

1

2

3

4

5

6

7

8 **CAN TRANSCRANIAL DIRECT CURRENT STIMULATION OVER THE**
9 **DORSOLATERAL PREFRONTAL CORTEX ENHANCE PROPRIOCEPTION?**

10

11 Eric N. Beck¹, Sankirtana Shankar Narayanan¹, Rian McDermott¹, Alice G. Witney ^{1,2,3,4}

12

13 ¹ School of Medicine, Biomedical Sciences Institute, Trinity College Dublin, Ireland

14 ² Department of Physiology, Biomedical Sciences Institute, Trinity College Dublin, Ireland

15 ³ Trinity Centre for Bioengineering, Trinity College Dublin, Ireland

16 ⁴ Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland

17

18

19 Correspondence to: Eric N. Beck

20 Trinity College Dublin

21 152-160 Pearse Street

22 Dublin 2, Ireland

23 E-mail: becke@tcd.ie

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

24 ABSTRACT

25 Introduction: Proprioception (perception of one's limb position) is critical for accurate and
26 consistent movement, and is processed by the sensorimotor cortex. Increased prefrontal activity
27 is associated with improved proprioception and motor performance. Anodal transcranial direct
28 current stimulation (tDCS) of the left dorsolateral prefrontal cortex (DLPFC) has been found to
29 increase activity of the sensorimotor cortex. Thus, this study aimed to investigate whether anodal
30 tDCS of the DLPFC may enhance proprioception measured with a target task. It was
31 hypothesized that tDCS over the left DLPFC would improve motor performance (error and
32 variability) on a target task completed without vision.

33 Design: Single blind, within-participant, sham-controlled trial.

34 Methods: Fifteen healthy young adults (M:F=6:9, age=23.3 years) completed 18 trials of a
35 computerized target task (manipulating a mouse) with their non-dominant upper-limb, with and
36 without vision, before and after (pre/post assessment) 20-minutes of stimulation (anodal tDCS of
37 the left DLPFC) and sham conditions. Averages and coefficient of variation (CV, variability
38 between trials) of spatio-temporal parameters associated with the movement were measured.
39 Stimulation/ sham sessions were counterbalanced (stimulation first session, n=8), with each
40 session separated by one week. Repeated-measures ANOVA and pairwise comparisons (95%
41 confidence intervals [CI]) were conducted.

42 Results: Regarding distance travelled CV, a significant interaction between condition and
43 assessment ($F(1,14)=5.09$, $p=0.041$) demonstrated that variability was significantly less post-
44 stimulation compared to pre ($p=0.003$). A significant interaction between assessment and vision
45 ($F(1,14)=30.08$, $p<0.001$) regarding distance travelled CV showed that without vision, variability

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

46 was significantly less at post compared to pre ($p < 0.001$), and this decrease was found after the
47 stimulation condition only (95% CI = $\Delta 7.4 \pm 1.6$ [4.0 to 10.9]).

48 Conclusion: Since variability of distance travelled during the target task without vision was
49 lower post-stimulation compared to pre, consistency of movement without vision, and therefore
50 proprioception, may have been enhanced by anodal tDCS of the DLPFC. This improvement
51 could be due to modulation of fronto-striatal-thalamic circuits. These findings may be the first
52 step in developing tDCS methods as an effective adjunct therapy for dysfunctional
53 proprioception in various disorders, such as Parkinson's disease.

54

55 KEYWORDS:

56 Transcranial Direct Current Stimulation (tDCS), Proprioception, Dorsolateral Prefrontal cortex
57 (DLPFC), Anodal Stimulation, Visuomotor Target Task.

58

59

60

61

62

63

64

65

66

67

68

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

69 1. INTRODUCTION

70 Proprioception refers to the perception of one's limb position in physical space (1–3). To
71 perform novel tasks, humans utilize multiple sensory modalities to ensure accuracy of
72 movement, such as visual, vestibular, and proprioceptive information, the most relied upon being
73 vision (4). Reliance on each sensory modality is not static but rather dynamic, and the degree to
74 which we utilize each sensory modality depends on the task performed (5–7). For example, when
75 vision is removed (such as when one's eyes are closed), reliance on proprioceptive feedback to
76 guide movement becomes predominant (5). With effective use of proprioception, individuals can
77 make precise movements with little variability, despite lack of vision (1). However, in cases of
78 impaired processing of proprioception (such as in Parkinson's disease), movement accuracy
79 decreases and variability increases (3,8–12), which could potentially lead to tripping, falling, and
80 hospitalization (13–17). Interestingly, individuals with Parkinson's disease are thought to
81 compensate for postural deficits by increasing activation of prefrontal cortex activity (18). Thus,
82 an understanding of the neurophysiological processes involved in proprioception and the
83 importance of fronto-striato-thalamic pathways are vital to establish future therapies for
84 individuals with impaired perception of limb position in physical space.

85 Proprioceptive input from peripheral receptors is transmitted via the dorsal column and
86 spinocerebellar pathways to the thalamus and then onto the somatosensory cortex (19). Based on
87 studies in Parkinson's disease, proprioception relies heavily on sensorimotor loops through the
88 basal ganglia (8,9,20,21). Deficits in cerebro-basal ganglia circuitry may be compensated for via
89 increased activity in frontal striatal pathways (18,19,22). An increase in alpha power observed
90 via EEG in the prefrontal cortex has been associated with proprioceptive training (23) whilst
91 increased activation in the sensorimotor cortex reflects improved performance at proprioceptive

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

92 tasks. For instance, Iandolo and colleagues (2015) demonstrated that while healthy participants
93 completed a proprioceptive matching task in which neural correlates were investigated via
94 functional magnetic resonance imaging (fMRI), the sensorimotor cortex activation increased
95 (24). Taken together, this previous work suggests that an increase in sensorimotor cortex
96 activation could be enhanced, and that fronto-striato-thalamic pathways may be a means of
97 mediating this enhancement. One way to potentially influence sensorimotor cortex functioning in
98 a safe and non-invasive manner is with the use of transcranial direct current stimulation (tDCS).

99 Transcranial direct current stimulation refers to the application of electrical current
100 through electrodes placed on specific regions of the scalp (25,26). The current passes through the
101 scalp and has been postulated to modulate membrane potential, thus leading to increased or
102 decreased neuronal excitability (27,28). Stimulation via tDCS may be applied with either a
103 positive current (anodal tDCS) that facilitates neuronal excitability or a negative current
104 (cathodal tDCS) (25) that inhibits neuronal excitability. Therefore, one might predict that anodal
105 current could be utilized to modulate sensorimotor excitability, and thus influence proprioceptive
106 processing. Various brain regions could be targeted with anodal stimulation, although as
107 previously discussed, fronto-striato-thalamic pathways may be a means of mediating
108 proprioceptive enhancement. One prominent area of interest in sensory modulation has recently
109 been the left dorsolateral prefrontal cortex (DLPFC). The DLPFC is a critical region for
110 cognitive and emotional processing, properties previously exploited with anodal tDCS to
111 modulate working memory (29,30), sustained attention (31), depression (32,33), and various
112 other processes in both healthy and patient populations (34). Importantly, manipulation of
113 neuronal excitability in the DLPFC has been found to modulate sensory perception, such as pain,
114 fibromyalgia (35,36), and more recently, tinnitus (37). It should be noted that these diverse

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

115 effects are not the result of separate networks, but rather interconnected circuitries, demonstrated
116 recently by Deldar et al. (2018) whom concluded that anodal tDCS over the left DLPFC
117 improved pain via enhanced working memory (38). The non-specific cognitive, emotional, and
118 sensory modulatory effects of tDCS over the DLPFC can be attributed to both the poor
119 localisation of tDCS and the modulation of interconnected networks, as opposed to only local
120 cortical areas underlying the electrodes (34).

