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 2 

Abstract  15 

1. Phylogenies with extensive taxon sampling have become indispensable for many types of 16 

ecological and evolutionary studies. Many large-scale trees are based on a “supermatrix” 17 

approach, which involves amalgamating thousands of published sequences for a group. 18 

Constructing up-to-date supermatrices can be challenging, especially as new sequences may 19 

become available almost constantly. However, few tools exist for assembling large-scale, high-20 

quality supermatrices (and other large datasets) for phylogenetic analysis. 21 

2. Here we present SuperCRUNCH, a Python toolkit for assembling large phylogenetic datasets. 22 

It can be applied to GenBank sequences, unpublished sequences, or combinations of GenBank 23 

and unpublished data. SuperCRUNCH constructs local databases and uses them to conduct rapid 24 

searches for user-specified sets of taxa and loci. Sequences are parsed into putative loci and 25 

passed through rigorous filtering steps. A post-filtering step allows for selection of one sequence 26 

per taxon (i.e. species-level supermatrix) or retention of all sequences per taxon (i.e. population-27 

level dataset). Importantly, SuperCRUNCH can generate “vouchered” population-level datasets, 28 

in which voucher information is used to generate multi-locus phylogeographic datasets. 29 

Additionally, SuperCRUNCH offers many options for taxonomy resolution, similarity filtering, 30 

sequence selection, alignment, and file manipulation.  31 

3. We demonstrate the range of features available in SuperCRUNCH by generating a variety of 32 

phylogenetic datasets. We provide examples using GenBank data, and combinations of GenBank 33 

and unpublished data. Output datasets include traditional species-level supermatrices, large-scale 34 

phylogenomic matrices, and phylogeographic datasets. Finally, we briefly compare the ability of 35 

SuperCRUNCH to construct species-level supermatrices to alternative approaches. 36 

SuperCRUNCH generated a large-scale supermatrix (1,400 taxa and 66 loci) from 16GB of 37 
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GenBank data in ~1.5 hours, and generated population-level datasets (<350 samples, <10 loci) in 38 

<1 minute. It also outperformed alternative methods for supermatrix construction in terms of 39 

taxa, loci, and sequences recovered. 40 

4. SuperCRUNCH is a flexible bioinformatics toolkit that can be used to assemble datasets for 41 

any taxonomic group and scale (kingdoms to individuals). It allows rapid construction of 42 

supermatrices, greatly simplifying the process of updating large phylogenies with new data. It is 43 

also designed to produce population-level datasets. SuperCRUNCH streamlines the major tasks 44 

required to process phylogenetic data, including filtering, alignment, trimming, and formatting. 45 

SuperCRUNCH is open-source, documented, and freely available at 46 

https://github.com/dportik/SuperCRUNCH, with example analyses available at 47 

https://osf.io/bpt94/. 48 

  49 
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1  |  INTRODUCTION 50 

Large-scale phylogenies, including hundreds or thousands of species, have become essential for 51 

many studies in ecology and evolutionary biology. Many of these large-scale phylogenies are 52 

based on the supermatrix approach (e.g., de Queiroz & Gatesy, 2007), which typically involves 53 

amalgamating thousands of sequences from public databases (e.g., GenBank). Yet relatively few 54 

tools exist for automatically assembling these datasets. These include programs like PhyLoTA 55 

(Sanderson, Boss, Chen, Cranston, & Wehe, 2008), PHLAWD (Smith, Beaulieu, & Donoghue, 56 

2009), phyloGenerator (Pearse & Purvis, 2013), SUMAC (Freyman, 2015), SUPERSMART 57 

(Antonelli et al., 2017), PhylotaR (Bennett et al., 2018) and PyPHLAWD (Smith & Walker, 58 

2018). Each program has its own pros and cons for assembling molecular datasets. For example, 59 

several programs (e.g., PHLAWD, PyPHLAWD, PhyLoTA, PhylotaR, SUPERSMART) employ 60 

automated (“all-by-all”) clustering of all sequences, which restricts the ability to target specific 61 

loci. In addition, the criteria for filtering steps and sequence selection are not always clear in 62 

these programs. However, their most severe limitation may be their reliance on GenBank 63 

databases to obtain starting sequences. This design generally prevents the inclusion of locally 64 

generated (e.g., unpublished) sequence data, thereby limiting analyses to published sequences. 65 

Furthermore, many methods were designed to create species-level datasets, in which a species is 66 

represented by one sequence per locus (e.g., a traditional supermatrix). It is often not possible to 67 

use these methods to intentionally generate phylogeographic (population-level) datasets, in 68 

which a species is represented by many individuals sequenced for anywhere from one gene to 69 

thousands of loci. The dramatic increase in the availability and size of phylogeographic datasets 70 

(McCormack et al., 2013; Garrick et al., 2015) has created a need for methods which can 71 

construct large-scale population-level datasets. Additionally, no current methods utilize voucher 72 
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codes (e.g., a field series, museum number, or other identifier). These codes are critical for 73 

linking samples and building phylogeographic datasets. Thus, producing high-quality 74 

phylogenetic datasets is presently challenging using many of the available methods. 75 

To address these challenges, we developed SuperCRUNCH, a semi-automated method 76 

for creating phylogenetic and phylogeographic datasets. SuperCRUNCH can be used to process 77 

sequences from GenBank, datasets containing only locally generated (unpublished) sequences, or 78 

a combination of sequence types. During initial steps, the sequence data are parsed into loci 79 

based on user-supplied lists of taxa and loci, offering fine-control for targeted searches. 80 

SuperCRUNCH allows any taxonomy to be used, and offers simple steps for identifying and 81 

resolving taxonomic conflicts. SuperCRUNCH also includes refined methods for similarity 82 

filtering, quality filtering, and sequence selection. By offering the option to select one 83 

representative sequence per species or retain all filtered sequences, SuperCRUNCH can be used 84 

to generate species-level datasets (one sequence per species per gene) and population-level 85 

datasets (multiple sequences per species per gene). SuperCRUNCH can also filter sequences 86 

using voucher codes, which can label and link sequences in phylogeographic datasets (e.g., a 87 

“vouchered” dataset). Analyses are highly scalable, and can range in size from small population-88 

level datasets (one taxon, one gene) to large phylogenomic datasets (hundreds of taxa, thousands 89 

of loci). SuperCRUNCH is modular in design, offering flexibility across all major steps in 90 

constructing phylogenetic datasets, and analyses are transparent and highly reproducible. 91 

SuperCRUNCH is open-source, heavily documented, and freely available at 92 

https://github.com/dportik/SuperCRUNCH. 93 

 94 

2  |  INSTALLATION  95 
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SuperCRUNCH consists of a set of PYTHON modules that function as stand-alone command-line 96 

scripts. As of SuperCRUNCH v1.2, these modules can be run using Python 2.7 or 3.7. All 97 

modules can be downloaded and executed independently without the need to install 98 

SuperCRUNCH as a PYTHON package or library, making them easy to use and edit. 99 

Nevertheless, there are eight dependencies that should be installed that enable the use of all 100 

features in SuperCRUNCH. These include the BIOPYTHON package for PYTHON, and the 101 

following seven external dependencies: NCBI-BLAST+ (for BLASTN and MAKEBLASTDB; Altschul, 102 

Gish, Miller, Myers, & Lipman, 1990; Camacho et al., 2009), CD-HIT-EST (Li & Godzik, 2006), 103 

CLUSTAL-O (Sievers et al., 2011), MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002; Katoh & 104 

Standley, 2013), MUSCLE (Edgar, 2004), MACSE (Ranwez, Douzery, Cambon, Chantret, & 105 

Delsuc, 2018), and TRIMAL (Capella-Gutiérrez, Silla-Martínez, & Gabaldón, 2009). Installation 106 

instructions for all dependencies is provided on the SuperCRUNCH github wiki 107 

(https://github.com/dportik/SuperCRUNCH/wiki).  108 

 109 

3  |  WORKFLOW 110 

A comprehensive user-guide, including overviews for all major steps and detailed instructions 111 

for all modules, is available on the SuperCRUNCH github wiki. Several complete analyses are 112 

posted on the Open Science Framework SuperCRUNCH project page, available at: 113 

https://osf.io/bpt94. Here, we briefly outline the major steps in a typical analysis, including some 114 

technical details for key steps. However, we strongly encourage users to read the complete 115 

documentation available online.  116 

 117 

3.1  |  Overview 118 
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SuperCRUNCH is designed to work with fasta-formatted sequence data that have been 119 

previously downloaded (e.g., from GenBank) or are locally available (e.g., processed sequences 120 

from in-house projects). No connection to live databases (such as NCBI) is required. Three input 121 

files are needed to perform a typical analysis: a set of sequence records in fasta format, a list of 122 

taxonomic names, and a list of loci (or genes) and associated search terms. The contents of these 123 

input files are described in greater detail below. The general workflow involves assessing 124 

taxonomy, parsing loci, similarity filtering, sequence selection, sequence alignment, and various 125 

post-alignment tasks (Fig. 1). The taxonomy used is user-supplied (e.g., not explicitly linked to 126 

any online databases). Therefore, an important first step is to identify and resolve potential 127 

conflicts between the user-supplied taxon list and the taxon labels in the sequence records. 128 

Afterwards, searches are conducted to identify records that putatively belong to loci (based on 129 

the content of record labels). These records are then written to locus-specific files. The sequences 130 

in each locus are then subjected to more stringent filtering using similarity searching (via 131 

nucleotide BLAST). This step removes non-homologous sequences and trims homologous 132 

sequences to remove non-target regions. After similarity filtering, the sequence-selection step 133 

allows selection of one sequence per species per locus or including all sequences. For both 134 

options, several additional filters (e.g., requiring an error-free reading frame, minimum length, or 135 

voucher information) can be used to ensure only high-quality sequences are retained. Sequences 136 

can then be prepared for alignment (adjusting direction and/or reading frame) and subsequently 137 

aligned using several alignment methods. After alignment, sequences can be relabeled, and the 138 

alignments can be trimmed, converted to multiple formats, and concatenated. SuperCRUNCH 139 

analyses end with the production of fully formatted input files that are compatible with numerous 140 
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phylogenetic and population-genetic programs. Below, we provide additional details for the 141 

major steps outlined here. 142 

 143 

3.2  |  Starting Sequences 144 

SuperCRUNCH requires a single fasta file of nucleotide sequence records as the main input. The 145 

fasta file can contain records from GenBank, unpublished sequence records, or a combination. 146 

GenBank data can be obtained by searching for relevant taxonomy terms or organism identifier 147 

codes on that database, and downloading the records in fasta format. For clades with many 148 

species, downloading all records directly may not be possible. For these groups, results from 149 

multiple searches using key organism identifiers can be downloaded and combined into a single 150 

fasta file. Automated downloading of GenBank sequence data through SuperCRUNCH is 151 

currently not supported, but may be included in a future release. Locally generated data should 152 

be formatted similar to GenBank records. A typical record should contain an accession number 153 

(a unique identifier code), a taxon label (two-part or three-part name, genus/species or 154 

genus/species/subspecies), and locus information (gene abbreviation and/or full name). Voucher 155 

information is optional. Additional details and examples of how to label Sanger-sequenced and 156 

sequence-capture datasets are provided in the online documentation.  157 

 158 

3.3  |  Assessing Taxonomy 159 

SuperCRUNCH allows any taxonomy to be used. Taxonomy is supplied as a simple text file 160 

with one taxon name per line. Two-part and three-part names can be used. SuperCRUNCH offers 161 

the option to include or exclude subspecies. If subspecies are excluded, the third component of 162 

any three-part name is ignored, thereby reducing it to a two-part name. A taxon list can therefore 163 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2019. ; https://doi.org/10.1101/538728doi: bioRxiv preprint 

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 9 

contain a mix of species and subspecies names, even if subspecies are not desired. Although 164 

SuperCRUNCH does not connect with any taxonomy databases, lists of taxon names for large 165 

clades can be obtained through such databases, including the NCBI Taxonomy Browser or 166 

Global Names Database (Patterson et al., 2016). Many groups also have taxonomic databases, 167 

such as the Reptile Database (Uetz, Freed, & Hošek, 2018) and AmphibiaWeb (2019). These 168 

usually contain up-to-date taxonomies in a downloadable format. Taxon names can also be 169 

extracted directly from fasta files using the Fasta_Get_Taxa.py module. This option is most 170 

useful for unpublished sequences and sequence sets with few species. 171 

Ideally, the user-supplied taxonomy will match the taxon names in the sequence records. 172 

However, taxonomy can change rapidly and conflicts often arise. To pass initial filtering steps, a 173 

record must have a taxon label that matches a name in the user-supplied taxonomy. Before 174 

beginning any filtering steps, it is therefore important to understand how compatible the user-175 

supplied taxonomy is with the sequence-record set. The Taxa_Assessment.py module will 176 

perform an initial search across records to identify all records with a taxon label contained in the 177 

provided taxonomy, and identify all records with an unmatched taxon label (which would fail 178 

initial filtering steps). A list of unmatched taxon names is provided as output. External tools such 179 

as organismal databases, TAXIZE/PYTAXIZE (Chamberlain & Szöcs, 2013; Chamberlain et al., 180 

