10

11

12

13

14

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

SuperCRUNCH: A toolkit for creating and manipulating supermatrices and other large

phylogenetic datasets

Daniel M. Portik*#", John J. Wiens'
1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona
2. California Academy of Sciences, San Francisco, California

*Correspondence: daniel.portik@gmail.com

Running Title: SuperCRUNCH for phylogenetic data

Keywords: bioinformatics, GenBank, genomics, multiple sequence alignment, similarity

filtering, phylogenetics, phylogeography, supermatrix

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

Abstract

1. Phylogenies with extensive taxon sampling have become indispensable for many types of
ecological and evolutionary studies. Many large-scale trees are based on a “supermatrix”
approach, which involves amalgamating thousands of published sequences for a group.
Constructing up-to-date supermatrices can be challenging, especially as new sequences may
become available almost constantly. However, few tools exist for assembling large-scale, high-
quality supermatrices (and other large datasets) for phylogenetic analysis.

2. Here we present SuperCRUNCH, a Python toolkit for assembling large phylogenetic datasets.
It can be applied to GenBank sequences, unpublished sequences, or combinations of GenBank
and unpublished data. SuperCRUNCH constructs local databases and uses them to conduct rapid
searches for user-specified sets of taxa and loci. Sequences are parsed into putative loci and
passed through rigorous filtering steps. A post-filtering step allows for selection of one sequence
per taxon (i.e. species-level supermatrix) or retention of all sequences per taxon (i.e. population-
level dataset). Importantly, SuperCRUNCH can generate “vouchered” population-level datasets,
in which voucher information is used to generate multi-locus phylogeographic datasets.
Additionally, SuperCRUNCH offers many options for taxonomy resolution, similarity filtering,
sequence selection, alignment, and file manipulation.

3. We demonstrate the range of features available in SuperCRUNCH by generating a variety of
phylogenetic datasets. We provide examples using GenBank data, and combinations of GenBank
and unpublished data. Output datasets include traditional species-level supermatrices, large-scale
phylogenomic matrices, and phylogeographic datasets. Finally, we briefly compare the ability of
SuperCRUNCH to construct species-level supermatrices to alternative approaches.

SuperCRUNCH generated a large-scale supermatrix (1,400 taxa and 66 loci) from 16GB of

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

38

39

40

41

42

43

44

45

46

47

48

49

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

GenBank data in ~1.5 hours, and generated population-level datasets (<350 samples, <10 loci) in
<1 minute. It also outperformed alternative methods for supermatrix construction in terms of
taxa, loci, and sequences recovered.

4. SuperCRUNCH is a flexible bioinformatics toolkit that can be used to assemble datasets for
any taxonomic group and scale (kingdoms to individuals). It allows rapid construction of
supermatrices, greatly simplifying the process of updating large phylogenies with new data. It is
also designed to produce population-level datasets. SuperCRUNCH streamlines the major tasks
required to process phylogenetic data, including filtering, alignment, trimming, and formatting.
SuperCRUNCH is open-source, documented, and freely available at
https://github.com/dportik/SuperCRUNCH, with example analyses available at

https://osf.io/bpt94/.

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

1 | INTRODUCTION

Large-scale phylogenies, including hundreds or thousands of species, have become essential for
many studies in ecology and evolutionary biology. Many of these large-scale phylogenies are
based on the supermatrix approach (e.g., de Queiroz & Gatesy, 2007), which typically involves
amalgamating thousands of sequences from public databases (e.g., GenBank). Yet relatively few
tools exist for automatically assembling these datasets. These include programs like PhyLoTA
(Sanderson, Boss, Chen, Cranston, & Wehe, 2008), PHLAWD (Smith, Beaulieu, & Donoghue,
2009), phyloGenerator (Pearse & Purvis, 2013), SUMAC (Freyman, 2015), SUPERSMART
(Antonelli et al., 2017), PhylotaR (Bennett et al., 2018) and PyPHLAWD (Smith & Walker,
2018). Each program has its own pros and cons for assembling molecular datasets. For example,
several programs (e.g., PHLAWD, PyPHLAWD, PhyLoTA, PhylotaR, SUPERSMART) employ
automated (“all-by-all””) clustering of all sequences, which restricts the ability to target specific
loci. In addition, the criteria for filtering steps and sequence selection are not always clear in
these programs. However, their most severe limitation may be their reliance on GenBank
databases to obtain starting sequences. This design generally prevents the inclusion of locally
generated (e.g., unpublished) sequence data, thereby limiting analyses to published sequences.
Furthermore, many methods were designed to create species-level datasets, in which a species is
represented by one sequence per locus (e.g., a traditional supermatrix). It is often not possible to
use these methods to intentionally generate phylogeographic (population-level) datasets, in
which a species is represented by many individuals sequenced for anywhere from one gene to
thousands of loci. The dramatic increase in the availability and size of phylogeographic datasets
(McCormack et al., 2013; Garrick et al., 2015) has created a need for methods which can

construct large-scale population-level datasets. Additionally, no current methods utilize voucher

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

codes (e.g., a field series, museum number, or other identifier). These codes are critical for
linking samples and building phylogeographic datasets. Thus, producing high-quality
phylogenetic datasets is presently challenging using many of the available methods.

To address these challenges, we developed SuperCRUNCH, a semi-automated method
for creating phylogenetic and phylogeographic datasets. SuperCRUNCH can be used to process
sequences from GenBank, datasets containing only locally generated (unpublished) sequences, or
a combination of sequence types. During initial steps, the sequence data are parsed into loci
based on user-supplied lists of taxa and loci, offering fine-control for targeted searches.
SuperCRUNCH allows any taxonomy to be used, and offers simple steps for identifying and
resolving taxonomic conflicts. SuperCRUNCH also includes refined methods for similarity
filtering, quality filtering, and sequence selection. By offering the option to select one
representative sequence per species or retain all filtered sequences, SuperCRUNCH can be used
to generate species-level datasets (one sequence per species per gene) and population-level
datasets (multiple sequences per species per gene). SuperCRUNCH can also filter sequences
using voucher codes, which can label and link sequences in phylogeographic datasets (e.g., a
“vouchered” dataset). Analyses are highly scalable, and can range in size from small population-
level datasets (one taxon, one gene) to large phylogenomic datasets (hundreds of taxa, thousands
of loci). SuperCRUNCH is modular in design, offering flexibility across all major steps in
constructing phylogenetic datasets, and analyses are transparent and highly reproducible.
SuperCRUNCH is open-source, heavily documented, and freely available at

https://github.com/dportik/SuperCRUNCH.

2 | INSTALLATION

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

96 SuperCRUNCH consists of a set of PYTHON modules that function as stand-alone command-line
97 scripts. As of SuperCRUNCH v1.2, these modules can be run using Python 2.7 or 3.7. All
98 modules can be downloaded and executed independently without the need to install
99 SuperCRUNCH as a PYTHON package or library, making them easy to use and edit.
100 Nevertheless, there are eight dependencies that should be installed that enable the use of all
101 features in SuperCRUNCH. These include the BIOPYTHON package for PYTHON, and the
102 following seven external dependencies: NCBI-BLAST+ (for BLASTN and MAKEBLASTDB; Altschul,
103 Gish, Miller, Myers, & Lipman, 1990; Camacho et al., 2009), cD-HIT-EST (Li & Godzik, 2006),
104 CLUSTAL-O (Sievers et al., 2011), MAFFT (Katoh, Misawa, Kuma, & Miyata, 2002; Katoh &
105 Standley, 2013), muscLE (Edgar, 2004), MACSE (Ranwez, Douzery, Cambon, Chantret, &
106 Delsuc, 2018), and TRIMAL (Capella-Gutiérrez, Silla-Martinez, & Gabaldon, 2009). Installation
107 instructions for all dependencies is provided on the SuperCRUNCH github wiki
108 (https://github.com/dportik/SuperCRUNCH/wiki).
109
110 3 | WORKFLOW
111 A comprehensive user-guide, including overviews for all major steps and detailed instructions
112 for all modules, is available on the SuperCRUNCH github wiki. Several complete analyses are
113 posted on the Open Science Framework SuperCRUNCH project page, available at:
114 https://osf.io/bpt94. Here, we briefly outline the major steps in a typical analysis, including some
115 technical details for key steps. However, we strongly encourage users to read the complete
116 documentation available online.
117

118 3.1 | Overview

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

119 SuperCRUNCH is designed to work with fasta-formatted sequence data that have been

120 previously downloaded (e.g., from GenBank) or are locally available (e.g., processed sequences
121 from in-house projects). No connection to live databases (such as NCBI) is required. Three input
122 files are needed to perform a typical analysis: a set of sequence records in fasta format, a list of
123 taxonomic names, and a list of loci (or genes) and associated search terms. The contents of these
124 input files are described in greater detail below. The general workflow involves assessing

125 taxonomy, parsing loci, similarity filtering, sequence selection, sequence alignment, and various
126 post-alignment tasks (Fig. 1). The taxonomy used is user-supplied (e.g., not explicitly linked to
127 any online databases). Therefore, an important first step is to identify and resolve potential

128 conflicts between the user-supplied taxon list and the taxon labels in the sequence records.