121 In a novel study, Stagg and colleagues (2013) demonstrated that twenty minutes of
122 anodal stimulation over the left DLPFC resulted specifically in increased perfusion of the
123 sensorimotor cortices bilaterally, indicating greater functional connectivity between the left
124 DLPFC and the sensorimotor cortex (measured with magnetic resonance imaging) (39). Since
125 increased activity of the sensorimotor cortex may indicate improvement to proprioceptive
126 processing (40), anodal tDCS over the left DLPFC might be expected to result in improved
127 proprioception in a group of healthy individuals. In addition to increased coupling between the
128 DLPFC and the sensorimotor cortex, Stagg and colleagues (2013) found decreased functional
129 connectivity between the left DLPFC and the thalamus after anodal tDCS over the left DLPFC.
130 This decrease in coupling between the DLPFC and the thalamus has been suggested to be a key
131 contributor underlying modulation of sensory thresholds (i.e. decreased perception of pain) after
132 tDCS over the left DLPFC (35,39,41), and might be expected to hinder proprioception. However,
133 increased activity in the thalamus in individuals with Parkinson's disease with chronic deep brain
134 stimulation has been shown to lead to proprioceptive deficits suggesting that this stimulation
135 could result in thalamic, thalamocortical or corticothalamic connectivity alterations that impair
136 proprioception (42). The disruption of sensory processing in individuals with Parkinson's disease
137 has been suggested to be due to a deficit in sensory gating which may explain why both increases

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

138 and decreases in sensory thresholds appear to be observed in this cohort. Since anodal tDCS over
139 the DLPFC is commonly used to modulate sensory thresholds, the question as to whether tDCS
140 may enhance proprioception is a timely and important inquiry to gain further insight into
141 mechanisms underlying sensory modulation.

142 Various methods have previously been utilized to assess proprioception and thus make
143 inferences regarding proprioceptive processing (1). One common method is a joint position
144 reproduction task (43–45). For this task, a participant's limb begins in a neutral position that is
145 subsequently moved, either passively or actively, to a target joint position. The participant's limb
146 is then returned to the neutral position in which the participant's goal is to return his/her limb to
147 the remembered target position, all of which is accomplished without the use of vision. Effective
148 proprioception would result in minimal error between the target position and the performed
149 position with minimal variability between trials (1). Similarly, targets may be utilized in which a
150 participant is required to move his/her limb or an object to a target with and without the use of
151 visual feedback, referred to as a visuomotor target task (10). Again, minimal error between the
152 target position and performed position with minimal variability between trials is indicative of
153 effective proprioception.

154 Therefore, the aim of the present study was to investigate the influence of anodal
155 transcranial direct current stimulation applied over the left dorsolateral prefrontal cortex on
156 proprioception in healthy adults, assessed with the use of a visuomotor target task. It was
157 expected that if tDCS over the left DLPFC does increase activity of the sensorimotor cortex that
158 is involved in the perception of proprioceptive information, than performance (error and
159 variability) on a target task completed without vision might improve (i.e. decreased error and
160 variability compared to baseline). In contrast, if tDCS over the left DLPFC decreases activity of

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

161 the thalamus involved in projecting sensory information to various regions of the cortex and
162 suppressing erroneous information, than performance on a target task completed without vision
163 might be hindered (i.e. increased error and variability compared to baseline).

164

165 2. METHODS

166

167 *2.1. Participants*

168 Fifteen healthy young adults (M:F=6:9; Right handed:Left handed= 12:3; age=23.3
169 years) participated in the present single blind, within participant, sham-controlled study.
170 Members of the Trinity College Dublin community were recruited by word-of-mouth.
171 Participants were included if they were between the ages of 18 and 30 years, and had not been
172 diagnosed with any medical condition. Participants were excluded if they had a history of
173 epilepsy, fainting, syncope, head trauma, severe headaches, movement disorders, or neuropathy.
174 The Faculty Research Ethics Committee of Trinity College Dublin approved this study. All
175 participants were informed of the experimental protocol. Written consent was obtained according
176 to the Declaration of Helsinki prior to testing.

177

178 *2.2. Experimental Setup*

179 Participants were asked to visit the lab on two separate occasions, one week apart, to
180 complete a visuomotor target task (task description to follow) before and after (pre- / post-
181 assessment) a stimulation or sham condition (stimulation and sham protocol description to
182 follow). At the beginning of the first session, each participant completed a medical health
183 questionnaire form to determine eligibility and to sign the informed consent. Furthermore,

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

184 participants completed the Waterloo Handedness Questionnaire (47) to determine degree of
185 upper-limb dominance. Participants additionally completed the Trail-Making Task (parts A and
186 B) (48) and the digit span working memory task. Whether completion of the stimulation or sham
187 condition took place on the first or second visit to the lab was randomized and counterbalanced
188 (8 participants completed the stimulation condition on the first session). Each participant
189 completed both stimulation and sham conditions. Participants began each session by completing
190 baseline evaluation of proprioception with the visuomotor target task. Subsequently, participants
191 received twenty minutes of either anodal tDCS stimulation over the left DLPFC, or twenty
192 minutes of sham. After completion of either stimulation or sham, participants completed the
193 visuomotor target task again.

194

195 *2.3. Transcranial Direct Current Stimulation*

196 Transcranial direct current stimulation (tDCS) is a safe, non-invasive neuromodulatory
197 technique that delivers a low current to the scalp. Since the purpose of the study was to apply
198 current over the left DLPFC in a similar fashion to that completed by Stagg and colleagues
199 (2013), the tDCS method utilized in the current study followed a similar protocol. A NeuroConn
200 DC stimulator (neuroConn GmbH, Germany) was utilized to apply current. The anodal electrode
201 was positioned on the F3 position (using the 10/20 EEG system for positioning transcranial
202 magnetic stimulation) while the cathodal electrode was placed on the contralateral supraorbital
203 ridge (36,39,49). Each 5 x 7cm electrode transferred current to the scalp via a saline-soaked
204 surface sponge (49). In the stimulation condition, participants received 20 minutes of 1mA
205 current with fade-in/fade-out periods of 10 seconds while seated (39). In the sham condition,
206 participants were subjected to an identical protocol as the stimulation condition. However,

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

207 participants received only 30 seconds of 1mA current with fade-in/fade-out periods of 10
208 seconds, followed by 19minutes, 30seconds of no stimulation. Participants were blinded to
209 whether they received stimulation or the sham condition. To provide an indication of current
210 distribution through the brain using the electrode montage described above (i.e. anodal over F3
211 and cathodal over supraorbital ridge), HD-Explore Neurotargeting software (HD-Explore
212 Version 2.1, Soterix Medical) was utilized.

213

214 *2.4. Visuomotor Target Task to Assess Proprioception*

215 To measure proprioception with a visuomotor target task, Matlab R2017b (The
216 MathWorks, Natick, MA) and Psychtoolbox-3 programs were utilized. Matlab / Psychtoolbox
217 code were used to generate three separate coloured squares situated in different locations of a
218 monitor that served as the targets (in the upper right corner [blue], upper left corner [red], and
219 upper middle [green]; Fig 1). Participants sat at a desk in a comfortable position in front of the
220 computer monitor, which presented the three squares. Participants were asked to move a
221 computer mouse that manipulated the cursor on the monitor using their non-dominant upper-limb
222 throughout the task. Use of the non-dominant upper-limb was chosen to increase task difficulty
223 so as to avoid ceiling effects. The goal of the task, with each trial, was to move the cursor on the
224 monitor (with the mouse) from the starting point, situated at the bottom middle position, to the
225 centre of one square. Before each trial, the investigator instructed the participant as to which
226 square was the target of that trial, and whether they were able to use visual information. In trials
227 where vision was permitted, participants completed the task by moving the mouse from the
228 starting position to the middle of the designated square for that trial. Once the participant
229 believed they were in the correct position, the trial was completed. In trials where vision was not


TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

230 permitted, participants were given 2 seconds to see the position of the square, then were asked to
231 move a blindfold over their eyes with their dominant upper-limb, and subsequently move the
232 mouse/cursor with their non-dominant upper-limb to the position they believed was the middle
233 of the designated square. Once the cursor was in the position they believed was the middle of the
234 square, the trial ended. Prior to starting the task, the participant completed five practice trials for
235 each box to become familiarized with the task. Participants completed 3 trials for each square
236 (left, middle, right), both with and without vision (vision vs. no vision), before and after (pre vs.
237 post assessment) stimulation and sham conditions, for a total of 72 trials. Participants were not
238 provided knowledge of results.

