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Abstract

Signal transduction deregulation is a hallmark of many complex diseases, including
Multiple Sclerosis (MS). Here, we performed ex vivo multiplexed phosphoproteomic
assays upon perturbations with multiple drugs and ligands in primary immune cells from
169 MS patients and matched healthy controls. Patients were either untreated or
treated with fingolimod, natalizumab, interferon-B, glatiramer acetate or the
experimental therapy epigallocatechin gallate (EGCG). We generated for each donor a
dynamic logic model by fitting a bespoke literature-derived network of MS-related
pathways to the perturbation data. Analysis of the models uncovered features of
healthy-, disease- and drug-specific signaling networks. We developed an approach
based on network topology to identify deregulated interactions whose activity could be
reverted to a "healthy-like" status by combination therapy. We predicted several
combinations with approved MS drugs. Specifically, TAK1 kinase, involved in TGF-j3,
Toll-like receptor, B-cell receptor and response to inflammation pathways were found to
be highly deregulated and co-druggable with all MS drugs studied. One of these
predicted combinations, fingolimod with a TAK1 inhibitor, was validated in an animal
model of MS. Our approach based on donor-specific signaling networks enables

prediction of targets for combination therapy for MS and other complex diseases.
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Significance statement

Multiple Sclerosis (MS) is a major health problem, leading to significant disability and
patient suffering. Although chronic activation of the immune system is a hallmark of the
disease, its pathogenesis is poorly understood. Further, current treatments only
ameliorate the disease and may produce severe side effects.

Here, we applied a network-based modeling approach based on phosphoproteomic
data upon perturbation with ligands and drugs of healthy donors and MS patients to
create donor-specific models. The models uncover the differential activation in signaling
wiring between healthy donors, untreated patients and those under different treatments.
Further, based in the patient-specific networks, a new approach identifies drug

combinations to revert signaling to a healthy-like state.
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Introduction

The signal transduction machinery is frequently affected by perturbations induced by
complex diseases. Hence, treatment of diseases such as cancer, cardiovascular,
immunological or brain diseases is nowadays largely attempted by modulating different
molecular cascades involved in the disease to stop its progression. As such, kinases
involved in signaling processes have evolved as primary targets for many diseases (1).
Further, there has been modest progress with treatments based on single drugs.
Combining several drugs targeting different pathways promises more effective
modulation of the pathogenic process (2, 3). However, development of combination
therapies is hampered by the often incomplete understanding on how their effect
propagates through complex signaling networks, with crosstalk between the pathways
influenced by each therapy (4, 5). As an additional level of complication, disease
heterogeneity hinders predicting how a specific combination therapy could be translated
into the clinic. Last, the combinatorial nature of such studies in terms of number of
targets, drugs, doses, and therapeutic regimens implies a large number of experiments
and associated costs, preventing a complete analysis for all alternatives. As a result, the

full potential of combination therapies has not been fully developed yet.

Systems biology, and more specifically modeling of signaling pathways applied to drug
discovery, may provide a new path to approach this question (2, 6). Mechanistic
understanding at the network level offers integrated insights about the cellular
responses to environmental changes (7) and drug effects, yielding a significant
understanding of the signaling cascades derived from decades of research in this field

(8—=10). Mathematical modeling of signaling networks has been used to unravel
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signaling mechanisms, discover drug targets and disease mediators such as cell
surface receptors or intracellular molecules by training those models to experimental in
vitro measurements of key pathway components using inhibitors and activators (4, 11,
12). Modeling-based studies may be the key to characterize the effect of drug
combinations at the molecular level and allow us to predict both efficacy and reduction

of off-target effects (5, 11, 13).

Multiple Sclerosis (MS) is an autoimmune disease, in which the immune system is
chronically activated and damages the central nervous system (CNS) (14). The
involvement of immune system deregulation in MS is shown by altered phenotype and
activity of blood lymphocytes and monocytes (14), as well as by association with genetic
polymorphisms of immune genes (15). At present, there are fifteen FDA-approved
immunomodulatory drugs, and many others are in late stage clinical development. Most
of these control the inflammatory activity in patients with MS to a certain degree, though
with known unwanted effects at the signaling level. Furthermore, many unmet medical
needs remain in the attempt of achieving control of the disease including more effective
therapies, a good safety profile and neuroprotective or regenerative treatments. Drug
combinations are considered as a promising strategy to overcome some of these
limitations, and in cancer combination therapies they are well established (16).
However, predicting which patients would benefit the most from a certain combination
therapy remains as an unresolved challenge (17-20).