129 Afterwards, searches are conducted to identify records that putatively belong to loci (based on
130 the content of record labels). These records are then written to locus-specific files. The sequences
131 ineach locus are then subjected to more stringent filtering using similarity searching (via

132 nucleotide BLAST). This step removes non-homologous sequences and trims homologous

133 sequences to remove non-target regions. After similarity filtering, the sequence-selection step
134 allows selection of one sequence per species per locus or including all sequences. For both

135 options, several additional filters (e.g., requiring an error-free reading frame, minimum length, or
136 voucher information) can be used to ensure only high-quality sequences are retained. Sequences
137 can then be prepared for alignment (adjusting direction and/or reading frame) and subsequently
138 aligned using several alignment methods. After alignment, sequences can be relabeled, and the
139 alignments can be trimmed, converted to multiple formats, and concatenated. SuperCRUNCH

140 analyses end with the production of fully formatted input files that are compatible with numerous

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

141 phylogenetic and population-genetic programs. Below, we provide additional details for the

142 major steps outlined here.

143

144 3.2 | Starting Sequences

145 SuperCRUNCH requires a single fasta file of nucleotide sequence records as the main input. The
146 fasta file can contain records from GenBank, unpublished sequence records, or a combination.
147 GenBank data can be obtained by searching for relevant taxonomy terms or organism identifier
148 codes on that database, and downloading the records in fasta format. For clades with many

149 species, downloading all records directly may not be possible. For these groups, results from
150 multiple searches using key organism identifiers can be downloaded and combined into a single
151 fasta file. Automated downloading of GenBank sequence data through SuperCRUNCH is

152 currently not supported, but may be included in a future release. Locally generated data should
153 be formatted similar to GenBank records. A typical record should contain an accession number
154 (a unique identifier code), a taxon label (two-part or three-part name, genus/species or

155 genus/species/subspecies), and locus information (gene abbreviation and/or full name). Voucher
156 information is optional. Additional details and examples of how to label Sanger-sequenced and
157 sequence-capture datasets are provided in the online documentation.

158

159 3.3 | Assessing Taxonomy

160 SuperCRUNCH allows any taxonomy to be used. Taxonomy is supplied as a simple text file
161 with one taxon name per line. Two-part and three-part names can be used. SuperCRUNCH offers
162 the option to include or exclude subspecies. If subspecies are excluded, the third component of

163 any three-part name is ignored, thereby reducing it to a two-part name. A taxon list can therefore

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

164 contain a mix of species and subspecies names, even if subspecies are not desired. Although
165 SuperCRUNCH does not connect with any taxonomy databases, lists of taxon names for large
166 clades can be obtained through such databases, including the NCBI Taxonomy Browser or

167 Global Names Database (Patterson et al., 2016). Many groups also have taxonomic databases,
168 such as the Reptile Database (Uetz, Freed, & HoSek, 2018) and AmphibiaWeb (2019). These
169 usually contain up-to-date taxonomies in a downloadable format. Taxon names can also be

170 extracted directly from fasta files using the Fasta Get_Taxa.py module. This option is most

171 useful for unpublished sequences and sequence sets with few species.

172 Ideally, the user-supplied taxonomy will match the taxon names in the sequence records.
173 However, taxonomy can change rapidly and conflicts often arise. To pass initial filtering steps, a
174 record must have a taxon label that matches a name in the user-supplied taxonomy. Before

175 beginning any filtering steps, it is therefore important to understand how compatible the user-
176 supplied taxonomy is with the sequence-record set. The Taxa_Assessment.py module will

177 perform an initial search across records to identify all records with a taxon label contained in the
178 provided taxonomy, and identify all records with an unmatched taxon label (which would fail
179 initial filtering steps). A list of unmatched taxon names is provided as output. External tools such
180 as organismal databases, TAXIZE/PYTAXIZE (Chamberlain & Szdcs, 2013; Chamberlain et al.,
181 2017), or the resolver function in the Global Names Database (Patterson et al., 2016), can be
182 used to identify a “correct” name for an unmatched name. If a set of updated names is supplied
183 for a set of unmatched names, the Rename_Merge.py module can be used to relabel all relevant
184 records with the updated names, thus allowing them to pass the initial filtering steps. The

185 combination of these two taxonomy modules allows users to correct minor labeling errors (such

186 as misspellings), reconcile synonymies, or completely update names to a newer taxonomy.

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

187

188 3.4 | ParsingLoci

189 The Parse_Loci.py module conducts searches for specific loci using a set of user-supplied search
190 terms, including gene abbreviations and full gene names. All searches are conducted using SQL
191 with a local database constructed from the input sequences, and the initial assignment of a

192 sequence to a locus is based purely on matches to the record labeling. For a sequence to be

193 written to a locus-specific file, it must match either the gene abbreviation or description for that
194 locus, and it must have a taxon label present in the user-supplied taxonomy. This approach

195 creates smaller locus-specific sequence sets from the initial sequence set, which are more

196 tractable for downstream similarity searches (versus “all-by-all” clustering).

197 The success of finding sequences using SuperCRUNCH depends on providing

198 appropriate gene abbreviations and labels. We recommend searching on GenBank to identify
199 common labeling or using gene databases such as GeneCards (Stelzer et al., 2016). There is no
200 hard upper bound on how many loci can be searched for. Thus, SuperCRUNCH can be used to
201 process large phylogenomic datasets (e.g., sequence capture experiments) including those with
202 thousands of species and loci. Whole mitochondrial genomes can also be targeted for any search
203 involving a particular mitochondrial gene (see below). Recommendations for optimizing locus
204 searches for different data types are provided in the online documentation.

205 The choice of loci will be group-specific. Previous phylogenetic/phylogeographic papers
206 can be used to identify appropriate loci. The best criteria for selecting loci remain unresolved.
207 One relevant criterion is completeness (e.g., including only loci present in >20% of the species).
208 For each search conducted with Parse_Loci.py, the number of sequences found for each locus

209 will be output. Therefore, it can be used to survey the availability of sequences for each locus. A

10

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

210 downstream step allows loci to be filtered based on a minimum number of required sequences, so
211 decisions can be made after additional filtering.

212 The Parse_Loci.py module performs another important task: automatically detecting

213 voucher information in those sequence record labels that containing a “voucher”, “strain”, or
214 “isolate” field (see online documentation). This information is written into the records as a new
215 tag that is discoverable in other downstream steps, allowing the creation of “vouchered” datasets.
216

217 3.5 | Similarity Filtering

218 SuperCRUNCH offers two parallel methods for filtering sequences based on similarity. Each
219 method uses nucleotide BLAST to perform searches, but they differ in whether reference

220 sequences are automatically selected (Cluster Blast_Extract.py) or user-provided

221 (Reference Blast_Extract.py) (Fig. 2). The automatic selection of reference sequences is

222 appropriate for loci consisting of “simple” sequence records (Fig. 2). We define “simple” record
223 sets as those generally containing a single gene region with limited length variation, which

224 results from use of the same primers (Sanger-sequencing) or probes (sequence capture) to

225 generate sequences. The Cluster Blast_Extract.py module can be used for these types of loci.
226 These generally include nuclear markers and those from commercial probe sets (e.g., UCEs:

227 ultraconserved elements). The Cluster_Blast_Extract.py module begins by clustering sequences
228 based on similarity using cD-HIT-EST. It then identifies the largest sequence cluster, and

229 designates that as the reference sequence set (Fig. 2). All starting sequences (including those in
230 the reference cluster) are then blasted to this reference using BLASTn. This method is

231 convenient for automating the process of similarity filtering for “simple” records and can be used

232 to screen thousands of loci.

11

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

233 However, Cluster Blast Extract.py will fail for loci containing “complex” sequence
234 records. “Complex” records include those containing the target region plus non-target sequence
235 (e.g., other regions or genes). Common examples include long mtDNA fragments and whole
236 mitogenomes (Fig. 2). Another type of “complex” record is a gene sequenced for different

237 fragments that have little or no overlap. For these sequence sets, the Reference Blast_Extract.py
238 module should be used instead. Rather than identifying the reference set from the starting

239 sequences via clustering, it requires a user-supplied reference sequence set to perform BLASTn
240 searches (Fig. 2). An external reference set must be provided for each locus, and it ensures that
241 only the desired regions are targeted and extracted. For example, a set of ND2 reference

242 sequences can be used to extract only ND2 regions from a record set comprised of whole

243 mitochondrial genomes, multi-gene mitochondrial sequences, and partial ND2 records.