239
240
241
242
243
244
245
246
247

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

248
249

250
251
252 **Figure 1: Visuomotor task setup.** Participants sat at a desk in front of the computer monitor,
253 which presented the three squares. Participants manipulated the cursor on the monitor from the
254 starting point to the centre of one square, i.e. the target, with their non-dominant hand. Once the
255 participant believed they were in the correct position, the trial was completed. In trials where
256 vision was not permitted, participants were given 2 seconds to view the position of the square,
257 then moved a blindfold over their eyes with their dominant hand, and subsequently moved the
258 mouse/cursor to the position they believed was the middle of the designated square. Once the
259 cursor was in the position they believed was the middle of the square, the trial ended.
260
261
262
263

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

264 2.5. *Data and Statistical Analysis*

265 The Matlab output provided x-y pixel coordinates (converted to millimeters [x/3.795]) of
266 the mouse cursor collected at 60Hz. From this output, the following upper-limb movement
267 parameters were calculated: i) spatial error of the trial endpoint compared to the middle of the
268 designated square (millimeters [mm]); ii) movement time (seconds) comprising the total time
269 elapsed from movement initiation to movement cessation; iii) distance travelled (mm) from
270 movement initiation to movement cessation; iv) velocity (mm/second); v) x-y r-squared (spatial
271 variability throughout the movement path where greater values indicate lower variability); vi) x-
272 time R squared and y-time r-squared (spatial/temporal variability throughout the movement
273 path). Within each parameter, data from each trial regarding each square target (left, middle and
274 right) was collapsed to establish an average and coefficient of variation (CV = (standard
275 deviation/mean) x 100) between trials.

276 To investigate the influence of anodal tDCS over the DLPFC on the average and
277 variability (CV) of upper-limb movement (with respect to the target) spatial error, time, distance,
278 velocity, and r-squared (x-y; x-time; and y-time), three-factor (condition [stimulation vs. sham] x
279 assessment [pre vs. post] x vision [vision vs. no vision]) mixed repeated measures analysis of
280 variance (ANOVA) were utilized. To determine where significant differences were with respect
281 to main effects and interactions, a Fisher's Least Significant Difference (LSD) post hoc analysis
282 was used. Additionally, pairwise comparisons within (differences between pre and post
283 assessment; differences between vision and no vision) and between the stimulation and sham
284 means were conducted (95% Confidence Intervals [CI]) with regard to each upper limb
285 movement parameter. All results were analyzed using StatSoft STATISTICA 8.0.550 (StatSoft
286 Inc, Tulsa, Oklahoma) and the level of significant difference was set to p=0.05.

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

287

288 3. RESULTS

289 Participant demographics are presented in table 1 with handedness score, trail making
290 parts A, B, and B-A times, and digit span working memory scores. Please see supplementary
291 material for a table presenting all findings with respect to the proprioception task movement
292 parameters, including significant main effects and interactions with partial-eta².

293

294

295 **Table 1:** Participant Demographics

Participant	Sex	Age	Waterloo Handedness Questionnaire	H	TMT A	TMT B	TMT B-A	Digit Span	COUNTER BALANCE START
1	M	24	60	R	24.92	35.51	10.59	18	STIM
2	F	23	-60	L	18.75	33.89	15.14	15	STIM
3	M	20	30	R	16.38	22.96	6.58	14	SHAM
4	F	24	-16	L	15.58	37.08	21.5	25	SHAM
5	F	20	47	R	11.71	26.63	14.92	12	SHAM
6	M	24	39	R	15.71	26.48	10.77	18	STIM
7	F	21	64	R	14.28	33.08	18.8	16	STIM
8	M	27	20	R	16.95	49.38	32.43	10	STIM
9	F	26	48	R	12.35	21.8	9.45	19	STIM
10	F	26	47	R	15.01	56.11	41.1	17	STIM
11	F	20	62	R	14.71	31.95	17.24	19	STIM
12	M	25	56	R	11.38	30.97	19.59	22	SHAM
13	F	20	44	R	15.1	27.48	12.38	26	SHAM
14	F	20	-56	L	22.46	39.37	16.91	18	SHAM
15	M	29	52	R	11.62	30.2	18.58	20	SHAM

296

297 H=Handedness; TMT A, B, and B-A = Trail-Making Task Part A, B, and B-A

298

299

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

300 With respect to modeled current distribution through the brain with HD-Explore
301 Neurotargeting software, estimated current flow and magnitude for the anodal-F3 and cathodal-
302 supraorbital montage is illustrated in figure 2. By characterizing the estimated current flow
303 employed by the montage of the present study, potential brain regions affected by stimulation
304 may be highlighted. Figure 2 demonstrates that anodal tDCS over the left DLPFC and cathodal
305 tDCS over the right supraorbital ridge was expected to produce current flow that projected into
306 the frontal lobe (0.15-0.2 V/m) to the anterior cingulate cortex (0.15-0.2 V/m), genu of the
307 corpus callosum and varying subcortical regions (0.15-0.2 V/m), and various areas of the
308 sensorimotor cortex (0.075-0.185 V/m).

309

310

311

312

313

314

315

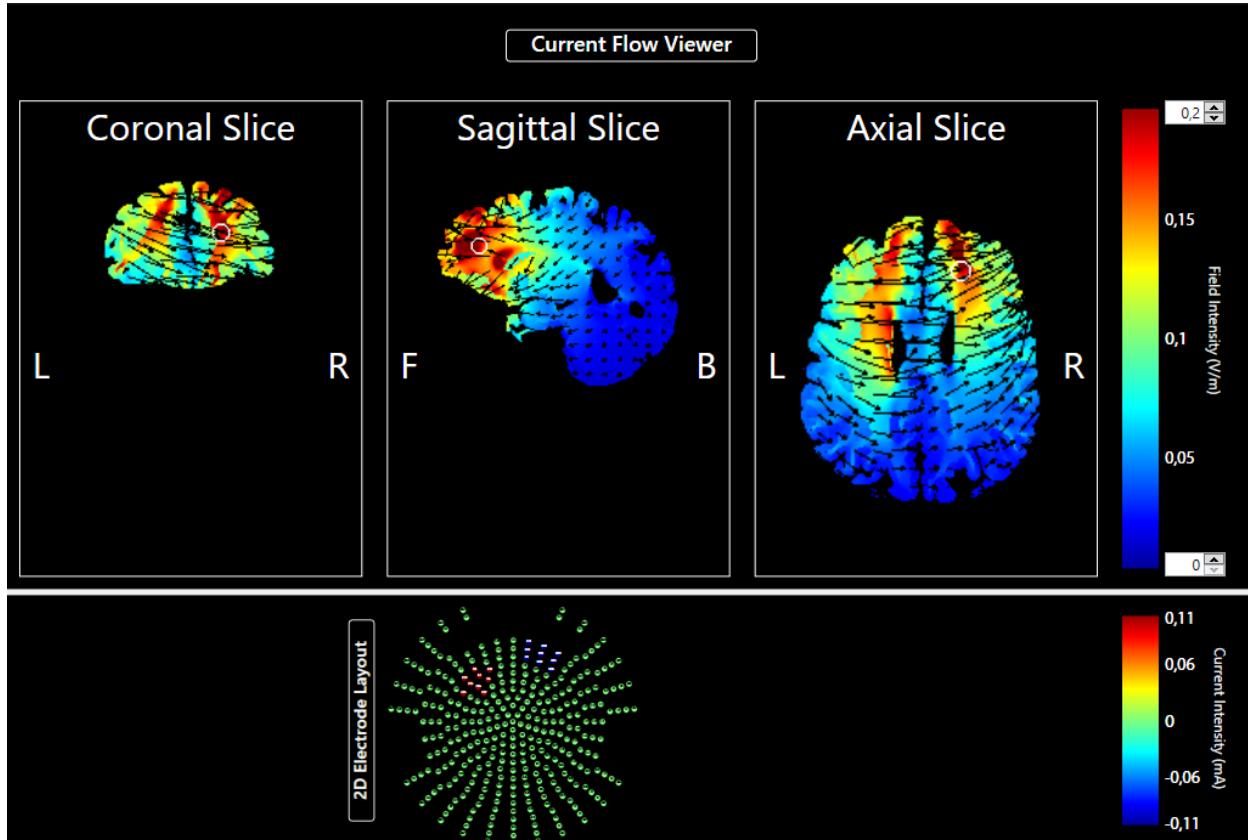
316

317

318

319

320


321

322

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

323

324
325

326
327
328
329

330 **Figure 2: tDCS electrode current flow modelling for the current study.** 2D Electrode Layout
331 (bottom illustration): Electrode in Red (Anode) corresponds to position F3. Electrode in blue
332 (cathode) corresponds to positioning over the supraorbital ridge. Current Flow Viewer (Top
333 Illustrations): Characteristic flow of current, viewed through 2D coronal, sagittal and transverse
334 (axial) slices. Current magnitude is illustrated by field intensity (V/m) on a continuum wherein
335 blue signifies low intensity of current flow to red signifying higher current flow.
336

