

1 **Full Title:** Evaluation of DNA extracted from blood filter spots and eluates processed for
2 enzyme linked immunosorbent assay (ELISA)

3 **Short Title:** Use of ELISA filter spots in DNA analysis

4 **Authors and Affiliations**

5 Mark Andy Xatse ^{1,2}, Jewelna Akorli ², Irene Offei Owusu ^{3*}, Livingstone Gati ¹, Michael David
6 Wilson ²

7 ¹ Department of Science Laboratory Technology, Accra Technical University, Barnes Road,
8 Accra, Ghana

9 ² Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of
10 Health Sciences, University of Ghana, Legon, Accra, Ghana

11 ³Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of
12 Health Sciences, University of Ghana, Legon, Accra, Ghana

13 *E-mail: IOwusu@noguchi.ug.edu.gh

14 **Abstract**

15 Dried filter blood spots have become a significant blood collection method for screening
16 individuals for clinical purposes. When used for ELISAs, they are normally discarded after the
17 blood has been eluted. However, they may still be useful for extraction of DNA for molecular-
18 based assays. The aim of this work was to determine the integrity of DNA extracted from filter
19 paper spots from which blood has initially been eluted for ELISA with sample dilution buffer
20 (SDB) and phosphate buffered saline (PBS). DNA was extracted from the eluted filter spots, the
21 eluate, and dried blood filter spots (controls) using spin column extraction. The quality and
22 quantity of the extracted DNA was assessed and used for PCR to further evaluate their

23 usefulness in molecular assays. Concentration of DNA obtained was dependent on the buffer
24 used for processing the filter blood blots. Accounting for the DNA concentration obtained from
25 dried blood spots, which were used as controls, DNA extracted from the already eluted blood
26 spots were 32 times higher in PBS than SDB processed filter paper. The ratio was even higher
27 for the eluates, which were 57 times higher in PBS than SDS eluates. SDB eluates had
28 significantly higher average DNA concentration than their eluted filter paper, but their purity
29 ratios were similar. 85% PCR success rate was achieved with the DNA samples. Useful DNA
30 can be extracted from blood spots after it has been eluted with SDB. Although the DNA
31 concentration and purity may be low, the DNA could be useful for rather simple PCR assays.

32 **Author Summary**

33 Collection of blood onto filter paper has become an accepted method for screening individuals
34 for clinical and public health purposes since the 1960s. This method of blood collection has
35 become increasingly popular due to its ease and convenience in collection and transportation.
36 The use of dried blood spots for clinical evaluations and research has become very significant.
37 For research purposes, DBS when used for ELISAs are discarded after single use. DNA may
38 however be extracted from the used filter blots and used for molecular assays. The concentration
39 of DNA obtained may be low but simple assays like PCR could be done using the DNA
40 extracted from the eluted filter spot.

41 **Introduction**

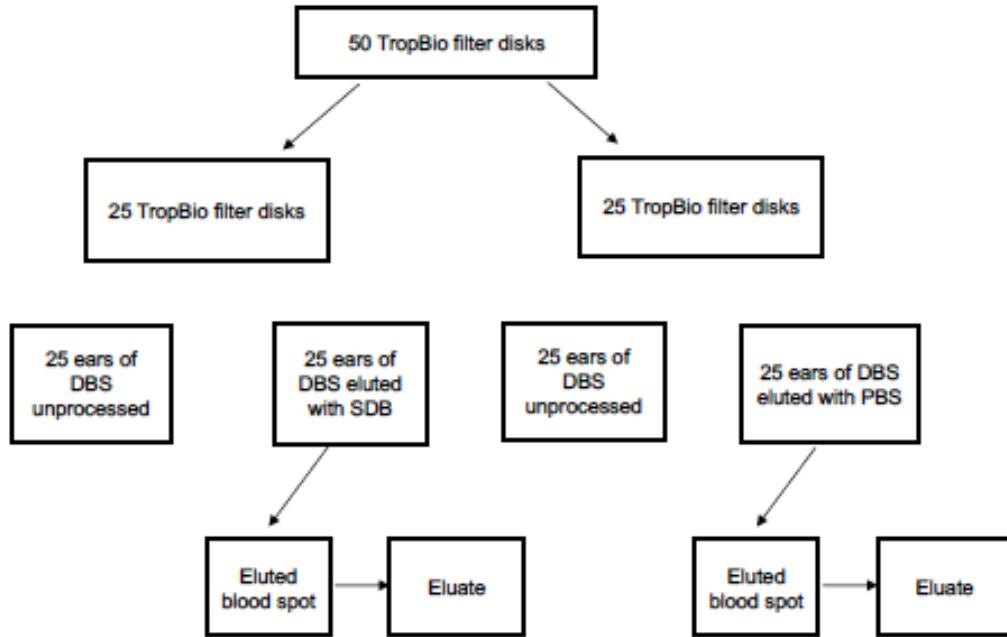
42 The reliability and performance of molecular assays are strongly influenced by the quality and
43 quantity of the starting template. The availability of high quality DNA from a large number of
44 well characterized patients and healthy controls is a prerequisite for the success of genetic

45 variation studies [1]. Conventionally, DNA used in clinical epidemiological studies is often
46 obtained from peripheral blood samples [2,3]

47 Collection of blood onto filter paper has become an accepted method for screening individuals
48 for clinical purposes. This type of specimen has been used for public health purposes since the
49 1960s [4] and has become increasingly popular due to its ease and convenience in collection and
50 transportation. For example, to obtain blood samples from a baby, a few drops of blood from the
51 baby's heel are made to flow onto and fill a printed circle on a special filter paper. The blood
52 dries under ambient atmospheric conditions, and the filter paper is mailed to a laboratory where a
53 portion of the blood spot is punched out with a paper punch [4]. Biological markers that can be
54 measured from whole blood, serum or plasma can be determined from dried blood spots [5]. This
55 includes DNA, which is important for research or studies in genetics.