244 For both modules, the BLASTn algorithm can be specified by the user (blastn, blastn-
245 short, megablast, or dc-megablast), allowing searches to be tailored to inter- or intraspecific
246 datasets. After BLASTn searches are conducted for a locus, sequences without significant

247 matches are discarded. For all other sequences, the BLAST coordinates of all hits (excluding
248 self-hits) are merged to identify the target region of the query sequence. Based on these

249 coordinates, the entire sequence or a trimmed portion of the sequence is kept. The BLAST

250 coordinate merging action often results in a single continuous interval (e.g., bases 1-800).

251 However, non-overlapping coordinates can also be produced (e.g., bases 1-200, 450-800). Two
252 common examples (sequences containing stretches of N’s or gene duplications) are illustrated in
253 Figure 3.

254 Multiple options are available for handling non-overlapping sequence intervals. The

255 default option is “span”, which bridges non-overlapping intervals <X base pairs apart, where X is

12

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

256 the default value (100 bp) or a user-supplied value. However, if the gap is >X bases, the longest
257 interval is selected instead. The “nospan” method will simply select the longest interval of the
258 coordinate set, and the “all” method will concatenate the sequence intervals together. Results
259 from each option are shown in Figure 3.

260 An optional contamination-filtering step is available (Contamination_Filter.py). This step
261 excludes all sequences scoring >95% identity for at least 100 continuous base pairs to the

262 reference sequences. Here, the contamination reference sequences should correspond to the

263 expected source of contamination (see documentation).

264

265 3.6 | Sequence Selection

266 SuperCRUNCH can construct two fundamentally different datasets: species-level supermatrices
267 and population-level (phylogeographic) datasets. The Filter_Segs and_Species.py module is
268 used to select the sequences necessary to construct either dataset (using the “oneseq” or “allseqs”
269 options). For supermatrices, a single sequence is typically used to represent each species for each
270 gene. If multiple sequences for a given gene exist for a given species (e.g., because multiple

271 individuals were sampled), then an objective strategy must be used for sequence selection.

272 Filter_Seqs and Species.py offers several options, including the simplest solution: sorting

273 sequences by length and selecting the longest sequence (“length” method). An additional filter
274 can be applied to protein-coding loci, termed “translate”. This is an extension of the “length”
275 method, which limits sequences to those containing a valid reading frame (determined by

276 translation in all forward and reverse frames), thereby removing sequences with errors. However,
277 if no sequences pass translation, the longest sequence is selected rather than excluding the taxon.

278 The “randomize” feature can be used to select a sequence randomly from the set available for a

13

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

279 taxon, which will generate supermatrix permutations. Finally, the “vouchered” option will only
280 allow sequences with a voucher tag (generated by Parse _Loci.py). For all selection options,

281 sequences must meet a minimum base-pair threshold set by the user. This will determine the

282 smallest amount of data that can be included for a given marker for a given terminal taxon.

283 However, the optimal minimum is another unresolved issue.

284 To build a population-level dataset, all sequences passing the minimum base pair

285 threshold will be kept. The “translate” option can be used to only include sequences that pass
286 translation, and the “vouchered” option will only include sequences with a voucher tag. The

287 “vouchered” option should be selected to build a population-level dataset that allows samples to
288 be linked by voucher information. Additional information on how various options affect

289 supermatrix and population-level datasets is available online.

290 The Filter_Segs and_Species.py module provides key output files for reproducibility and
291 transparency. For each locus, this includes a BatchEntrez-compatible list of all accession

292 numbers from the input file, a per-species list of accession numbers, and a comprehensive

293 summary of the sequence(s) selected for each species (accession number, length, translation test
294 results, and number of alternative sequences available). The Infer_Supermatrix_Combinations.py
295 module can be used to infer the total number of possible supermatrix combinations (based on the
296 number of available alternative sequences per taxon per locus). Following the selection of

297 representative sequences, the Make Acc Table.py module can be used to generate a table of

298 GenBank accession numbers for all taxa and loci. This can be created for species-level

299 supermatrices and “vouchered” population-level datasets.

300

301 3.7 | Multiple Sequence Alignment

14

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

302 SuperCRUNCH includes two pre-alignment steps and several options for multiple sequence
303 alignment (Fig. 4). One pre-alignment module (Adjust_Direction.py) adjusts the direction of all
304 sequences in each locus-specific fasta file in combination with MAFFT. This step produces

305 unaligned fasta files with all sequences written in the correct orientation (thereby avoiding major
306 pitfalls with aligners). Sequences for any locus can be aligned using the Align.py module with
307 one of several popular aligners (MAFFT, MUSCLE, CLUSTAL-0) or with all aligners sequentially.
308 For protein-coding loci, the MACSE translation aligner is also available, which is capable of
309 aligning coding sequences with respect to their translation while allowing for multiple

310 frameshifts or stop codons. To use this alignment method, the Coding_Translation_Tests.py
311 module can be used to identify the correct reading frame of sequences, adjust them to the first
312 codon position, and ensure completion of the final codon. Although MACSE can be run on a
313 single set of reliable sequences (e.g., only those that passed translation), it has an additional
314 feature allowing simultaneous alignment of a set of reliable sequences and a set of unreliable
315 sequences (e.g., those that failed translation), using different parameters. The

316 Coding_Trandation_Tests.py module can be used to generate all the necessary input files to
317 perform this type of simultaneous alignment using MACSE (see online documentation).

318 The alignment methods implemented in SuperCRUNCH are not intended to produce
319 ultra-large alignments containing several thousand sequences. To create ultra-large alignments,
320 we recommend using external alignment methods such as SATe-I1 (Liu et al., 2012), PASTA
321 (Mirarab et al., 2015), or UPP (Nguyen et al., 2015). We also recommend using UPP to create
322 alignments for loci containing a mix of full-length sequences and short sequence fragments, as
323 these conditions are problematic for many alignment methods (Nguyen et al., 2015).

324

15

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

325 3.8 | Post-Alignment Tasks

326 After multiple sequence alignment, there are several tasks that can be help prepare datasets for
327 downstream analyses. One important task involves relabeling sequences using the

328 Fasta Relabel Segs.py module, such that sequence labels are composed of taxon labels,

329 accession numbers, voucher codes, or some combination. The relabeling strategy will depend on
330 the type of dataset being produced (and whether concatenation is intended). Recommendations
331 are provided in the online documentation. Regardless, this step is essential because full-length
332 labels are incompatible with many downstream programs. Relabeled fasta files can be converted
333 into other commonly used formats (nexus, phylip) using the Fasta_Convert.py module.

334 SuperCRUNCH offers two different approaches for automated alignment trimming,

335 although the overall value of trimming remains debatable (Tan et al., 2015). The

336 Trim_Alignments_Trimal.py module uses several implementations of TRIMAL (“gap-threshold”,
337 “gappyout”, “noallgaps”) to trim alignments. The Trim_Alignments_Custom.py module is based
338 on the custom trimming routine in PHYLUCE (Faircloth, 2016). This version allows edge

339 trimming, row trimming, or both.

340 Relabeled alignment files can be concatenated using the Concatenation.py module. This
341 module allows fasta or phylip input and output formats. The user can also select the symbol for
342 missing data (-, N, ?). It produces a log file containing the number of loci for each terminal taxon
343 and a data partitions file (containing the corresponding base pairs for each locus in the

344 alignment). The Concatenation.py module can be used for any dataset in which labels are

345 consistent across loci, including species-level supermatrices (with taxon labels) and “vouchered”
346 population-level datasets (with taxon/voucher combination labels). See online documentation for

347 more details.

16

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

348

349 4 | DEMONSTRATIONS AND COMPARISONS

350 To demonstrate the full range of features available in SuperCRUNCH, we constructed several
351 types of datasets. These included small population-level datasets (<300 sequences, <10 loci), a
352 *“vouchered” phylogeographic dataset (~100 samples, 4 loci), traditional supermatrices (~1,500
353 species, ~70 loci), and phylogenomic supermatrices (~2,000 UCE loci, <20 samples). In

354 addition, we demonstrate how SuperCRUNCH can be used to add published outgroup sequences
355 to a supermatrix of locally generated sequences. Finally, we compared the ability of

356 SuperCRUNCH to construct species-level supermatrices relative to the program PyPHLAWD
357 (Smith & Walker, 2018), using two test clades (lguania and Dipsacales). In addition to

358 comparing supermatrix characteristics (taxa, loci, sequences), we also compared the resulting
359 phylogenies (including the number genera and families recovered as monophyletic). Details are
360 given in Supporting Information S1. All analyses are available as tutorials on the

361 SuperCRUNCH project page on the Open Science Framework (https://osf.io/bpt94/). Analyses
362 were run on an iMac with a 4.2 GHz quad-core Intel Core i7 with 32 GB RAM.