In this study we present a systems medicine approach aimed to (i) characterize the
signaling pathways in primary immune cells obtained from blood of MS patients and
healthy controls, and (ii) predict new combination therapies based on the differences in

signaling networks between treated MS patients and controls (Figure 1). To this end,
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we assembled a literature- and database-based Prior Knowledge signaling Network
(PKN) (21), which includes the pathways involved in immune and MS signaling, as well
as their crosstalk and known therapeutic targets. Based on their ability to model large
networks with a low number of parameters, logic models have been used to unravel the
network topology driving disease and response to therapy (22-25). Here, we
established a Boolean logic model from the signaling network and trained it with
measurements of kinase de/phosphorylation as a proxy of signal propagation upon
perturbation with ligands and drugs in Peripheral Blood Mononuclear Cells (PBMCs)
from MS patients and healthy controls. We determined disease- and therapy-specific
logic models that characterize the signaling networks for approved treatments
(interferon-beta (IFNB), glatiramer acetate (GA), natalizumab (NTZ), fingolimod (FTY)
and the experimental drug epigallocatechin gallate (EGCG)). We hypothesized that the
signaling interactions that the drugs failed to revert in the ex vivo assays to a
healthy-like activity level may be candidates to be targeted by a second drug and hence
lead to a personalized combination therapy. To identify those interactions, we
developed a score of co-druggability of signaling interactions according to quantitative
differences in network topology among healthy controls and untreated and treated MS
patients (Figure 1 and Table 1).

Using this network-based approach, we predicted several combination therapies, in
particular of TAK1 with all five studied MS drugs. We validated a highly-scoring
combination therapy in the animal model of MS experimental autoimmune
encephalomyelitis (EAE). The modeling approach shown here can be used for
designing combination therapies for other complex diseases as well as for developing

personalized therapies.
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Figure 1. Topological modeling approach of signaling pathways for prediction of combination

g

therapy. A) Identification of subgroup networks. A model characterizing signaling activity (upstream
kinase (circle) that regulates a response e.g. innate immunity, survival (diamond)) in response to a
stimulus (oval) was calculated for each donor based on the experimentally acquired dataset. Next, the
donor-specific models are merged for all donors belonging to the same subgroup (left panel blue: healthy
controls; middle panel orange: untreated MS; right panel green: treated MS). B) Scoring subgroup
interactions to find co-druggable network interactions. The score is calculated to identify interactions that
differ from healthy-like signaling activity in spite of drug treatment (see methods). C) Topological
prediction of drug combination. A topology-based graph search allows identifying secondary treatments

that could target and revert signaling of co-druggable interactions to a healthy-like activity state.
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Healthy-like
Treatment : -
Healthy MS Treated | Score affecting? signaling Yes
after treatment?
0 0 0 0 . No
0 0 1 -1
0 1 0 1 ‘ Effective
Treatment
0 1 1 0
1 0 0 0 Co-druggable
] . (Treatment is
1 0 1 1 _ affecting)
1 1 -1
0 Co-druggable
1 1 1 0 . . (Treatment is

not affecting)

Table 1. lllustration of co-druggability score for extreme combinations of Healthy-MS-Treated
signaling activity. Implications for each score using as an illustration extreme signaling activities. Based
on the signaling activity of each interaction as assessed by modeling, the difference between healthy,
untreated MS and treated MS (columns 1-3 for a given interaction) can be calculated, yielding a score
(column 4). The implications for each score are shown in columns 5 and 6. Interactions with a negative
co-druggability score indicated a treatment effect that produced signaling activity different to that found in
healthy patients and were selected as co-druggable. A co-druggability score of 0 indicated that there was
no effect due to drug treatment. From those cases, the interactions, in which signaling activity was
different between healthy donors and treated patients were also selected as co-druggable, i.e. those
where the drug alone failed to revert signaling to a healthy state. Hence, co-druggable interactions were
defined as those where treatment with the drug alone yielded signaling activity different to that of the

healthy-like state.

Results

Multiplexed phosphoproteomic analyses in PBMCs from MS patients and controls

To characterize the signaling networks involved in MS, we created a Prior Knowledge
Network (PKN) of biochemical interactions (kinase phosphorylation) reported to be

involved in immune signaling associated with MS based on omics and functional
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studies, as well as those pathway interactions targeted by MS drugs (17). Our network
includes pathways such as interferon response, B- and T- cell receptor signaling,
cellular survival and apoptosis, lipid signaling, innate immunity and multi-drug response
(MDR) genes (Supplementary Figure S1). To achieve this, we searched in
state-of-the-art databases for interactions that were reported in highly specific assays
and prioritized experiments with human and PBMC cells (Supplementary Table S1
and S2). Further, targets of MS drugs were included into the network via their crosstalk
with immune pathways. The PKN featured 167 signaling components (Supplementary

Table S2) and 294 interactions (Supplementary Table S1).

