

1 **An ex vivo tissue model of cartilage degradation suggests that cartilage state can
2 be determined from secreted key protein patterns**

3 Michael Neidlin¹, Efthymia Chantzi², George Macheras³, Mats G Gustafsson², Leonidas G Alexopoulos¹

5

6 **Departmental and institutional affiliations**

7 1: Department of Mechanical Engineering, National Technical University of Athens,
8 Athens, Greece

9 2: Department of Medical Sciences, Uppsala University, Uppsala, Sweden

10 3: 4th Orthopaedic Department, KAT Hospital , Athens , Greece.

11

12 **Corresponding Author**

13 Leonidas Alexopoulos, Department of Mechanical Engineering, National Technical
14 University of Athens, Heroon Polytechniou 9, 15780 Zografou, Greece

15 Email: leo@mail.ntua.gr Phone: +30 210 7721666

16

17

18 **Author contribution statement**

19 MN and LA conceived and designed the study. Based on the patient samples provided
20 by GM, MN performed all the wet lab experiments. MN also performed most of the
21 final data analyses and data visualizations. EC and MG introduced and implemented,
22 the MFI normalization procedure, the OSS-DA analysis, the exhaustive variable subset
23 selection method, as well as the idea to replace saturated protein readouts by means of
24 imputed values. The interpretations of the resulting data were made jointly by all au-
25 thors. LA supervised the project. MN drafted the manuscript based on inputs from all
26 co-authors. All authors read and approved the final version of the manuscript.

27

1 **ABSTRACT:**

2 The pathophysiology of osteoarthritis (OA) involves dysregulation of anabolic and cat-
3 abolic processes associated with a broad panel of cytokines and other secreted proteins
4 and ultimately lead to cartilage degradation. An increased understanding about the in-
5 teractions of these proteins by means of systematic in vitro analyses may give new ideas
6 regarding pharmaceutical candidates for treatment of OA and related cartilage degra-
7 dation.

8 Therefore, first an ex vivo tissue model of cartilage degradation was established by
9 culturing full thickness tissue explants with bacterial collagenase II. Then responses of
10 healthy and degrading cartilage were analyzed by measuring protein abundance in tis-
11 sue supernatant with a 26-multiplex protein profiling assay, after exposing them to a
12 panel of 55 protein stimulations present in synovial joints of OA patients. Multivariate
13 data analysis including exhaustive pairwise variable subset selection was used to iden-
14 tify the most outstanding changes in the measured protein secretions. This revealed that
15 the MMP9 response is outstandingly low in degraded compared to healthy cartilage and
16 that there are several protein pairs like IFNG and MMP9 that can be used for successful
17 discrimination between degraded and healthy samples.

18 Taken together, the results show that the characteristic changes in protein responses
19 discovered seem promising for accurate detection/diagnosis of degrading cartilage in
20 general and OA in particular. More generally the employed ex vivo tissue model seems
21 promising for drug discovery and development projects related to cartilage degradation,
22 for example when trying to uncover the unknown interactions between secreted pro-
23 teins in healthy and degraded tissues.

24

25 **Keywords:** Osteoarthritis, cartilage degradation, multiplex protein profiling, prote-
26 omics, ex vivo model, cytokine interactions

27

1 **Introduction**

2 Osteoarthritis (OA) is a progressive disease involving mechanical, biochemical and ge-
3 netic factors that disturb associations between chondrocytes and extracellular matrix
4 (ECM), alter cellular metabolic responses and result in degradation of articular carti-
5 lage¹. Prominent proteins associated with the pathophysiology of OA are pro-inflam-
6 matory cytokines including the interleukins IL1a/b, IL6, IL8 and the tumor necrosis
7 factor TNFa¹. Anti-inflammatory cytokines such as IL4, IL10 and IL13 are also ele-
8 vated in OA tissues². Moreover, aggrecanases and matrix metalloproteinases (MMPs)
9 that degrade the ECM as well as growth factor families of bone morphogenetic proteins
10 (BMPs), fibroblast growth factors (FGFs) and transforming growth factors (TGFs) are
11 all present in synovial joints of OA patients^{3, 4}. The fact that proteins with opposing
12 effects are found in OA joints simultaneously (e.g. pro-inflammatory and anti-inflam-
13 matory cytokines or matrix degrading enzymes and chondrogenic cytokines) suggests
14 nontrivial inherent interactions between these proteins.

15 Targeting these players separately in order to reverse or suppress OA has been tested
16 in many clinical studies in the past with very limited success. Monoclonal antibodies
17 such as Adalimumab (anti-TNFa) and Canakinumab (anti-ILb), MMP inhibitors, and
18 growth factor stimulators like Sprifermin (rhFGF18) have not been able to provide sig-
19 nificant improvements until now or are still in clinical trials⁵. Such rather disappointing
20 results support the hypothesis that targeting a single protein is not sufficient for a suc-
21 cessful therapy. Therefore, a deeper understanding of the cytokine interaction network
22 might be necessary to leverage drug discovery in OA.

23 One approach to achieve this aim is the use of antibody-based multiplexing assays
24 that simultaneously measure the abundance of a broad panel of proteins in a biological
25 sample. Applications of such assays related to OA and cartilage include re-construc-
26 tions of chondrocyte cell signaling pathways based on phosphoproteomics and cytokine
27 release data from 2D chondrocyte cultures⁶, cytokine releases after anabolic stimula-
28 tions of 3D chondrocyte scaffolds⁷ and measurements of joint pathology dependent cy-
29 tokine profiles in synovial fluids and cartilage tissues⁸. Notably, careful multivariate
30 analyses of such protein measurements also have great potential as a tool for discovery
31 of novel diagnostic biomarkers in the form of characteristic changes across subsets of
32 the proteins studied. However, in order to enable systematic large-scale measurements
33 of these protein secretion patterns, a sufficiently simple and cheap ex vivo tissue model
34 of cartilage degradation (CD) is needed.