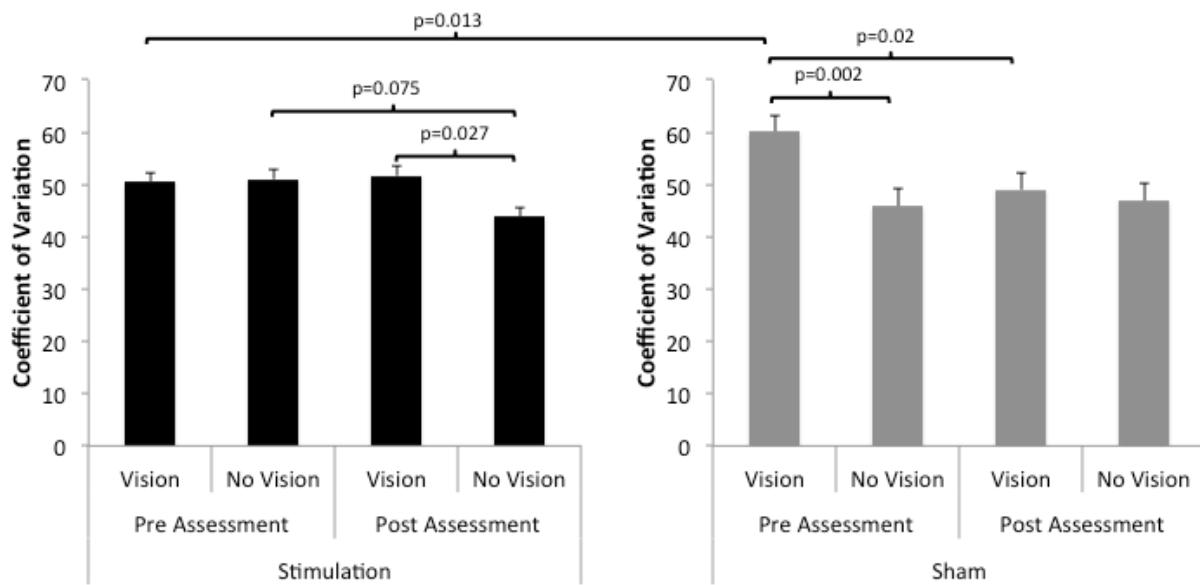
337

338

339

340

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION


341 With respect to all movement parameters measured during the visuomotor target task,
342 multiple significant main effects and interactions were uncovered. Firstly, to demonstrate that
343 blindfolding participants did remove visual input and influenced an increased reliance on
344 proprioception to guide movement, main effects of vision were found with respect to average
345 spatial error ($F(1,14)=799.4$, $p<0.001$), velocity CV ($F(1,14)=36.24$, $p<0.001$), average x-y r-
346 squared ($F(1,14)=27.21$, $p<0.001$), x-y r-squared CV ($F(1,14)=12.09$, $p=0.004$), average x-time
347 r-squared ($F(1,14)=23.29$, $p<0.001$), x-time r-squared CV ($F(1,14)=13.39$, $p=0.003$), average y-
348 time r-squared ($F(1,14)=5.66$, $p=0.032$), and y-time r-squared CV ($F(1,14)=6.48$, $p=0.023$).
349 Specifically, throughout the visuomotor target task, participants demonstrated significantly
350 greater average spatial error, x-y r-squared, x-time r-squared, and y-time r-squared when the task
351 was performed without vision compared to with vision. Additionally, when performing the
352 visuomotor target task with vision, variability between trials was significantly greater with
353 respect to velocity, x-y r-squared, x-time r-squared, and y-time r-squared compared to no vision.

354 Main effects of assessment (pre vs. post) were found with respect to movement time
355 ($F(1,14)=5.31$, $p=0.037$) and velocity ($F(1,14)=5.54$, $p=0.034$), such that at post assessment,
356 participants performed the visuomotor target task with a significantly shorter movement time and
357 greater velocity. It should be noted that pairwise comparisons (95% CI) between pre and post
358 assessment demonstrated that with vision in the sham condition, movement time decreased from
359 pre assessment to post (95% CI = $0.3 +/- 1.4$ [0.1 to 0.6]), although not in the stimulation
360 condition. Additionally, with and without vision in the sham condition, velocity increased from
361 pre assessment to post (95% CI vision = $-10.9 +/- 4.8$ [-21.1 to -0.7]; no vision = $-12.1 +/- 4.8$ [-
362 22.3 to -1.8]).

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

363 A significant interaction between condition, assessment, and vision was found with
364 respect to variability (CV) of spatial error between trials ($F(1,14)=8.75$, $p=0.011$; Fig 3), and
365 Fisher's post hoc uncovered a number of significant differences. Firstly, within the stimulation
366 condition, at post assessment only, spatial error variability between trials was significantly
367 greater when participants had the use of vision compared to when blindfolded (no vision)
368 ($p=0.027$). Secondly, within the sham condition, at pre assessment, spatial error variability
369 between trials was significantly greater when participants had the use of vision compared to
370 when blindfolded ($p=0.002$). Moreover, spatial error variability with vision within the sham
371 condition significantly decreased from pre assessment to post ($p=0.02$). Finally, spatial error
372 variability with vision was significantly greater at pre assessment of the sham condition
373 compared to pre assessment of the stimulation condition ($p=0.013$).

374

375
376
377
378
379

Figure 3: Significant interaction between condition (stimulation vs. sham), assessment (pre vs. post assessment), and vision (vision vs. no vision) with respect to the **spatial error coefficient of variation**.

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

380 Interestingly, regarding the variability of distance travelled (CV), significant interactions
381 between condition and assessment ($F(1,14)=5.09$, $p=0.041$), and between assessment and vision
382 ($F(1,14)=30.08$, $p<0.001$) were found (Fig 4). Fisher's post hoc revealed three significant
383 findings. Firstly, distance travelled variability between trials was significantly lower after
384 stimulation (post) compared to before stimulation (pre) ($p=0.003$). Secondly, regardless of the
385 condition or assessment, participants demonstrated significantly greater distance travelled
386 variability without vision compared to with vision ($p<0.001$). Thirdly, when participants
387 performed the task without vision, variability of distance travelled was significantly lower at post
388 assessment compared to pre ($p<0.001$). Notably, pairwise comparisons demonstrated that the
389 variability of distance travelled without vision decreased from pre assessment to post in the
390 stimulation condition (95% CI = $7.4 +/- 1.6$ [4.0 to 10.9]), and not the sham (95% CI = $1.2 +/-$
391 1.6 [-2.2 to 4.7]). Variability of velocity between trials without vision also decreased from pre
392 assessment to post within the stimulation condition (95% CI = $7.1 +/- 3.3$ [0.1 to 14.1]), and not
393 the sham (95% CI = $3.6 +/- 3.3$ [-3.4 to 10.6]).