56 Blood spots have been used routinely since the 1960s[6] for neonatal screening, initially used for
57 detecting phenylketonuria, and subsequently for other biochemical assays. They have also been
58 used as a source of DNA for screening genetic abnormalities such as cystic fibrosis and
59 haemoglobinopathies in newborns [7]. Filter blood spots are used for monitoring antibodies
60 against several viral [8] and bacterial pathogens [9], storage of monoclonal antibodies [10] and,
61 HIV screening [11]. Dried blood spots have been particularly useful for isolating parasite DNA
62 in mapping the spread of drug resistance in malaria parasites [12].

63 The use of the parasite antigen Og4C3 ELISA is among several techniques used to identify
64 infection with lymphatic filariasis (LF) in *Wuchereria bancrofti* endemic areas[13,14]. Typically,
65 the Og4C3 ELISA is performed using serum or plasma, either immediately after the sample has
66 been obtained, or more often, from frozen samples. However, the Og4C3 ELISA also offers an


67 alternative application method through the use of dried blood spots (DBS) collected on filter
68 paper; an inexpensive and convenient method that requires less space and less stringent
69 refrigeration for transport and storage [15].

70 Filter spots used for Og4C3 ELISA assays are normally discarded after the blood has been
71 eluted. However, in the advent of increased use of molecular assays for in-depth understanding
72 of diseases, these eluted filter blots hold more information than what is only required for
73 ELISAs. In some cases where molecular analyses are also required in a study besides ELISA,
74 there may not be enough blood from an individual to have extra dried filter spots for DNA
75 extraction. This study, therefore, aims to determine the integrity (quality and yield) of DNA
76 obtained from filter paper spots from which blood has been eluted and the eluate intended for
77 ELISA. We compared the quality and yield of DNA extracted with that from dried blood filter
78 spots, and used the DNA samples in a PCR to ascertain the usefulness of the extracted DNA in a
79 molecular assay

80 **Materials and Methods**

81 **Sample collection and processing**

82 A total of 50 TropBio filter disks (Cellabs, Australia) with blood spots collected from 50 subjects
83 were retrieved from archives of a previous study at Noguchi Memorial Institute for Medical
84 Research and randomly divided into two groups of 25. Two (2) ears of dried blood spots (DBS)
85 were torn from each disk and an ear placed separately into 1.5 mL microcentrifuge tubes. The
86 DBS were processed for DNA extraction as shown (Fig 1).

87

88 **Fig 1. Sample processing and handling of filter blood blots prior to DNA extraction.** DBS
89 (dried blood spot); SDB (sample dilution buffer); PBS (phosphate buffered saline)

90

91 **Dry blood spot (DBS) elution and DNA extraction**

92 250 μ L of elution buffer (phosphate buffered saline or sample dilution buffer for Og4C3 ELISA)
93 was added to one of the duplicate DBS in a 1.5mL microcentrifuge tube. The DBS was allowed
94 to fully submerge in the buffer and then incubated overnight at 4°C on a gently rocking platform.
95 The eluate was pipetted into a new 1.5 ml microcentrifuge tube, (leaving behind the eluted filter
96 paper). DNA was extracted from the eluate, eluted filter paper and the dried unprocessed DBS
97 using the Qiagen DNA Blood and Tissue kit according to the manufacturer's instruction. DNA
98 was eluted in 150 μ L of buffer AE. DNA quantity and purity were measured using Qubit® 2.0

99 fluorometer (Invitrogen, Life technologies) and NanoDrop 2000c Spectrophotometer (Labtech
100 International Ltd, Thermo Scientific, UK). Samples were stored at -40°C for further analysis.

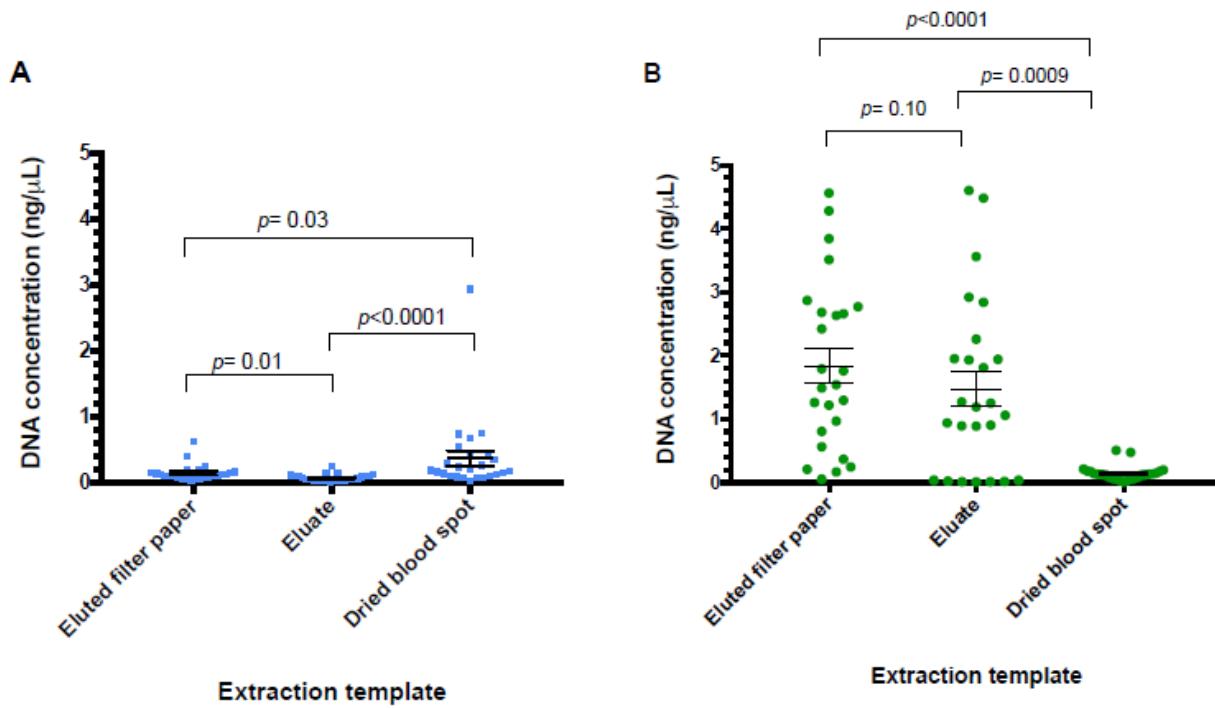
101 **Amplification of human ribosomal gene**

102 PCR was performed to evaluate the quality of genomic DNA extracted. A 231bp region of the
103 small subunit of human ribosomal gene (ssrDNA) was amplified [16,17] UNR-HUF, 5'-
104 GAGCCGCCTGGATACCGC-3' REV, 5'-GACGGTATCTGATCGTCTTC-3' forward and
105 reverse primers, respectively [18].

