous gene pool. However, this assertion is based on
25 relatively incomplete characterization of *Microcystis* genomic diversity. To better understand
26 these issues, we performed a population genomic analysis of 33 newly sequenced genomes (of
27 which 19 were resequenced to check for mutation in culture) mainly from Canada and Brazil.
28 We identified eight *Microcystis* clusters of genomic similarity, only four of which correspond to
29 named morphospecies and monophyletic groups. Notably, *M. aeruginosa* is paraphyletic,
30 distributed across four genomic clusters, suggesting it is not a coherent species. Most
31 monophyletic groups are specific to a unique geographic location, suggesting biogeographic
32 structure over relatively short evolutionary time scales. Higher homologous recombination rates
33 within than between clusters further suggest that monophyletic groups might adhere to a
34 Biological Species-like concept, in which barriers to gene flow maintain species distinctness.
35 However, certain genes – including some involved in microcystin and micropeptin biosynthesis
36 – are recombined between monophyletic groups in the same geographic location, suggesting
37 local adaptation. Together, our results show the importance of using genomic criteria for
38 *Microcystis* species delimitation and suggest the existence of locally adapted lineages and genes.

39

40 **Importance**

41

42 The genus *Microcystis* is responsible for harmful and often toxic cyanobacterial blooms across
43 the world, yet it is unclear how and if the genus should be divided into ecologically and
44 genomically distinct species. To resolve the controversy and uncertainty surrounding *Microcystis*
45 species, we performed a population genomic analysis of *Microcystis* genome from public
46 databases, along with new isolates from Canada and Brazil. We inferred that significant genetic
47 substructure exists within *Microcystis*, with several species being maintained by barriers to gene
48 flow. Thus, *Microcystis* appears to be among a growing number of bacteria that adhere to a
49 Biological Species-like Concept (BSC). Barriers to gene flow are permeable, however, and we
50 find evidence for relatively frequent cross-species horizontal gene transfer (HGT) of genes that
51 may be involved in local adaptation. Distinct clades of *Microcystis* (putative species) tend to
52 have distinct profiles of toxin biosynthesis genes, and yet toxin genes are also subject to cross-
53 species HGT and local adaptation. Our results thus pave the way for more informed
54 classification, monitoring and understanding of harmful *Microcystis* blooms.

55

56

57 **KEYWORDS:** *Microcystis*, morphospecies, cyanotoxins, Horizontal Gene Transfer (HGT),
58 homologous recombination, local adaptation, genomics, speciation, Biological Species Concept.

59 **Introduction**

60

61 Several categories of species concepts can be used as the basis to delimit and organize biological
62 diversity, and two concepts in particular have been recently applied to bacteria and archaea. The
63 Ecological Species Concept (ESC) proposes that speciation is driven by divergent natural
64 selection between distinct ecological niches, while the Biological Species Concept (BSC)
65 emphasizes gene flow (*e.g.* homologous recombination) as a cohesive force within species (1).

66 The Stable Ecotype Model (SEM) is a version of the ESC tailored to bacteria, under the general
67 assumption that adaptive mutations spread more rapidly by clonal expansion than by
68 recombination (2). However, certain bacteria and archaea have relatively high rates of
69 recombination, such that a BSC-like concept could apply - but strictly the BSC will never apply
70 to bacteria that reproduce clonally and occasionally exchange genes across species boundaries.

71 Several archaea and bacteria appear to fit a BSC-like model, showing higher recombination
72 within species than between species (1, 3-5). Barriers to recombination could be maintained by
73 natural selection or genetic incompatibilities, or due to physical separation (*i.e.* allopatry).

74 Allopatric speciation is thought to be rare for globally dispersed bacteria, but does appear to
75 occur among geographically separated hotspring archaea (6). Therefore, a plurality or spectrum
76 of species concepts is probably necessary to fit the diverse lifestyles and recombination
77 frequencies observed across microbes (1).

78

79 When two different species inhabit a common niche or geographic location, they may exchange
80 genes beneficial to local adaptation. For example, *Vibrio cholerae* 'core' housekeeping genes are
81 freely recombined among *V. cholerae* from both Bangladesh and the American coast, to the
82 exclusion of the sister species *V. metecus* (7). However, in the integron (part of the genome

83 subject to particularly frequent recombination), *V. cholerae* undergoes more genetic exchange
84 with *V. metecus* from the same geographic location (USA) than with *V. cholerae* from a different
85 location (Bangladesh). This suggests that species cohesion is maintained across most of the core
86 genome, while certain 'accessory' genes are exchanged across species boundaries to promote
87 local adaptation. Identifying such locally adapted genes that cross species boundaries can
88 provide insight into the genetic basis of adaptation to different environments (8, 9).

89

90 Here we consider the common bloom-forming cyanobacterium *Microcystis* as a model of
91 speciation and local adaptation. *Microcystis* is a genus containing a great deal of genetic
92 diversity (10) and capable of frequent recombination (11-13). Previous genetic and genomic
93 studies have suggested that *Microcystis* is globally distributed, with little geographic structure
94 (10, 11, 14, 15). Thus, it is plausible that *Microcystis* represents a single, globally distributed and
95 homogeneous gene pool, adhering to a BSC-like model (1, 5, 11, 16). However, multiple
96 attempts have been made to classify *Microcystis* into several species, based on various
97 morphological and genetic criteria (17-19).

98

99 *Microcystis* is able to form colonies or cell aggregates covered by exopolysaccharide or mucilage
100 (20). Several *Microcystis* strains are known to synthesize intracellular toxins, which are thought
101 to be released to the environment primarily when cells die and lyse (21). Together, toxins and
102 cell decomposition followed by oxygen depletion threaten the health of humans and animals.
103 *Microcystis* colony morphology, cell size, and the structure of mucilage have been used for
104 decades as taxonomic criteria to classify *Microcystis* in morphospecies or morpho-types
105 (International Code of Botanical Nomenclature) (17, 22). However, morphospecies
106 classifications are often inconsistent with genetic, genomic, and phylogenetic analyses (17, 23).

107 These inconsistencies may occur because *Microcystis* colonies can change morphology or
108 become unicellular without any genotypic changes (17, 20, 24-26).

109

110 At least 51 morphospecies have been described within the *Microcystis* genus
111 (<http://www.algaebase.org/browse/taxonomy/?id=7066>) (e.g. *M. aeruginosa*, *M. panniformis*, *M.*
112 *viridis*, *M. wesenbergii*, *M. flos-aquae*, *M. novacekii*, and *M. ichthyoblabe*) (17, 27) One of the
113 most studied and frequently reported is *M. aeruginosa*. Under laboratory conditions, it has been
114 shown that colonies of *M. wesenbergii* morphospecies could become morphologically similar to
115 colonies of *M. aeruginosa*, after just a few hours of culture (26). If a *Microcystis* strain
116 undergoes colony morphology changes, it can then become over-classified into several
117 morphospecies. Thus, the number of morphospecies may not reflect the number of *Microcystis*
118 species based on other bacterial systematic approaches (17).

119

120 Because of these inconsistencies, several authors have attempted to reclassify *Microcystis*
121 morphospecies using additional systematic approaches, like 16S rRNA gene sequence identity,
122 DNA-DNA hybridization, phylogenetic analysis of conserved genes, and Average Nucleotide
123 Identity (ANI) (10, 12, 14, 17, 19, 28, 29). For example, five *Microcystis* morphospecies (*M.*
124 *aeruginosa*, *M. ichthyoblabe*, *M. novacekii*, *M. viridis*, and *M. wesenbergii*) were proposed to be
125 reclassified as a single bacterial species (*M. aeruginosa*) (17). These five *Microcystis* strains
126 showed 16S rRNA gene sequence identities higher than the usual cutoff value used to define
127 bacterial species (>97%), DNA-DNA genome sequences hybridization values were also higher
128 than the cutoff (>70%), and colony morphologies are generally similar (17, 26). Other studies
129 showed that *M. aeruginosa* morphospecies together with other morphospecies are a single
130 species complex with average nucleotide identity (ANI) values higher than 95%, which is

131 consistent with hybridization values higher than 70% – a standard rule in bacterial species
132 delineation (10, 14, 30). Despite the high similarity in their core genomes, *Microcystis* are
133 diverse in their gene content, resulting in large accessory genomes that can harbour genes related
134 to the biosynthesis of harmful toxins or secondary metabolites (10, 14, 31). *Microcystis*
135 classification based on accessory genes (e.g. toxins and polysaccharides) has also been proposed
136 (14, 28).

137

138 In this study, we present a population genomics analysis using 33 newly sequenced genomes (of
139 which 19 were resequenced after several years in laboratory culture) belonging to seven
140 *Microcystis* morphospecies isolated mainly from Brazil and Canada over a 15-year period. We
141 aimed to investigate the coherence of *Microcystis* morphospecies using phylogenomic and
142 homologous recombination analyses. We identified four *Microcystis* clades corresponding to
143 morphospecies, which are mainly restricted to particular geographical regions, with
144 recombination rates higher within than between them, consistent with a BSC-like model.
145 Meanwhile, *M. aeruginosa* morphospecies are paraphyletic and geographically unstructured,
146 meaning that *M. aeruginosa* may in fact include multiples sub-species. In contrast with the
147 general preference for recombination within clades, we also observed occasional HGT between
148 clades. Many of these cross-species HGT events may be involved in local adaptation. Finally, we
149 studied the profiles of genes related to the biosynthesis of secondary metabolites (such as
150 microcystin) to determine if different *Microcystis* clades have a characteristic profile of
151 biosynthetic genes.