363

364 5| RESULTS

365 Detailed results for all analyses are provided in Supporting Information S1, and are briefly

366 summarized here. SuperCRUNCH produced a large supermatrix (~1,500 species, ~60 loci,

367 ~13,000 sequences) in ~1.5 hours, but with more thorough settings ran up to 13 hours. This
368 difference in runtimes is largely attributable to the alignment step, with MAFFT taking ~4

369 minutes and MACSE requiring 11 hours. SuperCRUNCH successfully reconstructed a published

370 phylogeographic dataset (<1 min) and a published phylogenomic supermatrix (~25 min). It

17

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

371 rapidly created new combinations of population-level datasets from multiple published sources
372 (<1 min). It also added GenBank sequences for hundreds of outgroups to a local (unpublished)
373 supermatrix project (<4 min).

374 SuperCRUNCH outperformed PyPHLAWD in all supermatrix comparisons, recovering
375 more taxa and sequences in both test clades. Given the same starting sequences for the Iguania
376 dataset, SuperCRUNCH found ~300 more taxa (1,359 vs. 1,069) and ~2,300 more sequences
377 (12,676 vs. 10,397). PyPHLAWD experienced a severe performance drop for loci containing
378 “complex” records (those with multiple loci or non-overlapping regions), and thereby lost 63%
379 of the available mtDNA sequences (>2,000 sequences discarded). SuperCRUNCH supermatrices
380 also generated higher quality phylogenies, recovering more genera as monophyletic in all

381 comparisons. Additional results for these comparisons are discussed in Supporting Information
382 S1, and all analyses are available on the Open Science Framework (https://osf.io/bpt94/).

383

384 6| DISCUSSION

385 SuperCRUNCH is a versatile bioinformatics toolkit that can be used to create large phylogenetic
386 datasets. It contains many novel features that distinguish it from other programs. Most

387 importantly, SuperCRUNCH is not restricted to GenBank sequence data. It can be used to

388 process unpublished sequences, and combinations of GenBank and unpublished data. Many

389 programs rely on GenBank database releases (PhyLoTA, PyPHLAWD, SUMAC,

390 SUPERSMART) to retrieve starting sequences and obtain metadata. In contrast, SuperCRUNCH
391 infers metadata directly from user-supplied starting sequences, and constructs local databases to

392 perform searches. This design explicitly allows for the inclusion of unpublished sequence data.

18

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

393 There are other programs designed to generate species-level supermatrices

394 (phyloGenerator, PhylotaR, PyPHLAWD, SUPERSMART), but these workflows generally do
395 not offer explicit options for creating population-level (phylogeographic) datasets.

396 SuperCRUNCH includes a key step that allows for either selecting one sequence per species, or
397 all sequences, generating either species-level supermatrices or population-level datasets.

398 Furthermore, filtering options are available for both (passing translation, minimum length),

399 ensuring only high-quality sequences are included in both types of datasets.

400 A population-level (phylogeographic) dataset includes multiple sequences per species per
401 locus. It is straightforward to collect all sequences available for a particular gene for a given

402 species. However, there may be little overlap of sampling across loci. For example, different

403 individuals may have been sequenced for different loci in different studies. Identifying sequences
404 derived from the same sample can be difficult and requires integrating voucher information.

405 Incorporating additional sequences (published or unpublished) into phylogeographic datasets can
406 Dbe challenging, given the difficulty of identifying and matching voucher information in sequence
407 records. SuperCRUNCH automates these tasks, creating “vouchered” datasets. The “vouchered”
408 feature of SuperCRUNCH only allows sequences with a voucher code to pass the filtering steps
409 used to create a population-level dataset. The final sequences are relabeled using the voucher
410 information (typically taxon name plus voucher code), such that sequences derived from the

411 same sample share an identical label. Together, these features allow the rapid reconstruction of
412 published phylogeographic datasets, merging of published and unpublished data to create new
413 datasets, and construction of datasets from locally generated sequences (especially from

414 sequence-capture experiments).

19

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

415 SuperCRUNCH differs from similar programs in that it initially identifies sequences

416 using record labels, moves the relevant sequences to locus-specific files, and performs similarity
417 searches on reduced-sequence sets. In contrast, many other programs attempt to cluster all

418 starting sequences to produce putatively orthologous sequence clusters (PhyLoTA, PyPHLAWD,
419 PhylotaR, and SUPERSMART). In general, these “all-by-all” clustering approaches do not allow
420 target loci to be specified, require additional steps to identify the content of sequence clusters,
421 and can result in the inclusion of paralogous sequences. Furthermore, clusters produced from a
422 *“complex” record set may be redundant, introducing biases into supermatrices (e.g., a single
423 locus repeated multiple times). SuperCRUNCH putatively assigns sequences to a locus based on
424 the presence of locus search terms in the record label (similar to phyloGenerator). This method
425 allows specific loci to be targeted, establishes a clear identity for the sequences, and reduces the
426 chance of including paralogous sequences (which should have a different gene label). Thus,

427 SuperCRUNCH can accurately target and build datasets composed of thousands of loci,

428 including UCEs and other sequence-capture loci. It is difficult to reliably perform this task using
429 *“all-by-all” clustering of starting sequences. Even the recently proposed “baited” clustering

430 approach of PyPHLAWD, which requires a reference sequence set for each locus, is prohibitive
431 for large genomic datasets (e.g., ~5,000 UCE loci). We acknowledge the success of the label-
432 matching strategy relies on defining appropriate search terms. Unanticipated issues like gene
433 name synonymies can inadvertently exclude relevant sequences (Supporting Information S1).
434 Regardless, the label-matching method of SuperCRUNCH circumvents many issues outlined
435 above, and outperformed the “baited” clustering methods of PyPHLAWD for all test cases

436 (Supporting Information S1). Given that searches for loci are conducted using SQL, they are fast

437 and can be executed using iteratively refined search terms to optimize results.

20

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

438 SuperCRUNCH also offers improved methods for similarity searches. These include the
439 ability to specify BLASTn algorithms, improved BLAST coordinate merging and sequence
440 trimming, and flexible choices for selecting reference sequences. Unless specified, the default
441 algorithm used by nucleotide BLAST is megablast, which is best for finding highly similar

442 sequences in intraspecific searches (e.g., population-level datasets). In contrast, discontiguous
443 megablast performs substantially better for interspecific searches (Ma, Tromp, & Li, 2002;

444 Camacho et al., 2009), and is preferable for species-level supermatrices. In many cases, merging
445 the BLAST coordinates obtained from a query sequence is trivial and results in a single

446 continuous target region. However, multiple non-overlapping target regions may also occur for a
447 query sequence, and SuperCRUNCH offers several novel options to handle these cases (Fig. 3).
448 Furthermore, SuperCRUNCH uses the resulting coordinates to automatically trim sequences to
449 the target region, if necessary. This non-standard trimming action ensures that only sequence
450 regions homologous to the reference-sequence set are kept. SuperCRUNCH also offers two
451 options for designating reference sequences: reference sequences can be selected automatically
452 from the sequence set, or can be supplied by the user (Fig. 2). Automatic selection of reference
453 sequences is appropriate for “simple” sequence records (i.e., same gene regions), and can

454 efficiently perform similarity searches for thousands of loci. User-supplied references are more
455 appropriate for “complex” sequence records (multiple loci or non-overlapping regions), or

456 whenever fine-control over the target region is desired. Although this latter option requires

457 gathering reference sequences manually, it is powerful and can be used to extract a single

458 mtDNA gene region from a record set containing a mix of whole mitochondrial genomes, long

459 multi-gene mtDNA sequences, and shorter target sequences.

21

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

460 Despite many improvements implemented in SuperCRUNCH, an important and general
461 issue is the accuracy of GenBank sequence data. This issue can affect SuperCRUNCH and all
462 other programs that process GenBank data. For example, errors may arise through incorrect

463 uploading of data, misidentified specimens, contamination, and other lab errors. Data errors can
464 occur in record labels, and include incorrect gene, taxon, or voucher information. With regards to
465 contamination, we identified two human mtDNA sequences labeled as lizards in our iguanian
466 supermatrix analysis (HM040901.1, KP899454.1; Supplemental File 1). The contamination filter
467 in SuperCRUNCH can detect and eliminate some problems of this kind, but it cannot readily
468 identify cases of misidentified or mislabeled sequences within the focal group. Misidentified

469 specimens are perhaps the most difficult problem to detect, particularly at a shallow taxonomic
470 scale (e.g., a specimen assigned to the wrong species within the same genus or family). Although
471 similarity filtering can generally be used to correctly establish gene identities, parallel

472 approaches for identifying inaccurate taxon labeling within the focal group are generally lacking.
473 Overall, data accuracy is a general problem for the supermatrix approach regardless of the

474 methods used to process the data. Automatic identification of inaccurate sequence records would
475 Dbe a useful goal for future studies of supermatrix construction.