1 Many in vitro models of OA and CD have been developed in the past⁹. These differ in
2 the tissue types used (monolayer cell cultures, 3D cell cultures or tissue explants) and
3 the method chosen for OA induction (mechanical damage or chemical stimulation with
4 pro-inflammatory cytokines). Some in vitro models use co-culturing with synovium,
5 subchondral bone or other OA related tissues to represent more physiological condi-
6 tions. Chemical induction of OA in an explant model often uses IL1b and/or TNFa to
7 suppress the synthesis of proteoglycans and increase the release of MMPs that conse-
8 quently cleave the collagen links of the ECM⁹. Another approach for modeling of CD
9 associated with OA, recently proposed by Grenier et al.¹⁰, is pre-treatment of cartilage
10 tissue explants by collagenase type II. Using this approach, cleavage of collagen II is
11 directly induced and the ECM gets degraded, together with associated changes in sur-
12 face morphology, decreases of tissue sulfated glycosoaminoglycan (s-GAG) content
13 and a deterioration of the mechanical properties such as increased permeability and
14 decreased Young's moduli. As stated by the Grenier et al.¹⁰, this suggests that enzy-
15 matic degradation with collagenase II can be used to simulate characteristic changes
16 observed in early-stage OA.

17

18 Similarly to Grenier et al.¹⁰ we therefore used pure collagenase II pre-treatment as a
19 degradation inducer in order to create a simplified ex vivo tissue model of CD. Using
20 only collagenase II results in an oversimplification of the physiological conditions, but
21 one can be sure that degradation will be achieved after a rather short treatment period.
22 This model was established and then used in our protein profiling approach to under-
23 stand how different protein stimuli affect the degraded state and to search for potential
24 diagnostic biomarkers that can discriminate between healthy and degraded cartilage
25 tissue. More specifically, we expanded the work by Grenier et al.¹⁰ by looking at protein
26 secretion patterns after stimulation with major OA related cytokines/proteins, and eval-
27 uated the possibility to use these response patterns for determination of the cartilage
28 state. As demonstrated below, this novel systematic approach revealed biomarkers with
29 potential to be used for accurate detection/diagnostics of degrading cartilage. More gen-
30 erally, this approach was found to have potential to help uncovering the interactions of
31 CD related proteins, and thereby also help accelerating drug discovery and development
32 activities associated with OA. .

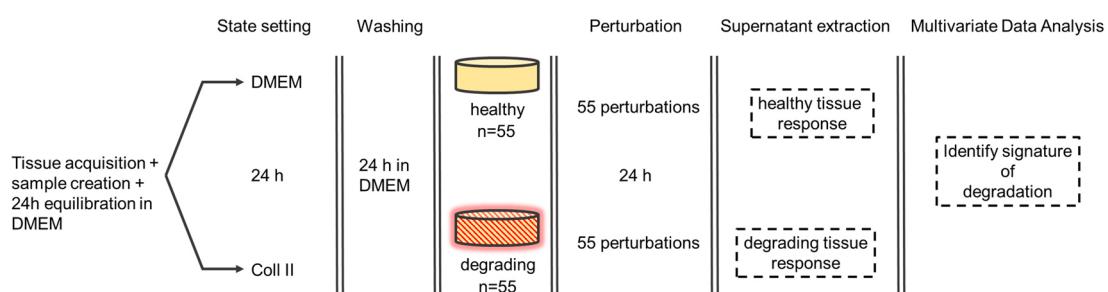
33

34

1 **Materials and Methods**

2

3 **Explant tissue model**


4

5 *Model overview and workflow*

6 The main idea of the ex vivo tissue model is to perturb healthy and degrading cartilage
7 tissue with a set of OA related stimuli followed by a measurement of the tissue re-
8 sponds in terms of protein secretions. The resulting dataset is analyzed in order to
9 compare the two different tissue states and pinpoint individual stimuli yielding different
10 protein responses. Our hypothesis is that these protein responses depend on the tissue
11 state (healthy or degrading) and thus can be used to distinguish between them.

12 Figure 1 illustrates the combined experimental-computational procedure with the indi-
13 vidual steps described in more detail below.

14

16

17 Figure 1: Overview of the novel combined ex vivo and in silico procedure introduced here. Cartilage
18 tissue explants were retrieved from femoral heads of hip fracture patients and equilibrated for 24h in
19 DMEM*. Tissue discs were pre-treated for 24h either with DMEM* or collagenase type II, and washed
20 with DMEM* for 24h. Then the discs were stimulated for another 24h with 55 perturbations consisting
21 of single proteins and pairwise combinations of some of them. Healthy and degrading responses were
22 characterized in terms of multivariate patterns of secreted proteins measured in the supernatant after the
23 stimulation.

24

25 *Explant isolation, state setting and washing*

26 Cartilage tissue samples were obtained from the femoral heads of patients (n=5, age 72-
27 94, 1 male and 4 females) undergoing total hip replacement due to fracture (n=3, P1-
28 P3) or OA (n=2, P4 and P5) with patient's informed consent and protocol approved by
29 the responsible ethics committee. For an overview of how the samples were used in the
30 different experiments performed, see Table 1. The samples were examined macroscop-
31 ically to determine the locations of intact cartilage. Cartilage parts showing signs of
32 degradation were excluded. Most of the cartilage from OA patients was acquired from

1 the lateral part of the central superior femoral head. In the fracture cohort, almost all
2 parts of the femur head could be used. Femur heads were rinsed with PBS, cartilage
3 without subchondral bone was removed and placed into high glucose DMEM (Dulbec-
4 co's Modified Eagle Medium) supplemented with 10% FBS, 1% Penicillin/Streptomycin
5 and 1% fungizone (BioCell Technology LLC, Irvine, CA), denoted by DMEM*.
6 Cartilage disc samples of 3mm diameter were created with a biopsy punch and let to
7 equilibrate in DMEM* for 24h. Then the tissue samples were placed in either fresh
8 DMEM* or DMEM* with collagenase type II, activity 125 units/mg, (MP Biomedicals,
9 Santa Ana, CA) of 2 mg/ml for 24h. To see the effect of different collagenase concen-
10 trations on the cytokine/protein secretion of the cartilage explants, concentrations of 1
11 and 4 mg/ml were also used. The three collagenase concentrations were applied in du-
12 plicate. Finally, before starting the perturbations of the resulting healthy and degrading
13 cartilage samples, a washing step of 24h in fresh DMEM* media was included.