Subsequently, we developed a multiplex xXMAP phosphoprotein panel tailored to logic
modeling and aiming to maximize the coverage of the MS-specific network. The panel,
which combined previously and newly developed assays, was then optimized to
maximize accuracy, reproducibility as well as network coverage (see Supplementary
Table S3 and Supplementary Methods S1) (26). After optimization, we selected a set
of 17 phosphoproteins with adequate signal to noise ratio that were used for the in vitro
assays: AKT1, CREB1, FAK1, GSK3A, HSPB1, IKBA, JUN, MK12, MK03, MP2K1,
PTN11, STAT1, STAT3, STAT5, STAT6, TF65, WNK1 (Supplementary Table S4).
PBMCs were cultured in presence of different sets of stimuli such as lectins, endotoxins,

immunostimulants, cytokines and drugs (Supplementary Table S5).

We extracted PBMCs from 195 MS patients (mean age: 43.1+11.3 years; disease
duration: 8.7+7.7 years; median EDSS: 2.0 (0-6.0); subtype: 24 CIS, 129 RRMS, 6
SPMS and 36 PPMS; untreated: 98) and 60 healthy controls (Supplementary Table

S$6). From those 255 donors, 180 were selected and PBMCs were analyzed before

10
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stimulation and at 5 and 25 min after stimulation. This yielded a dataset consisting of
three measurements for 17 phosphoproteins upon 20 stimuli, to a total of 183600
experimental measurements. For subsequent modeling, the two time points after
baseline (5 and 25 min) were collapsed into a single activation signature to define
whether a given phosphoprotein was activated or inhibited (see details in methods).
Finally, we applied stringent quality control analyses of the dataset consisting of positive
and negative controls, reproducibility tests as well as tests for artifacts in the distribution
of the samples (see Supplementary Methods S1), which led to the removal of 2028
data points and 11 patients to generate the final dataset for a total of 169 subjects. After
application of identifiability analysis based on the experimental coverage of our
measurements (21), the PKN (shown in Supplementary Figure S1) was reduced to 71

proteins and immune modulators and 168 interactions.

Logic modeling enables characterization of signaling networks in healthy donors

and MS patients

Next, we sought to train the generic PKN to these phosphoproteomic measurements in
a donor-specific manner to identify each donor’s active pathways. To train the same
Boolean logic model to the data of each of the 169 subjects, the phosphoproteomic
datasets were transformed (Figure 2A). To enable comparison of the data to the binary
output of the Boolean model, we established a stringent normalization pipeline
combining (i) a non-linear transformation to normalize the measurements to continuous
values between 0 and 1 while penalizing the outliers (21) with (ii) a statistical filter that
removed data-points belonging to proteins that were not found to be significantly

phosphorylated or dephosphorylated (Supplementary Figure S2). Figure 2B shows

11
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the log fold change of each phospho-profile with respect to the control, Figure 2C the
dataset after the non-linear normalization, and Figure 2D displays the proteins found to
be significantly dephosphorylated or phosphorylated. Using this normalized dataset, we

aimed to identify the active specific signaling network for each donor.
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Figure 2. Phosphoproteomic measurement and normalization pipeline. A) xMAP Mean
Fluorescence Intensity (MFI) log values of the 17 analyzed phosphoproteins; B) fold change distribution;
C) non-linearly normalized values (see methods). Orange measurements A-C: values of the same patient
to allow visualization of the changes across data transformation; D) Percentage of patients, for which
each phosphoprotein was classified as phosphorylated, dephosphorylated or non-significant after

statistical testing.
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To this end, we fitted a general logic model derived from the PKN (21) to each donor
dataset, which resulted in a compendium of 169 models. Model optimization was
performed with CellNOpt, a tool that selects the logic model that best matches the data
while penalizing model size (27). To increase the robustness of each model,
optimization was performed 10 times, and for each donor we selected the best solution
as well as all models with a data-to-simulation mismatch within a given relative
tolerance reflecting that, due to lack of identifiability and technical noise, different
models are feasible (21) (see methods for details). We then built a final model for each
patient, defined by the median value of each interaction across all solutions within the
relative tolerance (or borders of tolerance) of the best solution (Figure 3A). To assess
the validity and robustness of our modeling approach, we confirmed absence of bias
due to treatment, center, disease subtype, medical condition, as well as technical

aspects such as model size and merging strategy (Supplementary Figure S3).