106 The PCR reaction consisted of 1X Phusion® High-Fidelity PCR Master Mix with HF Buffer, 4.0
107 mM MgCl₂, 200 mM each of dNTPs, 0.0125 μM HUF primer, 0.075 μM REV primer and DNA
108 template. The reaction was performed in a final volume of 12.5 μL using 2.5 μL DNA template.
109 The reaction was performed in a thermal cycler (Applied Biosystems model 2720) with cycling
110 conditions consisting of an initial denaturation phase of 98 °C for 1 min, 35 cycles at 98°C for 30
111 secs, 58°C for 1 min and 72°C for 1 min. The final cycle was followed by an extension time of 7
112 min at 72°C. The amplified fragment sizes were run on a 2% ethidium bromide stained agarose
113 gel and viewed on a UV transilluminator (DS-30).

114 **Statistical analysis**

115 Pairwise comparisons between treatments were performed using Kruskal-Wallis test with
116 Benjamin, Krieger and Yekutieli correction for multiple comparisons. The significance level was
117 set at 0.05.


118 **Ethics Statement**

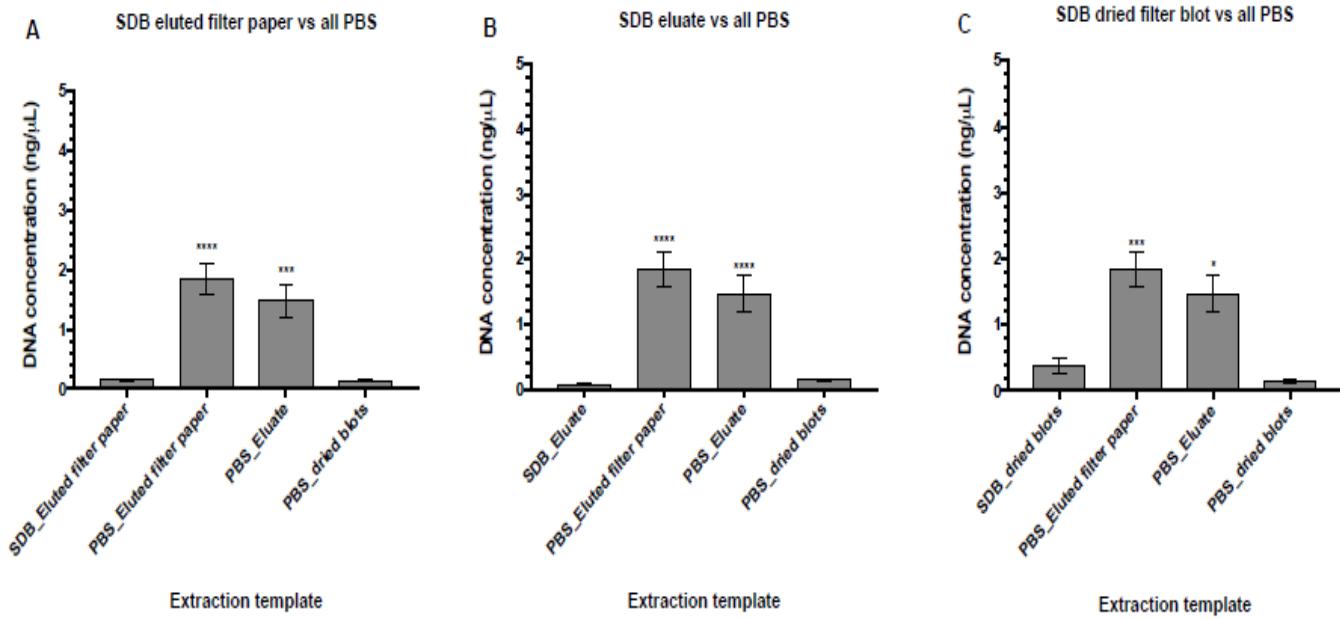
119 Ethical approval was obtained form the Ghana Health Service Ethical Review Committee for the
120 samples collected for the main study. All sampled were anonymized before usage.

121 **Results**

122 **Comparison of DNA concentrations between extraction templates**

123 The aim of this work was to investigate the possibility of obtaining quality DNA from filter
124 paper blots that have been previously been processed, and/or the eluate. Two different elution
125 buffers (SDB and PBS) were used to obtain the eluate. Samples that were processed with SDB
126 had an average DNA concentration of 0.15 ng/μl from the eluted blood spot and 0.08 ng/μl from
127 the eluates ($p= 0.01$). Both concentrations were significantly lower than what was obtained from
128 the dried blood spot (0.38 ng/μl) (eluted blood blot vs dried filter blot $p= 0.03$; eluate vs dried
129 filter blot $p< 0.0001$) (Fig 2A). DNA samples extracted from filter blots eluted with PBS had an
130 average concentration higher than the dried blood spot (control) samples (1.84 ng/μl vs 0.14
131 ng/μl) ($p<0.0001$). The DNA concentration from the eluates were on average similar to that from
132 the eluted blood spots ($p=0.10$) (Fig 2B).

