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Abstract

Lignocellulosic biomass offers a sustainable source for biofuel production that does not compete
with food-based cropping systems. Importantly, two critical bottlenecks prevent economic
adoption: many industrially relevant microorganisms cannot ferment pentose sugars prevalent in
lignocellulosic medium, leaving a significant amount of carbon unutilized. Furthermore, chemical
biomass pretreatment required to release fermentable sugars generates a variety of toxins,
which inhibit microbial growth and metabolism, specifically limiting pentose utilization in
engineered strains. Here we dissected genetic determinants of anaerobic xylose fermentation
and stress tolerance in chemically pretreated corn stover biomass, called hydrolysate. We
previously revealed that loss-of-function mutations in the stress-responsive MAP kinase HOG1
and negative regulator of the RAS/Protein Kinase A (PKA) pathway, IRA2, enhances anaerobic
xylose fermentation. However, these mutations likely reduce cells’ ability to tolerate the toxins
present in lignocellulosic hydrolysate, making the strain especially vulnerable to it. We tested
the contributions of Hog1 and PKA signaling via IRA2 or PKA negative regulatory subunit BCY1
to metabolism, growth, and stress tolerance in corn stover hydrolysate and laboratory medium
with mixed sugars. We found mutations causing upregulated PKA activity increase growth rate
and glucose consumption in various media but do not have a specific impact on xylose
fermentation. In contrast, mutation of HOG1 specifically increased xylose usage. We
hypothesized improving stress tolerance would enhance the rate of xylose consumption in
hydrolysate. Surprisingly, increasing stress tolerance did not augment xylose fermentation in
lignocellulosic medium in this strain background, suggesting other mechanisms besides cellular

stress limit this strain’s ability for anaerobic xylose fermentation in hydrolysate.
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Introduction

Lignocellulosic biomass offers a sustainable source for bioenergy. The use of leftover
agriculture byproducts and plants grown on marginal lands for biofuel production reduces waste
and removes dependency on food-based cropping systems. Notably, there are two major
bottlenecks for sustainable biofuel production from lignocellulosic material. First, many
microbes, including industrially relevant Saccharomyces cerevisiae, cannot innately ferment
pentose sugars like xylose, which comprise a significant fraction of the sugars released from
deconstructed biomass (1). Second, the harsh chemical treatment of plant biomass required to
release lignocellulosic sugars produces a variety of toxins and stresses that inhibit microbial
growth and fermentation (2,3). A goal for the biofuel industry is to engineer stress-tolerant
microbes to convert all available sugars to the desired products by routing cellular resources
toward product formation and away from cell growth and other unnecessary physiological
responses (4).

Several labs have evolved or engineered yeast for anaerobic xylose usage, introducing
either xylose isomerase (5—7) or xylose reductase (XR) with xylitol dehydrogenase (XDH) (8—
13), and over-expressing xylulokinase for increased flux (14—17). However, most strains do not
use xylose unless further evolved through laboratory selection (7,18-21). In some cases, the
genetic basis for evolved improvements in anaerobic utilization are known from sequencing of
evolved lines. We previously engineered a stress-tolerant strain with XR and XDH (strain Y22-3)
and evolved it for aerobic xylose respiration, producing strain Y127. To enable anaerobic xylose
fermentation, Y127 was propagated anaerobically on xylose, generating strain Y128 (21).
Aerobic xylose respiration in the Y127 strain was enabled by null mutations of the Fe-S cluster
protein ISUT and the osmotic stress response MAP kinase HOG 1. Maximal anaerobic
fermentation in the evolved Y128 strain was facilitated by these mutations plus additional null
mutations of the negative regulator of RAS/PKA signaling, IRA2, and GRE3, an aldose

reductase that siphons xylose to xylitol (22). A subsequent study independently generated an
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anaerobic-xylose fermenting strain, confirmed the requirement of the ISU7 deletion, and further
found deletion of the upstream HOG pathway regulator SSK2 improved xylose fermentation
(23). Thus, mutations in these pathways play a generalizable role in anaerobic xylose
fermentation across labs and strains.

While mutations that promote xylose utilization are known, the specific roles for each
mutation and how the RAS/PKA and HOG pathways intersect to enable anaerobic xylose
utilization remain unclear. RAS signaling promotes growth on preferred nutrients like glucose, in
part by activating adenylate cyclase to produce cAMP, which binds to the PKA negative
regulatory subunit Bcy1 to enable PKA activity (24). Ira1/2 are the GTPase activating proteins
(GAPs) that inhibit Ras1/2 by converting GTP (RAS-active state) to GDP (RAS-inactive state).
On the other hand, Hog1 is best characterized as an osmotic stress response MAP kinase and
leads to the upregulation of stress-responsive transcription factors and other enzymes and
defense systems (25). How Hog1 contributes to xylose fermentation is unknown, although the
kinase was recently shown to play a role in the response to glucose levels (26—-30). PKA and
Hog1 have opposing roles on the stress response: PKA activates transcription factors required
for growth-promoting genes and directly suppresses stress-activated transcription factors like
Msn2/Msn4, while Hog1 activity induces stress-defense regulators and contributes to the
repression of growth-promoting genes (31).