2017), or the resolver function in the Global Names Database (Patterson et al., 2016), can be 181 

used to identify a “correct” name for an unmatched name. If a set of updated names is supplied 182 

for a set of unmatched names, the Rename_Merge.py module can be used to relabel all relevant 183 

records with the updated names, thus allowing them to pass the initial filtering steps. The 184 

combination of these two taxonomy modules allows users to correct minor labeling errors (such 185 

as misspellings), reconcile synonymies, or completely update names to a newer taxonomy.  186 
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 187 

3.4  |  Parsing Loci 188 

The Parse_Loci.py module conducts searches for specific loci using a set of user-supplied search 189 

terms, including gene abbreviations and full gene names. All searches are conducted using SQL 190 

with a local database constructed from the input sequences, and the initial assignment of a 191 

sequence to a locus is based purely on matches to the record labeling. For a sequence to be 192 

written to a locus-specific file, it must match either the gene abbreviation or description for that 193 

locus, and it must have a taxon label present in the user-supplied taxonomy. This approach 194 

creates smaller locus-specific sequence sets from the initial sequence set, which are more 195 

tractable for downstream similarity searches (versus “all-by-all” clustering).  196 

The success of finding sequences using SuperCRUNCH depends on providing 197 

appropriate gene abbreviations and labels. We recommend searching on GenBank to identify 198 

common labeling or using gene databases such as GeneCards (Stelzer et al., 2016). There is no 199 

hard upper bound on how many loci can be searched for. Thus, SuperCRUNCH can be used to 200 

process large phylogenomic datasets (e.g., sequence capture experiments) including those with 201 

thousands of species and loci. Whole mitochondrial genomes can also be targeted for any search 202 

involving a particular mitochondrial gene (see below). Recommendations for optimizing locus 203 

searches for different data types are provided in the online documentation. 204 

The choice of loci will be group-specific. Previous phylogenetic/phylogeographic papers 205 

can be used to identify appropriate loci. The best criteria for selecting loci remain unresolved. 206 

One relevant criterion is completeness (e.g., including only loci present in >20% of the species). 207 

For each search conducted with Parse_Loci.py, the number of sequences found for each locus 208 

will be output. Therefore, it can be used to survey the availability of sequences for each locus. A 209 
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downstream step allows loci to be filtered based on a minimum number of required sequences, so 210 

decisions can be made after additional filtering.  211 

The Parse_Loci.py module performs another important task: automatically detecting 212 

voucher information in those sequence record labels that containing a “voucher”, “strain”, or 213 

“isolate” field (see online documentation). This information is written into the records as a new 214 

tag that is discoverable in other downstream steps, allowing the creation of “vouchered” datasets. 215 

 216 

3.5  |  Similarity Filtering 217 

SuperCRUNCH offers two parallel methods for filtering sequences based on similarity. Each 218 

method uses nucleotide BLAST to perform searches, but they differ in whether reference 219 

sequences are automatically selected (Cluster_Blast_Extract.py) or user-provided 220 

(Reference_Blast_Extract.py) (Fig. 2). The automatic selection of reference sequences is 221 

appropriate for loci consisting of “simple” sequence records (Fig. 2). We define “simple” record 222 

sets as those generally containing a single gene region with limited length variation, which 223 

results from use of the same primers (Sanger-sequencing) or probes (sequence capture) to 224 

generate sequences. The Cluster_Blast_Extract.py module can be used for these types of loci. 225 

These generally include nuclear markers and those from commercial probe sets (e.g., UCEs: 226 

ultraconserved elements). The Cluster_Blast_Extract.py module begins by clustering sequences 227 

based on similarity using CD-HIT-EST. It then identifies the largest sequence cluster, and 228 

designates that as the reference sequence set (Fig. 2). All starting sequences (including those in 229 

the reference cluster) are then blasted to this reference using BLASTn. This method is 230 

convenient for automating the process of similarity filtering for “simple” records and can be used 231 

to screen thousands of loci.  232 
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However, Cluster_Blast_Extract.py will fail for loci containing “complex” sequence 233 

records. “Complex” records include those containing the target region plus non-target sequence 234 

(e.g., other regions or genes). Common examples include long mtDNA fragments and whole 235 

mitogenomes (Fig. 2). Another type of “complex” record is a gene sequenced for different 236 

fragments that have little or no overlap. For these sequence sets, the Reference_Blast_Extract.py 237 

module should be used instead. Rather than identifying the reference set from the starting 238 

sequences via clustering, it requires a user-supplied reference sequence set to perform BLASTn 239 

searches (Fig. 2). An external reference set must be provided for each locus, and it ensures that 240 

only the desired regions are targeted and extracted. For example, a set of ND2 reference 241 

sequences can be used to extract only ND2 regions from a record set comprised of whole 242 

mitochondrial genomes, multi-gene mitochondrial sequences, and partial ND2 records. 243 

For both modules, the BLASTn algorithm can be specified by the user (blastn, blastn-244 

short, megablast, or dc-megablast), allowing searches to be tailored to inter- or intraspecific 245 

datasets. After BLASTn searches are conducted for a locus, sequences without significant 246 

matches are discarded. For all other sequences, the BLAST coordinates of all hits (excluding 247 

self-hits) are merged to identify the target region of the query sequence. Based on these 248 

coordinates, the entire sequence or a trimmed portion of the sequence is kept. The BLAST 249 

coordinate merging action often results in a single continuous interval (e.g., bases 1–800). 250 

However, non-overlapping coordinates can also be produced (e.g., bases 1–200, 450–800). Two 251 

common examples (sequences containing stretches of N’s or gene duplications) are illustrated in 252 

Figure 3.  253 

Multiple options are available for handling non-overlapping sequence intervals. The 254 

default option is “span”, which bridges non-overlapping intervals <X base pairs apart, where X is 255 
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the default value (100 bp) or a user-supplied value. However, if the gap is >X bases, the longest 256 

interval is selected instead. The “nospan” method will simply select the longest interval of the 257 

coordinate set, and the “all” method will concatenate the sequence intervals together. Results 258 

from each option are shown in Figure 3.  259 

An optional contamination-filtering step is available (Contamination_Filter.py). This step 260 

excludes all sequences scoring >95% identity for at least 100 continuous base pairs to the 261 

reference sequences. Here, the contamination reference sequences should correspond to the 262 

expected source of contamination (see documentation). 263 

 264 

3.6  |  Sequence Selection 265 

SuperCRUNCH can construct two fundamentally different datasets: species-level supermatrices 266 

and population-level (phylogeographic) datasets. The Filter_Seqs_and_Species.py module is 267 

used to select the sequences necessary to construct either dataset (using the “oneseq” or “allseqs” 268 

options). For supermatrices, a single sequence is typically used to represent each species for each 269 

gene. If multiple sequences for a given gene exist for a given species (e.g., because multiple 270 

individuals were sampled), then an objective strategy must be used for sequence selection. 271 

Filter_Seqs_and_Species.py offers several options, including the simplest solution: sorting 272 

sequences by length and selecting the longest sequence (“length” method). An additional filter 273 

can be applied to protein-coding loci, termed “translate”. This is an extension of the “length” 274 

method, which limits sequences to those containing a valid reading frame (determined by 275 

translation in all forward and reverse frames), thereby removing sequences with errors. However, 276 

if no sequences pass translation, the longest sequence is selected rather than excluding the taxon. 277 

The “randomize” feature can be used to select a sequence randomly from the set available for a 278 
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taxon, which will generate supermatrix permutations. Finally, the “vouchered” option will only 279 

allow sequences with a voucher tag (generated by Parse_Loci.py). For all selection options, 280 

sequences must meet a minimum base-pair threshold set by the user. This will determine the 281 

smallest amount of data that can be included for a given marker for a given terminal taxon.  282 

However, the optimal minimum is another unresolved issue.  283 

To build a population-level dataset, all sequences passing the minimum base pair 284 

threshold will be kept. The “translate” option can be used to only include sequences that pass 285 

translation, and the “vouchered” option will only include sequences with a voucher tag. The 286 

“vouchered” option should be selected to build a population-level dataset that allows samples to 287 

be linked by voucher information. Additional information on how various options affect 288 

supermatrix and population-level datasets is available online. 289 

 The Filter_Seqs_and_Species.py module provides key output files for reproducibility and 290 

transparency. For each locus, this includes a BatchEntrez-compatible list of all accession 291 

numbers from the input file, a per-species list of accession numbers, and a comprehensive 292 

summary of the sequence(s) selected for each species (accession number, length, translation test 293 

results, and number of alternative sequences available). The Infer_Supermatrix_Combinations.py 294 

module can be used to infer the total number of possible supermatrix combinations (based on the 295 

number of available alternative sequences per taxon per locus). Following the selection of 296 

representative sequences, the Make_Acc_Table.py module can be used to generate a table of 297 

GenBank accession numbers for all taxa and loci. This can be created for species-level 298 

supermatrices and “vouchered” population-level datasets. 299 

 300 

3.7  |  Multiple Sequence Alignment 301 
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SuperCRUNCH includes two pre-alignment steps and several options for multiple sequence 302 

alignment (Fig. 4). One pre-alignment module (Adjust_Direction.py) adjusts the direction of all 303 

sequences in each locus-specific fasta file in combination with MAFFT. This step produces 304 

unaligned fasta files with all sequences written in the correct orientation (thereby avoiding major 305 

pitfalls with aligners). Sequences for any locus can be aligned using the Align.py module with 306 

one of several popular aligners (MAFFT, MUSCLE, CLUSTAL-O) or with all aligners sequentially. 307 

For protein-coding loci, the MACSE translation aligner is also available, which is capable of 308 

aligning coding sequences with respect to their translation while allowing for multiple 309 

frameshifts or stop codons. To use this alignment method, the Coding_Translation_Tests.py 310 

module can be used to identify the correct reading frame of sequences, adjust them to the first 311 

codon position, and ensure completion of the final codon. Although MACSE can be run on a 312 

single set of reliable sequences (e.g., only those that passed translation), it has an additional 313 

feature allowing simultaneous alignment of a set of reliable sequences and a set of unreliable 314 

sequences (e.g., those that failed translation), using different parameters. The 315 

Coding_Translation_Tests.py module can be used to generate all the necessary input files to 316 

perform this type of simultaneous alignment using MACSE (see online documentation).  317 

The alignment methods implemented in SuperCRUNCH are not intended to produce 318 

ultra-large alignments containing several thousand sequences. To create ultra-large alignments, 319 

we recommend using external alignment methods such as SATé-II (Liu et al., 2012), PASTA 320 

(Mirarab et al., 2015), or UPP (Nguyen et al., 2015). We also recommend using UPP to create 321 

alignments for loci containing a mix of full-length sequences and short sequence fragments, as 322 

these conditions are problematic for many alignment methods (Nguyen et al., 2015). 323 

 324 
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3.8  |  Post-Alignment Tasks 325 

After multiple sequence alignment, there are several tasks that can be help prepare datasets for 326 

downstream analyses. One important task involves relabeling sequences using the 327 

Fasta_Relabel_Seqs.py module, such that sequence labels are composed of taxon labels, 328 

accession numbers, voucher codes, or some combination. The relabeling strategy will depend on 329 

the type of dataset being produced (and whether concatenation is intended). Recommendations 330 

are provided in the online documentation. Regardless, this step is essential because full-length 331 

labels are incompatible with many downstream programs. Relabeled fasta files can be converted 332 

into other commonly used formats (nexus, phylip) using the Fasta_Convert.py module.  333 

SuperCRUNCH offers two different approaches for automated alignment trimming, 334 

although the overall value of trimming remains debatable (Tan et al., 2015). The 335 

Trim_Alignments_Trimal.py module uses several implementations of TRIMAL (“gap-threshold”, 336 

“gappyout”, “noallgaps”) to trim alignments. The Trim_Alignments_Custom.py module is based 337 

on the custom trimming routine in PHYLUCE (Faircloth, 2016). This version allows edge 338 

trimming, row trimming, or both.   339 

Relabeled alignment files can be concatenated using the Concatenation.py module. This 340 

module allows fasta or phylip input and output formats. The user can also select the symbol for 341 

missing data (-, N, ?). It produces a log file containing the number of loci for each terminal taxon 342 

and a data partitions file (containing the corresponding base pairs for each locus in the 343 

alignment). The Concatenation.py module can be used for any dataset in which labels are 344 

consistent across loci, including species-level supermatrices (with taxon labels) and “vouchered” 345 

population-level datasets (with taxon/voucher combination labels). See online documentation for 346 

more details.  347 
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 348 

4  |  DEMONSTRATIONS AND COMPARISONS 349 

To demonstrate the full range of features available in SuperCRUNCH, we constructed several 350 

types of datasets. These included small population-level datasets (<300 sequences, <10 loci), a 351 