133

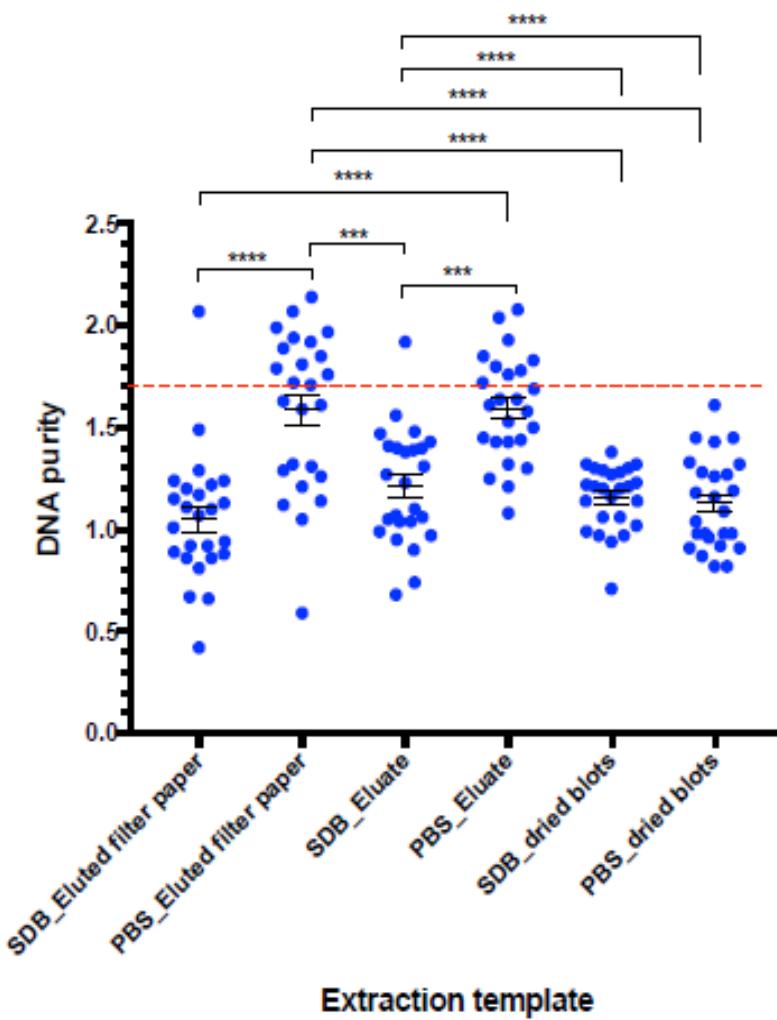

134

135 **Fig 2. Comparison of DNA concentration extracted from eluted blood spot, dried blood**

136 **spot and the eluate with sample dilution buffer (A) and phosphate buffered saline (B).**

137 The two elution buffers were compared to determine their influence on the resulting DNA
138 concentration. Samples that had been processed with PBS prior to DNA extraction produced
139 higher yields than SDB-treated samples (Fig 3). All SDB-processed samples were however
140 similar to control dried filter blots from the PBS group (Fig 3).

141

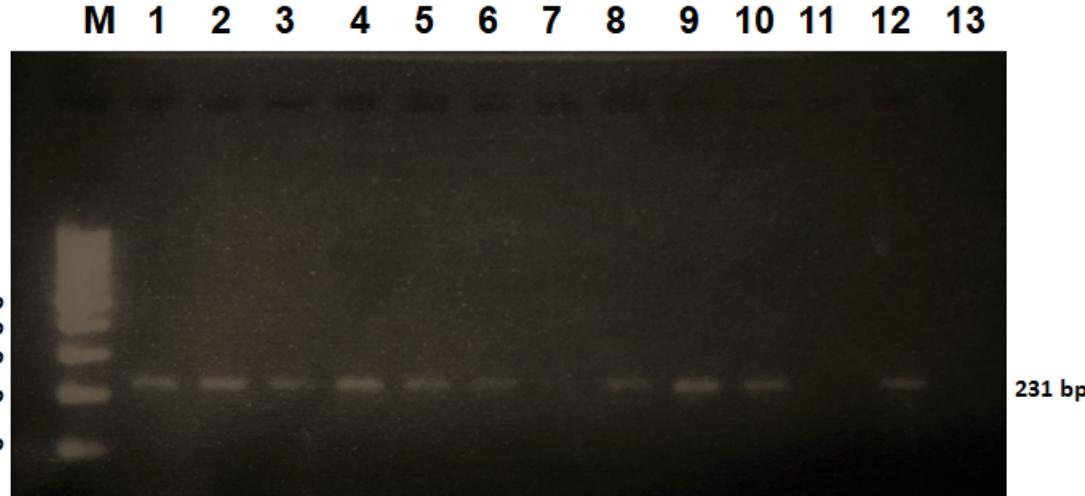

142

143 **Fig 3. Comparisons of DNA yields between SDB and PBS processed samples.** Only
144 significant pairwise comparisons are shown with asterisks **** (<0.0001); *** (0.0001-0.001);
145 ** (0.002-0.01); * (0.02-0.04).

146 **Purity ratios (A₂₆₀/A₂₈₀) for eluted blood spot, dried blood spot and the eluate**

147 Purity was estimated using spectrophotometry as a measure of DNA usefulness in further
148 molecular assays. An A₂₆₀/A₂₈₀ ratio between 1.7 and approximately to 2.0 is considered pure.
149 None of the groups of samples extracted had an average purity ratio within the expected range
150 (Fig 4). Altogether, 16% (24/150) of extracted DNA samples were estimated to be pure (Fig 4).
151 The highest contribution of samples to this overall percentage was obtained from PBS-eluates
152 (36%) and eluted blood spots (52%), and these measured higher in purity than any SDB-
153 processed DNA sample in pairwise comparisons (Fig 4). Extractions from all dried blood spots
154 were of low purity (Fig 4). Comparisons between the SDB-processed samples showed no
155 difference in their average purity ratios ($p<0.05$) (Fig 4).

156



157

158 **Fig 4. Purity ratios (A_{260}/A_{280}) of samples extracted from experimental templates.** Error bars
159 represent standard error of mean, and red dotted line indicates lower threshold for purity range (>
160 1.7). Only significant pairwise comparisons are shown with asterisks ****(<0.0001);
161 ***(0.0001-0.001).