Increased stress sensitivity is a major limitation for industrial use of evolved strains with
RAS/PKA and HOG mutations and a barrier to sustainable lignocellulosic bioenergy production.
Chemical pretreatment of plant biomass is required to release fermentable sugars into the
resulting “hydrolysate.” This treatment produces a variety of toxins and stressors that limit
microorganisms’ ability to ferment, particularly impacting fermentation and growth during xylose
consumption (2,32,33). One group of toxins are lignocellulosic hydrolysate inhibitors (or
lignotoxins), which are released from breakdown of hemicellulose and cellulose and include

furans, phenolics, and aliphatic acids. Lignotoxins disrupt central carbon metabolism pathways
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by generating reactive oxygen species and depleting the cells of ATP, NADH, and NADPH, in
part through increased activity of ATP-dependent efflux pumps and detoxification (34-36),
ultimately decreasing available resources for growth and metabolism. Therefore, strains must
be tolerant to the toxins present in hydrolysate for efficient fermentation of lignocellulosic
material, but the mutations required for efficient anaerobic xylose fermentation produce stress-
susceptible strains. Upregulated PKA activity suppresses stress-defense pathways (37—40),
while HOG1 deletion decreases cells’ ability to mount a stress response. This likely has a direct
impact on existing strains, limiting their industrial use. One possible solution is increasing stress
tolerance in these strains will enable better anaerobic xylose fermentation in industrially relevant
hydrolysates. Other groups have found varying levels of success improving toxin tolerance (3)
through overexpression of stress response transcription factors (41,42), mitochondrial NADH-
cytochrome b5 reductase (42), an oxidative stress protein kinase (43), and furaldehyde
reductases (44), as well as through mating, gene shuffling, and evolution (45-48).

We recently discovered an alternate strategy of enabling anaerobic xylose fermentation,
one that we predicted may augment stress tolerance. Perturbing sequence of the PKA
regulatory subunit Bcy1 through simple protein fusion (with either a 260 amino acid auxin-
inducible degron (AiD) tag without degradation capabilities or merely GFP) promotes anaerobic
xylose fermentation equal to strain Y128 without the need for HOG1 or IRA2 deletion (93).
Since this strain retains functional Hog1 and grows well on glucose, we predicted the strain may
have improved stress tolerance, which could enhance growth and xylose fermentation in 9%
AFEX-pretreated corn stover hydrolysate (ACSH).

Here, we set out to dissect the contributions of regulators in the RAS/PKA and HOG
pathways to anaerobic xylose fermentation, growth, and stress resistance. We demonstrate that
while upregulating PKA is important for increased cell growth on glucose, HOG1 deletion
specifically benefits xylose utilization, in part by preventing phosphorylation of glycolytic

enzymes by Hog1. Our results show perturbing Bcy1 sequence by protein fusion dramatically
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improved stress tolerance, as seen by increased growth in toxic 9% glucan-loading ACSH, but

xylose fermentation remained blocked, suggesting physiological stress sensitivity is unlikely the

cause of halted xylose consumption in concentrated hydrolysate.

Methods

Strains and Media

Strains used in this study are listed in Table 1. All strains expressed a codon-optimized

cassette containing XYLA from Clostridium phytofermentans, XYL3 from Scheffersomyces

stipitis, and TAL1 from S. cerevisiae (21). Generation of strains Y22-3, Y128, Y184, Y184 ira24,

Y184 hog14, Y184 ira24hog14, Y184 bcy1A4, and 184 Bcy1-AiD was previously described

(21,22,93). Y184 ira24bcy14 was made by replacing BCY7 with KanMX marker in Y184 jra24,

and verified with diagnostic PCRs. HOG1 was complemented in Y184 ira24hog140n a low-

copy MoBY 1.0 plasmid (49). Site-directed mutagenesis was performed to express the

hog1P7#4A or hog 148444 allele from the MoBY 1.0 plasmid, and correct mutants were verified by

sequencing. Strains harboring HOG1, hog1P'#4A  or hog 148444 expressing plasmids or the empty-

vector control were grown in media containing G418 to maintain the plasmid.

Table 1. Strains used in this study.