“vouchered” phylogeographic dataset (~100 samples, 4 loci), traditional supermatrices (~1,500 352 

species, ~70 loci), and phylogenomic supermatrices (~2,000 UCE loci, <20 samples). In 353 

addition, we demonstrate how SuperCRUNCH can be used to add published outgroup sequences 354 

to a supermatrix of locally generated sequences. Finally, we compared the ability of 355 

SuperCRUNCH to construct species-level supermatrices relative to the program PyPHLAWD 356 

(Smith & Walker, 2018), using two test clades (Iguania and Dipsacales). In addition to 357 

comparing supermatrix characteristics (taxa, loci, sequences), we also compared the resulting 358 

phylogenies (including the number genera and families recovered as monophyletic). Details are 359 

given in Supporting Information S1. All analyses are available as tutorials on the 360 

SuperCRUNCH project page on the Open Science Framework (https://osf.io/bpt94/). Analyses 361 

were run on an iMac with a 4.2 GHz quad-core Intel Core i7 with 32 GB RAM. 362 

 363 

5  |  RESULTS 364 

Detailed results for all analyses are provided in Supporting Information S1, and are briefly 365 

summarized here. SuperCRUNCH produced a large supermatrix (~1,500 species, ~60 loci, 366 

~13,000 sequences) in ~1.5 hours, but with more thorough settings ran up to 13 hours. This 367 

difference in runtimes is largely attributable to the alignment step, with MAFFT taking ~4 368 

minutes and MACSE requiring 11 hours. SuperCRUNCH successfully reconstructed a published 369 

phylogeographic dataset (<1 min) and a published phylogenomic supermatrix (~25 min). It 370 
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rapidly created new combinations of population-level datasets from multiple published sources 371 

(<1 min). It also added GenBank sequences for hundreds of outgroups to a local (unpublished) 372 

supermatrix project (<4 min).  373 

SuperCRUNCH outperformed PyPHLAWD in all supermatrix comparisons, recovering 374 

more taxa and sequences in both test clades. Given the same starting sequences for the Iguania 375 

dataset, SuperCRUNCH found ~300 more taxa (1,359 vs. 1,069) and ~2,300 more sequences 376 

(12,676 vs. 10,397). PyPHLAWD experienced a severe performance drop for loci containing 377 

“complex” records (those with multiple loci or non-overlapping regions), and thereby lost 63% 378 

of the available mtDNA sequences (>2,000 sequences discarded). SuperCRUNCH supermatrices 379 

also generated higher quality phylogenies, recovering more genera as monophyletic in all 380 

comparisons. Additional results for these comparisons are discussed in Supporting Information 381 

S1, and all analyses are available on the Open Science Framework (https://osf.io/bpt94/). 382 

 383 

6 |  DISCUSSION 384 

SuperCRUNCH is a versatile bioinformatics toolkit that can be used to create large phylogenetic 385 

datasets. It contains many novel features that distinguish it from other programs. Most 386 

importantly, SuperCRUNCH is not restricted to GenBank sequence data. It can be used to 387 

process unpublished sequences, and combinations of GenBank and unpublished data. Many 388 

programs rely on GenBank database releases (PhyLoTA, PyPHLAWD, SUMAC, 389 

SUPERSMART) to retrieve starting sequences and obtain metadata. In contrast, SuperCRUNCH 390 

infers metadata directly from user-supplied starting sequences, and constructs local databases to 391 

perform searches. This design explicitly allows for the inclusion of unpublished sequence data.  392 
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 There are other programs designed to generate species-level supermatrices 393 

(phyloGenerator, PhylotaR, PyPHLAWD, SUPERSMART), but these workflows generally do 394 

not offer explicit options for creating population-level (phylogeographic) datasets. 395 

SuperCRUNCH includes a key step that allows for either selecting one sequence per species, or 396 

all sequences, generating either species-level supermatrices or population-level datasets. 397 

Furthermore, filtering options are available for both (passing translation, minimum length), 398 

ensuring only high-quality sequences are included in both types of datasets.  399 

A population-level (phylogeographic) dataset includes multiple sequences per species per 400 

locus. It is straightforward to collect all sequences available for a particular gene for a given 401 

species. However, there may be little overlap of sampling across loci. For example, different 402 

individuals may have been sequenced for different loci in different studies. Identifying sequences 403 

derived from the same sample can be difficult and requires integrating voucher information. 404 

Incorporating additional sequences (published or unpublished) into phylogeographic datasets can 405 

be challenging, given the difficulty of identifying and matching voucher information in sequence 406 

records. SuperCRUNCH automates these tasks, creating “vouchered” datasets. The “vouchered” 407 

feature of SuperCRUNCH only allows sequences with a voucher code to pass the filtering steps 408 

used to create a population-level dataset. The final sequences are relabeled using the voucher 409 

information (typically taxon name plus voucher code), such that sequences derived from the 410 

same sample share an identical label. Together, these features allow the rapid reconstruction of 411 

published phylogeographic datasets, merging of published and unpublished data to create new 412 

datasets, and construction of datasets from locally generated sequences (especially from 413 

sequence-capture experiments).  414 
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 SuperCRUNCH differs from similar programs in that it initially identifies sequences 415 

using record labels, moves the relevant sequences to locus-specific files, and performs similarity 416 

searches on reduced-sequence sets. In contrast, many other programs attempt to cluster all 417 

starting sequences to produce putatively orthologous sequence clusters (PhyLoTA, PyPHLAWD, 418 

PhylotaR, and SUPERSMART). In general, these “all-by-all” clustering approaches do not allow 419 

target loci to be specified, require additional steps to identify the content of sequence clusters, 420 

and can result in the inclusion of paralogous sequences. Furthermore, clusters produced from a 421 

“complex” record set may be redundant, introducing biases into supermatrices (e.g., a single 422 

locus repeated multiple times). SuperCRUNCH putatively assigns sequences to a locus based on 423 

the presence of locus search terms in the record label (similar to phyloGenerator). This method 424 

allows specific loci to be targeted, establishes a clear identity for the sequences, and reduces the 425 

chance of including paralogous sequences (which should have a different gene label). Thus, 426 

SuperCRUNCH can accurately target and build datasets composed of thousands of loci, 427 

including UCEs and other sequence-capture loci. It is difficult to reliably perform this task using 428 

“all-by-all” clustering of starting sequences. Even the recently proposed “baited” clustering 429 

approach of PyPHLAWD, which requires a reference sequence set for each locus, is prohibitive 430 

for large genomic datasets (e.g., ~5,000 UCE loci). We acknowledge the success of the label-431 

matching strategy relies on defining appropriate search terms. Unanticipated issues like gene 432 

name synonymies can inadvertently exclude relevant sequences (Supporting Information S1). 433 

Regardless, the label-matching method of SuperCRUNCH circumvents many issues outlined 434 

above, and outperformed the “baited” clustering methods of PyPHLAWD for all test cases 435 

(Supporting Information S1). Given that searches for loci are conducted using SQL, they are fast 436 

and can be executed using iteratively refined search terms to optimize results.  437 
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 SuperCRUNCH also offers improved methods for similarity searches. These include the 438 

ability to specify BLASTn algorithms, improved BLAST coordinate merging and sequence 439 

trimming, and flexible choices for selecting reference sequences. Unless specified, the default 440 

algorithm used by nucleotide BLAST is megablast, which is best for finding highly similar 441 

sequences in intraspecific searches (e.g., population-level datasets). In contrast, discontiguous 442 

megablast performs substantially better for interspecific searches (Ma, Tromp, & Li, 2002; 443 

Camacho et al., 2009), and is preferable for species-level supermatrices. In many cases, merging 444 

the BLAST coordinates obtained from a query sequence is trivial and results in a single 445 

continuous target region. However, multiple non-overlapping target regions may also occur for a 446 

query sequence, and SuperCRUNCH offers several novel options to handle these cases (Fig. 3). 447 

Furthermore, SuperCRUNCH uses the resulting coordinates to automatically trim sequences to 448 

the target region, if necessary. This non-standard trimming action ensures that only sequence 449 

regions homologous to the reference-sequence set are kept. SuperCRUNCH also offers two 450 

options for designating reference sequences: reference sequences can be selected automatically 451 

from the sequence set, or can be supplied by the user (Fig. 2). Automatic selection of reference 452 

sequences is appropriate for “simple” sequence records (i.e., same gene regions), and can 453 

efficiently perform similarity searches for thousands of loci. User-supplied references are more 454 

appropriate for “complex” sequence records (multiple loci or non-overlapping regions), or 455 

whenever fine-control over the target region is desired. Although this latter option requires 456 

gathering reference sequences manually, it is powerful and can be used to extract a single 457 

mtDNA gene region from a record set containing a mix of whole mitochondrial genomes, long 458 

multi-gene mtDNA sequences, and shorter target sequences. 459 
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 Despite many improvements implemented in SuperCRUNCH, an important and general 460 

issue is the accuracy of GenBank sequence data. This issue can affect SuperCRUNCH and all 461 

other programs that process GenBank data. For example, errors may arise through incorrect 462 

uploading of data, misidentified specimens, contamination, and other lab errors. Data errors can 463 

occur in record labels, and include incorrect gene, taxon, or voucher information. With regards to 464 

contamination, we identified two human mtDNA sequences labeled as lizards in our iguanian 465 

supermatrix analysis (HM040901.1, KP899454.1; Supplemental File 1). The contamination filter 466 

in SuperCRUNCH can detect and eliminate some problems of this kind, but it cannot readily 467 

identify cases of misidentified or mislabeled sequences within the focal group. Misidentified 468 

specimens are perhaps the most difficult problem to detect, particularly at a shallow taxonomic 469 

scale (e.g., a specimen assigned to the wrong species within the same genus or family). Although 470 

similarity filtering can generally be used to correctly establish gene identities, parallel 471 

approaches for identifying inaccurate taxon labeling within the focal group are generally lacking. 472 

Overall, data accuracy is a general problem for the supermatrix approach regardless of the 473 

methods used to process the data. Automatic identification of inaccurate sequence records would 474 

be a useful goal for future studies of supermatrix construction. 475 

The initial motivation behind SuperCRUNCH was to increase transparency and 476 

reproducibility across all steps in dataset construction. We therefore encourage researchers 477 

running analyses with SuperCRUNCH to publish the information needed to reproduce their 478 

results. This includes accession numbers for the starting sequence set, the taxon list file, the locus 479 

search terms file, and the ancillary files and commands used to execute steps. We also emphasize 480 

that SuperCRUNCH is highly modular, and performing a SuperCRUNCH analysis does not 481 

require running the full pipeline. As such, SuperCRUNCH modules can be incorporated into any 482 
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bioinformatics pipeline or used in conjunction with features of other currently available 483 

programs. Alternative programs offer important features that may serve different needs beyond 484 

those available in SuperCRUNCH (e.g., SUPERSMART performs phylogenetic analyses on the 485 

supermatrices that it generates). Given the rapid growth of sequence data on GenBank (NCBI, 486 

2019), improved bioinformatics approaches to mine and manage phylogenetic datasets are 487 

needed. 488 
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FIGURE LEGENDS 599 

 600 

FIGURE 1  A depiction of the general steps (and associated modules) involved in full 601 

SuperCRUNCH analyses. Each step is outlined in a corresponding entry of the same title in the 602 

Workflow section of the main text.  603 
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FIGURE 2  An illustration of the similarity searching workflows occurring in the 606 

Cluster_Blast_Extract.py and Reference_Blast_Extract.py modules. Green color represents target 607 

regions, and all other colors represent non-target regions. 608 
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FIGURE 3  A demonstration of the options available for handling non-overlapping BLAST 611 

coordinates for query sequences with two common examples: (A) a sequence that contains a 612 

stretch of N’s, and (B) a long sequence containing multiple genes (represented by letters) that 613 

also contains a gene duplication (indicated by C1 and C2), such as an organellar genome. In both 614 

sequences, green represents the target region and grey represents either missing data (A) or non-615 

target regions (B). The resulting merged BLAST coordinates are shown for each sequence, along 616 

with which coordinates would be selected under the available options (“span”, “nospan”, and 617 

“all”, see main text).  618 
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1  |  de novo Supermatrix for Iguania 

1.1  |  Methods: Iguania-Fast and Iguania-Thorough Analyses 

To demonstrate the full use of SuperCRUNCH we assembled a de novo supermatrix for Iguania, 

a clade of squamate reptiles that contains ~1900 species in 14 families (Uetz et al., 2018). This 

clade includes chameleons, dragons, flying lizards, iguanas, anoles, and other well-known 

lizards. For starting material, we downloaded all available iguanian sequence data from GenBank 

on November 30, 2018 using the organism identifier code for Iguania (txid8511[Organism:exp]). 