14

15 *Perturbation and supernatant extraction*

16 A total number of 13 proteins for stimulation were selected as they have been reported
17 being present in OA^{1,2}. These included IL1a, IL1b, TNFa , IL6, IL8, IL4, IL10, IL13,
18 BMP2, FGF2, IGF1, TGFb1 and MMP9 (PeproTech EC Ltd, London). These proteins
19 were separated into the following two groups; [IL1a, IL1b, TNFa, IL6, IL8, MMP9]
20 and [IL4, IL10, IL13, BMP2, FGF2, IGF1, TGFb1]. All possible single treatments and
21 all possible pairwise combinations from these two groups were used as a perturbation
22 set, resulting in 55 different stimuli. The concentrations used were chosen from prior
23 experiments and already existing studies^{6,7,9}. Detailed information on the experimental
24 design can be found in the Supplementary Material 1. A stimulation time of 24h was
25 chosen based on studies about the transient behavior of tissue responses, which can be
26 found in Supplementary Material 2. In Supplementary Material 3, the results show that
27 no strong batch effect due to patient-to-patient variability could be observed and also
28 that the coefficient of variation of the assay was acceptable (<25%) for 24 out of 26
29 proteins. Cartilage discs were put in 96 well microplates and individually stimulated
30 with 260 μ l of media. After the stimulation 80 μ l of the supernatant was retrieved and
31 cytokine releases were measured with the FlexMap 3D platform (Luminex Corp. USA).
32 The supernatant of an unstimulated disc (cultured in DMEM* during the perturbation
33 step) was taken as control. Blank measurements to evaluate the experimental noise for
34 each protein were included as well. All steps were conducted in a humidified incubator

1 at 37° C and 5% CO₂. The rather high number of stimuli reduced the possibility of
2 having biological replicates as 55 cartilage explants were needed for one run of single
3 measurements. As our main aim was to discover and compare response patterns of car-
4 tilage explants and not to uncover new biological mechanisms, we decided to accept
5 the drawback of having a low number of replicates with simultaneously having a broad
6 panel of stimuli. Thus, single measurements were collected after the stimulations of 55
7 untreated cartilage discs of patient P2 and 55 collagenase II (2 mg/ml) treated cartilage
8 discs of patient P3.

9

10 **Experimental techniques**

11

12 *Multiplex ELISA*

13 The Luminex xMAP technology is an antibody-based suspension array technology
14 measuring protein abundance in a sample for a set of predetermined proteins. Detailed
15 background information can be found in the review of Alexopoulos et al.¹¹
16 A library of 26 protein releases (PEDF, CXCL11, IL13, ZG16, IL4, GROA, IFNG,
17 CYTC, IL8, IL17F, IL12A, TNFa, IL1a, TFF3, ICAM1, IL10, FST, S100A6, CXCL10,
18 PROK1, CCL5, IL20, TNFSF12, BMP2, FGF2, MMP9) was measured in the superna-
19 tant.

20

21 *Histology evaluation*

22 Two DMEM* and two collagenase II (2 mg/ml) treated cartilage discs were taken after
23 the washing step (Figure 1), fixated in PBS with 10% formalin, decalcified and embed-
24 ded in OCT. Histological evaluation with toluidine blue staining following standard
25 protocols was performed¹².

26

27 *Mechanical testing*

28 In order to evaluate the change of mechanical properties of collagenase II (2 mg/ml)
29 treated samples, three DMEM* and three collagenase II (2mg/ml) treated tissue sam-
30 ples were taken after the washing step and tested with the Bose Electroforce 3100
31 (Bose, Framingham, MA). Stress-relaxation tests and measurement of the equilibrium
32 stress were used to obtain information about the compression stiffness of the material¹³.
33 Initially, samples were pre-loaded with a force of F=0.1N. Then an instantaneous ramp
34 displacement of 5% of the initial height was applied and the relaxation of the force over

1 time was measured until a dynamical equilibrium was reached. The procedure was re-
2 peated for a total of three loading steps. Equilibrium stress was calculated as the engi-
3 neering stress $\sigma=F/A_0$ with $A_0\approx7.07\text{ mm}^2$.

4

5 *GAG release*

6 The extracellular release of sulfated glycosaminoglycans was measured spectrophoto-
7 metrically via a Dimethylmethylen Blue (DMMB) assay¹⁴ using the Varioscan LUX
8 multimode microplate reader (Thermofisher Scientific Inc., USA). As s-GAGs belong
9 to the main constituents of the ECM¹⁰ an increased presence in the explant supernatant
10 can be directly related to increased ECM destruction. The GAG release was quantified
11 for two groups. One group was treated with DMEM* and the other group was treated
12 with collagenase II (2 mg/ml). 50 μl of the supernatant was extracted at $t=2\text{h}$, 6h , and
13 24h . The measured s-GAG concentration was normalized to tissue wet weight. $n=3$
14 discs were chosen per group.

15

16 *Collagen II content*

17 Collagen II is the main constituent of the ECM¹⁰, thus reduction can be directly related
18 to ECM destruction. Tissue collagen II content was quantified as shown previously¹⁵
19 with a hydroxyproline assay kit (Abcam, Cambridge, UK). One group was treated with
20 DMEM* for 24h and the other group was treated with collagenase II (2 mg/ml) for 24h.
21 $n=3$ discs were chosen per group and tissue collagen content was normalized to tissue
22 wet weight.

23

24 **Data post-processing, analysis and statistical tests**

25 The multiplex ELISA experiments delivered median raw fluorescence intensities (MFI)
26 for each marker in the cytokine release dataset resulting in (55 perturbation +1 con-
27 trol)*26 (proteins) =1456 data points for the healthy and degrading tissue, respectively.
28 Additionally duplicate blank measurements were included for each protein. MFI values
29 of measurements below the average of the blanks were deleted and imputed based on a
30 nearest neighbor algorithm¹⁶ as implemented in the function `knnimpute` provided by
31 Matlab (MathWorks, Natick, USA). In addition, the same imputation algorithm was
32 used to replace the saturated MFI values obtained for the particular protein(s) used for
33 stimulation. For example, when IL1a is used for stimulation, then the corresponding
34 MFI value is saturated and thus replaced via imputation.