Strain ID Genotype Reference

Y22-3 NRRL YB-210 MATa spore HOA Parreiras etal. 2014
Y128 Y22-3 MATa, isu1C412T hog14844del ggh 168394 grg3G136A jrg2Gerazl ggp 19029906 Parreiras etal. 2014
Y184 Y22-3 MATa, isul:loxP-Hyg-loxP, gre3A::MR Myers etal.,

Y184 ira24 Y184, ira2A::MR Sato etal., 2016
Y184 becy1A Y184, bey1A::KanMX Myers et al.,

Y184 hog1A Y184, hog1A::KanMX Sato etal., 2016
Y184 Bey1-AiD Y184, BCY1-3' AiD tag (3x Mini-Auxin Induced Degron Sequence-5x FLAG-BCY1-3' UTR-KanMX) Myers et al.,

Y184 ira2Ahog1A Y184, ira2A::MR, hog1A:KanMX Sato etal, 2016
Y184 ira2Abcy14 Y184, ira2A:MR, bey1A::KanMX This study

Y184 ira2Ahog1A/HOG1T
Y184 ira2Ahog1A/hog1P1#4
Y184 ira2Ahog1A/hog 1/
Y184 ira2Ahog1A/empty
Y184 ira2A/empty

Y184 ira2Ahog1A, HOG1 (CEN4 plasmid: KanMX, URA3)
Y184 ira2Ahog1A, hog1°'#*# (CEN4 plasmid: KanMX, URA3)
Y184 ira2Ahog14, hog 14844l (CEN4 plasmid: KanMX, URA3)
Y184 ira2Ahog1A, CEN4 plasmid: KanMX, URA3

Y184 ira2A, CEN4 plasmid: KanMX, URA3

This study, Ho etal., 2009
This study, Ho etal., 2009
This study, Ho etal., 2009
This study, Ho etal., 2009
This study, Ho etal., 2009
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YPDX medium was prepared as previously described (50) (1% yeast extract, 2%
peptone, except that sugars were added at either 6% glucose and 3% xylose or 9% glucose and
4.5% xylose). Identified lignotoxins (51,52) were added to YPDX 6%/3% and the medium was
sterilized by vacuum filtration. ACSH was prepared from Zea mays (Pioneer hybrid 36H56)
grown in Field 570-C Arlington Research Station, University of Wisconsin and harvested in
2012, as previously described (53). Pretreated corn stover was hydrolyzed to either 6% or 9%
glucan loading at 50°C for 5 days, and biomass was added 4 hours after hydrolysis began in 4
batches. The hydrolysate was centrifuged (2500xg for 30 minutes) and sterile filtered (0.22 um
pore size; Millipore Stericup). Final sugar concentrations were 53 g/L glucose and 21.7 g/L
xylose for 6% glucan-loading ACSH, and 80 g/L glucose and 36 g/L xylose for 9% glucan-

loading ACSH.

TECAN Screening

Strains were grown to saturation in YPD 2% batch aerobically overnight, then diluted to
an ODgy of 2 in YPD 2%. 5 pL of culture was added to 95 uL of 9% ACSH, YPDX 9%/4.5%,
YPDX 6%/3%, or YPDX 6%/3% +LT in a Costar clear 96-well plate. OD at 600 nm was
measured anaerobically for 48 hours in a TECAN Infinite 200 at 30°C, with measurements taken
every 20 minutes (total of 144 measurement cycles) and multiple reads per well. Final OD was
calculated based on the average OD reading per well per time point and using three biological
replicates. Significant differences compared to Y184 were determined by performing a paired T-

test at p < 0.05, pairing sample by replicate date.

Batch culture fermentations
Overnight aerobic cultures grown in YPD 2% glucose were transferred to an anaerobic

chamber, washed once with anaerobic medium, and inoculated into the tested media at an
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ODgg of 0.1. Fermentations occurred for 96 hours, with 1 mL aliquots removed throughout the
time course for ODgy measurements and HPLC-RID analysis to measure glucose, xylose, and
ethanol concentrations. Dry-cell weight biomass was measured by vacuum filtering cultures
onto pre-weighed filters (0.45 um pore size), microwaving on 10% power for 10 minutes, then
drying in a desiccant for 24 hours before measuring. Biomass, OD, and concentrations of
glucose, xylose, and ethanol were averaged from three biological replicates for each time point.
ANOVA was used to determine significant differences in biomass, comparing 24h and 48h
within each individual strain, at p < 0.05. Rates of sugar consumption were calculated by
normalizing the change in sugar concentration to the fitted rate of biomass change during
exponential (glucose) or stationary (xylose) phase, and a paired T-test was used to determine
significant differences compared to Y184 at p < 0.05. Ethanol titer at 48h was averaged from

three biological replicates.