This produced a 13.2 GB fasta file that included 8,785,378 records. We obtained search terms for 

69 loci (62 nuclear, 7 mitochondrial) that have been widely used in reptile phylogenetics or 

phylogeography (Townsend et al., 2008; Portik et al., 2012; Pyron et al., 2013). This includes 62 

nuclear loci (ADNP, AHR, AKAP9, AMEL, BACH1, BACH2, BDNF, BHLHB2, BMP2, CAND1, 

CARD4, CILP, CMOS, CXCR4, DLL1, DNAH3, ECEL1, ENC1, EXPH5, FSHR, FSTL5, GALR1, 

GHSR, GPR37, HLCS, INHIBA, KIAA1217, KIAA1549, KIAA2018, KIF24, LRRN1, LZTS1, 

MC1R, MKL1, MLL3, MSH6, MXRA5, MYH2, NGFB, NKTR, NOS1, NT3, PDC, PNN, PRLR, 

PTGER4, PTPN, R35, RAG1 (two fragments), RAG2, REV3L, RHO, SLC30A1, SLC8A1, 

SLC8A3, SNCAIP, SOCS5, TRAF6, UBN1, VCPIP, ZEB2, ZFP36L1) and 7 mitochondrial genes 

(12S, 16S, CO1, CYTB, ND1, ND2, ND4). For the taxon names list, we used a modified version 

of the February 2018 release of the Reptile Database (which does not contain subspecies). The 

above starting materials were used to run two different analyses, including one high-quality 

analysis that used all modules and features (termed “Iguania-Thorough”; https://osf.io/9gs32/), 

and one analysis that used the fastest possible settings (termed “Iguania-Fast”; 

https://osf.io/x5hrm/).  
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For the Iguania-Thorough analysis, we performed an initial taxon assessment of the 

starting sequences (8,785,378 records). Using Taxon_Assessment.py, we found that 158,935 

records had a name matching our taxonomy, and 8,626,443 records had a name that did not 

match a name in our taxonomy. After identifying all correctable unmatched names using the 

Reptile Database (Uetz et al., 2018), we successfully relabeled 1,860 records using corrected 

names. We merged the updated records with those that passed the initial taxon assessment, and 

the resulting sequence set contained 160,795 records. These records were used to search for the 

69 loci using Parse_Loci.py, and we recovered two or more sequences for all but three loci 

(KIAA1217, KIAA1549, MYH2). We performed similarity filtering using 

Cluster_Blast_Extract.py for 58 nuclear loci (allowing automatic reference selection, intended 

for “simple” records). We performed similarity filtering using Reference_Blast_Extract.py for 

the 7 mitochondrial genes and for the nuclear protein-coding locus RAG1. This latter filtering 

module utilizes user-supplied references, and is intended for “complex” record sets (e.g., with 

little or no overlap for some sequences in some taxa). We included RAG1 in the user-supplied 

reference strategy because it has been sequenced in (depending on the species) either its entirety 

as well as for two non-overlapping fragments. We therefore targeted the two regions of RAG1 

independently (labeled p1 and p2), which we considered as separate loci downstream. We used 

two reference sequence sets (RAG1p1, RAG1p2) created from the full RAG1 gene of seven 

tetrapod species (available at 

https://github.com/dportik/SuperCRUNCH/tree/master/data/reference-sequence-sets/vertebrate-

RAG1). To target each of the 7 mitochondrial genes, we assembled a reference sequence set for 

each gene from 114 squamate mitochondrial genomes, which were downloaded from GenBank. 

We used the “extract annotation” feature of Geneious (https://www.geneious.com) to quickly 
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obtain each gene region from all mitogenomes (in GenBank format). These reference sequence 

sets are available at: https://github.com/dportik/SuperCRUNCH/tree/master/data/reference-

sequence-sets/squamate-mtdna. After similarity filtering, we selected representative sequences 

for each species per gene, using options specific to each type of marker (nuclear protein-coding, 

mtDNA protein-coding, and mtDNA rRNA genes). We used the “oneseq” and “translate” 

options of Filter_Seqs_and_Species.py for the 60 nuclear protein-coding loci (setting translation 

to standard code) and for the 5 mitochondrial protein-coding genes (setting translation to 

vertebrate mtDNA code), and the “oneseq” and “length” options for the two mitochondrial rRNA 

genes (12S, 16S). For each of these three runs, we enforced a minimum 200 bp length for all 

sequences. We used Fasta_Filter_by_Min_Seqs.py to remove alignments with fewer than 30 

taxa, which eliminated 6 of the initial 67 loci. We performed sequence direction adjustments for 

the 61 loci using Adjust_Direction.py. We used the Coding_Translation_Tests.py module to 

prepare the 54 nuclear loci (setting translation to standard code) and the 5 mitochondrial protein-

coding genes (setting translation to vertebrate mtDNA code) for translation alignment. We used 

the Align.py module to perform MACSE translation alignments, using the “pass_fail” option, for 

the 54 nuclear loci (setting translation to standard code) and the 5 mitochondrial protein-coding 

genes (setting translation to vertebrate mtDNA code). We performed sequence alignment for the 

two rRNA mitochondrial genes (12S, 16S) using Clustal-O using the defaults in Align.py. We 

constructed a table of GenBank accession numbers for all filtered sequences using the 

Make_Acc_Table.py module. We relabeled sequences in all alignment files using the “species” 

option in Fasta_Relabel_Seqs.py, and subsequently trimmed alignments using the gap-threshold 

option in trimAl with a threshold value of 0.1, as implemented in Trim_Alignments_Trimal.py. 

We converted fasta alignments to phylip and nexus format and concatenated alignments to 
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produce the final supermatrix. In total, we ran 21 separate steps using 16 modules for the 

Iguania-Thorough analysis (Table S1). The input and output files for all steps, along with 

complete commands used to execute modules, are available are available on the Open Science 

Framework at: https://osf.io/9gs32/. 

For the Iguania-Fast analysis, we skipped the taxonomy assessment step and began by 

searching for the 69 loci in the full set of 8,785,378 starting records using Parse_Loci.py. We 

performed similarity filtering using Cluster_Blast_Extract.py for 58 nuclear loci (allowing 

automatic reference selection), and performed similarity filtering using 

Reference_Blast_Extract.py for the 7 mitochondrial genes plus RAG1 (with the same user-

supplied references as above). Following similarity filtering, we selected sequences for all loci 

using the “length” option in Filter_Seqs_and_Species.py, requiring a minimum length of 200 bp. 

We used Fasta_Filter_by_Min_Seqs.py to remove alignments with fewer than 30 taxa, which 

eliminated 7 of the initial 67 genes. We performed sequence direction adjustments for the 

remaining 60 loci using Adjust_Direction.py, and performed multiple sequence alignment using 

MAFFT in Align.py. We constructed a table of GenBank accession numbers for all filtered 

sequences using the Make_Acc_Table.py module. We relabeled sequences in all alignment files 

using the “species” option in Fasta_Relabel_Seqs.py, and subsequently trimmed alignments 

using the gap-threshold option in trimAl with a threshold value of 0.1, as implemented in 

Trim_Alignments_Trimal.py. We skipped format conversion and concatenated the alignments to 

produce the final supermatrix. In total, we ran 11 separate steps using 11 modules for the 

Iguania-Fast analysis (Table S2). The input and output files for each step, along with complete 

instructions, are available at: https://osf.io/x5hrm/.  
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We investigated the quality of the phylogenetic trees resulting from each of the 

supermatrices (in terms of the number of monophyletic genera, subfamilies, and families). For 

each supermatrix we ran an unpartitioned RAxML analysis using the GTRCAT model and 100 

rapid bootstraps to generate support values. We performed an assessment of these trees in 

conjunction with other trees of Iguania produced by PyPHLAWD and a constrained 

SuperCRUNCH analysis (see section 6 – Comparison to PyPHLAWD). 

 

1.2  |  Results: Iguania-Fast and Iguania-Thorough Analyses 

The Iguania-Thorough analysis resulted in a supermatrix containing 61 loci, 1,426 species, and 

13,307 total sequences. The analysis took 12 hours and 53 minutes to complete (not including 

user-time; Table S1). The initial record set contained over 8 million sequences. This set was 

narrowed down to 160,795 sequences corresponding to the 67 loci. This difference indicates that 

most sequences downloaded in our GenBank search were irrelevant for our purposes (shotgun 

genome sequences, mRNA, etc.). Of the 160,795 relevant sequences, 1,860 represent records 

that were “rescued” by updating an unmatched taxon label. The 160,795 sequences were 

narrowed down to 13,389 sequences during the sequence-selection step (in which one sequence 

per taxon per locus was selected). Although the analysis initially found 67 loci, the requirement 

of at least 30 species per locus eliminated six loci. Consequently, the final number of sequences 

in the supermatrix totaled 13,307. For the Iguania-Thorough analysis, most steps required only 

seconds to complete, and a majority of the analysis time is attributable to similarity filtering (~1 

hour combined) and multiple sequence alignment (~11.5 hours combined; Table S1). The overall 

analysis time of ~13 hours was calculated based on running the modules/steps sequentially, but 

running the three alignment steps simultaneously (MACSE for mtDNA, MACSE for nucDNA, 
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Clustal-O for noncoding mtDNA) would have reduced the total analysis time for Iguania-

Thorough to ~7 hours.  

The Iguania-Fast analysis resulted in a supermatrix containing 60 loci, 1,399 species, and 

12,978 total sequences. The analysis took 1 hour and 28 minutes to complete (not including user-

time; Table S2). This analysis did not include any taxonomy assessment, thereby losing the 

1,860 records that were “rescued” in the Iguania-Thorough analysis. Rather, loci were parsed 

directly from the starting set of 8 million records. As a result, the Iguania-Fast analysis recovered 

less data (1,399 species, 12,978 sequences) than the Iguania-Thorough analysis (1,426 species, 

13,307 sequences). This Iguania-Fast analysis also found 67 loci initially, but seven loci were 

discarded because they contained fewer than 30 species. The Iguania-Fast analysis also required 

~1 hour for similarity filtering, but the multiple sequence alignment step using MAFFT took less 

than 5 minutes to complete.  

Most steps of the Iguania-Fast and Iguania-Thorough analyses took similar amounts of 

time. However, alignment time (5 minutes vs. ~11.5 hours) appears to be the main driver of 

differences in total time for the Iguania-Fast analysis (~1.5 hours) and the Iguania-Thorough 

analysis (~13 hours). The Iguania-Thorough analysis resulted in more taxa and sequences, and 

this was entirely due to the taxonomy assessment step, which only required ~20 minutes to 

complete (excluding time to identify updated names). We therefore strongly recommend 

performing the taxonomy assessment step for SuperCRUNCH analyses, as it can result improve 

dataset quality with minimal computational time. 

Trees produced from the Iguania-Thorough and Iguania-Fast datasets are discussed in 

Section 6 (Comparison to PyPHLAWD). 
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Table S1. Summary of all steps for the Iguania-Thorough analysis, which took ~13 hours to complete (not including user-time).  
 

Step Module Input Details Flag Information Elapsed time 

Assess Taxonomy Taxa_Assessment.py 8,785,378 records --no_subspecies 0:12:47 

 
Rename_Merge.py Relabeled 1,860 records 

 
0:06:42 

Parse Loci Parse_Loci.py 69 loci to search, 160,795 records --no_subspecies 0:02:41 

Similarity Filtering Cluster_Blast_Extract.py 58 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:18:50 

 
Reference_Blast_Extract.py  9 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:48:39 

 
Contamination_Filter.py 7 mtDNA loci -b megablast 0:00:06 

Sequence Selection Filter_Seqs_and_Species.py 60 nuclear coding loci -s oneseq, -f translate, -m 200, --no_subspecies, --table standard 0:00:21 

 
Filter_Seqs_and_Species.py 5 mtDNA coding loci 

-s oneseq, -f translate, -m 200, --no_subspecies, --table 
vertmtdna 

0:00:34 

 
Filter_Seqs_and_Species.py 2 mtDNA noncoding loci -s oneseq, -f length, -m 200, --no_subspecies 0:00:01 

 
Fasta_Filter_by_Min_Seqs.py  67 loci --min_seqs 30 0:00:01 

Sequence Alignment Adjust_Direction.py  61 loci --threads 8 0:00:51 

 
Coding_Translation_Tests.py 54 nuclear coding loci --table standard 0:00:01 

 
Coding_Translation_Tests.py 5 mtDNA coding loci --table vertmtdna 0:00:03 

 
Align.py 2 mtDNA noncoding loci -a clustalo, --accurate, --threads 4 0:27:03 

 
Align.py 5 mtDNA coding loci -a macse, --table vertmtdna, --mem 10, --pass_fail 5:30:37 

 
Align.py 54 nuclear coding loci -a macse, --table standard, --mem 10, --pass_fail 5:24:27 

Post-Alignment Make_Acc_Table.py 61 loci 
 

0:00:01 

 
Fasta_Relabel_Seqs.py 61 loci -r species 0:00:01 

 
Trim_Alignments_Trimal.py 61 loci -f fasta, -a gt, --gt 0.1 0:00:01 

 
Fasta_Convert.py 61 loci 

 
0:00:01 

 
Concatenation.py 61 loci, 1,426 taxa, 13,307 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 12:53:49 
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Table S2. Summary of all steps for the Iguania-Fast analysis, which took ~1.5 hours to complete (not including user-time).  
 