394

395

396

397

398

399

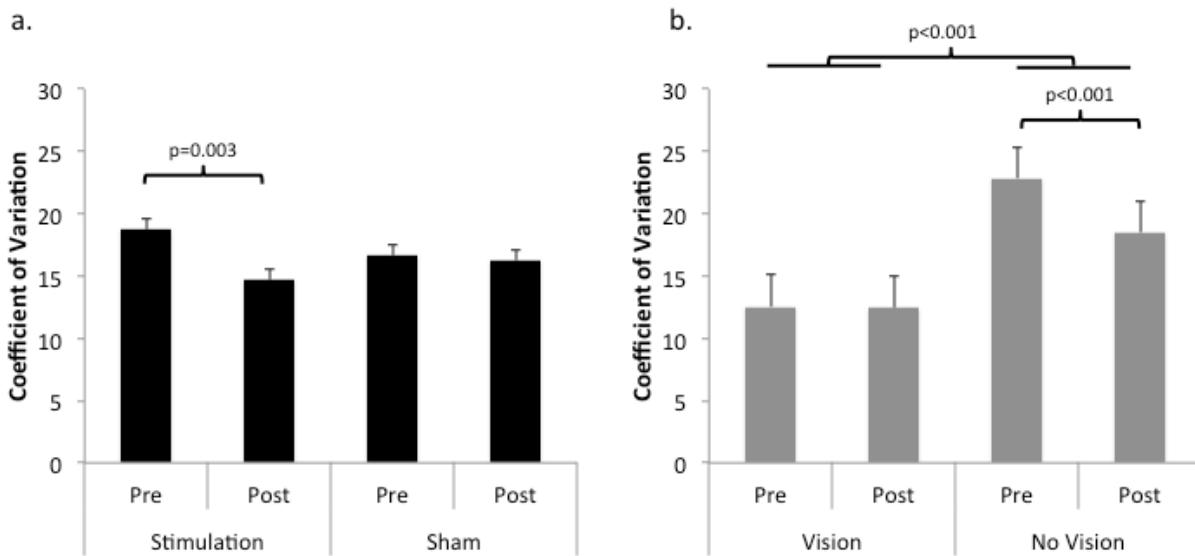
400

401

402

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

403


404

405

406

407

408

409

410

411

412

413

414

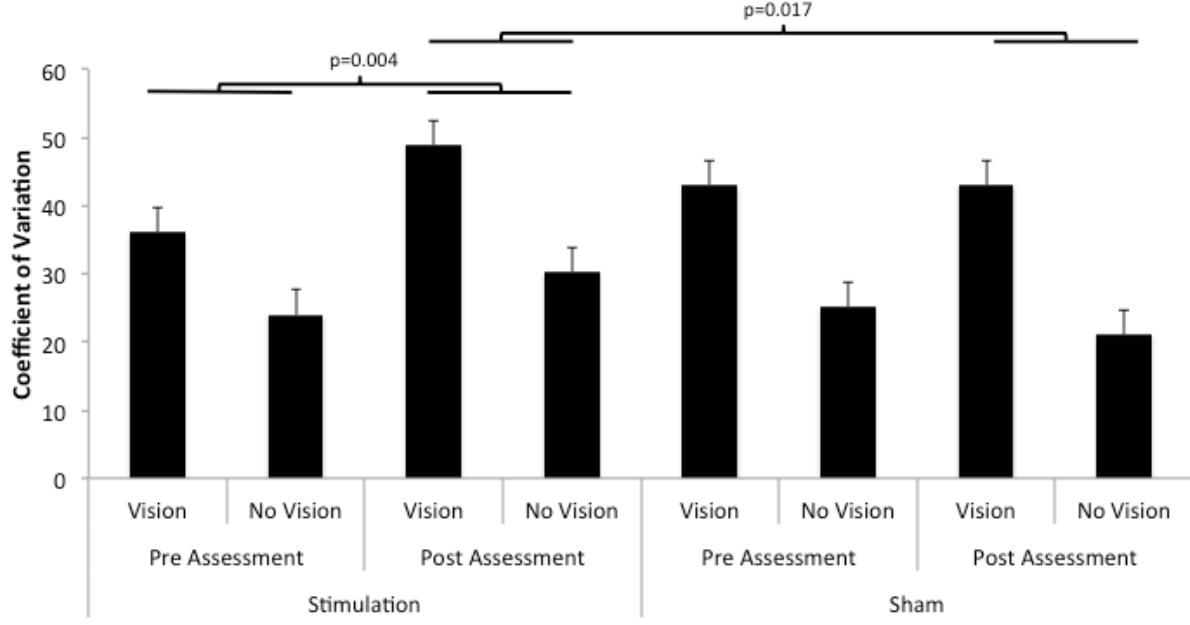
415

416

417

418

419


420

421

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

422 Finally, a significant interaction was found between condition and assessment in regards
423 to x-y r-squared variability between trials ($F(1,14)=8.57$, $p=0.011$; Fig 5). Fishers post hoc
424 uncovered that x-y r-squared CV was significantly greater at post assessment compared to pre
425 within the stimulation condition ($p=0.004$). Furthermore, x-y r-squared variability was
426 significantly greater at post assessment of the stimulation condition compared to post assessment
427 of the sham condition ($p=0.017$). Interestingly, pairwise comparisons demonstrated that the
428 increase in x-y r-squared variability, from pre assessment to post, in the stimulation condition
429 was only found when participants completed the task with vision (95% CI = $-12.8 +/- 5.9$ [-25.5
430 to -0.2]), and not without vision (95% CI = $-6.3 +/- 5.9$ [-19.0 to 6.3]).

431
432
433
434

435 **Figure 5:** Significant interaction between condition (stimulation vs. sham) and assessment (pre
436 vs. post assessment) with respect to the X, Y R-Squared coefficient of variation.
437

438

439

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

440 4. DISCUSSION

441 To our knowledge, this was the first study to investigate the influence of anodal
442 transcranial direct current stimulation applied over the left dorsolateral prefrontal cortex on
443 proprioception in healthy adults. It was hypothesized that if anodal tDCS over the left DLPFC
444 does increase activity of the sensorimotor cortex that is involved in the perception of
445 proprioceptive information, movement error and variability on a visuomotor target task
446 performed without vision might improve. Interestingly, participants completed the visuomotor
447 target task with significantly lower distance travelled variability after anodal tDCS compared to
448 before (Fig 4a). When participants performed the task without vision, variability of distance
449 travelled was significantly lower at post compared to pre (Fig 4b), and this decreased variability
450 was found specifically after stimulation, but not sham. Therefore, after 20 minutes of anodal
451 tDCS of the left DLPFC, variability of distance travelled during the visuomotor target task
452 without vision had decreased, indicating that consistency of movement without vision improved.
453 Typically, as proprioception is enhanced or becomes more relied upon, conscious adjustments of
454 movement decrease and consistency of movement performance increases (50–54). Since this
455 decrease in variability was not found after the sham condition, it is unlikely that the improved
456 consistency was the result of performing the task a second time. In summary, consistency of
457 upper-limb movement improved after anodal tDCS of the left DLPFC and this may be an
458 indication of enhanced proprioception. The significant findings with regards to the other
459 movement parameters provide further support to these inferences.

460 Before anodal tDCS of the DLPFC, spatial error variability during the visuomotor target
461 task was similar between vision and no vision parameters. After anodal tDCS, spatial error
462 variability was significantly lower when participants performed the target task without vision

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

463 compared to with vision (Fig 3). Furthermore, from pre stimulation to post, without vision,
464 spatial error variability anecdotally decreased, although this was only indicated by a trend
465 ($p=0.075$). The decrease in spatial error variability may support the previous findings (distance
466 travelled variability decrease after tDCS without vision) that indicate improved consistency
467 between trials, and therefore enhanced proprioception after anodal tDCS of the left DLPFC that
468 was not found after the sham condition. However, interpretations of these findings cannot be
469 strongly made since spatial error variability with vision before the sham condition, was
470 significantly greater than spatial error variability with vision before the stimulation condition. An
471 explanation for this finding cannot be made since data collection was performed in an identical
472 fashion prior to both stimulation and sham conditions and the experimental design was
473 counterbalanced. However, since this aberrant finding was only found with the use of vision and
474 not when participants performed the target task while blindfolded, spatial error variability, and
475 therefore proprioception, may have improved after anodal tDCS of the left DLPFC and not after
476 the sham.