476 The initial motivation behind SuperCRUNCH was to increase transparency and

477 reproducibility across all steps in dataset construction. We therefore encourage researchers

478 running analyses with SuperCRUNCH to publish the information needed to reproduce their

479 results. This includes accession numbers for the starting sequence set, the taxon list file, the locus
480 search terms file, and the ancillary files and commands used to execute steps. We also emphasize
481 that SuperCRUNCH is highly modular, and performing a SuperCRUNCH analysis does not

482 require running the full pipeline. As such, SuperCRUNCH modules can be incorporated into any

22

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

483 bioinformatics pipeline or used in conjunction with features of other currently available

484 programs. Alternative programs offer important features that may serve different needs beyond
485 those available in SuperCRUNCH (e.g., SUPERSMART performs phylogenetic analyses on the
486 supermatrices that it generates). Given the rapid growth of sequence data on GenBank (NCBI,
487 2019), improved bioinformatics approaches to mine and manage phylogenetic datasets are

488 needed.

489

490 ACKNOWLEDGMENTS

491 For financial support, we thank U.S. National Science Foundation Grant DEB 1655690. We
492 thank early testers, including Itzue W. Caviedes-Solis, Cristian Roman-Palacios, Benjamin R.
493 Karin, and Pascal O. Title, and participants of the Trees in the Desert workshop (Tucson, AZ) for
494 their beneficial feedback. We thank the Associate Editor and two anonymous reviewers for

495 helpful comments that greatly improved the manuscript.

496

497 AUTHORS CONTRIBUTIONS

498 DMP designed the methodology, wrote all code, and analyzed the data; DMP and JJW wrote the
499 manuscript.

500

501 DATA ACCESSIBILITY

502 SuperCRUNCH is open-source and freely available at

503 https://github.com/dportik/SuperCRUNCH. The complete materials (and instructions for

504 replicating our analyses), including input and output files from each step, is available from the

505 Open Science Framework (https://osf.io/bpt94/).

23

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

506 REFERENCES

507 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local

508 alignment search tool. Journal of Molecular Biology, 215, 403- 410.

509 AmphibiaWeb. 2019. Electronic Database accessible at https://amphibiaweb.org. University of
510 California, Berkeley, CA, USA.

511 Antonelli, A., Hettling, H., Condamine, F. L., Vos, K., Nilsson, R. H., Sanderson, M. J., Sauquet,

512 H., Scharn, R., Silvestro, D., Topel, M., Bacon, C. D., Oxelman, B., & Vos, R. A. (2017).
513 Toward a self-updating platform for estimating rates of speciation and migration, ages, and
514 relationships of taxa. Systematic Biology, 66, 152—-166.

515 Bennett, D. J., Hettling, H., Silvestro, D., Zizka, A., Bacon, C. D., Faurby, S., Vos, R. A,, &
516 Antonelli, A. (2018). phylotaR: an automated pipeline for retrieving orthologous DNA

517 sequences from GenBank in R. Life, 8, 20.

518 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.
519 L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10, 421.

520 Capella-Gutiérrez, S., Silla-Martinez, J. M., & Gabaldon, T. (2009). trimAl: a tool for automated
521 trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972-1973.

522 Chamberlain, S. & Szocs E. (2013). Taxize - taxonomic search and retrieval in R.

523 F1000Research, 2, 191.

524 Chamberlain, S., Szocs, E., Boettiger, C., Ram, K., Bartomeus, I., Baumgartner, J., Foster, Z.,
525 O’Donnell, J., & Oksanen, J. (2017). Taxize: Taxonomic information from around the web.
526 R package version 0.9.0.

527 Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high

528 throughput. Nucleic Acids Research, 32, 1792-1797.

24

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

529 Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., & Glenn,
530 T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning

531 multiple evolutionary timescales. Systematic Biology, 61, 717-726.

532 Freyman, W. A. (2015). SUMAC: Constructing phylogenetic supermatrices and assessing

533 partially decisive taxon coverage. Evolutionary Bioinformatics, 11, 263-266.

534 Garrick, R. C., Bonatelli, I. A. S., Hyseni, C., Morales, A., Pelletier, T. A., Perez, M. F., Rice, E.,
535 Satler, J. D., Symula, R. E., Thomé, M. T. C., & Carstens, B. C. (2015). The evolution of
536 phylogeographic data sets. Molecular Ecology, 24, 1164-1171

537 Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: reconstruction, analysis, and visualization
538 of phylogenomic data. Molecular Biology and Evolution, 33, 1635-1638.

539 Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid

540 multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30,
541 3059-3066.

542 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:
543 improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.
544 Li, W., & Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of
545 protein or nucleotide sequences. Bioinformatics, 22, 1658-1659.

546 Liu, K., Warnow, T. J., Holder, M. T., Nelesen, S. M., Yu, J., Stamatakis, A. P., & Linder, C. R.
547 2012. SATEé-II: very fast and accurate simultaneous estimation of multiple sequence

548 alignments and phylogenetic trees. Systematic Biology, 61, 90-106.

549 Ma, B., Tromp, J., & Li, M. (2002). PatternHunter: faster and more sensitive homology search.

550 Bioinformatics, 18, 440-445.

25

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

551 McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2013).
552 Applications of next-generation sequencing to phylogeography and phylogenetics. Molecular
553 Phylogenetics and Evolution, 66, 526-538.

554 Mirarab, S., Nguyen, N., Guo, S., Wang, L.-S., Kim, J., & Warnow, T. (2015). PASTA: ultra-
555 large multiple sequence alignment for nucleotide and amino-acid sequences. Journal of
556 Computational Biology, 22, 377-386.

557 Nguyen, N., Mirarab, S., Kumar, K., & Warnow, T. (2015). Ultra-large alignments using

558 phylogeny-aware profiles. Genome Biology, 16, 124.

559 NCBI. (2019). GenBank and WGS Statistics. Database accessible at

560 https://www.ncbi.nlm.nih.gov/genbank/statistics/. Bethesda (MD): National Library of
561 Medicine (US), National Center for Biotechnology Information.

562 Ogden, T. H., & Rosenberg, M. S. (2006). Multiple sequence alignment accuracy and

563 phylogenetic inference. Systematic Biology, 55, 314-328.

564 Patterson, D., Mozzherin, D., Shorthouse, D., & Thessen, A. (2016). Challenges with using
565 names to link digital biodiversity information. Biodiversity Data Journal, 4, e8080.

566 Pearse, W. D., & Purvis, A. (2013). phyloGenerator: An automated phylogeny generation tool
567 for ecologists. Methods in Ecology and Evolution, 4, 692-698.

568 de Queiroz, A., & Gatesy, J. (2007). The supermatrix approach to systematics. Trendsin Ecology
569 and Evolution, 22, 34-41.

570 Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N., & Delsuc, F. (2018). MACSE v2:
571 toolkit for the alignment of coding sequences accounting for frameshifts and stop codons.

572 Molecular Biology and Evolution, 35, 2582-2584.

26

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

573 Sanderson, M. J., Boss, D., Chen, D., Cranston, K. A., & Wehe, A. (2008). The PhyLoTA
574 browser: processing GenBank for molecular phylogenetics research. Systematic Biology, 57,
575 335-346.

576 Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H.,

577 Remmert, M., Séding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable
578 generation of high-quality protein multiple sequence alignments using Clustal Omega.
579 Molecular Systems Biology, 7, 539.

580 Smith, S. A,, Beaulieu, J. M., & Donoghue, M. J. (2009). Mega-phylogeny approach for
581 comparative biology: an alternative to supertree and supermatrix approaches. BMC
582 Evolutionary Biology, 9, 37.

583 Smith, S. A., & Walker, J. F. (2018). PyPHLAWD: A python tool for phylogenetic dataset
584 construction. Methods in Ecology and Evolution, 10, 104-108.

585 Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T.1.,

586 Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-Golan, Y.,
587 Kohn, A., Rappaport, N., Safran, M., & Lancet, D. 2016. The GeneCards suite: from gene
588 data mining to disease genome sequence analyses. Current Protocolsin Bioinformatics, 54,
589 1.30.1-1.30.33.