Phosphoproteomic analysis

Quantitative proteomic and phosphoproteomic samples of Y184 ira24hog14 and Y184
hog14 were prepared as previously described using isobaric tandem mass tags (TMT) for
phosphoproteomic analysis (93). Paired samples were collected from two independent
replicates grown anaerobically in YPX 3% for three generations and harvested at ODggq ~0.5.
Proteomic samples were analyzed by nanoflow liquid chromatography tandem mass
spectrometry. COMPASS (54) was used to search against target-decoy yeast database (55).
Raw data were transformed to log, values, then the fold change between Y184 jra24hog14 and
Y184 ira2A peptides was calculated. We focused on differentially abundant phosphopeptides,
defined as those with a log, difference of at least 1.5X in the same direction in both replicate
comparisons. We used this threshold since TMT tagging is known to compress abundance

differences (56).
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Results

Our goal was to dissect the contributions of different regulators in growth, xylose
fermentation, and stress tolerance. We therefore measured fermentation and growth rates of a
panel of strains grown in several concentrations of ACSH and laboratory media. To clarify the
contribution of each regulator, we started with strain Y22-3, which overexpresses a codon-
optimized cassette containing XYLA from Clostridium phytofermentans, XYL3 from
Scheffersomyces stipitis, and TAL1 from S. cerevisiae but cannot utilize xylose, and strain
Y184, which additionally lacks ISUT and GRE3 and can thus respire xylose aerobically but not
anaerobically (93). Both Y22-3 and Y184 can grow in the toxic 9% ACSH, whereas strain Y128,
which can ferment xylose anaerobically, cannot (Fig.1). To test the impact of mutations that
enable anaerobic xylose utilization, we generated Y184 derivatives lacking IRA2, BCY1, or
HOG1 individually as well as IRA2 HOG1 or IRA2 BCY1 in combination, to define how each
mutation impacts stress tolerance, growth, and metabolism. We also included Y184 Bcy1-AiD,
in which an auxin-inducible degradation sequence is fused to the C-terminal of Bcy1 (in the
presence of functional IRA2 and HOG1); it is important to note this sequence alone does not
enable degradation of Becy1 but imparts rapid xylose fermentation in lab medium without the

need for HOG1 deletion (93).

Figure 1. Stress susceptibility of strains engineered for xylose consumption. Strains were
grown anaerobically in 9% ACSH, YPDX 9%/4.5%, YPDX 6%/3%, and YPDX 6%/3% +
lignotoxins (LT) in 96-well plates, and final cell density at 48h was measured with a TECAN
instrument. Average and standard deviations of final ODs were calculated from three biological
replicates. Asterisks denote significant differences compared to Y184 grown in each respective

condition (paired T-Test, p < 0.05).
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Improving stress tolerance does not restore xylose fermentation in toxic hydrolysate

We first measured tolerance of each strain to ACSH hydrolysates and rich laboratory
medium containing mixed glucose/xylose with and without lignotoxins (LT), anaerobically in a
96-well plate reader. 9% ACSH is clearly inhibitory to growth, since all strains grew to much
lower cell densities than in rich medium with lignotoxins added (Fig. 1). Parental strains Y22-3
and Y184 showed the best growth in 9% ACSH, as indicated by final cell density, even though
they cannot use the xylose after glucose is consumed. Y184 ira24 and Y184 bcy14 showed
reduced growth compared to Y184, but still grew; Y128, Y184 hog1A4, Y184 ira2Ahog14, and
Y184 ira2Abcy 1A were not able to grow. Thus, all strains lacking functional Hog1 showed
increased sensitivity to 9% ACSH, as did the Y184 ira24bcy1A4 strain. Since Hog1 functions in
the osmotic stress response, we reasoned the high sugar content of 9% ACSH may be
responsible for the sensitivity of hog14 strains. However, the mutants were not sensitive to rich
medium with sugar concentrations matching 9% ACSH (9% glucose, 4.5% xylose, Fig. 1),
indicating it is not the osmolarity of 9% ACSH that is inhibitory to these strains. Strikingly, Y184
cells with the Bcy1-AiD tag, which enables anaerobic xylose fermentation, displayed maximal
growth in 9% ACSH, comparable to Y184. Therefore, as we predicted, Y184 Bcy1-AiD lacks the
extreme stress sensitivity seen in hog14 strains. While adding lignotoxins to YPDX medium
decreased growth, it was not as inhibitory to any strain as 9% ACSH, suggesting either the
lignotoxin cocktail (52) added was lower than toxin levels in real hydrolysate or additional toxins
not in our cocktail remain to be identified.