1 Meaningful multivariate data analyses required normalized MFIs that allow comparisons
2 between plates and between cytokines/proteins. The normalized difference $D(i,j,p)$
3 for stimulus i and cytokine/protein j present on plate p was determined as:

4

5
$$D(i,j,p) = \frac{(F(i,j,p) - F_c(j,p))/2}{(F(i,j,p) + F_c(j,p))/2} = \frac{F(i,j,p) - F_c(j,p)}{F(i,j,p) + F_c(j,p)} \quad (1)$$

6

7 where $F(i,j,p)$ denotes the MFI from cytokine j for stimulus i on plate p and $F_c(j,p)$
8 denotes the signal from the untreated control well for cytokine j on plate p. The nor-
9 malized values are all restricted to the interval [-1,+1] where the value +1 is obtained
10 when $F(i,j,p) >> F_c(j,p)$, the value -1 when $F(i,j,p) << F_c(j,p)$ and the value 0 when
11 $F(i,j,p) = F_c(j,p)$. Matlab and R¹⁷ were used for the post processing and the analysis of
12 the data. Principal Component Analysis¹⁸ (PCA) and k-means clustering¹⁹ were used to
13 explore the data. Subsequently, supervised methods in the form of optimal orthogonal
14 system discriminant analysis (OOS-DA)²⁰ and an exhaustive pairwise variable subset
15 selection procedure were employed in order to identify the most discriminative pairs of
16 proteins.

17

18 *OOS-DA, optimal orthonormal system for discriminant analysis*

19 OOS-DA²⁰ may be viewed as a multi-output generalization of Fisher's linear discrimi-
20 nant analysis²¹ where multiple orthogonal linear projections are created sequentially,
21 each maximizing Fisher's separation criterion between the classes of interest. OOS-DA
22 has been used previously to design a new type of classification method²² and for batch
23 correction in mass spectrometry based metabolomics²³. The OOS-DA was performed
24 by means of Matlab code developed in-house.

25

26 *Exhaustive pairwise variable subset selection*

27 The between-class separation s_b and the within-class separation s_w needed to calculate
28 the separation score $J_{\text{separation}} = s_b/s_w$ used to find the most discriminative pairs of meas-
29 ured proteins are defined in equations 2 and 3.

30

31
$$s_w = \sum_{k=1}^K \frac{1}{N_k} \sum_{n \in \text{class } k} \|\mathbf{x}_n - \mathbf{m}_k\|^2 \quad \text{where} \quad \mathbf{m}_k = \frac{1}{N_k} \sum_{n \in \text{class } k} \mathbf{x}_n \quad (2)$$

32
$$s_b = \frac{1}{K} \sum_{k=1}^K \|\mathbf{m}_k - \mathbf{m}\|^2 \quad \text{where} \quad \mathbf{m} = \frac{1}{K} \sum_{k=1}^K \mathbf{m}_k \quad (3)$$

1 In the analysis performed here we used $K=2$, corresponding to healthy and degraded
2 samples, respectively. x_n denotes the n^{th} sample (column vector) and N_k denotes the
3 number of samples belonging to class k . In order to reduce the risk of overfitting, the
4 actual score used to identify the most discriminating protein pair was calculated as the
5 maximum across 100 values of $J_{\text{separation}}$ obtained using a resampling approach where
6 each value was obtained by using a stimuli subset consisting of 80% of the stimuli in
7 the original dataset.

8

9 *Statistical comparisons of individual treatments*

10 Statistical comparisons between individual treatments were done with the unpaired
11 two-sided t-test at significance level $p=0.05$.

12

13 Table 1 provides an overview of the sample and replicate number per tissue state for all
14 experiments performed in the study. Furthermore the tissue source (patients P1-P5), its
15 origin (fracture or OA), and the location of the associated results presented in this work
16 are listed.

Experiment and number of replicates	Patient	Origin	Result location
Preliminary analysis: Steady state (n=2 per tissue state)	P2	fracture	Supplementary Material 2
Preliminary analysis: Batch effect and CV (n=1 per patient)	P1 + P2	fracture	Supplementary Material 3
Protein release after 3 different collagenase II concentrations (n=2 per group)	P2	fracture	Main text
Healthy and degrading tissue response (n=1 per tissue state)	P2 + P3	fracture	Main text
Histology (n=2 per tissue state)	P4	OA	Supplementary Material 5
GAG release (n=3 per tissue state)	P4	OA	Supplementary Material 5
Collagen II content (n=3 per tissue state)	P5	OA	Supplementary Material 5
Mechanical test (n=3 per tissue state)	P5	OA	Supplementary Material 5

17 Table 1: Overview of the experiments and replicate number per tissue state for all experiments performed
18 in the study. For details, see the main text.