152

153

154 **Results**

155

156 **Phylogenetic coherence of named morphospecies**

157 In order to assess the coherence of named *Microcystis* morphospecies, we sequenced 33 isolates
158 of *Microcystis* (see Table S1 in the supplemental material). These genomes were initially
159 classified into seven different morphospecies (*M. aeruginosa*, *M. flos-aquae*, *M. panniformis*, *M.*
160 *wessenbergi*, *M. viridis*, *M. sp.* and *M. novacekii*). The size of the *Microcystis* assembled genomes
161 ranged between 3.3 and 4.6 Mb with average GC content of 42.7%. The shared core genome
162 consisted of 1,260 genes and the pangenome contained 16,928 genes. We supplemented these
163 newly sequenced genomes with 26 additional *Microcystis* genomes downloaded from GenBank
164 and compared them using three measures of genetic similarity: phylogeny, hierBAPS clustering
165 and ANI (Average Nucleotide identity). Most of our genomes have pairwise ANI values > 95%
166 with some exceptions: 199 out of 6241 pairwise comparisons have values between 93 and 94%,
167 mostly involving comparison with Ma_AC_P_00000000_S299 (see Fig. S1, and Table S2 in the
168 supplemental material). ANI values >95% are generally considered to include members of a
169 single species. However, the *Microcystis* genomes do not constitute a single homogenous ANI
170 cluster; rather, significant substructure is evident (Fig. S1).

171

172 To explore this substructure, we built a core genome phylogeny using 152 conserved genes also
173 present in an outgroup (Fig. 1) and also clustered the aligned core genomes using hierBAPS (32).
174 Of the 33 newly sequenced genomes, 19 were resequenced after several years in culture. The
175 resequenced genomes differed from their ancestor by an average of 48 point mutations, and
176 always clustered with their ancestor in the phylogenetic tree, suggesting that evolution in the
177 laboratory had little impact on the structure of the phylogeny (Table S3). Additionally, we

178 isolated and sequenced a single colony from one of the batch cultures. This colony genome
179 (S217Col) clustered on the phylogeny with its parent culture (S217Cul) with a phylogenetic
180 distance of zero (Fig. 1), suggesting that a single colony is representative of the entire culture.

181

182 The hierBAPS analysis yielded eight groups (*Mpa*, *Mfl*, *Mvi*, *Mwe*, *Mae1*, *Mae2*, *Mae3* and
183 *Mae4*) which are indicated alongside the phylogenetic tree (Fig. 1). In general, hierBAPS
184 clusters were consistent with the phylogeny, with some exceptions likely due to the susceptibility
185 of hierBAPS to long-branch attraction (32, 33). Four out of eight hierBAPS clusters
186 corresponded to monophyletic groups in the phylogeny and named morphospecies: *M.*
187 *panniformis* (*Mpa*), *M. wesenbergii* (*Mwe*), *M. viridis* (*Mvi*) and *M. flos-aquae* (*Mfl*), while the
188 other clusters contained multiple named morphospecies (Fig. 1). The *M. aeruginosa*
189 morphospecies was paraphyletic and distributed across four hierBAPS clusters (*Mae1*, *Mae2*,
190 *Mae3* and *Mae4*), two of which (*Mae1* and *Mae2*) were monophyletic clades. Based on these
191 phylogenetic and population structure analyses, *Microcystis* appears to comprise six well-defined
192 monophyletic groups (*Mpa*, *Mfl*, *Mvi*, *Mwe*, *Mae1*, *Mae2*), four of which are congruent with the
193 morphospecies (*Mpa*, *Mfl*, *Mvi* and *Mwe*). We noted that these last four monophyletic
194 morphospecies tended to be fairly specific for a particular geographic location (either Canada or
195 Brazil), suggesting possible local adaptation, local and recent clonal expansion, or reduced
196 migration of these lineages. Even if *Microcystis* are generally closely related at >95% ANI, there
197 is clear and significant substructure within the genus.

198

199 We also investigated the pangenome content within each of eight hierBAPS clusters. The four
200 clusters corresponding to *M. panniformis*, *M. wesenbergii*, *M. viridis* and *M. flos-aquae* had
201 highly conserved core genomes (between 75% and 96% of genes shared by all members of the

202 cluster) while *M. aeruginosa* morphospecies had much smaller core genomes (between 53% and
203 64% of genes shared by all members; see Table S4 in the supplemental material). This is
204 consistent with the four monophyletic morphospecies representing coherent clusters of genomic
205 similarity, with the paraphyletic *M. aeruginosa* being an amalgam of high genetic diversity and
206 variable gene content.

207

208 **Higher homologous recombination rates within than between clusters supports a BSC-like**
209 **concept**

210 We next asked if homologous recombination could explain the cohesion of the monophyletic
211 groups. To address this question, we estimated the ratio of homologous recombination to
212 mutation rates (r/m) within and between eight hierBAPS groups. We found that the four
213 monophyletic morphospecies (*M. panniformis*, *M. wesenbergii*, *M. novacekii* and *M. flos-aquae*)
214 all have r/m ratios 2-3X higher within than between clades (Fig. 2). Recombination rates were
215 generally low for *M. aeruginosa* both within and between clades (Fig. 2). When the resequenced
216 genomes (from a second time point of the same culture) were excluded, the r/m tended to
217 increase within clades (see Table S5 in the supplemental material), presumably because mutation
218 but not recombination took place in the culture. Overall, these results suggest that the cohesion
219 of four monophyletic groups could be driven or reinforced by preferential recombination within
220 versus between groups, consistent with a BSC-like model of speciation. Conversely, the other
221 four groups, consisting of *M. aeruginosa*, appeared to engage in relatively little recombination
222 and thus defied delineation based on the BSC.

223

224 **Frequent local horizontal gene transfer (HGT)**

225 From the core genome phylogenetic tree, certain monophyletic clades showed strong geographic
226 preferences. For example, *M. flos-aquae* was found almost uniquely in Canada, while *M.*
227 *panniformis* was found only in Brazil (Fig. 1). In contrast, *M. wesenbergii* is found in both
228 Canada and Brazil (Fig. 1), suggesting that morphospecies can be stable in ways that transcend
229 geography boundaries. As previously observed in *Vibrio*, different species in the same
230 geographic region may exchange genes, possibly leading to local adaptation (7). To identify
231 potential locally adapted *Microcystis* genes, we screened gene trees for instances where two
232 different named morphospecies (which formed distinct monophyletic groups in the species tree;
233 Fig. 1) clustered together in the same monophyletic group (with bootstrap support >90%),
234 consistent with cross-species HGT. As we were particularly interested in local HGT, we
235 identified monophyletic groups of two distinct species, all isolated from the same region (*i.e.*
236 Canada or Brazil, but not both). We screened a total of 25,157 core and accessory genes from 79
237 *Microcystis* genomes (53 reported here, including colonies and resequenced isolates, and 26
238 previously published). We considered 12,084 informative gene trees (that included 4 or more
239 leafs). Of these trees, 590 (4.9% of the total) showed a pattern of non-local HGT (with Canadian
240 and Brazilian isolates grouping together in the same well-supported clade), whereas slightly
241 more (923 genes; 7.6% of the total) were consistent with local HGT. This suggests that
242 geography, and possibly local adaptation, is an important factor in shaping rates of HGT. Local
243 HGT events, on average, appear to be more recent than non-local events: in 80 out of 923 local
244 HGTs, the phylogenetic distances within the recombined clade were equal to zero (Table 1),
245 suggesting relatively recent HGT in local compared to non-local events (Fisher's exact test, Odds
246 ratio = 1.90, $P = 0.004$). Local HGTs are also much more likely to be functionally annotated,
247 compared to non-local HGTs which involve mostly hypothetical genes (Table 1; Fisher's exact
248 test, Odds ratio = 2.99, $P < 2.2\text{e-}16$). While these differences could have many possible

249 explanations, we speculate that non-local HGT events are enriched in phages and other poorly
250 annotated mobile or selfish genetic elements, while local HGTs involve metabolically or
251 ecologically relevant genes, which are more likely to have been studied and annotated.
252 Consistent with this explanation, the non-local pangenome is dominated by genes involved in
253 DNA replication, recombination and repair (COG category L, Fig. S2; X^2 test, $P < 0.05$ after
254 Bonferroni correction for multiple hypothesis testing), which is suggestive of self-replicating and
255 recombining mobile elements (Fig. S2 and Data Set S1). Overall, these results suggest that local
256 HGT events are relatively recent (and thus more frequently observed) and possibly more
257 ecologically relevant (and less "selfish") than non-local HGTs.

258

259 Figure 3 illustrates a few noteworthy examples of local HGT events. For example, the
260 phylogenetic trees of two neighboring genes encoding the *hicA-hicB* toxin-antitoxin system
261 showed phylogenetic distances almost equal to zero (between 0 and 0.0008 substitutions per
262 site), clustering Brazilian genomes of three different hierBAPS clusters into a single group (Fig.
263 3A and B), whereas these clusters are well-separated on the species tree (Fig. 3E). This suggests
264 that the toxin-antitoxin system has been subjected to recent cross-species HGT in Brazil. The
265 *hicAB* module is a mobile element that has been previously described in bacteria, archaea,
266 plasmids and phages (34, 35) and at least 31 *hicB* antitoxins and 21 *hicA* toxins have been
267 reported in *M. aeruginosa* (36). The *hicAB* module seems to act as a phage defense system,
268 arresting cell growth in response to phage infection (36).

269

270 Another two genes encoding CRISPR *cas1* endonucleases also showed a signature of recent
271 local HGT, with phylogenetic distances almost equal to zero (between 0 and 0.0001), clustering
272 Canadian genomes in a single clade (Fig. 3C). These two genes are neighbors located on the

273 same contig, flanked by a hypothetical gene and a CRISPR-associated endoribonuclease (*cas2*).
274 We also identified local HGT events involving other toxin-antitoxin genes, cyanotoxins (such as
275 *mcyB*; Fig. 3D), endonucleases, and others (Data Set S1).

276

277 **Clade-specific profiles of biosynthetic gene clusters**

278 Having shown examples of cyanotoxin genes being involved in local HGT (Fig. 3D; Data Set
279 S1), we sought to more broadly characterize the distribution of cyanotoxins and other
280 biosynthetic gene clusters across *Microcystis* clades. Specifically, we asked whether *Microcystis*
281 clades or morphospecies tended to have a characteristic profile of biosynthetic genes, despite
282 potentially rapid gain and loss of these genes. The biosynthesis genes of secondary metabolites
283 are usually found in gene clusters (37, 38). *Microcystis* species can synthesize a variable number
284 of secondary metabolites, many of which are toxic to humans and other animals (39, 40).