590 Tan, G., Muffato, M., Ledergerber, C., Herrero, J., Goldman, N., Gil, M., & Dessimoz, C.

591 (2015). Current methods for automated filtering of multiple sequence alignments frequently
592 worsen single-gene phylogenetic inference. Systematic Biology, 64, 778-791.

593 Thompson, J. D., Linard, B., Lecompte, O., & Poch, O. (2011). A comprehensive benchmark
594 study of multiple sequence alignment methods: current challenges and future perspectives.

595 PLoS ONE, 6, €18093.

27

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

596 Uetz, P., Freed, P., & HoSek, J. (2018). The Reptile Database. Available at: http://www.reptile-
597 database.org.

598

28

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

599 FIGURE LEGENDS

600

601 FIGURE 1 A depiction of the general steps (and associated modules) involved in full

602 SuperCRUNCH analyses. Each step is outlined in a corresponding entry of the same title in the

603 Workflow section of the main text.

Fasta Sequences l Taxon List l Locus Search Terms

Taxa_Assessment.py |_________

| Parse Lod e

Cluster_Blast_Extract.py . K R
Reference_Blast_Extract.py [--------- ‘[Slmllarlty Fllterlng]
Contamination_Filter.py *
Filter_Seqs_and_Species.py
: Fasta_Filter_by Min_Seqs.py
[Sequence Selection] ————————— Make_Acc Table py
* Infer_Supermatrix_Combinations.py
Adjust_Direction.py - ;
Coding_Translation_Tests.py |--------- ~[Multlple Seq uence Allgnment]
Align.py
* Fasta_Relabel_Seqgs.py
i Trim_Alignments_Trimal.py
[POSt-A“gnment Tasks] --------- Trim_Alignments_Custom.py

Fasta_Convert.py
Concatenation.py

604
605

29

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

606 FIGURE 2 Anillustration of the similarity searching workflows occurring in the
607 Cluster_Blast_Extract.py and Reference Blast Extract.py modules. Green color represents target

608 regions, and all other colors represent non-target regions.

Cluster 1 Cluster 2 Cluster 3

Cluster_Blast_Extract.py I

I

O

——

Step 1: Step 2:
T Cluster sequences Set largest
(cd-hit-est) cluster as reference
(makeblastdb)
Input - » Cluster 2 Output
Sequences Step 3: Step 4: Sequences

BLAST to Process BLAST output,

reference set merge coordinates,
(BLASTN) trim sequences

Step 1:
Reference_Blast_Extract.py Create reference from user file
(makeblastdb)
User-supplied
reference set Output
Step 2: Step 3 Sequences

BLAST to Process BLAST output,

reference set merge coordinates,
(BLASTN) trim sequences

609
610

30

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

611 FIGURE 3 A demonstration of the options available for handling non-overlapping BLAST

612 coordinates for query sequences with two common examples: (A) a sequence that contains a

613 stretch of N’s, and (B) a long sequence containing multiple genes (represented by letters) that
614 also contains a gene duplication (indicated by C1 and C2), such as an organellar genome. In both
615 sequences, green represents the target region and grey represents either missing data (A) or non-
616 target regions (B). The resulting merged BLAST coordinates are shown for each sequence, along

617 with which coordinates would be selected under the available options (“span”, “nospan”, and

618 “all”, see main text).

(et
A) B) A B CL D EFC2 G
S S 1 S N N s E— |

) 150 bp 70 bp 250 bp - 900 bp 880 bp
BLAST Coordinates: 470 bp total BLAST Coordinates: 9,000 bp total
[1-150], [220-470] ¢ [3,800-4,700], [6,000-6,880] ¢

Cl ‘

span [1-470] span [3,800—4,700] [—

900 bp
C1 ‘

150 bp 70 bp 250 bp }

nospan [220-470] Z0be nospan [3,800—4,700] [—

—
900 bp

Cl C2 ‘
===

all [1-150], [220-470] all [3,800-4,700], [6,000-6,880]

|
| = |

(N

—t—
900 bp 880 bp

619

31

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

SUPPORTING INFORMATION S1
for
SuperCRUNCH: A toolkit for creating and manipulating supermatrices and other large

phylogenetic datasets

Daniel M. Portik?", John J. Wiens!

1. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona

2. California Academy of Sciences, San Francisco, California

*Correspondence: daniel.portik@gmail.com

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

DEMONSTRATIONS, COMPARISONS, AND RESULTS

Section Page
1 |denovo Supermatrix for Iguania 3
1.1 | Methods: Iguania-Fast and Iguania-Thorough Analyses 3
1.2 | Results: Iguania-Fast and Iguania-Thorough Analyses 7
2 | UCE Supermatrix for the Genus Kaloula 11
2.1 | Methods: Kaloula-VVouchered and Kaloula-Species Analyses 11
2.2 | Results: Kaloula-Vouchered and Kaloula-Species Analyses 13
3 | Phylogeographic Dataset for Trachylepis sulcata 15
3.1 | Methods: Trachylepis-Phylogeography and Trachylepis-Species Analyses 15
3.2 | Results: Trachylepis-Phylogeography and Trachylepis-Species Analyses 16
4 | Population Datasetsfor Callisaurusand Uma 19
4.1 | Methods: Callisaurus-Population and Uma-Population Analyses 19
4.2 | Results: Callisaurus-Population and Uma-Population Analyses 20
5 | Adding Outgroupsto an Unpublished Supermatrix Project: Hyperoliidae 23
5.1 | Methods: Hyperoliid-Outgroup Analysis 23
5.2 | Results: Hyperoliid-Outgroup Analysis 25
6 | Super CRUNCH Comparison to PyPHLAWD 28
6.1 | Methods — PyPHLAWD Comparison 28
6.2 | Results — PyPHLAWD Comparison 31
6.2.1| Supermatrix Results 31
6.2.2| Phylogenetic Results 34
7 | References 41

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

1 | denovo Supermatrix for Iguania

1.1 | Methods: Iguania-Fast and Iguania-Thorough Analyses

To demonstrate the full use of SuperCRUNCH we assembled a de novo supermatrix for Iguania,
a clade of squamate reptiles that contains ~1900 species in 14 families (Uetz et al., 2018). This
clade includes chameleons, dragons, flying lizards, iguanas, anoles, and other well-known
lizards. For starting material, we downloaded all available iguanian sequence data from GenBank
on November 30, 2018 using the organism identifier code for Iguania (txid8511[Organism:exp]).
This produced a 13.2 GB fasta file that included 8,785,378 records. We obtained search terms for
69 loci (62 nuclear, 7 mitochondrial) that have been widely used in reptile phylogenetics or
phylogeography (Townsend et al., 2008; Portik et al., 2012; Pyron et al., 2013). This includes 62
nuclear loci (ADNP, AHR, AKAP9, AMEL, BACH1, BACH2, BDNF, BHLHB2, BMP2, CAND1,
CARDA4, CILP, CMOS, CXCR4, DLL1, DNAH3, ECEL1, ENC1, EXPH5, FSHR, FSTL5, GALRL,
GHSR, GPR37, HLCS, INHIBA, KIAA1217, KIAA1549, KIAA2018, KIF24, LRRN1, LZTS1,
MC1R, MKL1, MLL3, MSH6, MXRAS5, MYH2, NGFB, NKTR, NOS1, NT3, PDC, PNN, PRLR,
PTGER4, PTPN, R35, RAGL (two fragments), RAG2, REV3L, RHO, S_LC30A1, SLC8AL,
SLC8A3, INCAIP, SOCS, TRAF6, UBN1, VCPIP, ZEB2, ZFP36L.1) and 7 mitochondrial genes
(12S, 16S, CO1, CYTB, ND1, ND2, ND4). For the taxon names list, we used a modified version
of the February 2018 release of the Reptile Database (which does not contain subspecies). The
above starting materials were used to run two different analyses, including one high-quality
analysis that used all modules and features (termed “Iguania-Thorough”; https://osf.io/9gs32/),
and one analysis that used the fastest possible settings (termed “Iguania-Fast”;

https://osf.io/x5hrm/).