477 The final finding of interest was a significant interaction between condition and
478 assessment with respect to x-y r-squared variability between trials. The x-y r-squared is a
479 quantitative measure of the spatial variability throughout the movement path where greater
480 values indicate lower variability, and therefore fewer adjustments throughout the route from the
481 starting point to the target. The coefficient of variation of the x-y r-squared is therefore a
482 measure of variability between trials with respect to the amount participants made adjustments
483 throughout each trial. Figure 5 demonstrates that from pre stimulation to post, x-y r-squared
484 variability significantly increased, indicating that the amount of adjustments made throughout
485 each trial was more variable after anodal tDCS compared to before. This finding might suggest

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

486 that after stimulation, participants attended more to their movements throughout each trial, which
487 resulted in a greater degree of variability between trials and may indicate a decrement in
488 proprioception, contradicting our previous findings. However, pairwise comparisons
489 demonstrated that the increase in x-y r-squared variability, from pre stimulation to post, was only
490 found when participants completed the task with vision. This might suggest that the significant
491 increase in variability from pre stimulation to post was driven by task performance with vision
492 and not without. Nevertheless, these findings with respect to distance travelled variability, spatial
493 error variability and x-y r-squared variability allow for various inferences.

494 Stagg and colleagues (2013) demonstrated that anodal tDCS over the left DLPFC resulted
495 in increased activity of the sensorimotor cortex and decreased activity of the thalamus. One may
496 have hypothesized that increased activity of the sensorimotor cortex might enhance
497 proprioception, and decreased functional connectivity between the DLPFC and the thalamus
498 (35,39,41) might hinder proprioception. Our results demonstrated that anodal tDCS of the left
499 DLPFC resulted in decreased variability with respect to the end-point of each trial (i.e. decreased
500 distance travelled CV and spatial error CV without vision after stimulation compared to before).
501 Therefore, the modulation of proprioceptive processing in this study may have been enhanced by
502 increased sensorimotor cortical activity induced by anodal tDCS over the DLPFC. Previous work
503 has demonstrated that anodal tDCS, which facilitates neuronal excitability, significantly
504 decreases concentrations of the inhibitory neurotransmitter gamma-amino butyric acid in local
505 cortical areas underlying the anodal electrode (55). Down-regulated inhibition of the DLPFC
506 may underlie various changes in networks associated with the DLPFC that yielded improved
507 proprioception, such as enhanced sensorimotor activity (39,55).

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

508 On the other hand, greater variability between trials with respect to the movement
509 performed in reaching the end-point (i.e. increased x-y r-squared variability from pre assessment
510 to post) might suggest that proprioceptive processing was hindered, supporting the notion that
511 stimulation of the left DLPFC decreased activity of the thalamus projecting sensory information
512 to various regions of the cortex, allowing irrelevant information to propagate through the
513 thalamus that might interfere with proprioceptive processing (46). Although, another explanation
514 for the increased variability with respect to x-y r-squared may be that stimulation of the left
515 DLPFC influenced participants' focus of attention. Previous work has demonstrated that the left
516 DLPFC is recruited when individuals pay attention to performance of pre learned tasks (50).
517 Moreover, anodal tDCS over the left DLPFC has been found to modulate various cognitive
518 processes, such as working memory (29,30) and sustained attention (31). Therefore, by
519 stimulating the DLPFC, focus of attention towards enhanced online proprioceptive feedback
520 during movement may have been increased, resulting in variability between trials. Alternatively,
521 if proprioception became enhanced, participants may have gained improved ability to process
522 that proprioceptive feedback online during movements, allowing them to make more fine tune
523 adjustments (increased x-y r-squared variability) to achieve lower spatial and distance travelled
524 variability.

525 To date, no study has directly aimed to enhance proprioception with the use of tDCS.
526 However, multiple studies have investigated the influence of tDCS on postural control, a
527 dynamic process in which integration of proprioception with visual and vestibular information is
528 imperative for effective balance. Craig and Doumas (2017) recently demonstrated that anodal
529 tDCS applied over the primary motor cortex or the cerebellum in young and older healthy adults
530 did not improve postural control (56). Similarly, anodal tDCS over the primary motor cortex was

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

531 not found to facilitate learning of a dynamic balance task, a phenomenon one might expect if
532 tDCS enhanced sensorimotor cortical activity (57). In a very relevant contrast to these two null
533 findings, Zhou and colleagues (2015) demonstrated that tDCS applied over the left DLPFC
534 improved postural control while participants performed a balance task in single and dual-task
535 (serial subtraction) conditions (58). These findings by Zhou et al. (2015) are critical in
536 establishing the importance of anodal tDCS over the DLPFC, and not other sites such as the
537 cerebellum or primary motor cortex, in order to improve proprioception.

538 Performance of a motor and cognitive task simultaneously is an effective method to
539 determine the degree to which the motor task requires attention for successful performance (59).
540 Since Zhou et al. (2015) found that postural control (motor task) while counting backwards by
541 three's (cognitive task) improved after anodal tDCS of the left DLPFC, this might indicate that
542 postural control required less cognitive demand after stimulation (60,61). Meanwhile, Stagg and
543 colleagues (2013) demonstrated that anodal tDCS of the left DLPFC increased activity of the
544 sensorimotor cortex (39). Thus, the improved postural control while dual-tasking found by Zhou
545 et al. (2015) may have been the result of increased sensorimotor activity that improved
546 proprioceptive processing, decreasing the requirement for attention to control balance.
547 Importantly, these findings by Zhou and colleagues (2015) amalgamated with the findings by
548 Stagg et al. (2013) further support that the improved consistency of upper-limb movement after
549 anodal tDCS of the left DLPFC found in the present study may be indicative of enhanced
550 proprioception.

551

552 *4.1 Future Directions*

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

553 The findings from the present study may be the first step in developing tDCS methods as
554 an effective adjunct therapy for dysfunctional proprioception in various disorders, such as
555 Parkinson's disease (3,8–12), wherein progressive neurodegeneration of dopamine producing
556 cells of the basal ganglia takes place. Impaired processing of proprioception results in increased
557 variability of walking (62–65), which leads to falling (15,66), injury (16,67), and even
558 hospitalization (17). Dopaminergic replacement medications have been found to effectively
559 manage motor symptoms in individuals with Parkinson's disease, but are ineffective for the
560 alleviation of increased walking variability (68,69). Non-invasive neurostimulation of the
561 prefrontal cortex has previously been demonstrated to modulate dopamine release in sub-cortical
562 areas (70,71). Previous research has indicated that prefrontal neurostimulation leads to
563 improvements in working memory (72) and depression (73) in individuals with Parkinson's
564 disease, but some indication of a trend with regards to motor symptoms (74). These studies
565 focused on clinical assessments of motor function and simple reaction time tasks rather than an
566 assessment of changes in proprioception. Therefore, tDCS over the left DLPFC could in future
567 studies be assessed as an effective adjunct therapy used to ameliorate proprioception deficits in
568 individuals with Parkinson's disease.

569

570 *Conflict of Interest:* On behalf of all authors, the corresponding author states that there is no
571 conflict of interest.

572

573 *Acknowledgements:* We would like to thank Hannah Ashe for her assistance in setting up this
574 study. We would also like to thank all of the individuals who took the time to participate.

575

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

576 5. REFERENCES

577

578 1. Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: A critical
579 review of methods. Vol. 5, *Journal of Sport and Health Science*. 2016. p. 80–90.

580

581 2. Goble DJ. Proprioceptive acuity assessment via joint position matching: from basic
582 science to general practice. *Phys Ther*. 2010;90(8):1176–84.

583

584 3. Conte A, Khan N, Defazio G, Rothwell JC, Berardelli A. Pathophysiology of
585 somatosensory abnormalities in Parkinson disease. *Nat Rev Neurol*. 2013;9(12):687–97.

586

587 4. Sarlegna FR, Mutha PK. The influence of visual target information on the online control
588 of movements. *Vision Res*. 2015;110(PB):144–54.

589

590 5. Shumway-Cook A, Woollacott M. Motor control: Theory and practical applications.
591 International Journal of pediatric. 1995.