To confirm that our modeling approach was able to capture the effect on signal
transduction of MS drugs, intra- as well as inter-donor model similarities were calculated
by the Simple Matching Coefficient (SMC) index. This means, we assessed the number
of interactions in two networks that are equal in both networks over the number of all
interactions, after stratification of patients by treatment subgroups (Figure 3B).
Modeling shows that treated MS patients (green boxes) yield more similar signaling
activity than untreated MS patients (orange boxes). Treatment with FTY yielded the
overall highest within-subgroup similarity and was statistically more similar in this

group’s patients than compared to RRMS untreated patients (untreated RRMS mean
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similarity: 0.737, FTY mean similarity: 0.755, Wilcoxon’s test p-value 0.0025).
Within-subgroup similarity was also higher for patients treated with IFNB (untreated
RRMS mean similarity: 0.737, IFNB mean similarity: 0.750, Wilcoxon's test p-value
7.81*10°). The large similarity of all solutions found during model optimization for each
patient (mean similarity: 0.949) further supported the use of an individual model for each
donor. Altogether, these results supported that merging models by subgroups of donors

would yield biologically meaningful signaling networks for each group.

We then merged the individual models of healthy donors and separately those of
untreated MS patients to characterize MS signaling. We calculated the mean of each
interaction for each subgroup and removed the inactive interactions, i.e. those with an
activity value below the upper quartile, which we considered neglectable. The
differentially activated interactions between healthy donors and untreated MS patients
uncovered signaling pathways deregulated in MS (Supplementary methods and
Figure 3C). Our analysis revealed the activation of several pathways in PBMCs after
stimulation both in patients and controls, ranging from cell survival and proliferation to
TCR, innate immunity, and pro-inflammatory response pathways (e.g. TCR - CSK -
LCK, JAK1 - STAT1, TLR4/IL1R1 - MYD88 - IRAK4 - TRAF6 - TAK1, TNFa - TRADD -
TRAF2 - MAP3K1, SGK - MKO03, or RS6 - SGK, RAF1 - MP2K1). Further, pathways
such as INSR - PI3K - PIP3 - AKT1 and JAK1 - STAT3 were found to be activated in

MS patients, while BDNF - NTRK1 - GRB2 was found to be activated in healthy donors.
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Figure 3. Logic modeling identifies donor-specific signaling networks and reveals MS-specific
signaling pathways. A) Signaling network found by modeling for each donor, visualized as a heatmap.
Rows: Single donor network. Columns: Signaling activity determined for each interaction by calibrating

the PKN shown in Supplementary Figure S1 after removing the unidentifiable interactions using the
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phosphoproteomics dataset of each donor. B) Simple Matching Coefficient (SMC) was used to quantify
background similarity among all models (All), each model with all solutions for a single donor (Self), and
within donor subgroups (MS drugs: FTY, IFNB, GA, NTZ; experimental drug: EGCG, untreated RRMS (for
direct comparison with MS drugs subgroups) and untreated MS (for comparison with healthy controls)).
Similarity is higher within each subgroup than compared to background. C) Differentially activated
pathways (see Supplementary Methods) between healthy controls (HC) and untreated MS patients (MS).
The models previously calculated for each donor were merged to reveal the common active pathways for
controls (blue), untreated MS patients (orange) and both (brown). Grey: Inactive interactions from the MS,

immune- and treatment-related network (Supplementary Figure S1).

These findings indicated that our method was able to identify previously described
pathways in the setting of ex vivo analysis of human PBMCs (17), as examined in detail
for the individual pathways in the discussion. Untreated MS patients, when compared to
healthy controls, showed an increase in the activation of the NFkB pathway
(TAK1-IKKB), the activation of the cell prosurvival PI3K pathway (SLP76-AKT1) or the
activation of interferon/cytokines pathways (JAK1-STAT3). Moreover, patients showed a
decrease, compared to healthy controls, in the activation of TCR/IL-2 pathway
(LCK-STAT1) as well as in the effect of trophic factors signaling on ubiquitination
system (EGFR-CBL). This results characterize at the mechanistic and quantitative level

the differential activation of the immune pathways in MS.

Quantitative differences found in signaling pathways under therapy

We then quantified differences in signaling between patients treated with MS-specific
therapies, using the same procedure as for healthy donors versus untreated MS
patients. We focused on the strongest signals, i.e. those in the upper quartile of the

group mean (Supplementary Figure S4). This yielded a signaling network of active
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reactions characterizing each subgroup, uncovering the effect of each MS-treatment on

signaling at the mechanistic level (Supplementary Figure S5).