162 **PCR assay with extracted DNA sample**

163 The human 18SrRNA could successfully be amplified in our samples (Fig 5), though DNA were
164 of low concentrations and purity. Out of 150 DNA samples used in the assay, 127 produced
165 positive PCR results (85%).

166
167 **Fig 5. Gel electrogram of the amplified PCR products.** Band size of 231 bp seen for samples
168 in lanes 1 to 7 and 8 to 10. Lane 11 is a DNA from cultured *Plasmodium falciparum* 3D7 strain;
169 Lane 12 is a positive control of DNA obtained from human blood; Lane 13 is a no template
170 control (no DNA).

171

172 **Discussion**

173 Obtaining blood samples from human subjects for research studies is expensive. Therefore, it is
174 necessary to ensure that as much information required from samples can be extracted without
175 having to return to the subjects for another blood collection. In the Lymphatic Filariasis
176 Elimination Programme, blood samples are often collected on filter paper for ELISA-based

177 assays such as Og4C3, Bm14 and Wb123. Although, the focus is not usually on DNA-based
178 assays, this could later be an important inclusion in studying the molecular biology of parasites
179 or infected humans. In this study, we considered the possibility of extracting useful DNA from
180 filter blood papers that have already been processed for ELISA, and from the eluate which is
181 commonly used for the ELISA assays. The DNA concentration and purity were compared among
182 the starting materials to ascertain which gave better DNA integrity. Our results demonstrated that
183 DNA concentration is dependent on the buffer used for processing the filter blood blots.
184 Accounting for the DNA concentration obtained from dried blood spots, which were used as
185 controls, DNA extracted from the already eluted blood spots were 32 times higher in PBS than
186 SDB processed filter paper. The ratio was even higher for the eluates which were 57 times higher
187 in PBS than SDS eluates.

188 The stability of double stranded DNA (dsDNA) can be affected by temperature, pH and ionic
189 composition of solution (solvent)[19]. Salting-out has proven to be a cost-effective method for
190 extracting DNA from whole blood, which gives good DNA yield for downstream
191 analyses[20,21]. Phosphate buffered saline is a salt solution containing sodium chloride, sodium
192 phosphate and potassium phosphate at a pH of 7.4. PBS does not only have high salt contents but
193 it also has a pH which balances the salt concentration around cells, preventing osmosis [22]. On
194 the contrary, the sample dilution buffer (SDB) consists of Tris buffer, sodium chloride, bovine
195 serum albumin (BSA), and Tween buffer; it is of lower salt composition and has a pH of 8.0
196 [23]. Thus, PBS is expected to do better at salting-out DNA from the filter paper into solution
197 (eluates) than SDB.

198 Besides DNA concentration, purity is critical in downstream applications such as PCR, and
199 sequencing [24].The purity of the DNA extracts further emphasized the preference on PBS over

200 SDB-processed filter blots. Without the use of an appropriate solvent to put DNA into solution,
201 most contaminants are retained on the filter paper which are later put into solution during the
202 DNA extraction process. This is evident in the low purity of DNA from the dried filter spots
203 (Figure 4). It is interesting to note that processed filter spots and their eluates were similar in
204 purity.

205 **Conclusion**

206 This study has established that DNA can be extracted from blood spots after it has been eluted
207 with the sample dilution buffer used for ELISA-based assays. Although the DNA concentration
208 (could be improved by reducing the elution buffer added at the end of the extraction process) and
209 purity may be low, the DNA could be useful for simple PCR assays such as parasite DNA
210 detection rather than sequencing which is highly sensitive to DNA concentration and purity.

211 **Acknowledgements**

212 We acknowledge Nana Adjoa Pels and Frances McCarthy of the Department of Parasitology, UG-
213 NMIMR for their assistance in the laboratory.

214 **Competing interests**

215 The authors declare that they have no competing interests.

216

217 **References**

218 1. Rajatileka S, Luyt K, El-Bokle M, Williams M, Kemp H, Molnár E, et al. Isolation of
219 human genomic DNA for genetic analysis from premature neonates: a comparison
220 between newborn dried blood spots, whole blood and umbilical cord tissue. *BMC Genet.*

221 2013;14(1):105.

222 2. Parker SP, Cubitt WD. The use of the dried blood spot sample in epidemiological studies.

223 J Clin Pathol. 1999;52(9):633–9.

224 3. Steinberg K, Beck J, Nickerson D, Garcia-Closas M, Gallagher M, Caggana M. DNA

225 banking for epidemiologic studies: a review of current practices. Epidemiology.

226 2002;13(3):246–54.

227 4. Hue NT, Phong PT, Chan NDH, Hoan NKH, Thuy HTT. An efficiency human genomic

228 DNA extraction from dried blood spots. Procedia Environ Sci. 2011;8:179–85.

229 5. Mei J V, Alexander JR, Adam BW, Hannon WH. Use of filter paper for the collection and

230 analysis of human whole blood specimens . J Nutr. 2001;131(5):1631–6.

231 6. Guthrie R. The origin of newborn screening. Screening. 1992;1:5–15.

232 7. Enevold A, Vestergaard LS, Lusingu J, Drakeley CJ, Lemnge MM, Theander TG, et al.

233 Rapid screening for glucose-6-phosphate dehydrogenase deficiency and haemoglobin

234 polymorphisms in Africa by a simple high-throughput SSOP-ELISA method. Malar J.

235 2005;8:1–8.

236 8. Gil A, Gonzalez A, Dal-Re R, Dominguez V, Astasio P, Aguilar L. Detection of

237 antibodies against hepatitis A in blood spots dried on filter paper. Is this a reliable method

238 for epidemiological studies? Epidemiol Infect. 1997;118:189–191.

239 9. Boillot F, Peeters M, Kosia A, Delaporte E. Prevalence of the human immunodeficiency

240 virus among patients with tuberculosis in Sierra Leone, established from dried blood spots

241 on filter paper. Int J Tuberc Lung Dis. 1997;1:493–7.