Step Module Input details Flag details Elapsed time 

Parse Loci Parse_Loci.py 69 loci to search; 8,785,378 records --no_subspecies 0:17:24 

Similarity Filtering Cluster_Blast_Extract.py 58 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:18:30 

 
Reference_Blast_Extract.py  9 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:47:07 

Sequence Selection Filter_Seqs_and_Species.py 67 loci -s oneseq, -f length, -m 200, --no_subspecies 0:00:10 

 
Fasta_Filter_by_Min_Seqs.py  67 loci --min_seqs 30 0:00:01 

Sequence Alignment Adjust_Direction.py  60 loci --threads 8 0:00:50 

 
Align.py 60 loci -a mafft, --threads 8 0:04:16 

Post-Alignment Make_Acc_Table.py 60 loci 
 

0:00:01 

 
Fasta_Relabel_Seqs.py 60 loci -r species  0:00:01 

 
Trim_Alignments_Trimal.py 60 loci -f fasta, -a gt, --gt 0.1 0:00:01 

 
Concatenation.py 60 loci, 1,399 taxa, 12,978 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 1:28:22 
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2  |  UCE Supermatrix for the Genus Kaloula 

2.1  |  Methods: Kaloula-Vouchered and Kaloula-Species Analyses 

To evaluate the ability of SuperCRUNCH to handle phylogenomic datasets, we attempted to 

reconstruct the UCE matrix published by Alexander et al. (2017). Their matrix was composed of 

14 species in the frog genus Kaloula and included a maximum of 1,785 loci per sample. One 

species (K. conjuncta) contained four subspecies, and three taxa were represented by multiple 

vouchered samples. In total, their dataset included 24 samples, but 6 samples were not identified 

to species (denoted with “sp.” or “cf.”) and were excluded from our analyses. Therefore, the 

maximum number of samples we targeted was 18, which represented 14 species. Given the 

characteristics of this phylogenomic dataset, we performed two separate analyses. For our first 

analysis, we aimed to construct a “vouchered” UCE supermatrix that would include all 18 

samples, which we termed the Kaloula-Vouchered analysis (https://osf.io/crzp5/). This analysis 

was intended to partially reconstruct the full “vouchered” matrix used by the authors for their 

study. For our second analysis, we aimed to construct a species-level UCE supermatrix that 

would only include a single representative for each of the 14 species, which we termed the 

Kaloula-Species analysis (https://osf.io/crzp5/). In this analysis, we expected the number of loci 

to increase for the 3 terminal taxa represented by multiple samples (K. baleata, K. conjuncta 

conjuncta, K. conjuncta negrosensis), because sequences would be drawn from multiple 

samples. We downloaded sequence data from GenBank on January 16, 2019 using the search 

terms “Kaloula ultra conserved element”, which resulted in a 32MB fasta file containing 38,568 

records. We generated a locus search terms file from the UCE 5k probe set file (available at 

https://github.com/faircloth-lab/uce-probe-sets), which targeted 5,041 distinct UCE loci. This 

general use UCE search terms file is freely available at: 
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https://github.com/dportik/SuperCRUNCH/tree/master/data/locus-search-terms. We created the 

taxon list directly from the starting sequence set using outputs from Fasta_Get_Taxa.py, which 

resulted in 10 species names and 4 subspecies names.  

 For the Kaloula-Vouchered and the Kaloula-Species datasets, we conducted the same 

general steps for both analyses. Given the taxon list was generated from the starting sequences, 

we skipped the taxonomy assessment and instead began the analyses by searching for the 5,041 

UCE loci in the 38,568 starting records using Parse_Loci.py. This produced 1,785 UCE files that 

each contained more than two sequences. Given that all loci were previously identified and 

filtered in another pipeline (PHYLUCE; Faircloth, 2016), we did not perform similarity filtering. 

For the Kaloula-Vouchered dataset, we used Filter_Seqs_and_Species.py to select sequences 

with the “allseqs”, “length”, and “vouchered” options, requiring a minimum length of 150 bp. 

For the Kaloula-Species dataset, we used Filter_Seqs_and_Species.py to select sequences with 

the “oneseq” and “length” options, requiring a minimum length of 150 bp. In both datasets, one 

locus was dropped (for which all sequences were less than 150 bp in length). Accession tables 

were created using Make_Acc_Table.py (with or without the “voucherize” option), sequence 

directions were adjusted using Adjust_Direction.py, and all 1,784 loci were aligned using 

MAFFT. Sequences were relabeled with Fasta_Relabel_Seqs.py using the “species” option 

(Kaloula-Species) or the “species” and “voucherize” options (Kaloula-Vouchered), and 

alignments were concatenated to produce the final supermatrices. In total, we ran 8 separate steps 

using 8 modules for both the Kaloula-Vouchered analysis (Table S3) and the Kaloula-Species 

analysis (Table S4). The input and output files for each step, along with complete instructions, 

are available on the Open Science Framework for the Kaloula-Vouchered analysis 

(https://osf.io/zxnq8/) and the Kaloula-Species analysis (https://osf.io/crzp5/). We investigated 
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whether the supermatrices we constructed resulted in phylogenies concordant with those 

presented by Alexander et al. (2017). For each supermatrix we ran an unpartitioned RAxML 

analysis (Stamatakis, 2014), and used the GTRCAT model and 100 rapid bootstraps to generate 

support values. We compared the resulting topologies to those obtained by Alexander et al. 

(2017). 

 

2.2  |  Results: Kaloula-Vouchered and Kaloula-Species Analyses 

The Kaloula-Vouchered analysis resulted in a phylogenomic supermatrix containing 1,784 loci, 

18 samples, and 28,790 total sequences. The analysis took ~25 minutes to complete (not 

including user-time; Table S3). The number of UCE loci recovered per individual ranged from 

1,276–1,664. The Kaloula-Species analysis resulted in a phylogenomic supermatrix containing 

1,784 loci, 14 species, and 22,717 total sequences. The analysis took ~20 minutes to complete 

(not including user-time; Table S4). The number of UCE loci recovered per sample ranged from 

1,276–1,777. As expected, the terminal taxa represented by multiple samples displayed an 

increase in the number of sequences recovered (K. baleata: from 1,649 to 1,765; K. c. conjucta: 

from 1,649 to 1,756; K. c. negrosensis: from 1,664 to 1,777). The Kaloula-Vouchered and 

Kaloula-Species analyses successfully found all 1,785 UCE loci reported by Alexander et al. 

(2017), but one locus was dropped due to short sequence lengths (all <150 bp). The phylogenies 

produced from both supermatrices are congruent with results obtained by Alexander et al. 

(2017). The tree files are available online for the Kaloula-Vouchered analysis 

(https://osf.io/zxnq8/) and the Kaloula-Species analysis (https://osf.io/crzp5/) 
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Table S3. Summary of all steps for the Kaloula-Vouchered analysis, which took ~25 minutes to complete (not including user-time).  
 
Step Module Input details Flag details Elapsed time 

Parse Loci Parse_Loci.py 5,041 loci to search; 38,568 records 
 

0:02:06 

Sequence Selection Filter_Seqs_and_Species.py 1,785 loci -s allseqs, -f length, -m 150, --vouchered 0:01:13 

 
Make_Acc_Table.py 1,784 loci --voucherize 0:00:02 

Sequence Alignment Adjust_Direction.py  1,784 loci --threads 8 0:07:22 

 
Align.py 1,784 loci, mafft -a mafft, --threads 8 0:14:23 

Post-Alignment Fasta_Relabel_Seqs.py 1,784 loci -r species, -s, --voucherize 0:00:03 

 
Concatenation.py 1,784 loci, 18 taxa, 28,790 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 0:25:10 

 
 
 
 
Table S4. Summary of all steps for the Kaloula-Species analysis, which took ~20 minutes to complete (not including user-time).  
 
Step Module Input details Flag details Elapsed time 

Parse Loci Parse_Loci.py 5,041 loci to search; 38,568 records 
 

0:02:05 

Sequence Selection Filter_Seqs_and_Species.py 1,785 loci -s oneseq, -f length, -m 150 0:00:13 

 
Make_Acc_Table.py 1,784 loci 

 
0:00:02 

Sequence Alignment Adjust_Direction.py  1,784 loci --threads 8 0:07:03 

 
Align.py 1,784 loci, mafft -a mafft, --threads 8 0:10:25 

Post-Alignment Fasta_Relabel_Seqs.py 1,784 loci -r species, -s 0:00:03 

 
Concatenation.py 1,784 loci, 14 taxa, 22,717 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 0:19:52 

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted N
ovem

ber 6, 2019. 
; 

https://doi.org/10.1101/538728
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15

3  |  Phylogeographic Dataset for Trachylepis sulcata 

3.1  |  Methods: Trachylepis-Phylogeography and Trachylepis-Species Analyses 

To evaluate the ability of SuperCRUNCH to reconstruct phylogeographic datasets from 

GenBank data, we attempted to reconstruct the dataset of Portik et al. (2011) using their 

published GenBank sequences. This dataset, which was partially published in Portik et al. 

(2010), consists of four loci sequenced for 88 samples of the lizard species complex Trachylepis 

sulcata, and several outgroups. We downloaded sequence data from GenBank on July 20, 2019 

using the search term “Trachylepis sulcata”, which resulted in 442 records (<1 MB in size). We 

created a locus search terms file specific to the four loci included in Portik et al. (2011):  EXPH5, 

KIF24, RAG1, and ND2. These are a subset of the loci included in the Iguania supermatrix 

analyses. We obtained taxon names directly from the starting sequence set using 

Fasta_Get_Taxa.py, and used the outputs to create a taxon list that targeted the focal species (T. 

sulcata) and six outgroup species (T. aurata, T. punctulata, T. varia, T. variegata, T. vittata, and 

T. wahlbergii). To reconstruct the phylogeographic dataset of Portik et al. (2011) we ran a 

“vouchered” analysis (termed Trachylepis-Phylogeography), which would include all vouchered 

samples in the final alignments. For comparison, we also created a species-level supermatrix 

which would be composed of the seven species (termed Trachylepis-Species).  

We conducted the same general steps for the Trachylepis-Phylogeography and the 

Trachylepis-Species analyses. Given the taxon list was generated from the starting sequences, we 

skipped the taxonomy assessment and instead began the analyses by searching for the four loci in 

the 442 starting records using Parse_Loci.py. We performed similarity filtering using 

Cluster_Blast_Extract.py for all loci. For the Trachylepis-Phylogeography dataset, we used 

Filter_Seqs_and_Species.py to select sequences using the “oneseq”, “length”, and “vouchered” 
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options, requiring a minimum length of 200 bp. For the Trachylepis-Species dataset, we used 

Filter_Seqs_and_Species.py to select sequences using the “oneseq” and “length” options, 

requiring a minimum length of 200 bp. Accession tables were created using Make_Acc_Table.py 

(with or without the “voucherize” option), sequence directions were adjusted using 

Adjust_Direction.py, and all loci were aligned using MAFFT with Align.py. Sequences were 

relabeled with Fasta_Relabel_Seqs.py using the “species” option (Trachylepis-Species) or the 

“species” and “voucherize” options (Trachylepis-Phylogeography), file formats were converted 

using Fasta_Convert.py, and concatenation was performed using Concatenation.py. In total, we 

ran 10 separate steps using 10 modules for the Trachylepis-Phylogeography analysis (Table S5) 

and the Trachylepis-Species analysis (Table S6). The input and output files for each step, along 

with complete instructions, are available on the Open Science Framework for the Trachylepis-

Phylogeography analysis (https://osf.io/bgc5z/) and the Trachylepis-Species analysis 

(https://osf.io/umswn/). We investigated if the phylogenies produced from each supermatrix were 

concordant with results presented by Portik et al. (2011). For each supermatrix we ran an 

unpartitioned RAxML analysis using the GTRCAT model and 100 rapid bootstraps to generate 

support values. We compared the resulting topologies to those obtained by Portik et al. (2011). 

 

3.2  |  Results: Trachylepis-Phylogeography and Trachylepis-Species Analyses 

The Trachylepis-Phylogeography analysis successfully reconstructed the phylogeographic 

dataset of Portik et al. (2011). The analysis found sequences of the four loci (EXPH5, KIF24, 

RAG1, ND2) for all 88 vouchered samples of Trachylepis sulcata, which resulted in a total of 

326 sequences. In addition, vouchered samples representing several outgroups from Portik et al. 

(2010) and Portik et al. (2011) were also recovered, including T. aurata (2 individuals), T. 
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punctulata (3), T. varia (6), T. variegata (5), T. vittata (2), and T. wahlbergii (2). This resulted in 

an additional 74 sequences, and the final concatenated alignment of all four loci (e.g., the 

phylogeographic supermatrix) contained a total of 108 vouchered samples and 400 sequences. 