19

1 **Results**

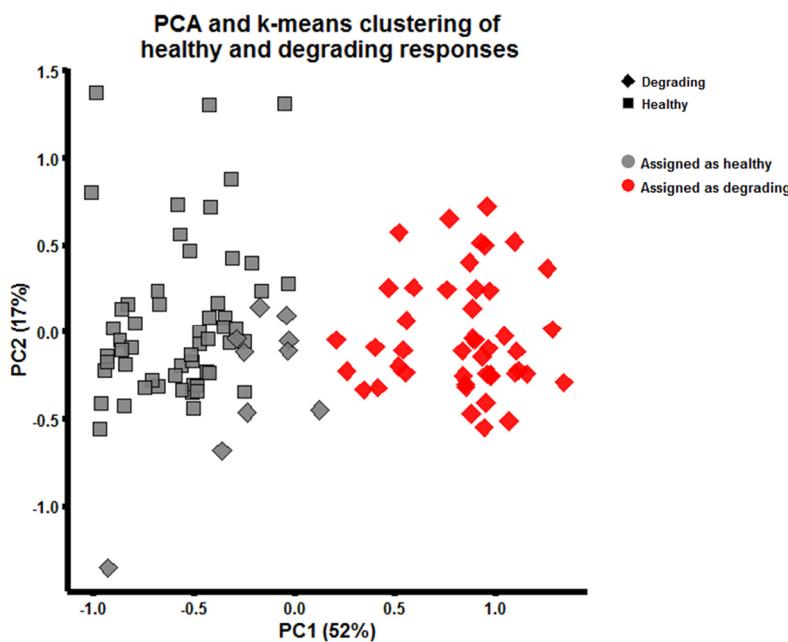
2

3 *Collagenase II treatment induces protein releases observed in clinical OA*

4

5 In order to investigate the individual protein secretions of collagenase treated tissue,
6 raw MFIs were compared between untreated (DMEM*) and treated (Col) samples. The
7 MFIs obtained from the three concentrations were pooled together. Cohen's d, defined
8 as $d=(m_1-m_2)/s$ where m_i are the class means and s is the pooled standard deviation of
9 the dataset, was taken as the measurement of the effect size. The identified cytokines
10 are presented in Table 2, sorted by decreasing effect size. Out of the 11 proteins with
11 significant differences between control and collagenase treated samples, 4 (bold, Table
12 2) were found in many OA related studies. These were TNFa and IFNG that are related
13 to inflammation and innate immunity responses as well as the two anti-inflammatory
14 cytokines IL4 and IL13²⁴. CXCL11²⁵, IL17F²⁶, and TNFSF12²⁷ (TWEAK) are also
15 considered contributors of OA. The remaining 4 cytokines TFF3²⁸, PEDF²⁹, CCL5³⁰
16 and S100A6³¹ can be considered underreported players. However every protein has
17 been shown to play a role in at least one study.

18


Protein	Function/Involvement	p	Cohen's d
IL4	anti-inflammatory	<0.001	5.7
TFF3	unsure	<0.001	5.2
IFNG	innate immunity	0.018	4.2
PEDF	multiple functions	0.001	-3.2
TNFa	pro-inflammatory	0.001	3.1
CCL5	immunity response	0.007	3.0
IL13	anti-inflammatory	0.002	2.6
S100A6	Ca2+ binding	0.009	2.4
CXCL11	T cell chemoattraction	0.011	2.3
IL17F	pro-inflammatory	0.012	1.4
TNFSF12	pro-inflammatory	0.03	1.3

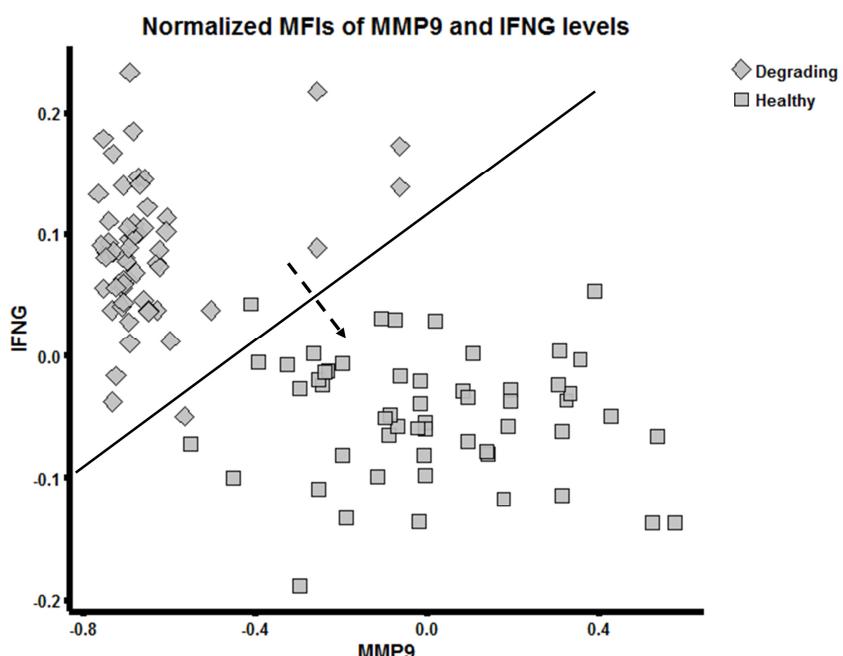
19 Table 2: Protein secretions showing significant differences between DMEM* (n=3) and collagenase
20 (n=6) treated samples. Sorted according the effect size measured in terms of Cohen's d.
21

22

1 In summary, these results suggest that cartilage discs treated with collagenase increase
2 the secretion of particular proteins that also have been observed to have increased levels
3 in clinical OA studies
4

5 *Tissue state can be determined based on measured protein patterns*
6 PCA of healthy and degrading tissue responses with subsequent k-means clustering
7 ($k=2$) based on the first 4 PCA dimensions (82% of variance covered) was performed.
8 The responses plotted in the resulting 2D space of the first two PCs are presented in
9 Figure 2.

10
11 Figure 2: PCA score plot (first two principal components covering 52% and 17% of the variance, respectively) of normalized MFIs. The shape of a marker indicates its true tissue (sample) group. The colors reflect the unsupervised category assignments made by k-means clustering ($k=2$) category assignments.
12 As the samples assigned to the gray color mainly belong to the healthy group, it has been given the label
13 “assigned as healthy” while the red samples has been given the label “assigned as degrading”
14
15


16
17 The shapes of the markers in Figure 2 represent the true tissue (sample) groups. There
18 are 55 squares (healthy perturbed discs) and 55 diamonds (degrading perturbed discs)
19 in the PC1-PC2 plane. The two colors gray and red represent the two categories identi-
20 fied by the k-means algorithm ($k=2$). The subsequent manual assignment of them as
21 “assigned as healthy” and “assigned as degrading” protein secretion patterns was based
22 on the fact that the majority of the members of the gray cluster belongs to responses
23 from the healthy tissue and the majority of the red cluster belongs to responses the
24 degrading tissue.
25

1 Figure 2 also shows that protein secretions after perturbations lead to the formation of
2 two distinct clusters in the PC1-PC2 plane, indicating that tissue state can be determined
3 based on measured protein patterns. In particular, the coordinate along the PC1-axis
4 seems suitable for classification of the cytokine responses as “healthy” or “degrading”.
5 This suggests that it is interesting to look at the elements (loadings) of the correspond-
6 ing eigenvector in order to determine which of the measured protein changes are most
7 useful for separation between healthy and degrading tissue. The individual loadings of
8 each protein to PC1 are shown in Supplementary Material 4, Figure S1. Increases of
9 MMP9 and FGF2 as well as decreases of CXCL10, ZG16 and FST would cause a shift
10 along PC1 from degrading to healthy responses.