Interestingly, the activation of TAK1, a key component involved in TGF-B, toll-like
receptor, B-cell receptor and NFkB pathways, as well as response to inflammation was
identified in all 5 networks inferred under treatment (Supplementary Figure S5A-E).
Additionally, its activity was persistently over-activated in terms of quantitative signaling
activity by the currently approved MS drugs (Supplementary Figure S4). In the case of
IFNB and GA treated patients, the network revealed the activation of STAT1 and STAT3
by JAK1, whereas in the EGCG, FTY and NTZ specific networks the activation of the

JAK1-STAT pathway is regulated via STAT3, STAT6 and STAT1 respectively.

To validate that the therapy-specific pathways found were consistent with the
experimental measurements of MS signatures, we quantified the degree to which the
original phospho-measurements supported the signaling pathways predicted by
modeling for each patient subgroup. The proteins differentially phosphorylated across
all stimuli combinations were overrepresented in pathways found by model fitting (IFN
p=1.2E-05; GA p=1.4E-06; FTY p=0.0004; NTZ p=0.006; Fisher’s exact test) except for
EGCG, which was limited by the small sample size (Supplementary Figure S5F and

Methods).

Network topology-based prediction of targeted combination therapy

Our main goal was to use the subgroup networks found to predict novel combination
therapies. To this aim, we defined as therapeutic goal to revert the signaling network of

patients with MS to a healthy-like activity. We introduced a restriction to our method: the
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combinations we sought featured one approved MS drug which, in spite of its known
efficacy in MS, yielded a signaling activity that differs from the healthy controls as
identified by our topological modeling approach. Thereby, we aimed to predict which
kinase interactions within the network would revert signaling activity to the healthy-like
state when combined with the ongoing therapy. We hypothesized that a co-druggable
interaction, i.e. those that a given MS therapy failed to revert to a healthy-like activity
level, should be the model interactions with a signaling value more distant between
healthy control and MS drug models than between healthy control and untreated MS
models (Figure 1 and Methods). This yielded a list of interactions with their
corresponding score quantifying co-druggability potential (Supplementary Table S7
and Supplementary Figure S4). To identify the co-druggable interactions, we selected
those with a non-positive score as described above, and filtered for additional conditions
(see Methods), thereby identifying both the interactions whose signaling activity was
different from healthy because of deregulation by the disease as well as because of
off-target primary drug effect (Figure 4A). The last step of our approach was to predict
the stimulus that would revert to healthy-like signaling activity of those interactions
identified as co-druggable. Therefore, the co-druggable interactions were mapped onto
the signaling network assessed for each drug subgroup. As an example, Figure 4B
shows the co-druggable interactions under FTY treatment mapped onto the FTY
network. Mapping the co-druggability for each interaction allowed us to predict
combination therapies based on each treatment’s signaling network topology. Finally,
we employed a graph search approach to identify the in vitro stimulus used in our study
that activated interactions found to be co-druggable with each drug. In other words, we

found the experimental readouts that could be measured and reached from an in vitro
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stimulus via an interaction found to be co-druggable in vivo (Supplementary Table S8).
It is important to note that our approach enabled the prediction of combinations of
approved MS therapies which yielded a signaling activity distant from healthy controls
with drugs that stimulated or inhibited signaling. Among all predictions (Supplementary
Table S8), we chose to validate the combination of FTY with a TAK1 inhibitor based on
(i) the striking signaling homogeneity across FTY models (as quantified in Figure 3B),
(i) the finding that TAK1 modulation of HSPB1 via MK12 is largely deregulated
(Supplementary Figure S4, panel FTY, interaction MK12 - HSPB1) and (iii) the fact
that TAK1 is active and co-druggable in all 5 networks under treatment with in vivo
drugs, specifically TAK1 - MAP2K4 for ECGC, IL1R1 - TAK1 for FTY, IL1R1 - TAK1 for

GA, LPS - TAK1 for IFNB and TAK1 - MK12 for NTZ (Supplementary Table S7).

Validation of a predicted combination therapy in the animal model of MS

To validate our approach and obtain an in vivo proof-of-concept of the efficacy of the
combination therapies proposed, we sought to assess whether the combination
therapies improved the clinical course of the animal model of MS (EAE in the C57BL6
mice immunized with the MOG,, ., peptide). Mice were randomized after disease onset
(after they reached a clinical score >1.0), either to placebo (saline), each drug alone
(using doses previously demonstrated as efficacious in rodent models) or the
combination of FTY with the TAK1 inhibitor (5Z-7-oxozeaenol). We found that the
combination FTY+TAK1-inhibitor ameliorated the clinical course of EAE compared to
placebo, TAK1-inhibitor or FTY alone (Mann-Whitney test; p<0.05) (Figure 4C).
Therefore, our method was able to identify combinations of drugs targeting different