242 10. Holland WG, Thanh NG, My LN, Magnus E, Verloo D, Büscher P, et al. Evaluation of

243 whole fresh blood and dried blood on filter paper discs in serological tests for

244 Trypanosoma evansi in experimentally infected water buffaloes. *Acta Trop.*
245 2002;81(2):159–65.

246 11. Solomon SS, Pulimi S, Rodriguez II, Chaguturu SK, Kumar SKS, Mayer KH, et al. Dried
247 Blood Spots are an Acceptable and Useful HIV Surveillance Tool in a Remote
248 Developing World Setting. *Int J STD AIDS.*; 2004;15(10):658–61.

249 12. Roper C, Pearce R, Bredenkamp B, Gumedze J, Drakeley C, Mosha F, et al. Antifolate
250 antimalarial resistance in southeast Africa: a population-based analysis. *Lancet*; 2003 Apr
251 5;361(9364):1174–81.

252 13. Hamlin KL, Moss DM, Priest JW, Roberts J, Kubofcik J, Gass K, et al. Longitudinal
253 monitoring of the development of antifilarial antibodies and acquisition of *Wuchereria*
254 *bancrofti* in a highly endemic area of Haiti. *PLoS Negl Trop Dis.* 2012;6(12):1–11.

255 14. Lau CL, Won KY, Becker L, Soares Magalhaes RJ, Fuimaono S, Melrose W, et al.
256 Seroprevalence and spatial epidemiology of lymphatic filariasis in American Samoa after
257 successful mass drug administration. *PLoS Negl Trop Dis.* 2014;8(11).

258 15. Masson J, Douglass J, Roineau M, Aye K, Htwe K, Warner J, et al. Concordance between
259 plasma and filter paper sampling techniques for the lymphatic filariasis Bm14 antibody
260 ELISA. *Trop Med Infect Dis.* 2017;2(2):6.

261 16. Seesui K, Imtawil K, Chanetmahun P, Laummaunwai P, Boonmars T. An alternative
262 method for extracting *Plasmodium* DNA from EDTA whole blood for malaria diagnosis.
263 *Korean J Parasitol.* 2018;56(1):25–32.

264 17. Rubio JM, Benito a, Berzosa PJ, Roche J, Puente S, García L, et al. Usefulness of
265 seminested multiplex PCR in surveillance of imported malaria in Spain. *J Clin Microbiol.*
266 1999;37(10):3260–4.

267 18. Miguel-Oteo M, Jiram AI, Ta-Tang TH, Lanza M, Hisam S, Rubio JM. Nested multiplex
268 PCR for identification and detection of human *Plasmodium* species including *Plasmodium*
269 *knowlesi*. Asian Pac J Trop Med. 2017;10(3):299–304.

270 19. Singh A, Singh N. Effect of salt concentration on the stability of heterogeneous DNA.
271 Phys A Stat Mech its Appl. 2015;419(1):328–34.

272 20. Kalousová M, Levová K, Kuběna AA, Jáchymová M, Franková V, Zima T. Comparison
273 of DNA isolation using salting-out procedure and automated isolation (MagNA system).
274 Prep Biochem Biotechnol. 2017 Aug 9;47(7):703–8.