592

593 6. Nashner LM, Peters JF. Dynamic posturography in the diagnosis and management of
594 dizziness and balance disorders. *Neurol Clin*. 1990;8(2):331–49.

595

596 7. Nashner M, Hospital GS. Balance adjustments of humans perturbed while walking. *Am
597 Physiol Soc*. 1980;44(4):650-664.

598

599 8. Maschke M, Gomez CM, Tuite PJ, Konczak J. Dysfunction of the basal ganglia, but not
600 the cerebellum, impairs kinaesthesia. *Brain*. 2003;126(Pt 10):2312–22.

601

602 9. Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, et al. Proprioception and
603 motor control in Parkinson's disease. *J Mot Behav*. 2009;41(6):543–52.

604

605 10. Adamovich SV, Berkinblit MB, Hening W, Sage J, Poizner H. The interaction of visual
606 and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's
607 disease. *Neuroscience*. 2001;104:1027–41.

608

609 11. Abbruzzese G, Berardelli A. Sensorimotor integration in movement disorders.
610 2003;18(3):231–40.

611

612 12. Almeida QJ, Frank JS, Roy EA, Jenkins ME, Spaulding S, Patla AE, et al. An evaluation
613 of sensorimotor integration during locomotion toward a target in Parkinson's disease.
614 *Neuroscience*. 2005;134(1):283–93.

615

616 13. Pieruccini-Faria F, Ehgoetz Martens KA, Silveira C, Jones JA, Almeida QJ. Interactions
617 between cognitive and sensory load while planning and controlling complex gait
618 adaptations in Parkinson's disease. *BMC Neurol*. 2014;14(1):250.

619

620 14. Martens KAE, Almeida QJ. Dissociating between sensory and perceptual deficits in PD:
621 more than simply a motor deficit. *Mov Disord*. 2012;27(3):387–92.

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

622

623 15. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living
624 older adults: A 1-year prospective study. *Arch Phys Med Rehabil.* 2001;82(8):1050–6.

625

626 16. Bloem BR, Grimbergen YAM, Cramer M, Willemsen M, Zwinderman AH. Prospective
627 assessment of falls in Parkinson's disease. *J Neurol.* 2001;248(11):950–8.

628

629 17. Temlett JA, Thompson PD. Reasons for admission to hospital for Parkinson's disease.
630 *Intern Med J.* 2006;36(8):524–6.

631

632 18. Mahoney JR, Holtzer R, Izzetoglu M, Zemon V, Vergheze J, Allali G. The role of
633 prefrontal cortex during postural control in Parkinsonian syndromes a functional near-
634 infrared spectroscopy study. *Brain Res.* 2016;1633:126–38.

635

636 19. Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical,
637 cerebellar and basal ganglia information: implications for normal and parkinsonian
638 conditions. *Front Comput Neurosci.* 2013;7.

639

640 20. Johnson EO, Babis GC, Soultanis KC, Soucacos PN. Functional neuroanatomy of
641 proprioception. *J Surg Orthop Adv.* 2008;17(3):159–64.

642

643 21. Redgrave P, Rodriguez M, Smith Y, Rodriguez-oroz MC. Goal-directed and habitual
644 control in the basal ganglia: implications for Parkinson's disease. *Nat Rev Neuroscience.*
645 2010;11(11):760–72.

646

647 22. Diez I, Drijkoningen D, Stramaglia S, Bonifazi P, Marinazzo D, Gooijers J, et al.
648 Enhanced prefrontal functional-structural networks to support postural control deficits
649 after traumatic brain injury in a pediatric population. *Netw Neurosci.* 2017;1(2):116–42.

650

651 23. Lial L, Moreira R, Correia L, Andrade A, Pereira AC, Lira R, et al. Proprioceptive
652 neuromuscular facilitation increases alpha absolute power in the dorsolateral prefrontal
653 cortex and superior parietal cortex. *Somatosens Mot Res.* 2017;34(3):204–12.

654

655 24. Iandolo R, Bellini A, Saiote C, Marre I, Bommarito G, Oesingmann N, et al. Neural
656 correlates of lower limbs proprioception: An fMRI study of foot position matching. *Hum
657 Brain Mapp.* 2018;39:1929–1944

658

659 25. Das S, Holland P, Frens MA, Donchin O. Impact of transcranial direct current stimulation
660 (tDCS) on neuronal functions. Vol. 10, *Frontiers in Neuroscience.* 2016.

661

662 26. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide
663 to tDCS, and related non-invasive brain stimulation tools. Vol. 127, *Clinical
664 Neurophysiology.* 2016:1031–48.

665

666 27. Thorpe S, Delorme A, Van Rullen R. Spike-based strategies for rapid processing. *Neural
667 Networks.* 2001;14(6–7):715–25.

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

668

669 28. Takemura A, Kawano K. Sensory-to-motor processing of the ocular-following response.
670 Vol. 43, Neuroscience Research. 2002;201–6.

671

672 29. Jo JM, Kim YH, Ko MH, Ohn SH, Joen B, Lee KH. Enhancing the working memory of
673 stroke patients using tDCS. *Am J Phys Med Rehabil.* 2009;88(5):404–9.

674

675 30. Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. Does transcranial direct current
676 stimulation improve healthy working memory?: A meta-analytic review. *Journal of*
677 *Cognitive Neuroscience.* 2016;28(8):1063–89.

678

679 31. Nelson JT, McKinley RA, Golob EJ, Warm JS, Parasuraman R. Enhancing vigilance in
680 operators with prefrontal cortex transcranial direct current stimulation (tDCS).
681 *NeuroImage.* 2014;85:909–17.

682

683 32. Boggio P, Rigoatti S, Ribeiro R, Myczkowski M, Nitsche M, Pascual-Leone A, et al. A
684 randomized, double-blind clinical trial on the efficacy of cortical direct current stimulation
685 for the treatment of major depression. *The International Journal of*
686 *Neuropsychopharmacology.* 2008;11:249–54.

687

688 33. Kalu UG, Sexton CE, Loo CK, Ebmeier KP. Transcranial direct current stimulation in the
689 treatment of major depression: A meta-analysis. *Psychol Med.* 2012;42(9):1791–800.

690

691 34. To WT, De Ridder D, Hart Jr. J, Vanneste S. Changing brain networks through non-
692 invasive neuromodulation. *Front Hum Neurosci.* 2018;12:128

693

694 35. Boggio PS, Zaghi S, Lopes M, Fregni F. Modulatory effects of anodal transcranial direct
695 current stimulation on perception and pain thresholds in healthy volunteers. *Eur J Neurol.*
696 2008;15(10):1124–30.

697

698 36. Fregni F, Gimenes R, Valle AC, Ferreira MJL, Rocha RR, Natale L, et al. A randomized,
699 sham-controlled, proof of principle study of transcranial direct current stimulation for the
700 treatment of pain in fibromyalgia. *Arthritis Rheum.* 2006;54(12):3988–98.

701

702 37. Shekhawat, G. S., & Vanneste S. Optimization of transcranial direct current stimulation of
703 dorsolateral prefrontal cortex for tinnitus: A non-linear dose-response effect. *Sci Rep.*
704 2018;8(8311).

705

706 38. Deldar Z, Rustamov N, Bois S, Blanchette I, Piché M. Enhancement of pain inhibition by
707 working memory with anodal transcranial direct current stimulation of the left dorsolateral
708 prefrontal cortex. *J Physiol Sci.* 2018.

709

710 39. Stagg CJ, Lin RL, Mezue M, Segerdahl A, Kong Y, Xie J, et al. Widespread modulation
711 of cerebral perfusion induced during and after transcranial direct current stimulation
712 applied to the left dorsolateral prefrontal cortex. *J Neurosci.* 2013;33(28):11425–31.

713

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

714 40. Wei GX, Dong HM, Yang Z, Luo J, Zuo XN. Tai Chi Chuan optimizes the functional
715 organization of the intrinsic human brain architecture in older adults. *Front Aging*
716 *Neurosci.* 2014;6:1–10.

717

718 41. Short EB, Borckardt JJ, Anderson BS, Frohman H, Beam W, Reeves ST, et al. Ten
719 sessions of adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: A
720 randomized, controlled pilot study. *Pain.* 2011;152(11):2477–84.