pathways that achieved higher efficacy than single therapy.
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Figure 4. Combination therapies predicted and in vivo validation. A) All predicted co-druggable
interactions of the MS drugs models. Based on the subgroup models, the co-druggability of all 168
network interactions (X axis) was assessed using the co-druggability score, and those identified as
co-druggable (see Figure 1, Table 1 and main text) are shown. For each interaction (X axis) the number
of drugs (Y axis) is shown, in which it was found to be co-druggable using the co-druggability criteria; B)
FTY network co-druggability: the case of FTY network co-druggability is shown as an example (red line:
interactions predicted to be co-druggable); C) In vivo validation of the combination FTY+TAK1-inhibitor in
the EAE model. The graph shows the mean and the standard error of the clinical score for each group
(n=10). Animals started treatment after disease onset (clinical score >1.0) and were randomized to each

treatment and rated in a blinded manner.

Discussion

In this study, we applied a modeling approach to characterize signaling activity both at
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the donor-specific and at the subgroup level using phosphoproteomic data from primary
immune cells of MS patients and healthy donors. At the subgroup level, we identified
models of the signaling network for healthy controls, untreated and drug-treated MS
patients. Our approach allowed us to characterize signaling deregulation in this complex
and heterogeneous disease. Further, based on the data-driven models, we developed a
network-based method to predict novel combination therapies for the treatment of MS.
We hypothesized that the interactions in the subgroup models in response to single
drugs that were not reverted to a healthy-like activity state can be co-drugged. Hence,
we developed a co-druggability score identifying those interactions. Finally, we used
that score on a newly developed strategy to predict combination therapies based on
network topology. Thus, our algorithm identifies interactions within signaling networks

that should be targeted for restoring the network to a healthy-like state.

As validation, we tested the combination of one approved drug for MS, FTY, with an
inhibitor of TAK1, a key component in the predicted signaling networks of all five studied
in vivo drugs, which was found highly deregulated in FTY. This combination largely
ameliorated the course of the animal model of MS with significantly higher efficacy than

each treatment alone, providing in vivo proof-of-concept for our approach.

The approach presented here allows insights into signaling deregulation in MS by
comparing signaling networks in untreated MS patients with those of healthy controls.
The comparison demonstrates enhanced pro-survival effects of the trophic factor
signaling pathway (AKT1) and modulation of the interferon pathway (JAK1, STAT3). In
line with the differences found here, aberrant STAT phosphorylation signaling in

peripheral blood mononuclear cells from MS patients has been reported (28). The NFkf
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pathway has been reported to be overactivated in PBMCs from patients with MS (29,
30) as well as to contribute to the genetic susceptibility of the disease (31, 32). Our
analysis supports the systemic pro-inflammatory state of PBMCs in MS. The trophic
factor pathway involving SLP76 and AKT was found active in patients under treatment
with  GA, NTZ, and IFNB and has also been associated with MS (17) and MS
susceptibility via CD6 gene (33, 34). The involvement may reflect a pro-survival
signaling state of T- and B-cells in the context of the pro-inflammatory
microenvironment. Finally, we observed overactivation of the cytokine/interferon
pathway (JAK1), which has previously been reported in MS (17). Moreover, STAT3 has
been confirmed as susceptibility gene for the disease (35), and its activation is impaired
in response to IL-10 in MS patients (36), suggesting a defective response of regulatory
Tr1 cells. Regarding the interactions that were decreased in MS patients compared to
controls, PBMCs from patients with MS showed lowered inhibition of STAT5 by LCK
suggesting impairment of the regulation of T/B-cell signaling and IL-2 trophic effects
(37) or cytotoxicity (38), as well as the regulation of the ubiquitination system modulated
by CBL-B (39). LCK is modulated by EVI5, and influences STATS in our analysis, both
being susceptibility genes for MS (35). The second inhibited interaction involved the MS
susceptibility gene CBL-B (40), which regulates TCR and co-stimulatory signals and
regulates immune tolerance through its ubiquitin E3-ligase activity. CBL-B expression is
reduced in CD4 cells from MS patients and alters the signaling of the type | interferon
pathway (41, 42). CBL-B is activated by EGFR, leading to inhibition of several pathways
by ubiquitination, including that of EGFR itself (43, 44). In summary, our results are
supported by multiple previous studies identifying deregulation of pathways in MS (17)

and shows the activation of pro-inflammatory pathways and the inhibition of pathways
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related with immune tolerance.

Regarding the signaling models of MS drugs, our method can identify the activation of
pathways downstream of drug targets in our PKN. Further, it revealed interactions with
other disease-associated pathways, which may not directly be involved in the signaling
elicited by such drug. Therefore, our modeling approach can be used to provide a wider
context of the effects of a given drug on the functions of the target cells. For example,
the models identified the activation of JAK1-STAT1 pathway (45, 46) in IFNB-treated
patients, the activation of AKT, PLC (47, 48) in patients treated with FTY, or the

activation of MAPK, NFkp (via TAK1) (49-51) in NTZ treated patients.