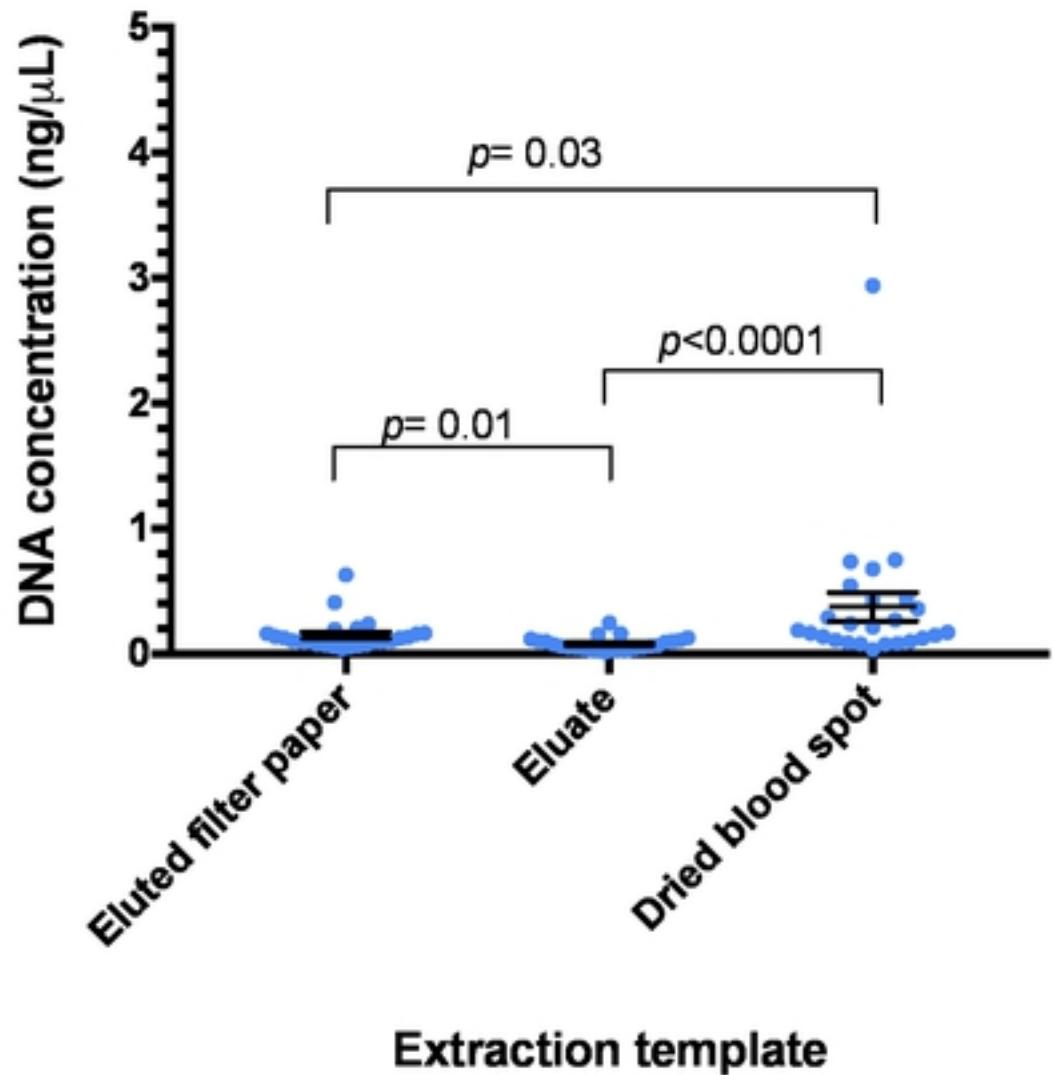
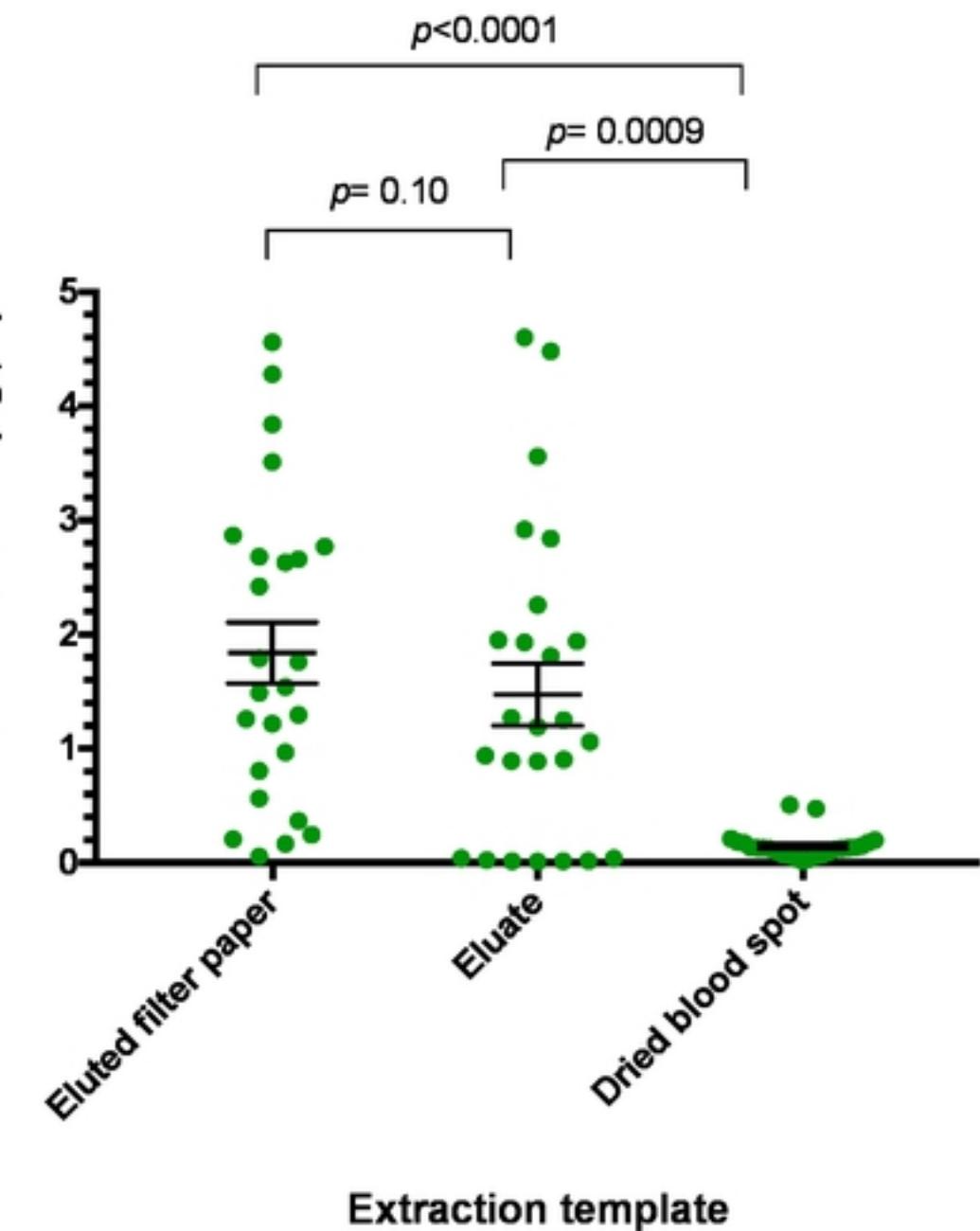
275 21. Koshy L, Anju AL, Harikrishnan S, Kutty VR, Jissa VT, Kurikesu I, et al. Evaluating
276 genomic DNA extraction methods from human whole blood using endpoint and real-time
277 PCR assays. Mol Biol Rep. 2017 Feb;44(1):97–108.