11

12 *Levels of IFNG and MMP9 are promising for tissue state discrimination*

13 PCA is an unsupervised method that disregards any class information. Therefore it is
14 not guaranteed that the resulting linear projection provides an optimal solution in terms
15 of discrimination between healthy and degrading tissues. Notably, 10 out of the 55 de-
16 grading tissue responses get assigned to the wrong cluster (Figure 2, gray diamonds).
17 Therefore, supervised discriminant analysis in the form of OOS-DA²⁰ was used instead,
18 to identify the proteins most accountable for the changes between degrading and
19 healthy responses. The full analysis can be found in Supplementary Material 4. Briefly,
20 applying OOS-DA identified that there were many linear combinations of the 26 meas-
21 ured protein changes that lead to better separation than using the corresponding PCA
22 projections (Supplementary Material 4, Figure S2). Contrary to the analysis of the PC1
23 loadings, no outstanding influence of FGF2 on class separation could be observed using
24 OOS-DA. Therefore, instead of performing dimensionality reduction using OSS-DA
25 that yields ambiguous results, a straightforward variable subset selection procedure was
26 employed in the form of an exhaustive search across all plausible subsets of two pro-
27 teins where the optimal protein pair regarding class discrimination was identified. The
28 resulting scatterplot of this pair (MMP9, IFNG) together with a linear decision bound-
29 ary separating the two classes is shown in Figure 3. The arrow indicates the direction
30 in which the degrading tissue responses should be moved in order to coincide with the
31 healthy tissue responses.

1
2 Figure 3: A scatterplot of IFNG and MMP9 levels (normalized MFIs) of healthy and degrading re-
3 sponds. The line indicates the decision boundary between healthy and degrading tissue. The arrow in-
4 dicates the desired direction that the degrading responses should move to.
5

6 In summary stimulation of healthy and degrading tissue with a set of 55 stimuli lead to
7 changed secretion levels of various proteins, which were evaluated to discriminate be-
8 tween the two tissue states using different approaches. An exhaustive search across all
9 pairwise combinations of protein levels identified MMP9 and IFNG, among several
10 other pairs, as promising for class discrimination.

11
12 *Collagenase II treatment induces OA like phenotype changes*

13 The results of histology evaluation, mechanical testing, as well as measurements of
14 GAG release and collagen II content in seemingly healthy cartilage samples taken from
15 OA patients are presented in Supplementary Material 5. These analyses show that col-
16 lagenase II treatment leads to: (i) structural changes of cartilage (after 24h at concen-
17 tration of 2 mg/ml) characterized by tissue fissuring and fibrillation, (ii) significant
18 ($p < 0.001$) decrease of tissue collagen II content, (iii) significant decrease ($p < 0.001$) of
19 the elastic modulus, (iv) significant ($p < 0.001$) increase of GAG release into the super-
20 natant. Taken together, these results partly confirm the results reported by Grenier et
21 al.¹⁰, in general showing that collagenase II treatment induces OA like phenotype
22 changes.

23

1 **Discussion**

2 The main aim of this study was to measure and characterize cytokine/protein release
3 patterns in an ex vivo model of CD, created by exposing healthy cartilage to the ECM
4 degrading enzyme collagenase type II. First, it was shown that the induced ECM deg-
5 radation resulted in secretions of proteins related to OA observed in various clinical
6 studies (see Table 2). Secondly, the in vitro responses of healthy and degrading tissue
7 to a broad set of OA related protein perturbations were investigated. Multiplexed
8 ELISA measurements of 26 secreted proteins were subject to exploratory (PCA, k-
9 means) multivariate data analysis. These analyses showed that it is possible to success-
10 fully distinguish between healthy and degrading samples for a majority of the samples
11 (Figure 2). However, 10 out of 55 responses from the degrading tissue were assigned
12 incorrectly and supervised OOS-DA showed that there are many other linear projec-
13 tions, other than those obtained using PCA (see Supplementary Material 4, Table S1),
14 which give almost perfect separation for all samples. Finally, an exhaustive variable
15 subset selection algorithm was employed to identify pairs of proteins that have the most
16 promising discrimination between the classes. The changed levels of MMP9 and IFNG
17 delivered the best distinction between the classes according to the separation criterion
18 used (Figure 3). Notably, the cloud of squares in the scatter plot (Figure 3) may be
19 interpreted as a characteristic distribution (“fingerprint”) showing how a healthy carti-
20 lage responds to a panel of 55 protein perturbations. Similarly, the cloud of diamonds
21 in Figure 3 reflects how a degraded cartilage responds to the same perturbations. Ideally
22 a successful drug treatment would make the degraded cartilage produce the same cloud
23 as the healthy cartilage, meaning that the cloud of diamonds moves to sit on top of the
24 cloud of squares, as indicated by the striped arrow in Figure 3.

25

26 In many studies on in vitro models for OA related drug treatment, the typical experi-
27 mental readouts are glycosaminoglycan (GAG) and collagen II content. In addition pro-
28 totypic biomarkers such as matrix metalloproteinases (MMPs) or inflammatory factors
29 such as IL1a/b or TNFa are also often used³². Looking at such few readouts might be
30 too simplistic given the outstanding complexity of the human biological systems. In
31 particular, this might lead to misleading conclusions in general, for example overlook-
32 ing truly efficient single drugs and drug combinations. Therefore, in our approach we
33 measured the changed release of 26 proteins simultaneously. Then we used the col-

1 lected data in order to characterize the molecular processes associated with CD, includ-
2 ing how they can be used for diagnosis and/or to accelerate drug discovery and devel-
3 opment.

4

5 Both our molecular and phenotypic results support the idea of Grenier et al.¹⁰ to use
6 collagenase II to induce an “OA-like” state. For the phenotypic results, we used healthy
7 looking parts of tissues obtained from OA patients and confirmed that collagenase II
8 treatment results in expected/desired OA-related properties like structural changes of
9 cartilage, tissue fissuring and fibrillation, decreased tissue collagen II content, de-
10 creased elastic modulus, and increased GAG release into the supernatant (see Supple-
11 mentary Material 5). In their work, Grenier et al. performed collagenase II treatment
12 for 45-120 min, and claimed it to induce similarities with early stages of OA¹⁰. In our
13 work the collagenase II treatment was extended to cover 24h. The panel of released
14 proteins after such a treatment in our study (Table 2) indicates similarities with late
15 rather than early stages of OA, when comparing with clinical studies. However, this
16 difference in interpretation may simply be due to the fact that there is yet no clearly
17 defined distinction between early and late stages of OA.