We next studied glucose and xylose consumption in 9% ACSH to characterize
fermentation rates. We expected the strains whose growth was sensitive to the stresses of
ACSH would ferment worse compared to tolerant strains. Surprisingly, we found all strains,

even those containing functional Hog1, were incapable of fermenting xylose in hydrolysate

10
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generated at high-glucan loading (Fig. 2C, Fig. S1C). Y128 and Y184 hog1A4 did not grow to
densities as high as Y184, but Y184 Bcy1-AiD showed division as robust as Y184 (Fig. 2A),
supporting observations seen with the 96-well plate screen. Consistent with our hypothesis,
Y184 hog14 and especially Y128 cultures showed reduced glucose consumption over the time
course, whereas stress-tolerant Y184 and Y184 Bcy1-AiD depleted the glucose by 40 hours
(Fig. 2B). Since we previously showed the Y184 Bcy1-AiD strain can ferment xylose
anaerobically at higher rates than Y128 in laboratory medium (93) and has dramatically
improved growth in 9% ACSH, we predicted Y184 Bcy1-AiD would display enhanced xylose
consumption compared to Y128 and Y184 hog714in 9% ACSH. Unexpectedly, this was not
observed, as none of the strains used xylose in 9% ACSH (Fig. 2C) even though two fermented
the glucose. Several strains marginally used xylose in 6% ACSH (Fig. S2C), but clearly ferment
xylose in YPDX (see below), this suggests stresses in ACSH medium prevent xylose
fermentation. Since the growth and glucose consumption of Y184 Bcy1-AiD is clearly recovered,
these results suggest cellular stress is unlikely to be the cause of arrested xylose fermentation

(see Discussion).

Figure 2. 9% ACSH is inhibitory to xylose fermentation. Batch cultures of Y128, Y184, Y184
hog14, and Y184 Bcy1-AiD were grown anaerobically for 92 hours in 9% ACSH. A. Average
ODgoo measurements from three biological replicates over time for denoted strains. B. Glucose
concentration over time for strains grown in (A). C. Xylose concentration over time for the same

cultures shown in (A).

Differential contributions of regulators to glucose versus xylose fermentation rates
We next wanted to dissect the contribution of Ira2, Bcy1, and Hog1 to sugar

fermentation. We worked with laboratory media supplemented with 60 g/L glucose and 30 g/L

11
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xylose to characterize fermentation when the strains are most productive, since they did not
ferment xylose efficiently in ACSH. Interestingly, strains lacking Ira2 or Becy1 or harboring the
Bcy1-AiD fusion protein showed faster growth compared to the parental strains: all strains with
these mutations reached maximum cell density by 24h, whereas Y22-3, Y184, and Y184 hog1A4
took 48h to reach maximal titers (Fig. 3A, Fig. S3A). Although it was not statistically significant
in this growth assay, we noticed in the 96-well plate assay (Fig. 1) strains lacking /IRA2 or BCY1
consistently grew to lower cell densities than the parental strains. Deletion of HOG1 from Y184
reduced growth rate and glucose consumption rate compared to the other strains, whereas
combined deletions of HOG1 and IRA2 produced a strain with fast growth rates and the ability
to grow to a higher cell density than Y22-3 and Y184 (Fig. 3A,B, Fig. S3A,B). Thus, the
beneficial effect of IRA2 deletion overrides the deleterious effect of HOG 7 deletion for glucose-

based growth.

Figure 3. PKA activity increases growth, while hog14 improves xylose consumption.
Batch cultures were grown in YPDX 6%/3% for 96 hours. Measurements are averages from
three biological replicates. A. The average dry-cell weight biomass (g per L culture) measured
at 6, 24, and 48 h post inoculation. Asterisk indicates a significant difference (p< 0.055) between
the 24h and 48h timepoint within each strain. For all strains except Y184 and Y184 hog14, the
biomass accumulated was not significantly different at 48h compared to 24h, indicating faster
saturation of those cultures. B. Specific glucose consumption rates calculated from the
exponential phase of growth. C. Specific xylose consumption rate calculated from the stationary
phase of growth. D. Ethanol titer at 48 hours post inoculation. For B,C,D, asterisks denote

significant differences compared to Y184 (paired T-Test, p < 0.05).
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While mutations in PKA regulators increase growth on and consumption of glucose, the
opposite was observed for xylose consumption. Strains lacking HOG7 had the highest rates of
xylose consumption compared to the parental strains, whereas strains with PKA mutations
alone did not have a significantly different xylose consumption rate from the Y184 parental
strain (Fig. 3C). Thus, mutating HOG1 is specifically important for efficient xylose fermentation.
Moreover, Y128, Y184 hog14, and Y184 ira2Ahog14begin to ferment the xylose before glucose
is completely depleted from the culture (Fig. S3B and C). Correspondingly, Y128, Y184 hog1A4,
and Y184 jra24hog14 had the highest ethanol titer at 48 hours (Fig. 3D, Fig. S3D). Y184 Bcy1-
AiD was previously shown to use xylose at a comparable rate to Y128 in YPX medium when
cultured at a high cell density (93). Interestingly, we discovered that the strain does not use
xylose efficiently when the culture is started at low cell density (Fig. 3C), even though we
recapitulate robust xylose utilization at high cell density in YPDX (Fig. S4A). The reason for this
unique phenotype is not known; importantly, it did not explain the lack of xylose consumption in
ACSH, since inoculating cultures at high cell titers did not improve xylose fermentation in the

strain (Fig. S4B).