285

286 We identified 34 known secondary metabolite gene clusters within all the *Microcystis* genomes
287 using the software AntiSMASH (Fig. 4; Table S6). AntiSMASH identifies these genes based on
288 a protein database and NRPS (Nonribosomal Peptide Synthetases) and PKS (Polyketide
289 synthase) domain analysis (41). Eight out of 34 secondary metabolic gene clusters were present
290 and complete in at least one *Microcystis* genome (Fig. 4).

291

292 We observed that *Microcystis* genomes lacking the microcystin cluster (*mcy*) usually contained
293 another gene cluster instead. For example, *M. flos-aquae* lacked *mcy* but instead had genes
294 related to the biosynthesis of anabaenopeptins (*apn*) (Fig. 4). However, other studies have found
295 microcystin-producing strains of *M. flos-aquae* (42), suggesting that the genomes reported here
296 likely undersample the diversity of biosynthetic gene clusters present in nature. Consistent with

297 relatively high diversity within clades, genomes within the same clade tended to have similar, but
298 non-identical profiles of gene clusters, with *M. aeruginosa* clades being among the most diverse.
299 *M. aeruginosa* clades also tended to have a high coding potential for toxins, including the
300 complete *mcy* and *mdn* (microviridin B) gene clusters. However, some genomes in *M.*
301 *aeruginosa* sub-clade *Mae1* lacked the *mcy* genes, consistent with loss or HGT. In contrast, *M.*
302 *wesenbergii* encoded relatively few biosynthetic gene clusters, consistent with previously
303 reported low toxin production and microcystin gene absence (42-45).

304
305 Viewed in aggregate, these biosynthetic gene clusters are part of the *Microcystis* accessory
306 genome. However, certain gene clusters are core to specific monophyletic groups. In *M. flos-*
307 *aquae* for example, *anp* genes were always present (core) and *mcy* genes were absent. These
308 group-specific core gene clusters could provide potential niche adaptations and ecological
309 distinctness. On the other hand, certain biosynthetic genes such as *mcyB* (Fig. 3D) are exchanged
310 across species boundaries. Thus, biosynthetic genes may contribute to both species-specific and
311 species-transcending adaptations (46).

312
313 **Discussion**
314 In this study, we investigated the correspondence among morphospecies and genome-informed
315 species definitions using dozens of *Microcystis* isolates from both Northern and Southern
316 hemispheres, primarily from Canada and Brazil. We assessed the genomic cohesion of
317 *Microcystis* clades within *Microcystis* species by measuring the genome similarities (phylogeny,
318 hierBAPS clustering and ANI values) and homologous recombination within and between
319 clades.

320

321 We found that *Microcystis* genomes used in this study together with the reference genomes fell
322 into a single genomic complex (ANI values higher than 95%). Previous studies have suggested a
323 universal cutoff of 95% ANI as adequate for species delineation. These studies described a
324 genetic discontinuity or bimodal distribution with peaks higher than 95% (intra-species) and
325 lower than 83% (inter-species), but the mechanism for this discontinuity is unclear, and it is
326 difficult to exclude sampling bias as a reason for the discontinuity (47, 48). We observed that
327 within a 95% ANI cluster of *Microcystis*, there is substantial genetic substructure, potentially
328 containing distinct species or sub-species. Four of the eight sub-clusters we identified
329 corresponded to named morphospecies, while the others were mostly composed of genomes
330 classified as *M. aeruginosa* morphospecies. We concluded that *M. aeruginosa* is paraphyletic
331 with a mixed geographical pattern, while the morphospecies *M. flos-aquae*, *M. panniformis*, *M.*
332 *wesenbergii*, *M. viridis* consisted of well-defined clades within *Microcystis* species complex
333 (Fig. 1).

334
335 What are the mechanisms that can explain the genetic structure within *Microcystis*? Ecological
336 selection (the ESC), barriers to gene flow (BSC-like), and biogeography (allopatric divergence)
337 could all play a role. Previous studies based on a smaller sample of *Microcystis* genomes (10), or
338 marker genes (14, 15) suggested that there are few if any biogeographic barriers in *Microcystis* to
339 migrate, leading to a globally mixed population (49, 50) – and that *Microcystis* should be defined
340 as a single species (17, 18). Consistent with this, *M. aeruginosa* is globally distributed and
341 paraphyletic in our core phylogeny. However, the four monophyletic morphospecies tend to be
342 geographically restricted, possibly due in this case to limited migration (at least on recent time
343 scales) and/or local adaptation. The four morphospecies could also represent short-lived clonal
344 expansions, or biases due to incomplete sampling. However, to minimize bias, our sampling was

345 performed repeatedly over 15 years, with similar methods in both Brazil and Canada. We also
346 inferred more frequent homologous recombination within than between morphospecies (Fig. 2),
347 consistent with a BSC-like model maintaining genetic distinctness (51-53). While morphospecies
348 coherence may thus be maintained by barriers to gene flow, we suspect that morphospecies
349 divergence was initiated by selection for ecological distinctness (1). Although the precise
350 ecological differences between morphospecies are unknown (45, 54), we found that each of the
351 four monophyletic morphospecies had a distinct core genome and distinct profile of biosynthetic
352 gene clusters (Fig. 4) – both of which could provide potential ecological adaptations. Further
353 experimental study will be required to fully test the hypothesis of ecological distinctness among
354 morphospecies.

355
356 The BSC-like model requires more frequent recombination within than between species, but also
357 allows occasional recombination of "globally adaptive" genes across species boundaries. Similar
358 to previous observations in *Vibrio* (7), we inferred a significant proportion of cross-species HGT
359 events occurred within the same geographic location, suggesting local environmental adaptation.
360 Local HGT events tend to be phylogenetically more recent than non-local events, suggesting that
361 they occur at relatively higher frequency. Local HGTs are also enriched in genes of annotated
362 (non-hypothetical) function, including cyanotoxin genes such as microcystin (*mcyB*) and
363 cyanopeptolin (*mcnC*, *mcnF* and *mcnG*). Microcystin genes are likely of ancient origin in
364 cyanobacteria (55) and it has been suggested that they subsequently experienced significant
365 homologous recombination and positive selection (56, 57). Microcystin genes also show
366 biogeographic patterns. For example, the *mcyD* gene has distinctive alleles found in Japanese
367 *Microcystis* isolates but not elsewhere (58). Our inference of local, cross-species HGT of toxin
368 genes further supports the idea that they may be locally adapted.

369

370 Genes involved in phage defense systems were also involved in local HGT events, suggesting
371 that local adaptation could be driven by local viruses. First, the *hicAB* operon appears to have
372 been shared among at least three distinct hierBAPS clusters (*Mvi*, *Mpa*, and *Mae4*) in Brazil (Fig.
373 3), and has previously been suggested to be involved in phage defense and prone to HGT (34,
374 36). Second, *cas1*, which encodes the most conserved protein in the CRISPR–Cas defense
375 system (59), appears to have been exchanged among three distinct clusters of *M. aeruginosa* in
376 Canada (Fig. 3). This is consistent with previous evidence suggesting that CRISPR–Cas genes
377 are subject to HGT and natural selection (59, 60). Thus, local HGT could promote adaptation to
378 local phages.

379

380 Taken together, our results resolve some of the longstanding confusion surrounding *Microcystis*
381 species and suggest new avenues for future research. While all *Microcystis* genomes sampled to
382 date are monophyletic and closely related, there is significant genetic substructure suggesting the
383 existence of several distinct species. The distinctiveness of these species appears to be
384 maintained by barriers to gene flow, consistent with a BSC-like model (1, 5). Whether gene flow
385 barriers are mainly geographic, genetic, or ecological is a subject for future investigation. While
386 different *Microcystis* species appear to inhabit different niches, as evidence by geographic
387 preferences and distinct profile of biosynthetic gene clusters, the nature of their ecological
388 distinctiveness should also be a subject of future field and laboratory studies.

389

390 **Materials and methods**

391

392 **Genome sequencing, assembly and binning**

393 Over the past 15 years, we collected 30 *Microcystis* isolates from Brazil, Canada and the United

394 States. The *Microcystis* strains were initially characterized as morphospecies based on their

395 colony morphology, according to Komárek (27, 61, 62). Seven morphospecies were identified:

396 *M. aeruginosa*, *M. flos-aquae*, *M. panniformis*, *M. wesenbergi*, *M. viridis*, *M. sp.*, and *M.*

397 *novacekii*. We performed the DNA extraction for these strains between 2006 and 2017 (see

398 Table S1 in the supplemental material). The 30 *Microcystis* genomes were sequenced using the

399 Illumina HiSeq 2500 platform with 125bp paired-end reads. The genomic Illumina libraries

400 (with average fragment size 360bp) were prepared using the NEB (New England Biolabs®) low

401 input protocol. We also sequenced the DNA of four single *Microcystis* colonies isolated

402 manually under the microscope. Three of these colonies were new isolates recovered from Lake

403 Champlain (Quebec, Canada) in 2017 without culture, while the fourth came from a culture that

404 was also sequenced (in bulk) in this study, for a total of 33 new sequenced *Microcystis* genomes.

405 Before DNA extraction and sequencing, each colony was washed 10-15 times with Z8 medium

406 using a micropipette. DNA extraction was performed directly on each colony using the

407 ChargeSwitch® gDNA Mini Bacteria Kit.

408

409 Of the 30 *Microcystis* isolates, 19 had been maintained in culture for several years until 2017.

410 Thus, we extracted DNA and re-sequenced from these 19 cultures in 2011, 2016 and 2017 to

411 check for contamination and mutations in the *Microcystis* genome over time and differences

412 between culture and colony sequences (Table S1). Together, the *Microcystis* genomes, of which

413 14 were sequenced once, 18 twice, and one three times comprised a total of 53 genome
414 sequences.