Our study has several limitations. First, the analysis of signaling signatures based on
phosphoproteomics of mixed immune cells can give rise to high signal variability that is
confounded by the presence of multiple cell types. The analysis of signaling
abnormalities from specific immune cell subtypes e.g. CD4+, CD8+, B-cells, monocytes
that probably differentially contribute to the disease susceptibility or to the response to
therapy may reveal new therapeutic targets. This limitation can be overcome by
technologies that allow to collect information at the single-cell level such as mass
cytometry in future studies (52), although the cost is considerably higher, thus limiting
number of subjects. Second, our current coverage using validated xXMAP assays was
restricted to less than 20 kinases, a small subset of signaling molecules and pathways
that may be activated in immune cells. Robust quantitative phosphoproteomic assays
covering thousands of phosphosites in hundreds of samples can be used for logic
modeling (53). This will allow us to expand significantly the scope of our models. Third,

the Boolean logic approach does not describe processes biochemically and models
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processes as binary, hence missing subtle aspects of signal transduction (10). An
important goal of our studies was to develop a modeling approach that can guide the
rational development of combination therapies. Our signaling topology-based approach
has the advantage of allowing prediction of combinations between drugs currently used
in patients with MS and compounds that can stimulate signaling where those drugs yield
a signaling activity distant from the healthy state. Many strategies have been developed
to predict drug combinations (54). Others have used phosphorylation data upon
perturbation using statistical approaches (13), data-driven network inference (5, 11), or
a combination of mechanistic and Bayesian network modeling (55). Due to their
simplicity, logic networks can model large networks and provide a useful framework to
study drug combinations (23-25). We used this logic framework to analyze a large
dataset encompassing 183600 data points derived from a newly recruited cohort of 169
donors. Our approach is a compromise between data availability, technical feasibility
and computational burden that sacrifices details to be able to capture a broad portion of
the signaling machinery. Fourth, in this study, we have explored only some of the
currently approved drugs for MS patients. And fifth, we have averaged individual
patients’ networks to obtain the subgroup (drug) networks, which leads to losing
individual variability, probably related to differential genetic susceptibility or immune

system activation.

In summary, we have built donor-specific dynamic logic models and developed a
network-based approach to (i) characterize MS and treatment deregulation of signaling
and (ii) predict new targets for combination therapy. This approach can be applied to

other diseases.
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Materials and Methods

Subjects and clinical cohorts. We recruited 255 subjects including 195 patients with
MS and 60 healthy controls, matched for age and sex with the RRMS group, in a
multi-centric study in four MS centers (Hospital Clinic Barcelona — IDIBAPS (n=69),
Karolinska Institute (n=64), University of Zurich (n=40) and Charité University (n=82))

(Supplementary Table S5 and Supplementary Methods S1).

Samples and processing. A unified standard operating procedure for PBMCs isolation,
stimulation and lysis, as well as sample storing and shipping was developed along with
a kit (plates) with reagents and buffers that were produced in a single facility
(ProtAtOnce) and shipped to all participating centers (see Supplementary Methods S1
for details). The reagents were prepared from a single batch and plates were prepared
from a single batch for each stimulus. Quality controls were carried out to ensure that

the reagents remain stable for 3 months.

xMAP assays. XMAP assays were developed by ProtAtOnce (Athens, Greece) and
were standardized to minimize error. We optimized assays from a list of 70 candidates
(see Supplementary Methods S1) and obtained a final list of 17 phosphoproteins
which display a good signal to noise ratio to be measured in the in vitro assays: AKT1,
CREB1, FAK1, GSK3A, HSPB1, IKBA, JUN, MK03, MK12, MP2K1, PTN11, STAT1,
STAT3, STAT5A, STAT6, TF65, WNK1 (Supplementary Table S3 and S4). We used a
set of 20 stimuli, which included pro-inflammatory or pro-oxidant stimuli (Anti-CD3,
concanavaline A (conA), H202, IFNG, IL1A, IL6, LPS, NaCl, PolylC, TNFa),

immunomodulatory stimuli (S1P, vitD3) neuroprotectants or anti-oxidants (BDNF,
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EGCG, INS and BN201), disease modifying drugs from MS (DMF, FTY, Teriflunomide,
IFNB1a (Rebif®)), and a culture media as control (Supplementary Table S5). Samples

were collected at baseline (time 0) and after 5 and 25 min.