The Trachylepis-Phylogeography analysis took 37 seconds to complete (not including user-time; 

Table S5). The Trachylepis-Species analysis was run as a comparison to the Trachylepis-

Phylogeography analysis. It was used to select one representative sequence per species per locus, 

for the purpose of creating a species-level matrix from these population-level data. The 

Trachylepis-Species analysis resulted in a matrix containing 7 species (T. aurata, T. punctulata, 

T. sulcata, T. varia, T. variegata, T. vittata, and T. wahlbergii), four loci, and a total of 26 

sequences. The Trachylepis-Species analysis took 21 seconds to complete (not including user-

time; Table S6). The phylogenies produced from the phylogeographic matrix and the species-

level matrix were congruent with results presented by Portik et al. (2010) and Portik et al. 

(2011). The tree files are available online for the Trachylepis-Phylogeography analysis 

(https://osf.io/bgc5z/) and the Trachylepis-Species analysis (https://osf.io/umswn/).  
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Table S5. Summary of all steps for the Trachylepis-Phylogeography analysis, which took <1 minute to complete (not including user-
time).  
 
Step Module Input details Flag details Elapsed time 

Parse Loci Parse_Loci.py 4 loci to search; 442 records 
 

0:00:01 

Similarity Filtering Cluster_Blast_Extract.py 4 loci -b dc-megablast, -m span, --threads 4 0:00:13 

Sequence Selection Filter_Seqs_and_Species.py 4 loci -s allseqs, -f length, -m 200, --vouchered 0:00:01 

 
Make_Acc_Table.py 4 loci --voucherize 0:00:01 

Sequence Alignment Adjust_Direction.py  4 loci --threads 8  0:00:02 

 
Align.py 4 loci -a mafft, --threads 8 0:00:16 

Post-Alignment Fasta_Relabel_Seqs.py 4 loci -r species, --voucherize 0:00:01 

 
Fasta_Convert.py 4 loci 

 
0:00:01 

 
Concatenation.py 4 loci, 108 taxa, 400 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 0:00:37 

 
 
Table S6. Summary of all steps for the Trachylepis-Species analysis, which took <30 seconds to complete (not including user-time).  
 
Step Module Input details Flag details Elapsed time 

Parse Loci Parse_Loci.py 4 loci to search; 442 records 
 

0:00:01 

Similarity Filtering Cluster_Blast_Extract.py 4 loci -b dc-megablast, -m span, --threads 4 0:00:13 

Sequence Selection Filter_Seqs_and_Species.py 4 loci -s oneseq, -f length, -m 200 0:00:01 

 
Make_Acc_Table.py 4 loci 

 
0:00:01 

Sequence Alignment Adjust_Direction.py  4 loci --threads 8  0:00:01 

 
Align.py 4 loci -a mafft, --threads 8 0:00:01 

Post-Alignment Fasta_Relabel_Seqs.py 4 loci -r species 0:00:01 

 
Fasta_Convert.py 4 loci 

 
0:00:01 

 
Concatenation.py 4 loci, 7 taxa, 26 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 0:00:21 
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4  |  Population Datasets for Callisaurus and Uma 

4.1  |  Methods: Callisaurus-Population and Uma-Population Analyses 

We used SuperCRUNCH to generate new combinations of population-level datasets from 

published sequences. We created independent population-level datasets for the lizard genera 

Callisaurus and Uma (family Phrynosomatidae). These were chosen because we knew in 

advance that some phylogeographic data were present across multiple studies (including Lindell 

et al., 2005; Schulte & de Queiroz, 2008; Gottscho et al., 2017). However, we did not know 

which loci would be most strongly represented. We therefore used SuperCRUNCH to survey the 

availability of sequences. We downloaded sequence data from GenBank on January 25, 2019 

using the search term “Phrynosomatidae”, which resulted in a 52MB fasta file containing 82,557 

records. We obtained a taxon list directly from the fasta file, which was pruned to contents of 

each respective genus for separate searches. For Callisaurus, this included 11 taxon names 

(Callisaurus draconoides, Callisaurus d. bogerti, Callisaurus d. brevipes, Callisaurus d. 

carmenensis, Callisaurus d. crinitus, Callisaurus d. draconoides, Callisaurus d. inusitanus, 

Callisaurus d. myurus, Callisaurus d. rhodostictus, Callisaurus d. splendidus, Callisaurus d. 

ventralis). For Uma, this included 10 taxon names (Uma exsul, Uma inornata, Uma notata, Uma 

n. cowlesi, Uma n. notata, Uma n. rufopunctata, Uma paraphygas, Uma rufopunctata, Uma 

scoparia, Uma s. scoparia). We recognize that some of the taxon names are synonyms, but we 

included all names (without corrections) so as to find all available sequences and to obtain 

counts of sequences for each respective name. We used the same set of 69 locus search terms 

from our Iguania analysis to perform searches.  

We conducted the same general steps for the Callisaurus-Population and Uma-Population 

analyses. Given the taxon list was generated from the starting sequences, we skipped the 
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taxonomy assessment and instead began each analysis by searching for the 69 loci in the 82,557 

starting records using Parse_Loci.py. This resulted in the recovery of 50 loci for Callisaurus and 

52 loci for Uma. We performed similarity filtering using Cluster_Blast_Extract.py for all loci. 

We used Filter_Seqs_and_Species.py to select sequences using the “allseqs” and “length” 

options (but importantly not the “voucher” option), requiring a minimum length of 200 bp. We 

used Fasta_Filter_by_Min_Seqs.py to remove alignments with fewer than 8 sequences, which 

resulted in the retention of 7 loci for Callisaurus and 5 loci for Uma. Sequence directions were 

adjusted using Adjust_Direction.py, and all loci were aligned using MAFFT in Align.py. 

Sequences were relabeled with Fasta_Relabel_Seqs.py using the “species_acc” option (which is 

a combination of the taxon name and accession number), and file formats were converted using 

Fasta_Convert.py. In total, we ran 8 separate steps using 8 modules for both the Callisaurus-

Population analysis (Table S7) and the Uma-Population analysis (Table S8). The input and 

output files for each step, along with complete instructions, are available for the Callisaurus-

Population analysis at https://osf.io/7gujb/, and for the Uma-Population analysis at 

https://osf.io/e28tu/. For all genes, we ran separate unpartitioned RAxML analyses. We used the 

GTRCAT model, and performed 100 rapid bootstraps to generate support values for the gene 

trees. 

 

4.2  |  Results: Callisaurus-Population and Uma-Population Analyses 

We used SuperCRUNCH to generate new combinations of published sequences, with the 

intention of finding loci suitable for population-level analyses. We created a population-level 

dataset for the lizard genus Callisaurus and a separate one for the genus Uma.  
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For the Callisaurus-Population analysis, we found 7 loci that contained eight or more 

sequences, including five mitochondrial genes (12S, n=8; CO1, n=8; CYTB, n=93; ND1, n=8; 

ND2, n=8) and two nuclear loci (MC1R, n=70; RAG1, n=70). Among these seven genes, three 

contained the most sequences (CYTB, MC1R, RAG1), each with 70 or more. Across all genes, 

there were 10 taxa represented (C. draconoides, C. d. bogerti, C. d. brevipes, C. d. carmenensis, 

C. d. crinitus, C. d. draconoides, C. d. inusitanus, C. d. myurus, C. d. rhodostictus, C. d. 

splendidud, C. d. ventralis). The Callisaurus analysis took 35 seconds to complete (not including 

user-time; Table S7).  

For the Uma-Population analysis, we found 5 genes that contained eight or more 

sequences, which were all mitochondrial genes (12S, n=8; CO1, n=19; CYTB, n=191; ND1, n=8; 

ND2, n=8). Among these genes, CYTB contained the greatest number of sequences (n=191) by a 

considerable margin. Across all loci, there were 10 taxa found (U. exsul, U. inornata, U. notata, 

U. n. cowlesi, U. n. notata, U. n. rufopunctata, U. paraphygas, U. rufopunctata, U. scoparia, U. 

s. scoparia). The Uma analysis took 31 seconds to complete (not including user-time; Table S8).  

Because sequences in these datasets were not necessarily from vouchered samples, the 

sequences were labeled using the species name and GenBank accession number. This allowed 

every sequence within an alignment to have a unique name, but as a result concatenation was not 

possible. For these datasets, we created a gene tree from each alignment. The individual gene 

trees produced from the 7 loci for Callisaurus and the 5 loci for Uma were congruent with 

phylogenetic results presented by Schulte & de Queiroz (2008), Lindell, Méndez-de la Cruz, and 

Murphy (2005), and Gottscho et al. (2017). All gene tree files are available online for the 

Callisaurus-Population analysis (https://osf.io/7gujb/) and the Uma-Population analysis 

(https://osf.io/e28tu/). 
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Table S7. Summary of all steps for the Callisaurus-Population analysis, which took under a minute to complete (not including user-
time).  
 
 
Step Module Input details Flag details Elapsed time 

Parse Loci Parse_Loci.py 69 loci to search; 82,557 records 
 

0:00:05 

Similarity Filtering Cluster_Blast_Extract.py 50 loci -b dc-megablast, -m span, --threads 4 0:00:09 

Sequence Selection Fasta_Filter_by_Min_Seqs.py  46 loci --min_seqs 8 0:00:01 

 
Filter_Seqs_and_Species.py 7 loci -s allseqs, -f length -m 200 0:00:01 

Sequence Alignment Adjust_Direction.py  7 loci --threads 8 0:00:02 

 
Align.py 7 loci, mafft -a mafft, --threads 8 0:00:14 

Post-Alignment Fasta_Relabel_Seqs.py 7 loci -r species_acc, -s 0:00:01 

 
Fasta_Convert.py 7 loci 

 
0:00:01 

   Total elapsed time 0:00:35 

 
 
 
Table S8. Summary of all steps for the Uma-Population analysis, which took under a minute to complete (not including user-time). 
 
Step Module Input details Flag details Elapsed time 

Parse Loci Parse_Loci.py 69 loci to search; 82,557 records 
 

0:00:06 

Similarity Filtering Cluster_Blast_Extract.py 52 loci -b dc-megablast, -m span, --threads 4 0:00:17 

Sequence Selection Fasta_Filter_by_Min_Seqs.py  45 loci --min_seqs 8 0:00:01 

 Filter_Seqs_and_Species.py 5 loci -s allseqs, -f length -m 200 0:00:01 

Sequence Alignment Adjust_Direction.py  5 loci --threads 8 0:00:01 

 
Align.py 5 loci, mafft -a mafft, --threads 8 0:00:03 

Post-Alignment Fasta_Relabel_Seqs.py 5 loci -r species_acc, -s 0:00:01 

 
Fasta_Convert.py 5 loci 

 
0:00:01 

   Total elapsed time 0:00:31 
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5  |  Adding Outgroups to an Unpublished Supermatrix Project: Family Hyperoliidae 

5.1  |  Methods: Hyperoliid-Outgroup Analysis 

We used SuperCRUNCH to perform a common but sometimes exceedingly difficult task in 

phylogenetics: adding published outgroup sequences to an unpublished sequencing project. The 

unpublished sequences were generated as part of Portik et al. (2019), which focused on the 

systematics of hyperoliid frogs (family Hyperoliidae). These sequences are now available on 

GenBank (MK497946–MK499204; MK509481–MK509743), but for this demonstration we 

used the unpublished version of these sequences. This local dataset consisted of six loci 

sequenced for ~128 species, but many species were represented by multiple vouchered samples. 

It contains a total of 266 samples. The fasta file for the unpublished dataset contained 1,522 

records (1.3MB), and the records were labeled according to the conventions described in the 

online documentation (https://github.com/dportik/SuperCRUNCH/wiki/2:-Starting-

Sequences#ULS). For this analysis, we wanted to add all available GenBank sequence data for 

the family Arthroleptidae, which is the sister family of Hyperoliidae (the ingroup). We used the 

search term “Arthroleptidae” to download all available data from GenBank on October 25, 2019, 

which resulted in a fasta file containing 2,977 records (3MB). For the local sequences, we 

wanted to treat all samples as distinct (equivalent to a vouchered analysis), whereas for the 

outgroups we simply wanted to include all possible data for a given species (equivalent to a 

species-level analysis, in which sequences for a species most likely come from different 

samples). Within the local sequences, we intentionally labeled the records such that the species 

names was followed immediately by a museum/field identifier, which allowed us to take 

advantage of the flexible “subspecies” option in SuperCRUNCH. The subspecies option allows 

any three-part name to be used, and the third part of a name can contain either a subspecies label 
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or any alphanumerical identifier. We therefore used Fasta_Get_Taxa.py with the “numerical” 

option to obtain a list of “subspecies” from the local sequences that actually contained the 

museum/field codes instead of a subspecies label (e.g., Genus species identifier as opposed to 

Genus species subspecies), and treated these as “subspecies” throughout the analysis. We 

independently used Fasta_Get_Taxa.py to obtain all taxon names in the arthroleptid outgroup 

sequences, and created a taxon list composed only of species labels (e.g., no subspecies 

included). The species labels of the arthroleptids (the outgroup) were combined with the 

“subspecies” labels of the hyperoliids (the ingroup) to create a combined taxon list. We merged 

the fasta files of the hyperoliid sequences and the arthroleptid sequences to create a single fasta 

file of sequences. We constructed locus search terms for the 6 loci, which included one 

mitochondrial gene (16S) and five nuclear loci (FICD, KIAA2013, POMC, RAG1, TYR). We 

used these materials to create a custom supermatrix with SuperCRUNCH, which we termed the 

Hyperoliid-Outgroup analysis.  