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

For the Iguania-Thorough analysis, we performed an initial taxon assessment of the
starting sequences (8,785,378 records). Using Taxon_Assessment.py, we found that 158,935
records had a name matching our taxonomy, and 8,626,443 records had a name that did not
match a name in our taxonomy. After identifying all correctable unmatched names using the
Reptile Database (Uetz et al., 2018), we successfully relabeled 1,860 records using corrected
names. We merged the updated records with those that passed the initial taxon assessment, and
the resulting sequence set contained 160,795 records. These records were used to search for the
69 loci using Parse_Loci.py, and we recovered two or more sequences for all but three loci
(KIAA1217, KIAA1549, MYH2). We performed similarity filtering using
Cluster_Blast_Extract.py for 58 nuclear loci (allowing automatic reference selection, intended
for “simple” records). We performed similarity filtering using Reference Blast_Extract.py for
the 7 mitochondrial genes and for the nuclear protein-coding locus RAGL1. This latter filtering
module utilizes user-supplied references, and is intended for “complex” record sets (e.g., with
little or no overlap for some sequences in some taxa). We included RAGL1 in the user-supplied
reference strategy because it has been sequenced in (depending on the species) either its entirety
as well as for two non-overlapping fragments. We therefore targeted the two regions of RAG1
independently (labeled p1 and p2), which we considered as separate loci downstream. We used
two reference sequence sets (RAG1pl, RAG1p2) created from the full RAG1 gene of seven
tetrapod species (available at
https://github.com/dportik/SuperCRUNCH/tree/master/data/reference-sequence-sets/vertebrate-
RAG1). To target each of the 7 mitochondrial genes, we assembled a reference sequence set for
each gene from 114 squamate mitochondrial genomes, which were downloaded from GenBank.

We used the “extract annotation” feature of Geneious (https://www.geneious.com) to quickly

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

obtain each gene region from all mitogenomes (in GenBank format). These reference sequence
sets are available at: https://github.com/dportik/SuperCRUNCH/tree/master/data/reference-
sequence-sets/squamate-mtdna. After similarity filtering, we selected representative sequences
for each species per gene, using options specific to each type of marker (nuclear protein-coding,
mtDNA protein-coding, and mtDNA rRNA genes). We used the “oneseq” and “translate”
options of Filter_Seqs and_Species.py for the 60 nuclear protein-coding loci (setting translation
to standard code) and for the 5 mitochondrial protein-coding genes (setting translation to
vertebrate mtDNA code), and the “oneseq” and “length” options for the two mitochondrial rRNA
genes (12S, 16S). For each of these three runs, we enforced a minimum 200 bp length for all
sequences. We used Fasta Filter by Min_Segs.py to remove alignments with fewer than 30
taxa, which eliminated 6 of the initial 67 loci. We performed sequence direction adjustments for
the 61 loci using Adjust_Direction.py. We used the Coding_Translation_Tests.py module to
prepare the 54 nuclear loci (setting translation to standard code) and the 5 mitochondrial protein-
coding genes (setting translation to vertebrate mtDNA code) for translation alignment. We used
the Align.py module to perform MACSE translation alignments, using the “pass_fail” option, for
the 54 nuclear loci (setting translation to standard code) and the 5 mitochondrial protein-coding
genes (setting translation to vertebrate mtDNA code). We performed sequence alignment for the
two rRNA mitochondrial genes (12S, 16S) using Clustal-O using the defaults in Align.py. We
constructed a table of GenBank accession numbers for all filtered sequences using the

Make Acc_Table.py module. We relabeled sequences in all alignment files using the “species”
option in Fasta_Relabel _Segs.py, and subsequently trimmed alignments using the gap-threshold
option in trimAl with a threshold value of 0.1, as implemented in Trim_Alignments_Trimal.py.

We converted fasta alignments to phylip and nexus format and concatenated alignments to

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

produce the final supermatrix. In total, we ran 21 separate steps using 16 modules for the
Iguania-Thorough analysis (Table S1). The input and output files for all steps, along with
complete commands used to execute modules, are available are available on the Open Science
Framework at: https://osf.io/99s32/.

For the Iguania-Fast analysis, we skipped the taxonomy assessment step and began by
searching for the 69 loci in the full set of 8,785,378 starting records using Parse_Loci.py. We
performed similarity filtering using Cluster_Blast_Extract.py for 58 nuclear loci (allowing
automatic reference selection), and performed similarity filtering using
Reference Blast_Extract.py for the 7 mitochondrial genes plus RAGL1 (with the same user-
supplied references as above). Following similarity filtering, we selected sequences for all loci
using the “length” option in Filter_Seqs and Species.py, requiring a minimum length of 200 bp.
We used Fasta_Filter_by Min_Segs.py to remove alignments with fewer than 30 taxa, which
eliminated 7 of the initial 67 genes. We performed sequence direction adjustments for the
remaining 60 loci using Adjust_Direction.py, and performed multiple sequence alignment using
MAFFT in Align.py. We constructed a table of GenBank accession numbers for all filtered
sequences using the Make Acc_Table.py module. We relabeled sequences in all alignment files
using the “species” option in Fasta_Relabel Segs.py, and subsequently trimmed alignments
using the gap-threshold option in trimAl with a threshold value of 0.1, as implemented in
Trim_Alignments_Trimal.py. We skipped format conversion and concatenated the alignments to
produce the final supermatrix. In total, we ran 11 separate steps using 11 modules for the
Iguania-Fast analysis (Table S2). The input and output files for each step, along with complete

instructions, are available at: https://osf.io/x5hrm/.

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

We investigated the quality of the phylogenetic trees resulting from each of the
supermatrices (in terms of the number of monophyletic genera, subfamilies, and families). For
each supermatrix we ran an unpartitioned RAXML analysis using the GTRCAT model and 100
rapid bootstraps to generate support values. We performed an assessment of these trees in
conjunction with other trees of Iguania produced by PyPHLAWD and a constrained

SuperCRUNCH analysis (see section 6 — Comparison to PyPHLAWD).

1.2 | Results: Iguania-Fast and Iguania-Thorough Analyses

The Iguania-Thorough analysis resulted in a supermatrix containing 61 loci, 1,426 species, and
13,307 total sequences. The analysis took 12 hours and 53 minutes to complete (not including
user-time; Table S1). The initial record set contained over 8 million sequences. This set was
narrowed down to 160,795 sequences corresponding to the 67 loci. This difference indicates that
most sequences downloaded in our GenBank search were irrelevant for our purposes (shotgun
genome sequences, MRNA, etc.). Of the 160,795 relevant sequences, 1,860 represent records
that were “rescued” by updating an unmatched taxon label. The 160,795 sequences were
narrowed down to 13,389 sequences during the sequence-selection step (in which one sequence
per taxon per locus was selected). Although the analysis initially found 67 loci, the requirement
of at least 30 species per locus eliminated six loci. Consequently, the final number of sequences
in the supermatrix totaled 13,307. For the Iguania-Thorough analysis, most steps required only
seconds to complete, and a majority of the analysis time is attributable to similarity filtering (~1
hour combined) and multiple sequence alignment (~11.5 hours combined; Table S1). The overall
analysis time of ~13 hours was calculated based on running the modules/steps sequentially, but

running the three alignment steps simultaneously (MACSE for mtDNA, MACSE for nucDNA,

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Clustal-O for noncoding mtDNA) would have reduced the total analysis time for Iguania-
Thorough to ~7 hours.

The Iguania-Fast analysis resulted in a supermatrix containing 60 loci, 1,399 species, and
12,978 total sequences. The analysis took 1 hour and 28 minutes to complete (not including user-
time; Table S2). This analysis did not include any taxonomy assessment, thereby losing the
1,860 records that were “rescued” in the Iguania-Thorough analysis. Rather, loci were parsed
directly from the starting set of 8 million records. As a result, the lIguania-Fast analysis recovered
less data (1,399 species, 12,978 sequences) than the Iguania-Thorough analysis (1,426 species,
13,307 sequences). This Iguania-Fast analysis also found 67 loci initially, but seven loci were
discarded because they contained fewer than 30 species. The Iguania-Fast analysis also required
~1 hour for similarity filtering, but the multiple sequence alignment step using MAFFT took less
than 5 minutes to complete.

Most steps of the Iguania-Fast and Iguania-Thorough analyses took similar amounts of
time. However, alignment time (5 minutes vs. ~11.5 hours) appears to be the main driver of
differences in total time for the Iguania-Fast analysis (~1.5 hours) and the Iguania-Thorough
analysis (~13 hours). The Iguania-Thorough analysis resulted in more taxa and sequences, and
this was entirely due to the taxonomy assessment step, which only required ~20 minutes to
complete (excluding time to identify updated names). We therefore strongly recommend
performing the taxonomy assessment step for SuperCRUNCH analyses, as it can result improve
dataset quality with minimal computational time.

Trees produced from the Iguania-Thorough and Iguania-Fast datasets are discussed in

Section 6 (Comparison to PyPHLAWD).