415

416 Sequences from cultures and colonies were assembled with the software IDBA-UD v1.1.3 (63),
417 producing contigs belonging to both *Microcystis* and associated heterotrophic bacteria, which are
418 naturally associated with *Microcystis* (64, 65). The software Anvi'o v3.0 was used to filter,
419 cluster and select the contigs belonging to *Microcystis* (66). The associated bacterial genomes
420 will be described in a forthcoming manuscript. To cluster contigs into genomes, we used tetra-
421 nucleotide frequency, GC content, and taxonomic annotation based on the Centrifuge software,
422 as implemented in Anvi'o (66, 67). The gene prediction and annotation were done using Prodigal
423 v2.6.3 and Prokka v1.12 packages, respectively (68-70). The raw reads and the *Microcystis*
424 genomes contigs are available in GenBank under Bioproject number PRJNA507251.

425

426 **Phylogenomic analysis**

427 A core genome of 152 single copy genes shared by 79 *Microcystis* genomes (53 and 26 genomes
428 reported here and previously, respectively) and two outgroups (*Anabaena variabilis* ATCC
429 29413 and *Synechocystis* sp. PCC6803) was identified using the software Roary and blastn-all.
430 First, a core genome for the 79 *Microcystis* genomes (minimum value of 90% amino acid
431 identity) was identified using Roary. The outgroups were initially excluded due to their high
432 divergence from *Microcystis*. To identify the homologous genes in the outgroups, blast-all was
433 used (Blastp similarities higher than 60%). The common core genes between Roary and blast-all
434 were selected and used to create a core gene alignment. Each homologous gene was aligned
435 separately using muscle (71). The concatenated and degapped alignment of length 129,835 bp
436 was used for building a phylogenetic tree in RAxML v8.2.4, using the GTRGAMMA model,

437 with 100 bootstraps (72). Using the same method, another core phylogenetic tree was inferred
438 without the previously published reference genomes. This concatenated core-alignment
439 comprised 222 genes (211,589 bp degapped) (see Fig. S3 in the supplemental material).

440

441 **Clustering analysis of *Microcystis* genomes**

442 A multiple genome alignment of the 79 genomes (53 and 26 genomes reported here and the
443 references, respectively) was performed using Mugsy 1.2.3 (73) (see Table S1 in the
444 supplemental material). The DNA core-alignment was extracted from the Mugsy output using a
445 python script (625,795 bp long). The core-alignment was used to perform genetic population
446 structure and cluster analysis with hierBAPS (The hierarchical Bayesian Analysis of Population
447 Structure) (32). We used as input parameters two clustering levels and an expected number of
448 cluster (k) equals to 10, 20 and 40. HierBAPS delineates the population using nested clustering.
449 In this method, rare genotypes (distantly related to better sampled clades) often cluster together
450 due to long-branch attraction (32). As a result, HierBAPS clusters could be incongruent with the
451 phylogeny inferred by maximum likelihood, which is less sensitive to long-branch attraction.

452

453 **Pairwise nucleotide identity between *Microcystis* genomes**

454 The 33 newly sequenced genomes and 26 previously published were compared using a python
455 module (average_nucleotide_identity.py) to estimate the Average Nucleotide Identity by
456 Mummer and by Blast (ANIm and ANIb values between genome pairs) (see Fig. S1 in the
457 supplemental material) (<https://github.com/widdowquinn/pyani>) (74). Bacterial genomes with
458 DNA–DNA hybridization (DDH) of at least 70%, are considered as the same species and usually
459 show values of ANI >95%. Hence, a cutoff higher than 95 for the ANI values between genome
460 pairs is used to identify genomes within the same genomic cluster or species (30, 47, 75). The

461 pairwise identities were plotted using the R package ggplot (<http://ggplot2.org/>) and the function
462 heatmap2 (76).

463

464 **Pangenome analysis in *Microcystis* genomic clusters**

465 Pangenomes were inferred for each *Microcystis* genomic cluster with more than 2 genomes (see
466 Table S2 in the supplemental material). A global pangenome estimation was generated using all
467 the *Microcystis* genomes excluding the 2 shorter genomes Ma_AC_P_00000000_S299 and
468 Ma_QC_C_20070823_S18). Those genomes were excluded of the pangenome analyses because
469 of their reduced size compared to the average size (10% and 30% for
470 Ma_AC_P_00000000_S299 and Ma_QC_C_20070823_S18, respectively).
471 Ma_QC_C_20070823_S18 showed the lowest coverage (28X) and Ma_AC_P_00000000_S299
472 appeared to be contaminated with another cyanobacterium (*Anabaena*).

473 The software Roary v3.12.0 was used to generate the pangenomes. Prior to the execution of
474 Roary the genomes were automatically annotated using Prokka v1.12 (70). The genomes in
475 GGF3 format generated with Prokka were used as input to Roary. Roary was executed using a
476 minimum percentage of amino acid identity of 90% for blastp, which was set up according to the
477 similarities in the genomes higher than 94% and Roary recommendations. MultiFasta alignment
478 of the core genes were created using PRANK v150803 implemented in Roary (77).

479 We also did a pangenome analysis to find homologous and accessory genes within 53
480 *Microcystis* genomes from Brazil, Canada, USA (including the shorter ones), and the 26
481 reference genomes from the NCBI database. Roary allowed us to identify 370 clusters of
482 homologues (shared in 79 genomes) and 1059 (shared in 76 up to 78 genomes). Roary also
483 identified 23,728 accessory genes or genes shared by less than 76 genomes.

484

485 **SNPs and deletion identification between duplicates genomes**

486 The calling of SNP variants (Single Nucleotide Polymorphism) was done using snippy v3.2
487 (<https://github.com/tseemann/snippy>) with default parameters. SNPs between duplicate genomes
488 were identified using one of genomes as reference.

489

490 **Homologous recombination rates across *Microcystis* genomic clusters**

491 Using the 53 newly sequenced *Microcystis* genomes, we investigated rates of homologous
492 recombination within and between genomic clusters or across the phylogenetic tree. To do this,
493 we estimated the relative effect of recombination versus mutation (r/m) rates using
494 ClonalFrameML v1.11-3 (78). Briefly, the degapped core genome alignment generated by
495 Mugsy v2.2.1 (1,274,628 bp) (73) was split in several subalignments using pyfasta
496 (<https://pypi.org/project/pyfasta/>). The subalignments corresponded to the genomic clusters
497 defined using phylogenomic and the population structure analyses. In order to estimate r/m
498 between clusters, we also created subalignments for pair of clusters. ClonalFrameML was
499 executed using a bootstrap of 100 replicates (emsim=100). The input phylogenies given in
500 ClonalFrameML were generated using RAXML with bootstrap of 100 replicates (72). The
501 transition/transversion ratios also used as an inputs in ClonalFrameML were estimated using
502 PHYML v3.0 under the model of nucleotides substitution HKY85 (79). ClonalFrameML
503 analyses excluded the two smallest *Microcystis* genomes Ma_AC_P_00000000_S299 and
504 Ma_QC_C_20070823_S18. ClonalFrameML analyses within clusters were also conducted after
505 removing the replicate (resequenced) genomes.

506

507 **Identification of horizontally transferred and locally adapted genes**

508 To identify genes transferred across species boundaries, we screened gene trees for instances of
509 two distinct species (hierBAPS clusters in the species tree) clustering together in the same
510 monophyletic group, whereas they are normally distantly related in the species tree. As a
511 signature of local adaptation, we additionally screened for such cross-species HGT events that
512 occurred among two different species from the same country.

513 For local adaptation analysis, we worked with the clusters generated with Roary and using 53
514 *Microcystis* genomes from Brazil, Canada, USA, and the 26 reference genomes from the NCBI
515 database. Once the gene clusters were identified with Roary, the alignments of the nucleotide
516 sequences in each gene cluster (core genes present in >75 strains (>95%) and accessory genes)
517 were generated using the MAFFT software v7.271 (80). Maximum likelihood phylogenetic trees
518 for each alignment were inferred using FastTreeMP v2.1.8 and the generalized time-reversible
519 model (GTR) for nucleotide substitution (81). The trees were visualized with graphlan v0.9.7
520 (82).

521 The phylogenetic trees that showed local (geographic) adaptation signatures were identified
522 using a Perl script
523 (https://figshare.com/articles/Monophyly_screening_tree_files_for_the_detection_of_local_adaptations/7661009) to screen phylogenetic trees and identify monophyletic groups with a particular
524 level of bootstrap support (in our case, 90%). The script also allows monophyletic groups
525 including particular combination of isolates (e.g. from different morphospecies or geographic
526 locations) to be identified, with a given minimal branch length (in our case, this parameter was
527 set to 0) and number of isolates (in our case, 4) within the group. A phylogeny was considered as
528 positive for non-local HGT if Canadian and Brazilian isolates were together in the same clade
529 supported by a bootstrap value > 90%, while a phylogeny positive for the local-HGT showed
530 Brazilian or Canadian isolates, but not both in the same well-supported clade. The phylogenies
531

532 with a signature of HGT were then manually curated to remove those consisting solely of HGT
533 within a single hierBAPS cluster. Genes in the accessory genome and core genome were
534 functionally annotated using the eggNOG database (83, 84). The full HGT gene set is reported in
535 Data Set S1.

536

537 **Inferring secondary metabolic pathways in *Microcystis* genomes**

538 We evaluated the metabolite profiles for individual *Microcystis* genomes using the package
539 antiSMASH v4.0.2. The annotated genomes using Prokka were used as input to AntiSMASH
540 (41). Two additional biosynthetic clusters absent in the AntiSMASH database (Aeruginosamide
541 (NCBI accessions numbers CCH92964- CCH92969) and Microginin (NCBI accessions numbers
542 CAQ48259-CAQ48262)) were added manually. Based on the antiSMASH results, we generated
543 a matrix of presence-absence of genes related to the biosynthesis of secondary metabolites. The
544 matrix was visualized using the R package ggplot and the function heatmap2 (76). All-against-all
545 BLASTP analysis was applied to find the best reciprocal hits between proteins in the database
546 and the proteins in the *Microcystis* genomes (85). The proteins with the best reciprocal hit were
547 extracted; to be considered as present in the database, the amino acid identity had to be > 60%,
548 and > 30 % of the length of the sequences had to be aligned, with an e-value of 10^{-5} .