We wanted to ensure that the sequences obtained for the outgroups closely matched the 

regions for each gene present in our hyperoliid (local) sequence data. To accomplish this, we 

used our local sequences as references during similarity filtering. In order to create the six 

necessary reference files (a locus-specific fasta file composed of only hyperoliid sequences), we 

ran Parse_Loci.py using the hyperoliid fasta file. We then ran Parse_Loci.py on the combined 

hyperoliid and arthroleptid fasta file (containing GenBank and local sequences) to obtain all 

sequences for each locus, and subsequently ran Reference_Blast_Extract.py for each of the six 

loci using the corresponding hyperoliid reference set. We used Filter_Seqs_and_Species.py to 

select sequences with the “oneseq” and “length” options, requiring a minimum length of 200 bp. 

Sequence directions were adjusted using Adjust_Direction.py, and all loci were aligned with 
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MAFFT using Align.py. Sequences were relabeled with Fasta_Relabel_Seqs.py using the 

“species” option with the “subspecies” feature (allowing the hyperoliid sequences to be labeled 

as Genus species identifier). After relabeling, concatenation was performed using 

Concatenation.py. In total, we ran 8 separate steps using 7 modules for the Hyperoliid-Outgroup 

analysis (Table S9). The input and output files for each step, along with complete instructions, 

are available at: https://osf.io/q9nyx/. We ran an unpartitioned RAxML analysis on the final 

supermatrix using the GTRCAT model and 100 rapid bootstraps. 

 

5.2  |  Results: Hyperoliid-Outgroup Analysis 

The Hyperoliid-Outgroup analysis successfully incorporated GenBank sequences 

(Arthroleptidae) and locally generated sequences (Hyperoliidae) to produce a supermatrix that 

contained 6 loci, 365 terminals, and 1,724 sequences. The hyperoliid sequences included 

multiple vouchered samples for many taxa, and the subspecies feature in SuperCRUNCH was 

used to include museum/field identifiers as the “subspecies” component in their taxon names. 

This strategy allowed us to successfully include all 266 samples (rather than selecting 

representative sequences for each of the 128 species). In contrast, for the arthroleptids we simply 

wanted to obtain the most complete data possible per species (linking vouchers was not 

relevant). SuperCRUNCH allowed us to target species-level sampling for the outgroup, but 

population-level sampling for the ingroup. We produced a dataset containing 1,509 sequences 

and 266 samples for hyperoliids (local), and containing 225 sequences and 99 species for 

arthroleptids (GenBank). The Hyperoliid-Outgroup analysis took 3 minutes and 45 seconds to 

complete (not including user-time; Table S9). The phylogeny produced from the Hyperoliid-
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Outgroup supermatrix is congruent with that estimated by Portik et al. (2019). The tree file is 

available online (https://osf.io/q9nyx/).
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Table S9. Summary of all steps for the Hyperoliid-Outgroup analysis, which took ~4 minutes to complete (not including user-time). 
 
Step Module Input Details Flag Information Elapsed time 

Parse Loci Parse_Loci.py 6 loci, 4,499 records (for combined dataset) 0:00:01 

 
Parse_Loci.py 6 loci, 1,522 records (for hyperoliid sequences only) 0:00:01 

Similarity Filtering Reference_Blast_Extract.py  6 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:03:38 

Sequence Selection Filter_Seqs_and_Species.py 6 loci -s oneseq, -f length, -m 200 0:00:01 

Sequence Alignment Adjust_Direction.py  6 loci --threads 8 0:00:01 

 
Align.py 6 loci -a mafft, --threads 8 0:00:01 

Post-Alignment Fasta_Relabel_Seqs.py 6 loci -r species, -s 0:00:01 

 
Concatenation.py 6 loci --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 0:03:45 
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6  |  SuperCRUNCH Comparison to PyPHLAWD 

6.1  |  Methods – PyPHLAWD Comparison 

We compared the ability of SuperCRUNCH to construct species-level supermatrices, relative to 

PyPHLAWD (Smith & Walker, 2018), using two test clades (Iguania and Dipsacales). 

Importantly, we focused on PyPHLAWD given that Smith & Walker (2018) showed that 

PyPHLAWD outperformed other methods for supermatrix construction (specifically 

phyloGenerator, PhyLoTA, and SUPERSMART). Therefore, if our method outperforms 

PyPHLAWD, then it should represent the state-of-the-art for supermatrix construction. The 

performance criteria used by Smith & Walker (2018) was the number of taxa and sequences 

retrieved by each method. We used these criteria as well, but we also considered whether the 

clades recovered by each method were consistent with current taxonomy. This latter criterion 

should help detect whether the supermatrices generated by each method tend to yield 

problematic phylogenetic results. These problematic results will not be apparent simply from the 

number of taxa and sequences retrieved by each method.  

PyPHLAWD retrieves sequences by interfacing directly with a GenBank database 

release. It was initially designed to produce orthologous sequence clusters using “all-by-all” 

clustering methods, but it also offers an option to target specific loci by incorporating sets of 

user-supplied reference sequences (referred to as a “baited” analysis). To search for the same set 

of 69 loci for Iguania, we performed a “baited” analysis in PyPHLAWD (“v1.0”, Aug 20, 2018 

release) with baits consisting of sequences used for the Iguania-Thorough analysis (e.g., mtDNA 

references) or obtained from them (e.g., the nuclear loci recovered). This PyPHLAWD analysis 

(termed Iguania-PyPHLAWD) was run using the default settings in the configuration file. All 

output files for the Iguania-PyPHLAWD analysis are provided at: https://osf.io/vyxj4/. 
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PyPHLAWD does not offer an option to exclude subspecies, and the taxonomy used relies on the 

NCBI Taxonomy database. As a result, the taxonomy for the PyPHLAWD analysis was 

incompatible with the taxonomy we obtained from the Reptile Database (Uetz et al., 2018). 

Therefore, after the analysis we “corrected” the taxonomy by updating names and removing all 

subspecies in the alignments. As the steps for performing concatenation in PyPHLAWD were 

unclear, we concatenated the updated alignments using the Concatenation.py module in 

SuperCRUNCH to produce a final supermatrix.  

Although we had already run two species-level supermatrix analyses for Iguania using 

SuperCRUNCH (Iguania-Thorough, Iguania-Fast), these analyses used sequences downloaded 

from GenBank directly. For these analyses, it would not be possible to determine if differences 

in the resulting supermatrices (relative to PyPHLAWD) were due to differences in methodology 

or differences in the starting sequences used. To allow a direct comparison to PyPHLAWD, we 

used the Iguania sequence set fetched directly by PyPHLAWD (134,028 records) to perform an 

additional SuperCRUNCH analysis (termed Iguania-Constrained). For this analysis, we 

performed an initial taxon assessment of the starting sequences and relabeled records using 

updated names. Locus parsing, similarity filtering, sequence selection, direction adjustment, and 

alignment used the same options and settings as the Iguania-Fast analysis. We chose the Iguania-

Fast settings because several of these steps resembled options in PyPHLAWD, including 

sequence selection by length, and alignment with MAFFT. We did not remove any loci based on 

a minimum requirement for the number of sequences (<30) to allow better comparison to 

PyPHLAWD. Alignments were relabeled, trimmed, and concatenated following the steps 

outlined in the Iguania-Thorough analysis. In total, we ran 12 separate steps using 12 modules 
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for the Iguania-Constrained analysis (Table S10). The input and output files for each step, along 

with complete instructions, are available at: https://osf.io/za2ug/. 

We further compared the ability of SuperCRUNCH and PyPHLAWD to construct 

supermatrices by performing additional analyses using the plant clade Dipsacales. This was the 

example dataset used by Smith and Walker (2018). Following Smith and Walker (2018), we 

searched for the same four loci (ITS, matK, rbcl, trnL-trnF) using a “baited” analysis in 

PyPHLAWD (“v1.0”, Aug 20, 2018 release) using their provided bait sets. This PyPHLAWD 

analysis (termed Dipsacales-PyPHLAWD) was run using the default settings in the configuration 

file. All output files for the Dipsacales-PyPHLAWD analysis are provided at: 

https://osf.io/7jqe4/.  

We performed a SuperCRUNCH analysis using the Dipsacales sequence set fetched by 

PyPHLAWD using the GenBank release database (12,348 records), which we termed 

Dipsacales-Constrained. The taxonomy table produced by PyPHLAWD was used to create a 

taxon list for this analysis, which included subspecies. The taxonomy table also contained the 

original description lines for the downloaded sequences, which we examined to create locus 

search terms for the four loci. We searched for sequences using Parse_Loci.py. We performed 

similarity filtering for each of the four loci using Reference_Blast_Extract.py, using the 

corresponding bait set as the reference sequences. We selected representative sequences per 

taxon for all loci using the “onseq” and “length” options in Filter_Seqs_and_Species.py, 

requiring a minimum length of 200 bp. We performed sequence direction adjustments for the 

remaining 60 loci using Adjust_Direction.py, and performed multiple sequence alignment using 

MAFFT in Align.py. We constructed a table of GenBank accession numbers for all filtered 

sequences using the Make_Acc_Table.py module. We relabeled sequences in all alignment files 
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using the “species” option and “subspecies” feature in Fasta_Relabel_Seqs.py, and subsequently 

trimmed alignments using the gap-threshold option in trimAl with a threshold value of 0.1, as 

implemented in Trim_Alignments_Trimal.py. We skipped format conversion and concatenated 

the alignments to produce the final supermatrix. In total, we ran 9 separate steps using 9 modules 

for the Dipsacales-Constrained analysis (Table S11). The input and output files for each step, 

along with complete instructions, are available at: https://osf.io/937yu/. 

We constructed a total of four supermatrices for Iguania (Iguania-Thorough, Iguania-

Fast, Iguania-Constrained, Iguania-PyPHLAWD), and two supermatrices for Dipsacales 

(Dipsacales-PyPHLAWD, Dipsacales-Comparison). We summarized differences in the content 

of the supermatrices, including the total number of taxa, loci, and sequences. In addition, we 

evaluated differences in the resulting phylogenetic trees from these supermatrices. For each 

supermatrix we ran an unpartitioned RAxML analysis, and used the GTRCAT model and 100 

rapid bootstraps to generate a phylogeny with support values. We evaluated the number of 

genera, subfamilies, and families recovered as monophyletic in the four different Iguania trees, 

and the number of monophyletic genera in the two different Dipsacales trees. All tree files are 

available at: https://osf.io/vgwu3/. 

 

6.2  |  Results – PyPHLAWD Comparison 

6.2.1  |  Supermatrix Results 

SuperCRUNCH generally outperformed PyPHLAWD in all comparisons and resulted in higher 

numbers of sequences and taxa for the Iguania and Dipsacales datasets (Tables S12–S14). The 

analysis of Dipsacales was smaller in scope. SuperCRUNCH obtained better results, but the 

supermatrices generated by each method were generally similar (versus iguanians, see below). 
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For Dipsacales, we successfully replicated the results of Smith and Walker (2018) in terms of the 

number of species recovered. The Dipsacales-PyPHLAWD analysis resulted in a supermatrix 

containing 4 loci, 641 taxa, and 1,510 total sequences (Table S14), and took 1 minute and 16 

seconds to complete. The Dipsacales-Constrained analysis in SuperCRUNCH resulted in a 

supermatrix containing 4 loci, 651 taxa, and 1,589 total sequences, and took 1 minute and 14 

seconds to complete (not including user-time; Table S11). The Dipsacales-Constrained analysis 

recovered more sequences for 3 out of the 4 loci, and both analyses recovered an equal number 

of sequences for 1 locus (Table S14).  