Hog1 kinase activity decreases xylose fermentation

HOG1 deletion allows for efficient xylose fermentation in YPDX. To test if it is the kinase
activity of Hog1, as opposed to other effects of the Hog1 protein, we tested if the catalytically
inactive hog1-D144A allele or truncated HOG1 recapitulating Y128’s mutation (hog1 A844A4)
could block xylose fermentation when introduced into Y184 ira24hog14, equal to reintroducing
the functional HOG1 allele. We saw the catalytic activity of Hog1 was required to suppress
anaerobic xylose fermentation: reintroducing wildtype HOG1 increased glucose consumption
and inhibited xylose fermentation, whereas expression of catalytically inactive or truncated Hog1

did not significantly affect the glucose or xylose consumption rate, since the strains matched the
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performance of Y184 jra24hog14 (Fig. 4). This reveals Hog1 kinase activity normally inhibits
xylose fermentation, suggesting Hog1 actively phosphorylates one or more targets to prevent

xylose utilization.

Figure 4. Hog1 activity blocks xylose consumption. Wildtype, catalytically inactive
(hog1P7444), and truncated (hog 148444) HOG1 alleles were expressed in Y184 ira24hog14 cells
and grown in batch culture for 96 hours in YPDX 6%/3%. Rate measurements were based on
average and standard deviation from three biological replicates. A. Average growth rate
calculated from the exponential phase of growth. B. Specific glucose consumption rate
calculated from the exponential phase of growth. C. Specific xylose consumption rate calculated
from the stationary phase of growth. Asterisks denote significant differences from Y184

ira24hog1A/HOG1 (paired T-Test, p < 0.05).

We performed phosphoproteomic analysis to implicate potential Hog1 targets impacting
xylose consumption. Y184 jra24and Y184 ira24Ahog14 were grown anaerobically in batch
culture in YPX medium, and phospho-proteomes were measured by quantitative mass-
spectrometry (see Methods). We identified only 11 phosphopeptides whose abundance was
reproducibly lower in Y184 ira24hog1A4 (Table 2, see methods). Of these 11, four are linked to
metabolism: E1 alpha subunit of pyruvate dehydrogenase (Pda1), pyruvate kinase (Cdc19),
glyceraldehyde-3-phosphate dehydrogenase (Tdh1), and trehalose-6-phosphatase complex
(Tsl1). Pda1, Cdc19, and Tdh1 have roles in glycolysis, whereas Tsl1 generates the overflow
metabolite trehalose. In contrast, eight phosphopeptides showed reproducibly increased
abundance in Y184 jra24hog1A. Of these eight, four are from proteins with unknown functions,
one is a heat shock protein (Hsp26), two are components of the 40S ribosome (Rps6A, Rps6B),

and one is an epsin-like protein involved in endocytosis (Table 2). Several of these enzymes,
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343  including Cdc19 and Tsl1, directly interact with Hog1, and others harbor the known Hog1
344  consensus sites around the affected residue, suggesting Hog1 directly phosphorylates these

345  proteins (see Discussion).

346
Table 2. Peptides with phosphorylation changes in Y184 ira2Ahog14
Protein Common Name Phospho Site Direction of change in Y184 ira2 Ahog1 A

YJL136C RPS21B S65 Decreased
YER178W PDA1 S336 Decreased
YER178W PDA1 S344 Decreased
YDL223C HBT1 S41 Decreased
YMR031C EIS1 S736 Decreased
YALO38W CDC19 S22 Decreased
YMRO031C EIS1 T767 Decreased
YDL223C HBT1 S363 Decreased
YJLO52W TDHA1 T136 Decreased
YPL118W MRP51 8327 Decreased
YML100W TSL1 5266 Decreased
YBRO72W HSP26 S208 Increased
YNL115C YNL115C S244 Increased
YNL115C YNL115C S42 Increased
YDL161W ENT1 S317 Increased
YBR181C RPS6B S232 Increased
YPLOS0C RPSBA S232 Increased
YLR413W INA1 S654; S657 Increased

347 YLR413W INA1 S652; S657 Increased

348

349  Discussion

350 Our results provide new insights into how mutation of different signaling proteins can
351 impart distinct physiological responses that, when integrated, improve anaerobic conversion of
352  sugars to products, in this case ethanol. We show mutations in RAS/PKA signaling that up-

353  regulate PKA activity enhance growth and perhaps glucose consumption rates, but possibly at a
354  cost of final cell density, whereas deletion of HOG1 is essential for xylose fermentation but at
355 the expense of hydrolysate tolerance. Together, these results suggest several important results
356 relevant to lignocellulosic fermentation.