549

550

551 **Figure legends**

552

553 **Figure 1. Phylogenetic tree of 53 Brazilian, Canadian and USA *Microcystis* genomes and 26**
554 **globally sampled reference genomes.** A core genome of 152 homologous genes shared by 79
555 *Microcystis* genomes and the outgroups (*Anabaena variabilis* ATCC 29413 and *Synechocystis*
556 sp. PCC6803) was identified using software Roary (77). The eight hierBAPS clusters are
557 highlighted in colored boxes. The genomes from the same isolate at a different time have letter
558 "D or T" at the end of their names and are indicated with a black asterisk. The genomes from a
559 bulk culture and a single colony from the same cultured are indicated with a hash. The three
560 genomes from uncultured colonies from Lake Champlain (Quebec, Canada) are indicated with a
561 red asterisk and "Col" at the end of their name. The font colors indicate the geographical origin
562 (Brazil: orange, Canada: blue, USA: purple, other: black). The abbreviated hierBAPS cluster
563 names *Mpn*, *Mwe*, *Mfl*, *Mvi* and *Mae* correspond to *M. panniformis*, *M. wesenbergii* *M. flos-*
564 *aquae*, *M. viridis* and *M. aeruginosa*, respectively. The tree bar scale indicates number of
565 nucleotide substitutions per site.

566

567 **Figure 2. Relative contribution of recombination/mutation (*r/m*) within (diagonal) and**
568 **among eight *Microcystis* hierBAPS clades.** The *r/m* estimation included the replicates genomes
569 (from a second time point of the same culture). The hierBAPS clusters are represented with the
570 same symbols and abbreviations used in Fig. 1. See Table S5 for the *r/m* values with and without
571 replicate genomes.

572

573 **Figure 3. Phylogenetic trees of accessory genes with an inferred history of local HGT.** a)
574 *hicA*, b) *hicB*, c) two Cas1 genes, d) *mcyB*, and e) the core genome phylogeny. The symbols

575 represent their corresponding hierBAPS clades. The font colors of the names indicate the
576 geographical origin. The clades showing geographical signatures (local HGT) are highlighted in
577 orange (Brazil) and blue (Canada). The bars below the trees indicate units of nucleotide
578 substitutions per site.

579

580 **Figure 4. Distribution of biosynthetic gene clusters across *Microcystis*.** **a.** Phylogenetic tree of
581 53 Brazilian, Canadian and USA *Microcystis* genomes and 26 reference genomes. **b.** Presence
582 and absence of the genes encoding secondary metabolites in each *Microcystis* genome shown as
583 a heatmap. Rows and columns represent the genomes and genes, respectively. The presence and
584 absence of genes are indicated in blue and white, respectively. The shade of blue increases with
585 the amino acid similarity to the reference database. The ten biosynthetic clusters are enclosed by
586 colored rectangles and their names appear at the bottom of the figure.

587

588 **Figure S1. Heatmaps for the hierarchical clustering of 79 *Microcystis* genomes based on**
589 **ANIm (A) and ANIb (B)** (53 genomes sequenced in this work, plus 26 NCBI genomes
590 published before). Rows and columns represent the genomes. The scale bar indicates the
591 pairwise ANI values. The genomes from the same isolate at a different time point have a letter
592 “D or T” at the end of their names and are indicated with black asterisks. The genomes from
593 colonies and culture from the same isolate are indicated with a hash. The genomes names from
594 colony end with the word Col and are indicated with a red asterisk.

595

596 **Figure S2. Functional enrichment analysis in core, accessory, local and non-local HGT gene**
597 **sets.** Functional annotations were from eggNOG. a) Hierarchical clustering analysis based in the
598 relative abundance for each functional category. b) Functional categories that showed

599 statistically significant ($P < 0.05$) differences in one or more comparison between groups (core,
600 accessory genes, local, or non-local HGT gene sets, defined as described in Methods). The chi-
601 square (X^2) test was conducted using the package STAMP (86). Raw p-values are indicated in
602 black, and after Bonferroni correction in blue. Asterisks denote significant ($p < 0.05$) differences
603 after correction.

604

605 **Figure S3. Phylogenetic tree of 53 Brazilian, Canadian and USA *Microcystis* genomes.** A
606 core genome of 222 homologous genes shared by 53 *Microcystis* genomes and the outgroups
607 (*Anabaena variabilis* ATCC 29413 and *Synechocystis* sp. PCC6803) was identified using the
608 software Roary (77). The concatenated core-alignment (222 genes - 211589 bp long) was used
609 for building a phylogenetic tree in the RAxML program, using the GTRGAMMA model, with
610 100 bootstrap replicates (72). The genomes from the same isolate at a different time have letter
611 “D or T” at the end of their names and are indicated with a black asterisk. The genomes from
612 colony and culture from the same isolate are indicated with a hash. The genomes names from
613 colonies end with the word Col and are indicated with a red asterisk.

614

615 **Supplementary table legends**

616

617 **Table S1. Genome characteristics of 33 *Microcystis* isolates from Brazil, Canada and USA.**

618 The genomes from the same isolate at a different time point are indicated with black asterisks.

619 The genomes from colonies and culture from the same isolate are indicated with hashes. The

620 genomes names from colonies end with "Col" are indicated with red asterisks.

621

622 **Table S2. ANIb and ANIm values corresponding to pairwise comparison between genomes.**

623

624 **Table S3. SNP variants between 19 duplicates (resequenced) genomes.** The duplicate

625 (resequenced) genomes are indicated with "D" at the end of their name.

626

627 **Table S4. Core genome composition for each hierBAPS clusters and all the genomes.** The

628 core genomes were estimated for each individual hierBAPS cluster using the software Roary.

629 The number of genomes per pan-genome and the ANIm values within clusters are indicated.

630

631 **Table S5. The relative effect of recombination versus mutation (*r/m*) within and between**

632 **hierBAPS clusters.** The *r/m* estimations after removing duplicate genomes are indicated within

633 parentheses and with *.

634

635 **Table S6. Biosynthetic pathways.**

636

637 **Data Set S1. Genes showing evidence of local and non-local HGT.** The list of genes with local
638 and non-local annotation, phylogenetic distances to the node, and functional annotation with
639 Prokka and eggNOG are indicated.

640

641 **Acknowledgments.** We are grateful to David Bird for assistance isolating strains and
642 maintaining cultures. This work was supported by the Genome Québec and Genome Canada-
643 funded ATRAPP Project (Algal blooms, Treatment, Risk Assessment, Prediction and
644 Prevention). **NT** was funded by a project from the European Union's Horizon 2020 research and
645 innovation program under the Marie Skłodowska-Curie grant agreement No 656647. Cultures
646 collections (Brazilian and some Canadian strains) were partially obtained and maintained thanks
647 to CNPq and FAPEMIG grants to **AG**. We also want to acknowledge the financial support of the
648 National Research Council. We declare that we have no financial conflicts of interest.

649

650

References

651

- 652 1. Shapiro BJ. 2018. What microbial population genomics has taught us about speciation.
653 In: Polz M., Rajora O. (eds) Population genomics: Microorganisms. Population
654 genomics. Springer, Cham. https://doi.org/10.1007/13836_2018_10.
- 655 2. Wiedenbeck J, Cohan FM. 2011. Origins of bacterial diversity through horizontal genetic
656 transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957-976.
- 657 3. Whitaker RJ, Grogan DW, Taylor JW. 2005. Recombination shapes the natural
658 population structure of the hyperthermophilic archaeon *Sulfolobus islandicus*. Mol Biol
659 Evol 22:2354-61.
- 660 4. Cadillo-Quiroz H, Didelot X, Held NL, Herrera A, Darling A, Reno ML, Krause DJ,
661 Whitaker RJ. 2012. Patterns of gene flow define species of thermophilic Archaea. PLoS
662 Biol 10:e1001265.
- 663 5. Bobay LM, Ochman H. 2017. Biological species are universal across Life's domains.
664 Genome Biol Evol doi:10.1093/gbe/evx026.
- 665 6. Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. 2009. Biogeography of the
666 *Sulfolobus islandicus* pan-genome. Proc Natl Acad Sci U S A 106:8605-10.
- 667 7. Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr
668 CL, Polz MF. 2011. Local mobile gene pools rapidly cross species boundaries to create
669 endemicity within global *Vibrio cholerae* populations. MBio 2:e00335-10.
- 670 8. van Elsas JD, Bailey MJ. 2002. The ecology of transfer of mobile genetic elements.
671 FEMS Microbiol Ecol 42:187-97.

672 9. Whittaker KA, Rynearson TA. 2017. Evidence for environmental and ecological
673 selection in a microbe with no geographic limits to gene flow. *Proc Natl Acad Sci U S A*
674 114:2651-2656.

675 10. Humbert JF, Barbe V, Latifi A, Gugger M, Calteau A, Coursin T, Lajus A, Castelli V,
676 Oztas S, Samson G, Longin C, Medigue C, de Marsac NT. 2013. A tribute to disorder in
677 the genome of the bloom-forming freshwater cyanobacterium *Microcystis aeruginosa*.
678 *PLoS One* 8:e70747.

679 11. Tanabe Y, Sano T, Kasai F, Watanabe MM. 2009. Recombination, cryptic clades and
680 neutral molecular divergence of the microcystin synthetase (mcy) genes of toxic
681 cyanobacterium *Microcystis aeruginosa*. *BMC Evol Biol* 9:115.

682 12. Tanabe Y, Kasai F, Watanabe MM. 2007. Multilocus sequence typing (MLST) reveals
683 high genetic diversity and clonal population structure of the toxic cyanobacterium
684 *Microcystis aeruginosa*. *Microbiol* 153:3695-703.

685 13. Tanabe Y, Kaya K, Watanabe MM. 2004. Evidence for recombination in the microcystin
686 synthetase (mcy) genes of toxic cyanobacteria *Microcystis* spp. *J Mol Evol* 58:633-41.

687 14. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW. 2016.
688 A review of the global ecology, genomics, and biogeography of the toxic
689 cyanobacterium, *Microcystis* spp. *Harmful Algae* 54:4-20.