18

19 *Limitations*

20 The systems biology approach introduced here based on protein profiling of CD used
21 55 stimulations per cartilage condition (healthy and degraded). Since a patient donation
22 usually results in less than 100 cartilage samples, the tissue responses recorded in this
23 study did not come from the same donor. More specifically, healthy perturbed (gray
24 squares in Figure 2) and degrading perturbed (red diamonds in Figure 2) came from
25 two different patients (P2 and P3). Therefore, one cannot exclude that there is a batch
26 effect that can explain some of the differences observed. However, as shown in Figure
27 S1 of Supplementary Material 3, when looking at perturbed healthy cartilage from P1
28 and P2, no batch effect is observable. Future studies should reduce the number of per-
29 turbations employed in each experiment, thereby allowing for using cartilage samples
30 from the same patient for both states (healthy and degrading) on the same 96-well plate.
31 Additionally, using duplicate measurements on the same experimental plate would also
32 be preferable. The relatively high number of 55 different perturbations was used to in-
33 crease the probability to observe different protein releases from healthy and degrading
34 tissue, whilst accepting a statistically weaker significance of the biological differences

1 observed. Thus, the framework and results presented here should be considered as a
2 proof-of-concept that will be followed by more optimized experiments in the future,
3 which will be limited to a smaller set of stimulations.

4

5 A second limitation of the study reported here is that important OA related proteins
6 such as disintegrin and metalloproteinases with thrombospondin motifs ADAMTS 4
7 and 5 and the matrix metalloproteinase MMP13 were not included. In the current study
8 these proteins were not measured due to the lack of reliable assays and challenges in
9 terms of cross-talk. Additionally, it would be interesting to quantify to which extent
10 different stimuli affect the collagen II content of the explants.

11

12 Despite these limitations we believe that the novel systemic ex vivo and in silico ap-
13 proach introduced here presents a viable way to investigate compound treatments for
14 CD in general, and related to OA in particular. Thus, we have shown that a more so-
15 phisticated systemic analysis at the molecular level is feasible, and that it provides a
16 more detailed molecular picture of what happens during CD in terms of proteomic re-
17 sponses to cytokine/protein stimulations.

18

19 In this study we presented an ex vivo model of CD for systemic profiling of interactions
20 between stimulating and responding proteins. Measurements of key protein patterns
21 seem useful to make statements about the condition of an unclassified tissue sample.
22 Future work will investigate changes in tissue responses after pre-treatments with
23 chemical agents (drug candidates) that have the potential to inhibit ongoing CD.

24

25 **Acknowledgement**

26 MN acknowledges financial support from the German Research Foundation (DFG) via
27 the scholarship “Forschungsstipendium” (PN: 387071423). All authors have nothing
28 to disclose.

29

1 **References**

2

3 1 M. B. Goldring, “Osteoarthritis and cartilage: the role of cytokines,” *Current*
4 *rheumatology reports*, vol. 2, no. 6, pp. 459–465, 2000.

5 2 M. Kapoor, J. Martel-Pelletier, D. Lajeunesse, J.-P. Pelletier, and H. Fahmi,
6 “Role of proinflammatory cytokines in the pathophysiology of osteoarthritis,” *Nature*
7 *Reviews Rheumatology*, vol. 7, no. 1, p. 33, 2011.

8 3 E. Mariani, L. Pulsatelli, and A. Facchini, “Signaling pathways in cartilage re-
9 pair,” *International journal of molecular sciences*, vol. 15, no. 5, pp. 8667–8698, 2014.

10 4 A. W. Palmer, C. G. Wilson, E. J. Baum, and M. E. Levenston, “Composition-
11 function relationships during il-1-induced cartilage degradation and recovery,” *Osteo-
12 arthritis and Cartilage*, vol. 17, no. 8, pp. 1029–1039, 2009.

13 5 M. Karsdal, M. Michaelis, C. Ladel, A. Siebuhr, A. Bihlet, J. Andersen,
14 H. Guehring, C. Christiansen, A. Bay-Jensen, and V. Kraus, “Disease-modifying treat-
15 ments for osteoarthritis (dmoads) of the knee and hip: lessons learned from failures and
16 opportunities for the future,” *Osteoarthritis and cartilage*, vol. 24, no. 12, pp. 2013–
17 2021, 2016.

18 6 I. Melas, A. Chairakaki, E. Chatzopoulou, D. Messinis, T. Katopodi, V. Pliaka,
19 S. Samara, A. Mitsos, Z. Dailiana, P. Kollia *et al.*, “Modeling of signaling pathways in
20 chondrocytes based on phosphoproteomic and cytokine release data,” *Osteoarthritis*
21 *and Cartilage*, vol. 22, no. 3, pp. 509–518, 2014.

22 7 M. Neidlin, A. Korcari, G. Macheras, and L. G. Alexopoulos, “Cue-signal-re-
23 sponse analysis in 3d chondrocyte scaffolds with anabolic stimuli,” *Annals of biomed-
24 ical engineering*, vol. 46, no. 2, pp. 345–353, 2018.

25 8 A. I. Tsuchida, M. Beekhuizen, M. Ct Hart, T. R. Radstake, W. J. Dhert, D. B.
26 Saris, G. J. van Osch, and L. B. Creemers, “Cytokine profiles in the joint depend on
27 pathology, but are different between synovial fluid, cartilage tissue and cultured chon-
28 drocytes,” *Arthritis research & therapy*, vol. 16, no. 5, p. 441, 2014.

29 9 C. I. Johnson, D. J. Argyle, and D. N. Clements, “In vitro models for the study
30 of osteoarthritis,” *The Veterinary Journal*, vol. 209, pp. 40–49, 2016.

31 10 S. Grenier, M. M. Bhargava, and P. A. Torzilli, “An in vitro model for the
32 pathological degradation of articular cartilage in osteoarthritis,” *Journal of biomechan-
33 ics*, vol. 47, no. 3, pp. 645–652, 2014.

1 11 L. G. Alexopoulos, J. Saez-Rodriguez, and C. W. Espelin, “High throughput
2 protein-based technologies and computational models for drug development, efficacy
3 and toxicity,” *Drug Efficacy, Safety, and Biologics Discovery: Emerging Technologies*
4 and Tools: Wiley, pp. 29–52, 2009.

5 12 N. Schmitz, S. Laverty, V. Kraus, and T. Aigner, “Basic methods in histo-
6 pathology of joint tissues,” *Osteoarthritis and cartilage*, vol. 18, pp. S113–S116, 2010.