357 PKA and Hog1 contribute separable features to xylose fermentation. Increased PKA

358 activity is known to increase cell growth rate and glucose consumption (57). PKA upregulates
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expression of ribosome biogenesis genes, which supports rapid growth (58,59). Moreover, it
promotes glycolytic flux by inducing transcription of genes and phosphorylating enzymes
involved in glycolysis (60—62). We recently showed PKA also has roles in the hypoxic response
when cells are grown anaerobically on xylose (93). This response is mediated by the Azf1 and
Mga2 transcription factors and may further promote glycolytic flux. Therefore, it is consistent
that we find strains with deletions of RAS/PKA regulators display faster growth (Fig. 3A, Fig.
S3A). Despite the increased growth and glucose consumption rates when PKA regulators are
deleted, this effect is not as dramatic with xylose. While strains with mutations in IRA2 or BCY1
do consume more xylose than Y184 (Fig. S3C), the rates of consumption are not significantly
faster than Y184 (Fig. 3C). The reduced final-cell titers seen in strains with up-regulated
RAS/PKA may result from an inability to accumulate storage carbohydrates. During the diauxic
shift, glycogen storage occurs when glucose has been depleted to fifty percent of its starting
concentration (63). However, increased PKA activity prevents accumulation of storage
carbohydrates, such as glycogen and trehalose, by inhibiting expression of biosynthesis
enzymes and activating catabolic enzymes (64—68). In our strains lacking RAS/PKA inhibitors, it
is possible upon glucose depletion, the cells lack stored carbohydrates to metabolize, limiting
cell titers compared to strains with functional IRA2 and BCY1 (Fig. 1, Fig. S3A).

In contrast to PKA upregulation, HOG1 deletion specifically affects xylose utilization. Our
results show that under standard conditions, even in the absence of added stress, Hog1 kinase
activity inhibits xylose utilization, perhaps by directly phosphorylating glycolytic enzymes (Fig.
4C, Table 2). Although typically thought of as a stress regulator, Hog1 has recently been
implicated in the response to glucose (28,29,69) and was shown to phosphorylate the glycolytic
enzyme Pfk26 (70) and physically interact with Cdc19, Pfk1, and Pfk2 (71). Hog1 also plays an
important role in glycerol production, which may influence glycolytic flux to steer production from
pyruvate towards glycerol (72-77). The enzymes we detected with significant phosphorylation

differences upon HOG1 deletion function lower in glycolysis, after the entry point of xylose via
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385 the pentose phosphate pathway (Table 2), but we cannot exclude that other enzymes or

386  regulators are also affected. Modeling of glycolytic flux during osmoadaption suggests Hog1
387  activity stabilizes pyruvate production to prevent starvation (75), which may account for the
388  decreased phosphorylation of Cdc19’s activation site in hog14 mutants (Table 2).

389

390 An interesting question is the relationship between PKA and Hog1 activity. We

391  previously found Y184 bcy1A4 cells display reduced phosphorylation of the Hog1 protein on its
392  activating site when grown anaerobically in YPX medium (93), suggesting a PKA-dependent
393  mechanism of inhibiting Hog1 activity to allow xylose fermentation. Hog1 was shown to be
394  activated during glucose depletion (28,69). It is possible as cells begin to deplete glucose from
395 YPDX, Hog1 becomes activated in Y184 but that this is suppressed when PKA is up-regulated
396 via BCY1 or IRA2 deletion. The largest effects on xylose metabolism occur when PKA

397  upregulation and HOG1 deletion are combined. Unfortunately, a byproduct of this is likely

398  causing extreme stress sensitivity. Strains lacking HOG1 (Y128, Y184 hog14, and Y184

399 ira24hog1A4) are especially sensitive to hydrolysate (Fig. 1, Fig. 2A, Fig. S1A). Moreover, the
400 combination of upregulated PKA and HOG1 deletion may exacerbate stress sensitivity, since
401  PKA suppresses the stress response (24), while Hog1 activates it (25). These strains are able
402  to ferment xylose in favorable conditions (Fig. 3C, Fig. S3C), but are unable to ferment the
403  sugar in toxic 9% ACSH (Fig. 2C, Fig. S1C).