690 15. van Grembergh I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer
691 AE, Lacerot G, De Meester L, Vyverman W. 2011. Lack of phylogeographic structure in
692 the freshwater cyanobacterium *Microcystis aeruginosa* suggests global dispersal. *PLoS*
693 *One* 6:e19561.

694 16. Shapiro BJ, Leducq JB, Mallet J. 2016. What Is Speciation? *PLoS Genet* 12:e1005860.

695 17. Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM. 2001. A proposal
696 for the unification of five species of the cyanobacterial genus *Microcystis* Kutzing ex
697 Lemmermann 1907 under the rules of the Bacteriological Code. *Int J Syst Evol Microbiol*
698 51:873-9.

699 18. Otsuka S, Suda S, Li RH, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM. 1999.
700 Phylogenetic relationships between toxic and non-toxic strains of the genus *Microcystis*
701 based on 16S to 23S internal transcribed spacer sequence. *FEMS Microbiol Lett* 172:15-
702 21.

703 19. Komárek J. 2010. Recent changes (2008) in cyanobacteria taxonomy based on a
704 combination of molecular background with phenotype and ecological consequences
705 (genus and species concept). *Hydrobiologia*:245-59.

706 20. Xiao M, Li M, Reynolds CS. 2018. Colony formation in the cyanobacterium *Microcystis*.
707 *Biol Rev Camb Philos Soc* 93:1399-1420.

708 21. Philip T, Orr GJJ. 1998. Relationship between microcystin production and cell division
709 rates in nitrogen - limited *Microcystis aeruginosa* cultures. *Limnol Ocean* 43:1604-1614.

710 22. Compère P. 2005. The nomenclature of Cyanophyta under the Botanical Code. *Arch
711 Hydrobiol/Algol Stud (Cyanobact Res 6)* 117:31-37.

712 23. Zhang JY, Guan R, Zhang HJ, Li H, Xiao P, Yu GL, Du L, Cao DM, Zhu BC, Li RH, Lu
713 ZH. 2016. Complete genome sequence and genomic characterization of *Microcystis
714 panniformis* FACHB 1757 by third-generation sequencing. *Stand Genomic Sci* 11:11.

715 24. Ma J, Brookes JD, Qin B, Paerl HW, Gao G, Wu P, Zhang W, Deng J, Zhu G, Zhang Y,
716 Xu H, Niu H. 2014. Environmental factors controlling colony formation in blooms of the
717 cyanobacteria *Microcystis* spp. in Lake Taihu, China. *Harmful Algae* 31:136-142.

718 25. Wang WJ, Zhang YL, Shen H, Xie P, Yu J. 2015. Changes in the bacterial community
719 and extracellular compounds associated with the disaggregation of *Microcystis* colonies.
720 *Biochem Syst Ecol* 61:62-66.

721 26. Otsuka S, Suda S, Li RH, Matsumoto S, Watanabe MM. 2000. Morphological variability
722 of colonies of *Microcystis* morphospecies in culture. *J Gen Appl Microbiol* 46:39-50.

723 27. Komárek J. 1991. A review of water-bloom forming *Microcystis* species, with regard to
724 populations from Japan. *Archiv Fur Hydrobiologie*:115-127.

725 28. Xu S, Sun Q, Zhou X, Tan X, Xiao M, Zhu W, Li M. 2016. Polysaccharide biosynthesis-
726 related genes explain phenotype-genotype correlation of *Microcystis* colonies in Meiliang
727 Bay of Lake Taihu, China. *Sci Rep* 6:35551.

728 29. Castenholz RW, Norris TB. 2005. Revisionary concepts of species in the cyanobacteria
729 and their applications. *Algol Stud*:53–69.

730 30. Konstantinidis KT, Tiedje JM. 2005. Towards a genome-based taxonomy for
731 prokaryotes. *J Bacteriol* 187:6258-64.

732 31. Christiansen G, Molitor C, Philmus B, Kurmayer R. 2008. Nontoxic strains of
733 cyanobacteria are the result of major gene deletion events induced by a transposable
734 element. *Mol Biol Evol* 25:1695-704.

735 32. Cheng L, Connor TR, Siren J, Aanensen DM, Corander J. 2013. Hierarchical and
736 spatially explicit clustering of DNA sequences with BAPS software. *Mol Biol Evol*
737 30:1224-8.

738 33. Castillo-Ramirez S, Corander J, Marttinen P, Aldeljawi M, Hanage WP, Westh H, Boye
739 K, Gulay Z, Bentley SD, Parkhill J, Holden MT, Feil EJ. 2012. Phylogeographic
740 variation in recombination rates within a global clone of methicillin-resistant
741 *Staphylococcus aureus*. *Genome Biol* 13:R126.

742 34. Makarova KS, Grishin NV, Koonin EV. 2006. The HicAB cassette, a putative novel,
743 RNA-targeting toxin-antitoxin system in archaea and bacteria. *Bioinformatics* 22:2581-4.

744 35. Makarova KS, Wolf YI, Koonin EV. 2009. Comprehensive comparative-genomic
745 analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in
746 prokaryotes. *Biol Direct* 4:19.

747 36. Makarova KS, Wolf YI, Snir S, Koonin EV. 2011. Defense islands in bacterial and
748 archaeal genomes and prediction of novel defense systems. *J Bacteriol* 193:6039-6056.

749 37. Welker M, von Dohren H. 2006. Cyanobacterial peptides - nature's own combinatorial
750 biosynthesis. *FEMS Microbiol Rev* 30:530-63.

751 38. Sussmuth RD, Mainz A. 2017. Nonribosomal peptide synthesis-principles and prospects.
752 *Angew Chem Int Ed Engl* 56:3770-3821.

753 39. Tillett D, Parker DL, Neilan BA. 2001. Detection of toxigenicity by a probe for the
754 microcystin synthetase A gene (mcyA) of the cyanobacterial genus *Microcystis*:
755 comparison of toxicities with 16S rRNA and phycocyanin operon (Phycocyanin
756 Intergenic Spacer) phylogenies. *Appl Environ Microbiol* 67:2810-8.

757 40. Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D'Agostino PM, Neilan BA. 2016.
758 The genetics, biosynthesis and regulation of toxic specialized metabolites of
759 cyanobacteria. *Harmful Algae* 54:98-111.

760 41. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de
761 Los Santos ELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R,
762 Takano E, Lee SY, Weber T, Medema MH. 2017. antiSMASH 4.0-improvements in
763 chemistry prediction and gene cluster boundary identification. *Nucleic Acids Res*
764 45:W36-W41.

765 42. Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard
766 M, Chorus I. 2004. Distribution of microcystin-producing and non-microcystin-
767 producing *Microcystis* sp. in European freshwater bodies: detection of microcystins and
768 microcystin genes in individual colonies. *Syst Appl Microbiol* 27:592-602.

769 43. Yoshida M, Yoshida T, Satomi M, Takashima Y, Hosoda N, Hiroishi S. 2008. Intra-
770 specific phenotypic and genotypic variation in toxic cyanobacterial *Microcystis* strains. *J*
771 *Appl Microbiol* 105:407-15.

772 44. Xu Y, Wu Z, Yu B, Peng X, Yu G, Wei Z, Wang G, Li R. 2008. Non-microcystin
773 producing *Microcystis wesenbergii* (Komarek) Komarek (Cyanobacteria) representing a
774 main waterbloom-forming species in Chinese waters. *Environ Pollut* 156:162-7.

775 45. Otten TG, Paerl HW. 2011. Phylogenetic inference of colony isolates comprising
776 seasonal *Microcystis* blooms in Lake Taihu, China. *Microb Ecol* 62:907-18.

777 46. Majewski J, Cohan FM. 1999. Adapt globally, act locally: the effect of selective sweeps
778 on bacterial sequence diversity. *Genetics* 152:1459-74.

779 47. Konstantinidis KT, Tiedje JM. 2005. Genomic insights that advance the species
780 definition for prokaryotes. *Proc Natl Acad Sci U S A* 102:2567-2572.

781 48. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput
782 ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nat Commun*
783 9:5114.

784 49. Moreira C, Spillane C, Fathalli A, Vasconcelos V, Antunes A. 2014. African origin and
785 europe-mediated global dispersal of the cyanobacterium *Microcystis aeruginosa*. *Curr*
786 *Microbiol* 69:628-33.

787 50. Marmen S, Aharonovich D, Grossowicz M, Blank L, Yacobi YZ, Sher DJ. 2016.
788 Distribution and habitat specificity of potentially-toxic *Microcystis* across climate, land,
789 and water use gradients. *Front Microbiol* 7:271.

790 51. Fraser C, Hanage WP, Spratt BG. 2007. Recombination and the nature of bacterial
791 speciation. *Science* 315:476-80.

792 52. Vos M, Didelot X. 2009. A comparison of homologous recombination rates in bacteria
793 and archaea. *ISME J* 3:199-208.

794 53. Shapiro BJ, Polz MF. 2014. Ordering microbial diversity into ecologically and
795 genetically cohesive units. *Trends Microbiol* 22:235-47.

796 54. Imai H, Chang KH, Kusaba M, Nakano S. 2009. Temperature-dependent dominance of
797 *Microcystis* (Cyanophyceae) species: *M. aeruginosa* and *M. wesenbergii*. *J Plankton Res*
798 31:171–178.

799 55. Rantala A, Fewer DP, Hisbergues M, Rouhiainen L, Vaitomaa J, Borner T, Sivonen K.
800 2004. Phylogenetic evidence for the early evolution of microcystin synthesis. *Proc Natl
801 Acad Sci U S A* 101:568-73.

802 56. Tooming-Klunderud A, Fewer DP, Rohrlack T, Jokela J, Rouhiainen L, Sivonen K,
803 Kristensen T, Jakobsen KS. 2008. Evidence for positive selection acting on microcystin
804 synthetase adenylation domains in three cyanobacterial genera. *BMC Evol Biol* 8:256.

805 57. Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K,
806 Jakobsen KS. 2003. Natural variation in the microcystin synthetase operon *mcyABC* and
807 impact on microcystin production in *Microcystis* strains. *J Bacteriol* 185:2774-85.