The Iguania-PyPHLAWD analysis resulted in a supermatrix containing 66 loci, 1,069 

species, and 10,397 total sequences (Table S13), and took 18 minutes to complete. The Iguania-

Constrained analysis in SuperCRUNCH generated a supermatrix containing 67 loci, 1,359 taxa, 

and 12,676 total sequences (Table S13). The analysis took 1 hour and 8 minutes to complete (not 

including user-time; Table S10). Among the 66 loci shared between the two analyses, the 

Iguania-PyPHLAWD analysis recovered more sequences for 5 loci (7%), the Iguania-

Constrained analysis recovered more sequences for 19 loci (29%), and both analyses recovered 

equal numbers of sequences for 43 loci (64%; Table S12). These two analyses relied on starting 

sequences obtained through a GenBank database release. They were outperformed by all other 

SuperCRUNCH analyses of Iguania that used data downloaded from GenBank directly by us 

(including Iguania-Thorough and Iguania-Fast; Table S13). In particular, the Iguania-Thorough 

analysis in SuperCRUNCH vastly outperformed the Iguania-PyPHLAWD analysis. It recovered 

more species (1,426 vs. 1,069) and total sequences (13,307 vs. 10,397) despite having fewer loci 

in the final supermatrix (it initially found 67 loci but discarded 6 because of the minimum 

sequence filter).  
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A per-locus comparison for Iguania revealed the largest difference in performance 

between the PyPHLAWD analysis and any of the three SuperCRUNCH analyses was for loci 

containing “complex” records (those consisting of multiple loci or non-overlapping regions). 

These included the mitochondrial genes, as well as RAG1 (Table S12). Given the same set of 

starting sequences, PyPHLAWD found only 37% of the total mtDNA sequences recovered by 

SuperCRUNCH in the Iguania-Constrained analysis, and recovered only four of the seven 

mitochondrial genes with reasonable success (>50 sequences).  

The likely source of this issue is the close match between baits and sequences required by 

PyPHLAWD, with close matches required in both length and divergence (S. Smith, personal 

communication). PyPHLAWD does not automatically trim query sequences after similarity 

searches. Rather, it passes or fails an entire sequence based on set threshold values (such as 

percent identity and minimum or maximum length). In the case of “complex” mtDNA records, 

the entire multigene sequence would pass or fail, rather than being trimmed to the target region. 

It may have been possible for us to obtain better results by changing these default settings. 

However, given this design and the sequence length heterogeneity present in “complex” records, 

it is unclear if there is an optimal setting that would allow all target sequences to be found for 

these types of loci. Inspection of the similarity searching outputs from SuperCRUNCH confirms 

this idea (i.e., outputs containing the starting lengths, BLAST coordinates, and trimmed lengths 

of input sequences). In the case of CO1 (for which no sequences were recovered with 

PyPHLAWD), we used several reference sequences spanning the entire length of the CO1 gene 

(~1,500 bp) as the “baits”. All input sequences containing CO1 fell into two categories: (1) they 

were purely on target but <700 bp in length, or (2) they were “complex” records in which CO1 

represented less than 50% of the length of the total sequence. Both of these scenarios appeared to 
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cause severe problems for the similarity searches in PyPHLAWD (particularly the matched 

length requirement between bait and sequence), and the default settings caused both categories of 

sequences to fail this filter. Although we might have obtained better results for one category of 

sequences for CO1 by using different settings, this would have driven losses for the other 

category of sequences. Given that the characteristics of the input sequences are generally 

unknown (e.g., “simple” vs. “complex”, length heterogeneity), this makes finding appropriate 

“baits” and defining appropriate settings extremely challenging. Thus, significant losses of data 

for some loci are expected to occur with PyPHLAWD, as we observe here.  

The results for the nuclear loci (e.g., “simple” records) were more similar between 

methods, and both methods obtained the same number of sequences for 43 loci. In some cases, 

PyPHLAWD obtained more sequences for nuclear loci. Two of these cases revealed a limitation 

of the label-searching method of SuperCRUNCH, as synonomous gene names for the two loci 

(R35 vs. GPR14, ZEB2 vs. ZHFX1b) resulted in the loss of actual homologous sequences by 

SuperCRUNCH. However, we also identified at least one case in which PyPHLAWD included 

paralogous sequence data (ENC1 contained ENC6 sequences), which artificially inflated the total 

number of sequences for that locus. We did not observe these paralogous sequences (of ENC6) 

in the ENC1 alignment created using SuperCRUNCH. Instead, these paralogous sequences were 

eliminated because they did not contain the gene abbreviation or description terms for ENC1.  

 

6.2.2  |  Phylogenetic Results 

We compared phylogenetic trees estimated from the supermatrices for the four analyses of 

Iguania, and the two analyses of Dipsacales. For each iguanian phylogeny, we evaluated the 

number of genera, subfamilies, and families recovered as monophyletic. The Iguania-Thorough, 
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Iguania-Fast, and Iguania-Constrained analyses recovered all 14 families as monophyletic with 

high support, whereas Iguania-PyPHLAWD only recovered 13 of 14 families as monophyletic. 

The PyPHLAWD analysis failed to support the monophyly of Agamidae (i.e., Chamaeleonidae 

is nested inside Agamidae), even though agamid monophyly has been strongly supported in 

previous supermatrix analyses (Pyron et al. 2013; Zheng & Wiens, 2016) and phylogenomic 

analyses (Streicher, Schulte, & Wiens 2016). All four Iguania analyses recovered all 10 

subfamilies as monophyletic with high support (all >95%). Comparisons of genera were more 

complex, as the trees each contained a different number of species and genera. The Iguania-

Thorough phylogeny contained 111 genera, including 68 monophyletic genera, 16 non-

monophyletic genera, and 27 genera represented by a single species. The Iguania-Fast phylogeny 

contained 108 genera, including 65 monophyletic genera, 15 non-monophyletic genera, and 28 

genera represented by a single species. The Iguania-Constrained phylogeny contained 106 

genera, including 64 monophyletic genera, 13 non-monophyletic genera, and 29 genera 

represented by a single species. The Iguania-PyPHLAWD phylogeny contained 94 genera, 

including 58 monophyletic genera, 12 non-monophyletic genera, and 24 genera represented by a 

single species. Although PyPHLAWD and SuperCRUNCH produced somewhat similar scores 

for these metrics, the Iguania-Thorough phylogeny contained an additional 357 taxa and 17 

genera not present in the PyPHLAWD phylogeny. The phylogenies and corresponding 

assessments of the groupings present are provided at: https://osf.io/zxhby/. 

For the plant family Dipsacales, we only compared the monophyly of genera. In this 

regard, the Dipascales phylogeny produced from the SuperCRUNCH supermatrix was also 

higher quality than the phylogeny from the PyPHLAWD supermatrix. These trees contained 

different numbers of species, but the same number of genera. The Dipsacales-Constrained 
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phylogeny from SuperCRUNCH contained 42 genera, including 24 monophyletic genera, 9 non-

monophyletic genera, and 9 genera represented by a single species. The Dipsacales-PyPHLAWD 

phylogeny contained 42 genera, including 20 monophyletic genera, 11 non-monophyletic genera, 

and 11 genera represented by a single species. The phylogenies and corresponding assessments 

of the groupings present are provided at: https://osf.io/zxhby/.
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Table S10. Summary of all steps for the Iguania-Constrained analysis, which took ~1 hour to complete (not including user-time). 
 

Step Module Input Details Flag Information Elapsed time 

Assess Taxonomy Taxa_Assessment.py 134,028 records --no_subspecies 0:00:10 

 
Rename_Merge.py Relabeled 430 records 

 
0:00:01 

Parse Loci Parse_Loci.py 69 loci to search, 133,962 records --no_subspecies 0:00:25 

Similarity Filtering Cluster_Blast_Extract.py 58 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:18:04 

 
Reference_Blast_Extract.py  9 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:44:41 

Sequence Selection Filter_Seqs_and_Species.py 67 loci -s oneseq, -f length, -m 200, --no_subspecies 0:00:10 

Sequence Alignment Adjust_Direction.py  67 loci --threads 8 0:00:56 

 
Align.py 67 loci -a mafft, --threads 4 0:04:27 

Post-Alignment Make_Acc_Table.py 67 loci 
 

0:00:01 

 
Fasta_Relabel_Seqs.py 67 loci -r species 0:00:01 

 
Trim_Alignments_Trimal.py 67 loci -f fasta, -a gt 0:00:01 

 
Concatenation.py 67 loci, 1,359 taxa, 12,676 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 1:08:58 

 
Table S11. Summary of all steps for the Dipsacales-Constrained analysis, which took ~1 minute to complete (not including user-time). 

Step Module Input Details Flag Information Elapsed time 

Parse Loci Parse_Loci.py 4 loci to search, 12,348 records 
 

0:00:01 

Similarity Filtering Reference_Blast_Extract.py  4 loci -b dc-megablast, -m span, --threads 4 0:00:26 

Sequence Selection Filter_Seqs_and_Species.py 4 loci -s oneseq, -f length, -m 200 0:00:01 

Sequence Alignment Adjust_Direction.py  4 loci --threads 8 0:00:07 

 
Align.py 4 loci -a mafft, --accurate, --threads 8 0:00:35 

Post-Alignment Make_Acc_Table.py 4 loci -s 0:00:01 

 
Fasta_Relabel_Seqs.py 4 loci -r species, -s 0:00:01 

 
Trim_Alignments_Trimal.py 4 loci -f fasta, -a gt, --gt 0.1 0:00:01 

 
Concatenation.py 4 loci, 651 taxa, 1,589 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 

   Total elapsed time 0:01:14 

.
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Table S12. The total number of sequences for each locus in the supermatrix produced by each 

analysis for the clade Iguania.  

 

Locus Type Locus Name Iguania-
PyPHLAWD 

Iguania-
Constrained 

Iguania-
Fast 

Iguania-
Thorough 

mtDNA 12S 325 489 499 530 

 
16S 9 544 560 580 

 
CO1 - 353 482 481 

 
CYTB 348 494 508 516 

 
ND1 109 203 208 209 

 
ND2 523 928 945 1006 

 
ND4 1 504 540 552 

Nuclear ADNP 142 142 142 145 

 
AHR 133 133 133 137 

 
AKAP9 177 180 180 184 

 
AMEL 10 13 <30 <30 

 
BACH1 183 183 183 187 

 
BACH2 29 30 30 31 

 
BDNF 375 379 380 394 

 
BHLHB2 146 146 146 149 

 
BMP2 140 140 140 143 

 
CAND1 145 145 145 149 

 
CARD4 139 139 139 141 

 
CILP 143 143 143 145 

 
CMOS 443 439 447 463 

 
CXCR4 143 143 143 145 

 
DLL1 140 140 140 140 

 
DNAH3 137 137 137 141 

 
ECEL1 150 150 150 150 

 
ENC1 94 41 41 45 

 
EXPH5 148 148 148 149 

 
FSHR 145 145 145 148 

 
FSTL5 141 141 141 144 

 
GALR1 137 137 137 138 

 
GHSR 132 132 132 132 

 
GPR37 140 140 140 144 

 
HLCS 137 137 137 139 

 
INHIBA 140 140 141 145 

 
KIAA1217 - - - - 

 
KIAA1549 - - - - 

 
KIAA2018 15 15 <30 <30 

 
KIF24 139 139 139 139 

 
LRRN1 132 132 132 132 

 
LZTS1 122 122 122 122 
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MC1R 40 40 40 40 

 
MKL1 114 114 151 153 

 MLL3 123 123 123 123 

 
MSH6 163 164 164 168 

 
MXRA5 104 104 107 107 

 
MYH2 - - - - 

 
NGFB 169 169 169 173 

 
NKTR 215 221 221 227 

 
NOS1 9 9 <30 <30 

 
NT3 350 355 365 368 

 
PDC 19 19 <30 <30 

 PNN 269 269 274 277 

 
PRLR 420 420 438 440 

 
PTGER4 147 147 147 149 

 
PTPN 114 114 115 115 

 
R35 300 288 299 303 

 
RAG1p1 344 429 439 455 

 
RAG1p2 290 361 390 397 

 
RAG2 - 2 <30 <30 

 
REV3L 28 29 <30 30 

 RHO 38 13 58 58 

 
SLC30A1 144 144 144 147 

 
SLC8A1 144 144 144 148 

 
SLC8A3 143 143 143 146 

 
SNCAIP 249 249 249 252 

 
SOCS5 17 17 <30 152 

 
TRAF6 149 149 149 151 

 
UBN1 147 148 148 151 

 
VCPIP 131 131 131 133 

 ZEB2 164 154 154 157 

  ZFP36L1 141 141 141 143 
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Table S13. The total number of loci, taxa, sequences, and the concatenated alignment length 

produced by each analysis for the clade Iguania.   

Analysis Loci Species Genera Sequences Alignment length 

Iguania-PyPHLAWD 66 1,069 94 10,397 66,100 bp 

Iguania-Constrained  67   1,359 106 12,676 58,315 bp 

Iguania-Fast 60* 1,399 108 12,978 52,827 bp 

Iguania-Thorough 61* 1,426 111 13,307 53,319 bp 

 
*Note that an additional filter that required a minimum of 30 taxa per locus removed several loci 
for Iguania-Fast (n=7) and Iguania-Thorough (n=6). 
 

 
 
 
Table S14. The total number of sequences for each locus in the supermatrix produced by each 

analysis for the clade Dipsacales.  

Locus 
Dipsacales-
PyPHLAWD  

Dipsacales-
Constrained  

ITS 556 583 
matK 322 344 
rbcl 299 299 
trnL-trnF 333 363 
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