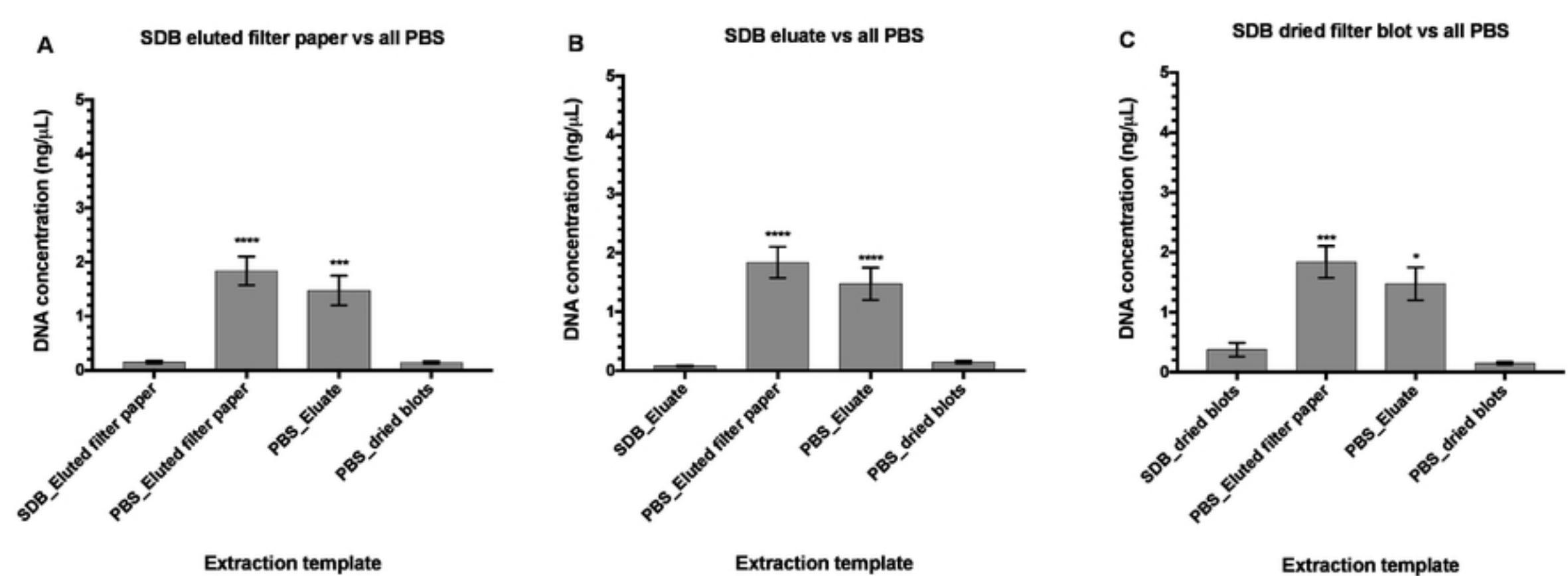
278 22. Martin NC, Pirie AA, Ford L V, Callaghan CL, McTurk K, Lucy D, et al. The use of
279 phosphate buffered saline for the recovery of cells and spermatozoa from swabs. Sci
280 Justice - J Forensic Sci Soc. 2006;46(3):179–84.

281 23. Bethyl Laboratories. Sandwich ELISA Using Two Primary Antibodies [Internet]. 2017
282 [cited 2018 Jan 13]. Available from: https://www.bethyl.com/content/protocol_elisa_p3

283 24. Wilson IG. Inhibition and Facilitation of Nucleic Acid Amplification. Appl. Environ.
284 Microbiol. 1997;63(10):3741–51.

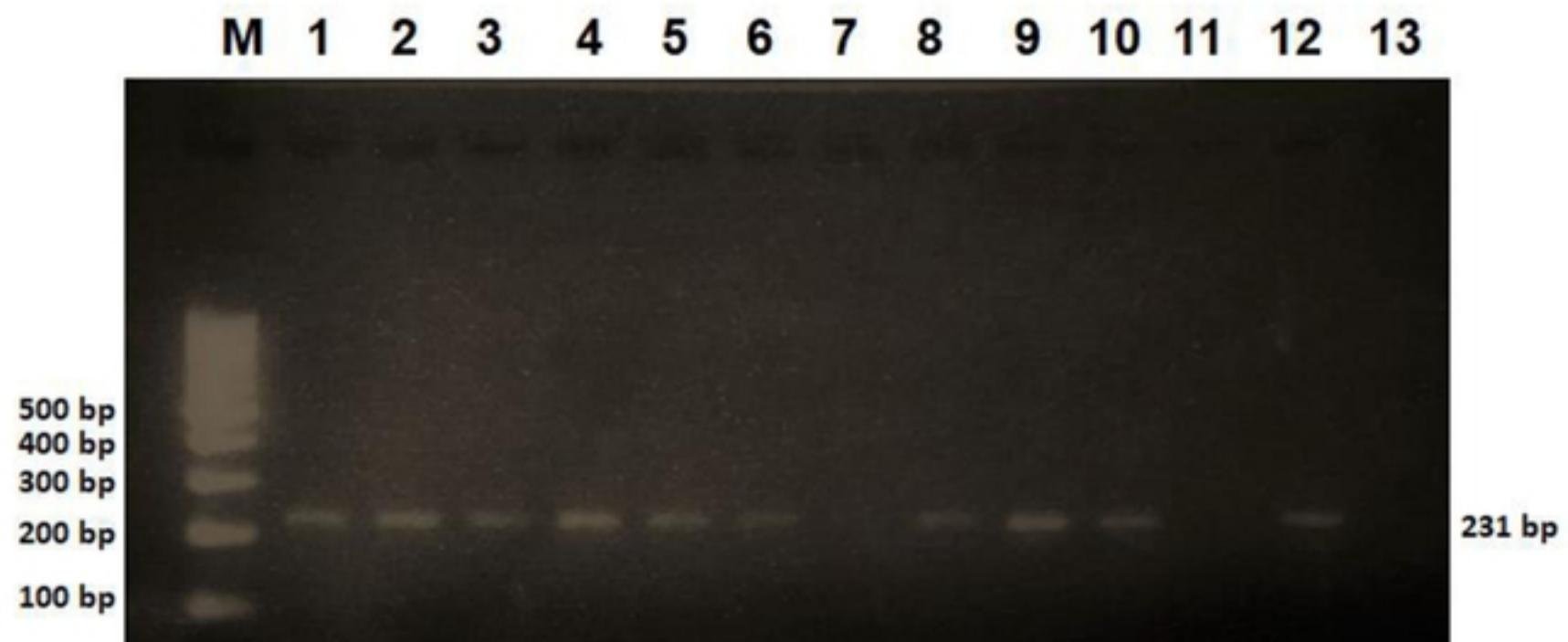
285



286


287

288

289


Figure

A**B****Figure**

Figure

Fig 5. Gel electrogram of the amplified PCR products.