808 58. Moreira C, Vasconcelos V, Antunes A. 2013. Phylogeny of microcystins: evidence of a
809 biogeographical trend? *Curr Microbiol* 66:214-21.

810 59. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R,
811 Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns
812 MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV. 2015.
813 An updated evolutionary classification of CRISPR-Cas systems. *Nat Rev Microbiol*
814 13:722-36.

815 60. Godde JS, Bickerton A. 2006. The repetitive DNA elements called CRISPRs and their
816 associated genes: evidence of horizontal transfer among prokaryotes. *J Mol Evol* 62:718-
817 29.

818 61. Komárek J, Komárková-Legnerová J, Santanna CL, Azevedo MTP, Senna PC. 2002.
819 Two common *Microcystis* species (Chroococcales, Cyanobacteria) from tropical
820 America, including *M. panniformis* sp. nov. *Cryptogamie Algol* 23:159-177.

821 62. Komárek J, Komárková J. 2002. Review of the European *Microcystis*-morphospecies
822 (Cyanoprokaryotes) from nature. *Czech Phycol* 2:1-24.

823 63. Peng Y, Leung HC, Yiu SM, Chin FY. 2012. IDBA-UD: a de novo assembler for single-
824 cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics*
825 28:1420-8.

826 64. Meyer KA, Davis TW, Watson SB, Denef VJ, Berry MA, Dick GJ. 2017. Genome
827 sequences of lower Great Lakes *Microcystis* sp reveal strain-specific genes that are
828 present and expressed in western Lake Erie blooms. *Plos One* 12.

829 65. Li Q, Lin F, Yang C, Wang J, Lin Y, Shen M, Park MS, Li T, Zhao J. 2018. A large-scale
830 comparative metagenomic study reveals the functional interactions in six bloom-forming
831 *Microcystis*-epibiont communities. *Front Microbiol* 9:746.

832 66. Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015.
833 Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ* 3:e1319.

834 67. Kim D, Song L, Breitwieser FP, Salzberg SL. 2016. Centrifuge: rapid and sensitive
835 classification of metagenomic sequences. *Genome Res* 26:1721-1729.

836 68. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal:
837 prokaryotic gene recognition and translation initiation site identification. *BMC
838 Bioinformatics* 11:119.

839 69. Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. 2012. Gene and translation initiation
840 site prediction in metagenomic sequences. *Bioinformatics* 28:2223-30.

841 70. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*
842 30:2068-9.

843 71. Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time
844 and space complexity. *BMC Bioinformatics* 5:113.

845 72. Stamatakis A, Aberer AJ, Goll C, Smith SA, Berger SA, Izquierdo-Carrasco F. 2012.
846 RAxML-Light: a tool for computing terabyte phylogenies. *Bioinformatics* 28:2064-6.

847 73. Angiuoli SV, Salzberg SL. 2011. Mugsy: fast multiple alignment of closely related whole
848 genomes. *Bioinformatics* 27:334-42.

849 74. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the
850 prokaryotic species definition. *Proc Natl Acad Sci U S A* 106:19126-31.

851 75. Konstantinidis KT, Ramette A, Tiedje JM. 2006. Toward a more robust assessment of
852 intraspecies diversity, using fewer genetic markers. *Appl Environ Microbiol* 72:7286-93.

853 76. Wickham H. 2016. *ggplot2: Elegant graphics for data analysis*. Springer-Verlag New
854 York.

855 77. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D,
856 Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis.
857 *Bioinformatics* 31:3691-3.

858 78. Didelot X, Wilson DJ. 2015. ClonalFrameML: efficient inference of recombination in
859 whole bacterial genomes. *PLoS Comput Biol* 11:e1004041.

860 79. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
861 algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
862 performance of PhyML 3.0. *Syst Biol* 59:307-21.

863 80. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
864 improvements in performance and usability. *Mol Biol Evol* 30:772-80.

865 81. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood
866 trees for large alignments. *PLoS One* 5:e9490.

867 82. Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. 2015. Compact graphical
868 representation of phylogenetic data and metadata with GraPhlAn. *PeerJ* 3:e1029.

869 83. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T,
870 Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P. 2016. eggNOG 4.5:
871 a hierarchical orthology framework with improved functional annotations for eukaryotic,
872 prokaryotic and viral sequences. *Nucleic Acids Res* 44:D286-93.

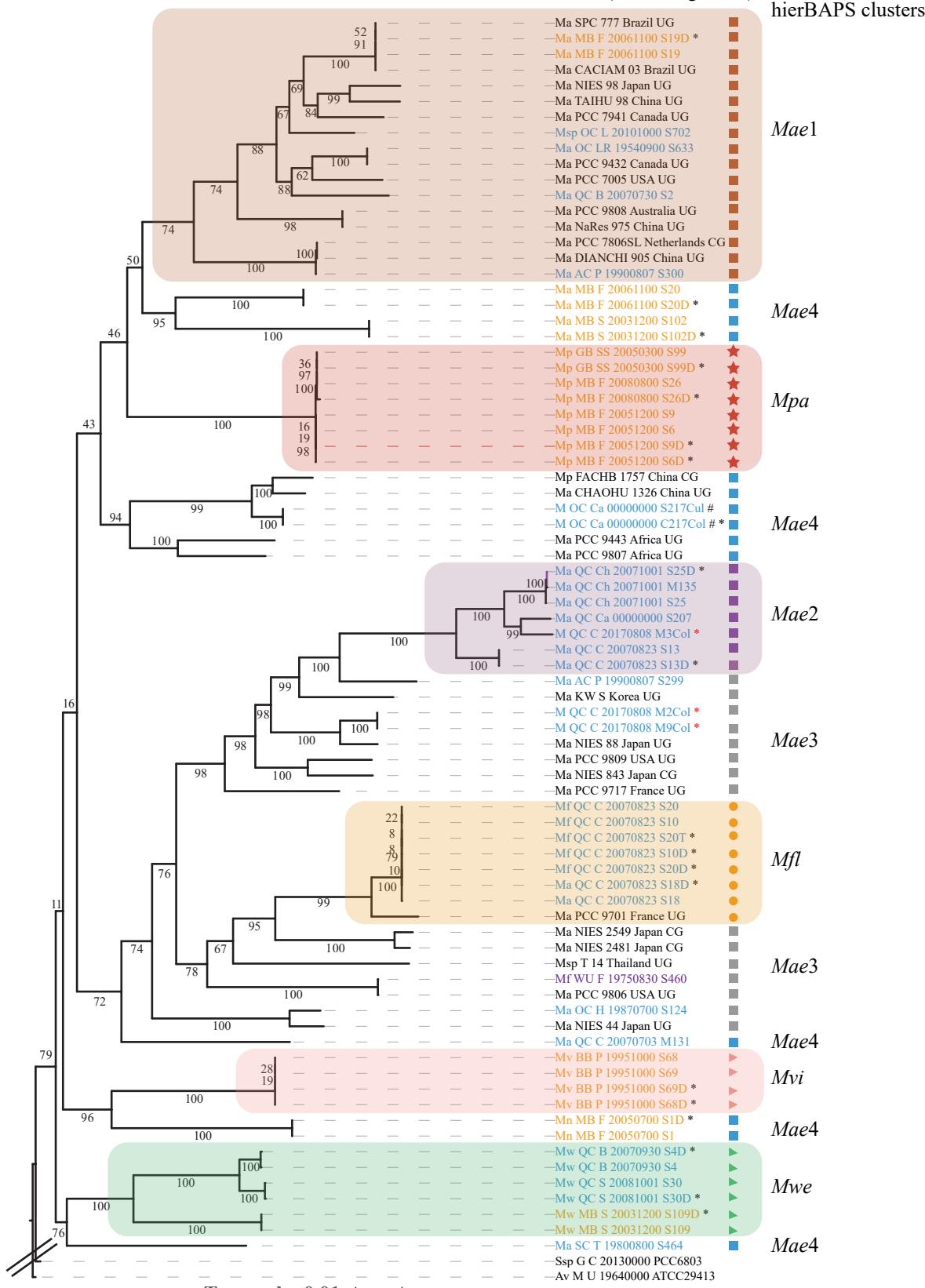
873 84. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P.
874 2017. Fast Genome-Wide Functional Annotation through Orthology Assignment by
875 eggNOG-Mapper. *Mol Biol Evol* 34:2115-2122.

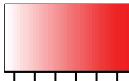
876 85. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997.
877 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
878 *Nucleic Acids Res* 25:3389-402.

879 86. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of
880 taxonomic and functional profiles. *Bioinformatics* 30:3123-4.

881

882 **Table 1.** Breakdown of horizontally transferred genes by geography.


	Local HGT (Canada-only or Brazil-only clades)	Non-local HGT (Canada-Brazil clades)
Hypothetical	474	448
Known Function	449*	142
Phylogenetical distances	80*	28
equal to zero		
Total	923	590


883 * denotes a significant enrichment among local vs. non-local HGT events (Fisher's exact test, $P <$
884 0.01).