7 13 V. C. Mow, S. Kuei, W. M. Lai, and C. G. Armstrong, “Biphasic creep and
8 stress relaxation of articular cartilage in compression: theory and experiments,” *Journal*
9 of biomechanical engineering, vol. 102, no. 1, pp. 73–84, 1980.

10 14 B. O. Enobakhare, D. L. Bader, and D. A. Lee, “Quantification of sulfated gly-
11 cosaminoglycans in chondrocyte/alginate cultures, by use of 1, 9-dimethylmethylen-
12 blue,” *Analytical biochemistry*, vol. 243, no. 1, pp. 189–191, 1996.

13 15 G. K. Reddy and C. S. Enwemeka, “A simplified method for the analysis of
14 hydroxyproline in biological tissues,” *Clinical biochemistry*, vol. 29, no. 3, pp. 225–
15 229, 1996.

16 16 R. R. Andridge and R. J. Little, “A review of hot deck imputation for survey
17 non-response,” *International statistical review*, vol. 78, no. 1, pp. 40–64, 2010.

18 17 R Core Team, *R: A Language and Environment for Statistical Computing*, R
19 Foundation for Statistical Computing, Vienna, Austria, 2018. [Online]. Available:
20 <https://www.R-project.org/>

21 18 I. Jolliffe, “Principal component analysis,” in *International encyclopedia of sta-
22 tistical science*. Springer, 2011, pp. 1094–1096.

23 19 J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering algo-
24 rithm,” *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, vol. 28,
25 no. 1, pp. 100–108, 1979.

26 20 T. Okada and S. Tomita, “An optimal orthonormal system for discriminant anal-
27 ysis,” *Pattern Recognition*, vol. 18, no. 2, pp. 139–144, 1985.

28 21 C. M. Bishop *et al.*, “Pattern recognition and machine learning (information sci-
29 ence and statistics),” 2006.

30 22 S. Darmanis, R. Y. Nong, J. Vänelid, A. Siegbahn, O. Ericsson, S. Fredriksson,
31 C. Bäcklin, M. Gut, S. Heath, I. G. Gut *et al.*, “Proteinseq: high-performance proteomic
32 analyses by proximity ligation and next generation sequencing,” *PLoS one*, vol. 6, no. 9,
33 p. e25583, 2011.

1 23 S. Herman, P. E. Khoonsari, O. Aftab, S. Krishnan, E. Strömbom, R. Larsson,
2 U. Hammerling, O. Spjuth, K. Kultima, and M. Gustafsson, “Mass spectrometry based
3 metabolomics for in vitro systems pharmacology: pitfalls, challenges, and computa-
4 tional solutions,” *Metabolomics*, vol. 13, no. 7, p. 79, 2017.

5 24 B. de Lange-Brokaar, A. Ioan-Facsinay, G. Van Osch, A.-M. Zuurmond,
6 J. Schoones, R. Toes, T. Huizinga, and M. Kloppenburg, “Synovial inflammation, im-
7 mune cells and their cytokines in osteoarthritis: a review,” *Osteoarthritis and Cartilage*,
8 vol. 20, no. 12, pp. 1484–1499, 2012.

9 25 P. Yang, J. Tan, Z. Yuan, G. Meng, L. Bi, and J. Liu, “Expression profile of cy-
10 tokines and chemokines in osteoarthritis patients: proinflammatory roles for cxcl8 and
11 cxcl11 to chondrocytes,” *International immunopharmacology*, vol. 40, pp. 16–23,
12 2016.

13 26 G. Vrgoc, J. Vrbanec, R. K. Eftedal, P. L. Dembic, S. Balen, Z. Dembic, and
14 Z. Jotanovic, “Interleukin-17 and toll-like receptor 10 genetic polymorphisms and sus-
15 ceptibility to large joint osteoarthritis,” *Journal of Orthopaedic Research*, 2017.

16 27 J.-S. Park, M.-K. Park, S.-Y. Lee, H.-J. Oh, M.-A. Lim, W.-T. Cho, E.-K. Kim,
17 J.-H. Ju, Y.-W. Park, S.-H. Park *et al.*, “Tweak promotes the production of interleukin-
18 17 in rheumatoid arthritis,” *Cytokine*, vol. 60, no. 1, pp. 143–149, 2012.

19 28 S. Rösler, T. Haase, H. Claassen, U. Schulze, M. Schicht, D. Riemann,
20 J. Brandt, D. Wohlrab, B. Müller-Hilke, M. B. Goldring *et al.*, “Trefoil factor 3 is in-
21 duced during degenerative and inflammatory joint disease, activates matrix metallopro-
22 teinases, and enhances apoptosis of articular cartilage chondrocytes,” *Arthritis & Rheu-
23 matology*, vol. 62, no. 3, pp. 815–825, 2010.

24 29 D. S. Nakamura, J. M. Hollander, T. Uchimura, H. C. Nielsen, and L. Zeng,
25 “Pigment epithelium-derived factor (pedf) mediates cartilage matrix loss in an age-de-
26 pendent manner under inflammatory conditions,” *BMC musculoskeletal disorders*,
27 vol. 18, no. 1, p. 39, 2017.

28 30 C.-H. Tang, C.-J. Hsu, and Y.-C. Fong, “The ccl5/CCR5 axis promotes interleu-
29 kin-6 production in human synovial fibroblasts,” *Arthritis & Rheumatology*, vol. 62,
30 no. 12, pp. 3615–3624, 2010.

31 31 L. Lourido, B. Ayoglu, J. Fernández-Tajes, N. Oreiro, F. Henjes, C. Hellström,
32 J. M. Schwenk, C. Ruiz-Romero, P. Nilsson, and F. J. Blanco, “Discovery of circulat-
33 ing proteins associated to knee radiographic osteoarthritis,” *Scientific Reports*, vol. 7,
34 no. 1, p. 137, 2017.

1 32 Y. Peck, L. Y. Ng, J. Y. L. Goh, C. Gao, and D.-A. Wang, “A three-dimension-
2 ally engineered biomimetic cartilaginous tissue model for osteoarthritic drug evalua-
3 tion,” *Molecular pharmaceutics*, vol. 11, no. 7, pp. 1997–2008, 2014.
4