721

722 42. Semrau JA, Herter TM, Kiss ZH, Dukelow SP. Disruption in proprioception from long-
723 term thalamic deep brain stimulation: a pilot study. *Front Hum Neurosci.* 2015;9.

724

725 43. Willems T, Witvrouw E, Verstuyft J, Vaes P, De Clercq D. Proprioception and muscle
726 strength in subjects with a history of ankle sprains and chronic instability. *J Athl Train.*
727 2002;37(4):487–93.

728

729 44. Larsen R, Lund H, Christensen R, Røgind H, Donneskiold-Samsøe B, Bliddal H. Effect of
730 static stretching of quadriceps and hamstring muscles on knee joint position sense. *Br J*
731 *Sports Med.* 2005;39(1):43–6.

732

733 45. Janwantanakul P, Magarey ME, Jones MA, Dansie BR. Variation in shoulder position
734 sense at mid and extreme range of motion. *Arch Phys Med Rehabil.* 2001;82(6):840–4.

735

736 46. Herrero MT, Barcia C, Navarro JM. Functional anatomy of thalamus and basal ganglia.
737 Vol. 18, *Child's Nervous System.* 2002. p. 386–404.

738

739 47. Brown SG, Roy EA, Rohr LE, Snider BR, Bryden PJ. Preference and performance
740 measures of handedness. *Brain Cogn.* 2004;55(2):283–5.

741

742 48. Salthouse TA. What cognitive abilities are involved in trail-making performance?
743 *Intelligence.* 2011;39(4):222–32.

744

745 49. Herwig U, Satrapi P, Schönfeldt-Lecuona C. Using the international 10-20 EEG system
746 for positioning of transcranial magnetic stimulation. *Brain Topogr.* 2003;16(2):95–9.

747

748 50. Jueptner M, Stephan KM, Frith CD, Brooks DJ, Frackowiak RS, Passingham RE.
749 Anatomy of motor learning. I. Frontal cortex and attention to action. Vol. 77, *Journal of*
750 *neurophysiology.* 1997.

751

752 51. Zentgraf K, Lorey B, Bischoff M, Zimmermann K, Stark R, Munzert J. Neural correlates
753 of attentional focusing during finger movements: A fMRI study. *J Mot Behav.*
754 2009;41(6):535–41.

755

756 52. Orban P, Peigneux P, Lungu O, Debas K, Barakat M, Bellec P, et al. Functional
757 neuroanatomy associated with the expression of distinct movement kinematics in motor
758 sequence learning. *Neuroscience.* 2011;179:94–103.

759

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

760 53. Vance J, Wulf G, Tollner T, McNevin N, Mercer J. EMG activity as a function of the
761 performer's focus of attention. *J Mot Behav.* 2004;36(4):450–9.

762

763 54. Zachry T, Wulf G, Mercer J, Bezodis N. Increased movement accuracy and reduced EMG
764 activity as the result of adopting an external focus of attention. *Brain Res Bull.*
765 2005;67(4):304–9.

766

767 55. Stagg CJ, Best JG, Stephenson MC, O'Shea J, Wylezinska M, Kincses ZT, et al. Polarity-
768 sensitive modulation of cortical neurotransmitters by transcranial stimulation. *J Neurosci.*
769 2009;29(16):5202–6.

770

771 56. Craig CE, Doumas M. Anodal transcranial direct current stimulation shows minimal,
772 measure-specific effects on dynamic postural control in young and older adults: A double
773 blind, sham-controlled study. *PLoS One.* 2017;12(1).

774

775 57. Kaminski E, Hoff M, Rjosk V, Steele CJ, Gundlach C, Sehm B, et al. Anodal transcranial
776 direct current stimulation does not facilitate dynamic balance task learning in healthy old
777 adults. *Front Hum Neurosci.* 2017;11.

778

779 58. Zhou D, Zhou J, Chen H, Manor B, Lin J, Zhang J. Effects of transcranial direct current
780 stimulation (tDCS) on multiscale complexity of dual-task postural control in older adults.
781 *Exp Brain Res.* 2015;233(8):2401–9.

782

783 59. Magill RA. Motor Learning and Control: Concepts and Applications. *Curr Biol.*
784 2007;7th:1–400.

785

786 60. Rochester L, Nieuwboer A, Baker K, Hetherington V, Willems A-M, Chavret F, et al. The
787 attentional cost of external rhythmical cues and their impact on gait in Parkinson's
788 disease: effect of cue modality and task complexity. *J Neural Transm.*
789 2007;114(10):1243–8.

790

791 61. Beck EN, Intzandt BN, Almeida QJ. Can dual task walking improve in Parkinson's
792 disease after external focus of attention exercise? A single blind randomized controlled
793 trial. *Neurorehabil Neural Repair.* 2018;32(1):18–33.

794

795 62. Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of walking and freezing of gait
796 in Parkinson's disease. *Eur J Neurosci.* 2008;27(8):1999–2006.

797

798 63. Yogev-Seligmann G, Rotem-Galili Y, Dickstein R, Giladi N, Hausdorff JM. Effects of
799 explicit prioritization on dual task walking in patients with Parkinson's disease. *Gait*
800 *Posture.* 2012;35(4):641–6.

801

802 64. Rochester L, Hetherington V, Jones D, Nieuwboer A, Willems A-M, Kwakkel G, et al.
803 Attending to the task: Interference effects of functional tasks on walking in Parkinson's
804 disease and the roles of cognition, depression, fatigue, and balance. *Arch Phys Med*
805 *Rehabil.* 2004;85(10):1578–85.

TRANSCRANIAL DIRECT CURRENT STIMULATION AND PROPRIOCEPTION

806

807 65. Yoge G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual tasking, gait
808 rhythmicity, and Parkinson's disease: which aspects of gait are attention demanding? *Eur*
809 *J Neurosci*. 2005;22(5):1248–56.

810

811 66. Schaafsma JD, Giladi N, Balash Y, Bartels AL, Gurevich T, Hausdorff JM. Gait dynamics
812 in Parkinson's disease: Relationship to Parkinsonian features, falls and response to
813 levodopa. *J Neurol Sci*. 2003;212(1–2):47–53.

814

815 67. Hiorth YH, Larsen JP, Lode K, Pedersen KF. Natural history of falls in a population-based
816 cohort of patients with Parkinson's disease: an 8-year prospective study. *Parkinsonism*
817 *Relat Disord*. 2014;20(10):1059–64.

818

819 68. Blin O, Ferrandez AM, Pailhous J, Serratrice G. Dopa-sensitive and Dopa-resistant gait
820 parameters in Parkinson's disease. *J Neurol Sci*. 1991;103(1):51–4.

821

822 69. Lord S, Baker K, Nieuwboer A, Burn D, Rochester L. Gait variability in Parkinson's
823 disease: An indicator of non-dopaminergic contributors to gait dysfunction? *J Neurol*.
824 2011;258(4):566–72.

825

826 70. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of
827 the human prefrontal cortex induces dopamine release in the caudate nucleus. *J Neurosci*.
828 2001;21(September):1–4.

829

830 71. Fonteneau C, Redoute J, Haesebaert F, Le Bars D, Costes N, Suaud-Chagny M-F, et al.
831 Frontal transcranial direct current stimulation induces dopamine release in the ventral
832 striatum in human. *Cereb Cortex*. 2018;28(7):1–11.

833

834 72. Chou Y, Hickey PT, Sundman M, Song AW, Chen N. Effects of repetitive transcranial
835 magnetic stimulation on motor symptoms in Parkinson disease: a systematic review and
836 meta-analysis. *JAMA Neurol*. 2015;72(4):432–40.

837

838 73. Fregni, F., Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, et al.
839 Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment
840 of depression in patients with Parkinson's disease. *J Neurol Neurosurg Psychiatry*.
841 2004;75:1171–1174.

842

843 74. Doruk D, Gray Z, Bravo GL, Pascual-Leone A, Fregni F. Effects of tDCS on executive
844 function in Parkinson's disease. *Neurosci Lett*. 2014;582:27–31.

845