885

Geographic origin
Brazil Canada USA
Other (reference genome)

hierBAPS clusters

2 6 12
 r/m

Mpa

Mwe

Mfl

Mvi

Mae1

Mae2

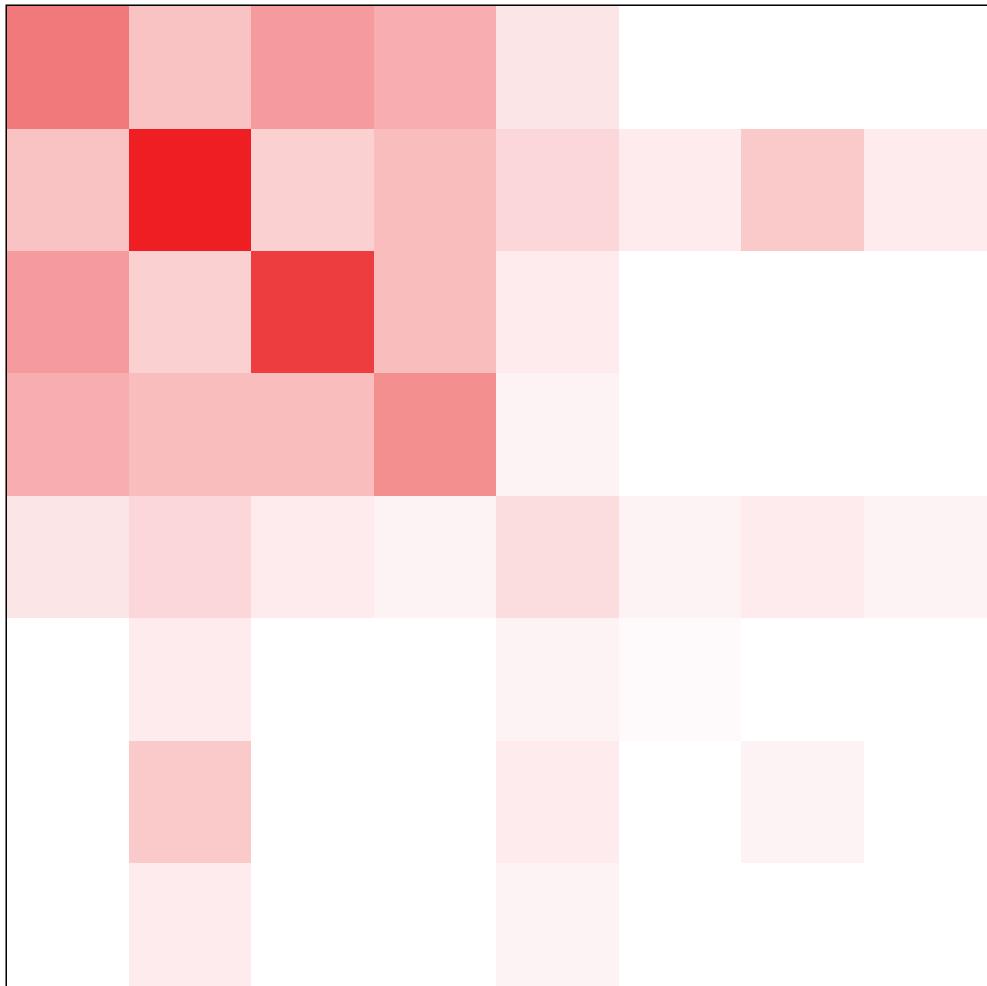
Mae3

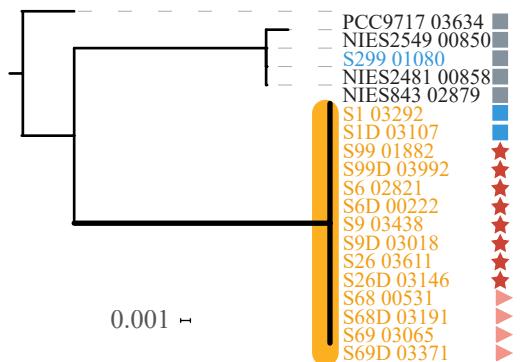
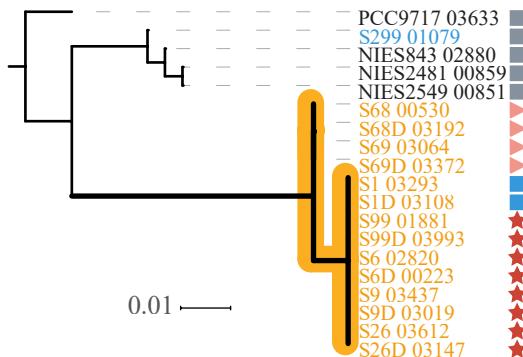
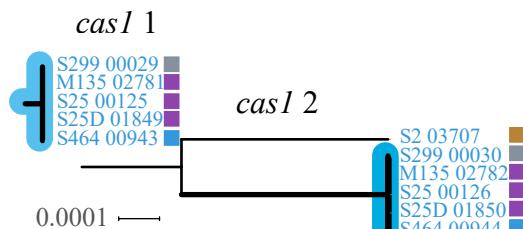
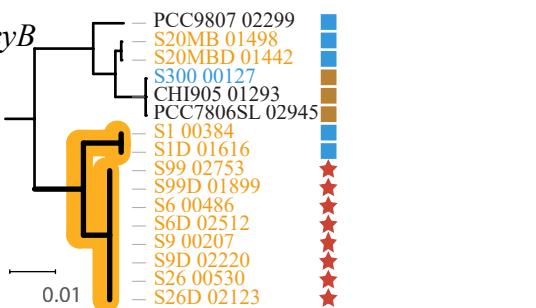
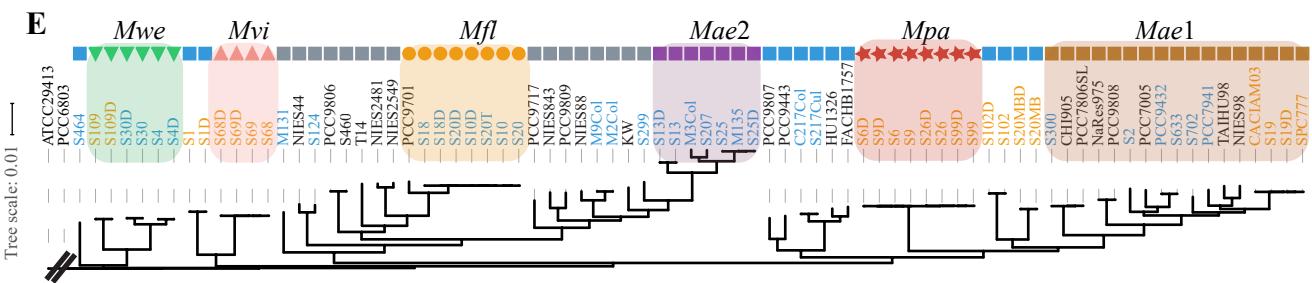
Mae4

★ *Mpa*

► *Mwe*

● *Mfl*

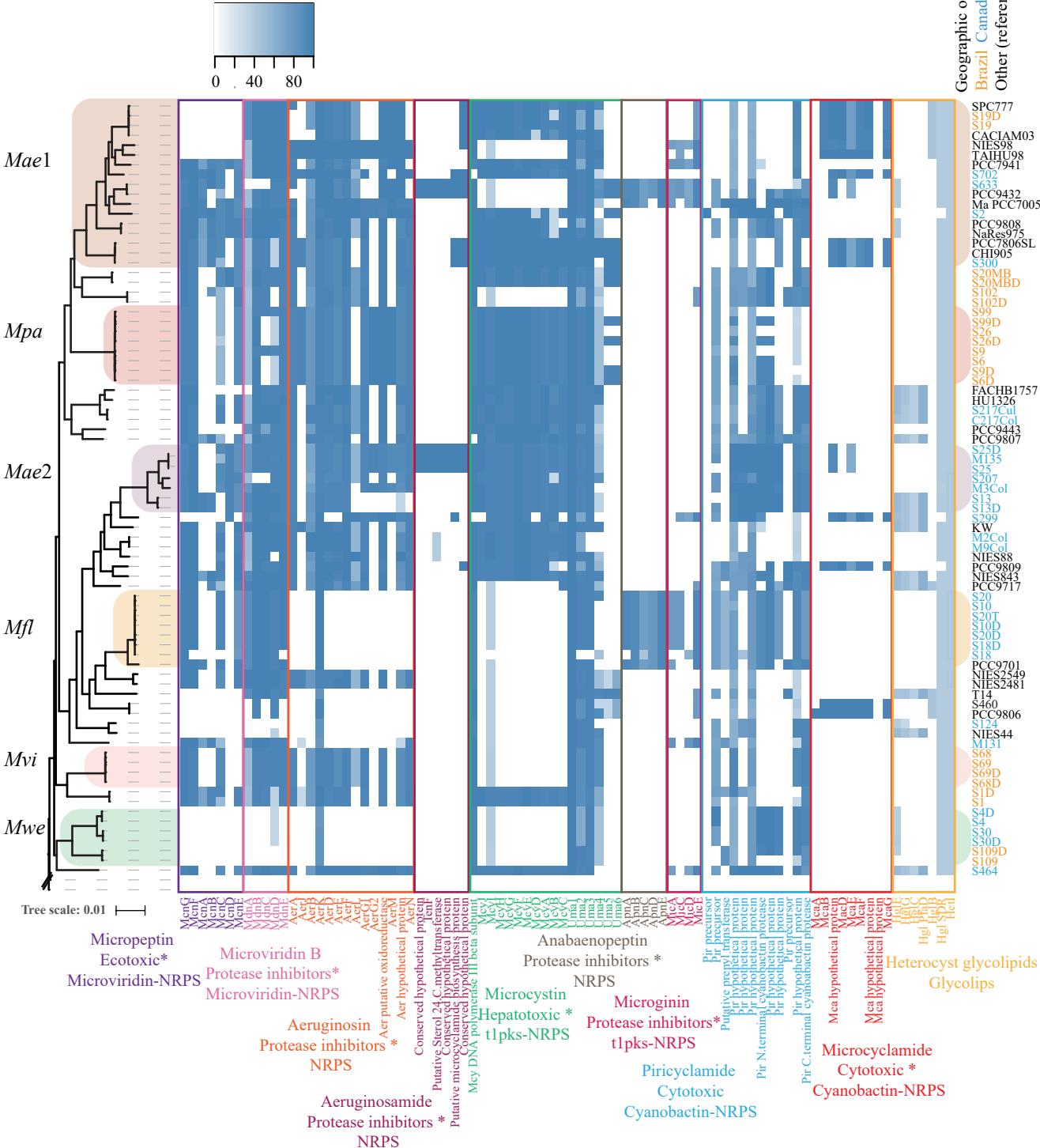

► *Mvi*






■ *Mae1*

■ *Mae2*

■ *Mae3*

■ *Mae4*


A *hicA***B** *hicB***C****D** *mcyB***E**

Geographic origin

Canada Brazil Other (reference genome)

A

B Amino acid percent identity