Data normalization. After signal reading, data was normalized. To allow logic
modeling, data was normalized between 0 and 1, extending via stringent statistics the
normalization strategy presented in (21) (see Supplementary Methods S1). The
maximum between 5 and 25 measurements was selected to allow capturing signal

transduction including late effects of network motifs such as negative feedback loops.

Model generation. Healthy controls and MS (untreated) signaling models as well as
MS drug-specific models were assembled, using manual curation to prioritize
interactions that were found in immune or human cells whenever possible. To allow
inclusion of MS drugs, the drug targets were included in pathways as explained above
via the references detailed in Supplementary Tables S1 and S2. The global network
featured (167 nodes and 294 interactions). The identifiable components, i.e. those that
led to unique solutions using the optimization algorithm, were assessed as described in
(21), yielding a so-called preprocessed network of 71 nodes and 168 interactions. To
reduce model complexity to a degree that could be solved by model optimization, AND
gates were added based on publicly available knowledge on protein complexes (see

Supplementary Methods S1).

Model Optimization. For each patient, 10 completed optimization runs were performed
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with a genetic algorithm, and assessed as shown in Supplementary Figure S3 (see

Supplementary Methods S1).

Network topology-based prediction of combination therapy. We calculated the
co-druggability score as described in Figure 1 with S indicating the signaling activity

status of each interaction:

|SHealthy - SMSl - |SHeaIthy - STreatmentl

were Healthy refers to the healthy subgroup model, MS relates to the untreated MS
subgroup model and Treatment denotes one of the five approved drug treated MS
subgroup models. Therefore, interactions with a negative co-druggability score indicated
a treatment effect that produced signaling activity more different from that found in
healthy donors than without treatment and were selected as co-druggable. A

co-druggability score of 0 indicated that there was no effect due to drug treatment.

|SHealthy - SMSl - |SHea/thy - STreatmentl <0

Thus, we used the algorithm described in Figure 1 to define the co-druggability of all
interactions within each treatment group after filtering for active signaling. To ensure
that interactions with positive scores close to zero were also captured by our method
(interactions with a similar signaling activity between drug treatment and MS untreated),
we defined a lower quartile threshold around zero and collapsed almost zero scores into
zero. Further, we required co-druggable interactions to be significantly (p<0.05) different
between healthy and drug signaling by using the upper quartile as difference threshold.

Applying both filters together allowed us to identify co-druggable interactions that were
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deregulated by the disease as well as the unwanted signaling effect by the primary drug

(Figure 4 and Supplementary Figure S4).

Experimental Autoimmune Encephalomyelitis. Female C57BL/6 mice from Harlan
(8-12 weeks old) were immunized subcutaneously in both hind pads with 300 pg of a
myelin oligodendrocyte glycoprotein (MOG,; ., Spikem, Florence, Italy) emulsified with
50 pg of Mycobacterium tuberculosis (H37Ra strain; Difco, Detroit, MI, US) in
incomplete Freund’s adjuvant as described previously (56). Mice were injected
intraperitoneally with Pertussis toxin (500 ng; Sigma, US) at the time of immunization
and 2 days later. Animals were weighed and inspected for clinical signs of disease on a
daily basis by an observer blind to the treatments. The severity of EAE was assessed
on the following scale: 0= normal; 0.5= mild limp tail; 1= limp tail; 2= mild paraparesis of
the hind limbs, unsteady gait; 3= moderate paraparesis, voluntary movements still
possible; 4= paraplegia or tetraparesis; 5= moribund state; 6= death. Animals (10 mice
per arm) were randomized to their treatment once they have reached a clinical score >
1 point. Clinical assessment was performed by a blinded evaluator to the treatment
group. Comparison between groups were performed using the Mann-Whitney test with

p-value cut-off at 0.05.

Statistical validation of patient subgroup models. To test whether the signaling
models found for each patient subgroup were reflected in the experimental
phospho-levels, we first calculated for each stimuli pair, if the fold change values (before

non-linear normalization) within a single subgroup deviated significantly from 0 by a
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one-sample Wilcoxon test. Multiple testing correction was performed using the
Benjamini-Hochberg strategy. Secondly, we grouped the stimulus pairs into two
categories, i.e. either in accordance with the model of signaling or not, by confirming if a
phospho-readout could be reached by the respective stimulus in the signaling model for
the different subgroups (Supplementary Figure S5A-E). Finally, using Fisher's exact
test, we then assessed if the stimuli pairs found supported by the models were enriched
for high significance (using p<0.05 as cutoff) compared to the not supported pairs

(Supplementary Figure S5F).

Code and data availability. All code, mathematical models and data can be found on

Github (http://github.com/saezlab/combiMS).
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