404 We hypothesized improving stress tolerance would improve xylose fermentation in

405  stressful conditions. We predicted Y184 Bcy1-AiD, which harbors functional HOG1 but can
406  ferment xylose anaerobically in rich medium when started at high titers (93), would display both
407  higher stress tolerance and anaerobic xylose fermentation in hydrolysate. Interestingly, while
408 Y184 Bcy1-AiD clearly grew well in 9% ACSH, it did not utilize the xylose even when started at

409  high cell titer (Fig. 1, Fig. 2A, Fig. 2C Fig. S4B). This suggests stress sensitivity is not the sole
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410  factor limiting xylose fermentation. There are many types of lignotoxins present in hydrolysates
411  (51), and while their effects are somewhat understood, many of their specific targets remain to
412  be elucidated (33). One possibility is that toxins are directly inhibiting enzymes required for
413  anaerobic xylose fermentation, as shown in Escherichia coli where feruloyl and coumaroyl

414  amides were discovered to be allosteric inhibitors of de novo nucleotide biosynthetic enzymes
415  (78). Jayakody et al. (2018) found that glycoaldehyde and methyglyoxal present in hydrolysate
416  are key inhibitors of xylose fermentation (79). Furthermore, acetic acid is known to decrease
417  enolase activity, ultimately slowing down glycolysis (80). This has led to other groups

418  engineering yeast to reduce and ferment acetate or increase acetate tolerance (43,81,82). More
419  studies identifying the targets of lignotoxins will help to clarify the bottleneck in xylose

420  metabolism when microorganisms are grown in hydrolysate media.

421 Our results also revealed unexpected information on the different routes of PKA

422  regulation with regard to the stress response. Removing either IRA2 or BCY1 had mild impacts
423  on ACSH tolerance, but deletion of both genes greatly impacted tolerance of 9% ACSH (Fig. 1,
424  Fig. 2A, Fig. S1A). This suggests there are multiple lines of partially redundant regulation of
425  stress tolerance by the RAS/PKA pathways. Upregulation RAS by IRA2 deletion is predicted to
426  increase cAMP and thus PKA activity (83), whereas deletion of BCY7 removes the cAMP-

427  responsive inhibitor of PKA. One possibility is PKA is only partially upregulated by single-gene
428  deletion, but double-deletion of IRA2 and BCY1 produces much stronger activation and thus
429  complete suppression of the stress response. There are other methods of RAS/PKA pathway
430  regulation which support the possibility that single deletion of IRA2 or BCY1 causes only a

431  partial upregulation. The RAS/PKA pathway undergoes feedback inhibition to control cAMP
432  concentrations through predicted PKA-directed phosphorylation of Cdc25 and Pde1 (84).

433  Furthermore, the interaction between the catalytic and regulatory subunits of PKA is regulated
434 by other factors, including kelch-repeat proteins Krh1/2 (85). Another possibility is PKA may be

435  directed to different substrates in different situations. Beyond allosteric cAMP regulation
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influenced by RAS, Bcy1 is also regulated by phosphorylation, which can influence PKA
substrate specificity and localization (86—90). Recent studies in mammalian cells show the
negative regulator of PKA does not dissociate from the active kinase at physiological cAMP
levels (91), and the substrate determines the dissociation rate of catalytic and regulatory
subunits (92). Thus, activation of PKA via Bcy1-cAMP binding may provide different effects than
if Bcy1 is missing from the cell. Finally, it is also possible that PKA-independent effects of IRA2
deletion separately regulate the stress response. Future studies to dissect these and other
effects will contribute to our understanding of how to engineer cells for anaerobic xylose

fermentation in lignocellulosic hydrolysates.
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750  Supplementary Figure Legends

751  Supplementary Figure 1. 9% Growth and metabolism profiles in 9% ACSH. Batch cultures
752 were grown in 9% ACSH anaerobically for 92 hours. Data represent average and standard

753 deviation from three biological replicates. A. ODgog measurements over time. Glucose (B.) and
754  xylose (C.) concentration in the media over time.

755

756  Supplementary Figure 2. Growth and metabolism profiles in 6% ACSH. As described in
757  Supplementary Figure 1 except for anaerobic 6% ACSH growth, measuring dry-cell weight (A.),
758  and glucose (B.), xylose (C.), and ethanol (D.) media concentration over time.

759

760  Supplementary Figure 3. Growth and metabolism profiles in YPDX 6%/3%. As described in
761  Supplementary Figure 1 except for anaerobic YPDX 6%/3% growth, measuring dry-cell weight
762 (A.), and glucose (B.), xylose (C.), and ethanol (D.) media concentration over time.

763

764  Supplementary Figure 4. High starting cell titers increases xylose consumption in

765  nutrient-rich medium, but not ACSH. Batch cultures were grown anaerobically for 96 hours in
766  YPDX 6%/3% (A.) or 6% ACSH (B.). Cultures were started at an ODg of 3. Data represent
767  average and standard deviation of three biological replicates. Comparing Panel A to Figure 3C
768  shows that the Y184 Bcy1-AiD strain ferments xylose when the culture is inoculated at a higher
769  starting OD but not when inoculated at a lower cell density.

770

771

772
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