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

23

So

33

Table S1. Summary of all steps for the Iguania-Thorough analysis, which took ~13 hours to complete (not including user-time). %5

dQ

Step Module Input Details Flag Information Elapsed time éé’
Assess Taxonomy Taxa_Assessment.py 8,785,378 records --no_subspecies 0:12:47 %%
Rename_Merge.py Relabeled 1,860 records 0:06:42 %é

Parse Loci Parse_Loci.py 69 loci to search, 160,795 records --no_subspecies 0:02:41 2 E
Similarity Filtering Cluster_Blast_Extract.py 58 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:18:50 gé
Reference_Blast_Extract.py 9 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:48:39 c §§
Contamination_Filter.py 7 mtDNA loci -b megablast 0:00:06 %;g

Sequence Selection Filter_Seqs_and_Species.py 60 nuclear coding loci -s oneseq, -f translate, -m 200, --no_subspec?es, --table standard 0:00:21 @:;g
Filter_Seqs_and_Species.py 5 mtDNA coding loci ;/Se?trr]ﬁtsgr?é -ftranslate, -m 200, --no_subspecies, --table 0:00:34 gé 2
Filter_Seqs_and_Species.py 2 mtDNA noncoding loci -s oneseq, -f length, -m 200, --no_subspecies 0:00:01 g§§

Fasta_Filter_by Min_Seqs.py 67 loci --min_seqs 30 0:00:01 _E % ﬁ

Sequence Alignment Adjust_Direction.py 61 loci --threads 8 0:00:51 %3?
Coding_Translation_Tests.py 54 nuclear coding loci --table standard 0:00:01 § E%
Coding_Translation_Tests.py 5 mtDNA coding loci --table vertmtdna 0:00:03 gg%

Align.py 2 mtDNA noncoding loci -a clustalo, --accurate, --threads 4 0:27:03 g %§

Align.py 5 mtDNA coding loci -a macse, --table vertmtdna, --mem 10, --pass_fail 5:30:37 Q:;T;

Align.py 54 nuclear coding loci -a macse, --table standard, --mem 10, --pass_fail 5:24:27 55

Post-Alignment Make_Acc_Table.py 61 loci 0:00:01 EE
Fasta_Relabel_Segs.py 61 loci -r species 0:00:01 gg
Trim_Alignments_Trimal.py 61 loci -f fasta, -a gt, --gt 0.1 0:00:01 28

Fasta_Convert.py 61 loci 0:00:01 ED-%:

Concatenation.py 61 loci, 1,426 taxa, 13,307 seqs --informat fasta, --outformat phylip, -s dash 0:00:01 ié

Total elapsed time 12:53:49 ‘gg

23

o8

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table S2. Summary of all steps for the Iguania-Fast analysis, which took ~1.5 hours to complete (not including user-time).

Step Module Input details Flag details Elapsed time
Parse Loci Parse_Loci.py 69 loci to search; 8,785,378 records --no_subspecies 0:17:24
Similarity Filtering ~ Cluster_Blast_Extract.py 58 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:18:30
Reference_Blast_Extract.py 9 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:47:.07
Sequence Selection Filter_Seqs_and_Species.py 67 loci -s oneseq, -f length, -m 200, --no_subspecies 0:00:10
Fasta_Filter_by Min_Seqs.py 67 loci --min_seqs 30 0:00:01
Sequence Alignment Adjust_Direction.py 60 loci --threads 8 0:00:50
Align.py 60 loci -a mafft, --threads 8 0:04:16
Post-Alignment Make_Acc_Table.py 60 loci 0:00:01
Fasta_Relabel_Segs.py 60 loci - species 0:00:01
Trim_Alignments_Trimal.py 60 loci -f fasta, -a gt, --gt 0.1 0:00:01
Concatenation.py 60 loci, 1,399 taxa, 12,978 seqs --informat fasta, --outformat phylip, -s dash 0:00:01

Total elapsed time 1:28:22

10

"9su89|| [euolfeusslul 0"y AN-DN-AgG-DDe Japun
a|ge|rene apew si 1| “Aumadiad uljuudaid ay) Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou

sem yaiym) uudauid siys 1oy spjoy 1ybBuAdod syl "6TOZ ‘9 JaquianoN paisod uoIsIsA SIyl :8z/8€S/T0TT 0T/610"10p//:sdny :10p wudaid Aixygolq

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

2 | UCE Supermatrix for the Genus Kaloula

2.1 | Methods. Kaloula-Vouchered and Kaloula-Species Analyses

To evaluate the ability of SuperCRUNCH to handle phylogenomic datasets, we attempted to
reconstruct the UCE matrix published by Alexander et al. (2017). Their matrix was composed of
14 species in the frog genus Kaloula and included a maximum of 1,785 loci per sample. One
species (K. conjuncta) contained four subspecies, and three taxa were represented by multiple
vouchered samples. In total, their dataset included 24 samples, but 6 samples were not identified
to species (denoted with “sp.” or “cf.”) and were excluded from our analyses. Therefore, the
maximum number of samples we targeted was 18, which represented 14 species. Given the
characteristics of this phylogenomic dataset, we performed two separate analyses. For our first
analysis, we aimed to construct a “vouchered” UCE supermatrix that would include all 18
samples, which we termed the Kaloula-Vouchered analysis (https://osf.io/crzp5/). This analysis
was intended to partially reconstruct the full “vouchered” matrix used by the authors for their
study. For our second analysis, we aimed to construct a species-level UCE supermatrix that
would only include a single representative for each of the 14 species, which we termed the
Kaloula-Species analysis (https://osf.io/crzp5/). In this analysis, we expected the number of loci
to increase for the 3 terminal taxa represented by multiple samples (K. baleata, K. conjuncta
conjuncta, K. conjuncta negrosens's), because sequences would be drawn from multiple
samples. We downloaded sequence data from GenBank on January 16, 2019 using the search
terms “Kaloula ultra conserved element”, which resulted in a 32MB fasta file containing 38,568
records. We generated a locus search terms file from the UCE 5k probe set file (available at
https://github.com/faircloth-lab/uce-probe-sets), which targeted 5,041 distinct UCE loci. This

general use UCE search terms file is freely available at:

11

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

https://github.com/dportik/SuperCRUNCH/tree/master/data/locus-search-terms. We created the
taxon list directly from the starting sequence set using outputs from Fasta Get_Taxa.py, which
resulted in 10 species names and 4 subspecies names.

For the Kaloula-VVouchered and the Kaloula-Species datasets, we conducted the same
general steps for both analyses. Given the taxon list was generated from the starting sequences,
we skipped the taxonomy assessment and instead began the analyses by searching for the 5,041
UCE loci in the 38,568 starting records using Parse_Loci.py. This produced 1,785 UCE files that
each contained more than two sequences. Given that all loci were previously identified and
filtered in another pipeline (PHY LUCE; Faircloth, 2016), we did not perform similarity filtering.
For the Kaloula-Vouchered dataset, we used Filter_Seqs and Species.py to select sequences
with the “allsegs”, “length”, and “vouchered” options, requiring a minimum length of 150 bp.
For the Kaloula-Species dataset, we used Filter_Seqs and_Species.py to select sequences with
the “oneseq” and “length” options, requiring a minimum length of 150 bp. In both datasets, one
locus was dropped (for which all sequences were less than 150 bp in length). Accession tables
were created using Make Acc_Table.py (with or without the “voucherize” option), sequence
directions were adjusted using Adjust_Direction.py, and all 1,784 loci were aligned using
MAFFT. Sequences were relabeled with Fasta_Relabel _Segs.py using the “species” option
(Kaloula-Species) or the “species” and “voucherize” options (Kaloula-Vouchered), and
alignments were concatenated to produce the final supermatrices. In total, we ran 8 separate steps
using 8 modules for both the Kaloula-Vouchered analysis (Table S3) and the Kaloula-Species
analysis (Table S4). The input and output files for each step, along with complete instructions,
are available on the Open Science Framework for the Kaloula-VVouchered analysis

(https://osf.io/zxng8/) and the Kaloula-Species analysis (https://osf.io/crzp5/). We investigated

12

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

whether the supermatrices we constructed resulted in phylogenies concordant with those
presented by Alexander et al. (2017). For each supermatrix we ran an unpartitioned RAXML
analysis (Stamatakis, 2014), and used the GTRCAT model and 100 rapid bootstraps to generate
support values. We compared the resulting topologies to those obtained by Alexander et al.

(2017).

2.2 | Results: Kaloula-Vouchered and Kaloula-Species Analyses

The Kaloula-Vouchered analysis resulted in a phylogenomic supermatrix containing 1,784 loci,
18 samples, and 28,790 total sequences. The analysis took ~25 minutes to complete (not
including user-time; Table S3). The number of UCE loci recovered per individual ranged from
1,276-1,664. The Kaloula-Species analysis resulted in a phylogenomic supermatrix containing
1,784 loci, 14 species, and 22,717 total sequences. The analysis took ~20 minutes to complete
(not including user-time; Table S4). The number of UCE loci recovered per sample ranged from
1,276-1,777. As expected, the terminal taxa represented by multiple samples displayed an
increase in the number of sequences recovered (K. baleata: from 1,649 to 1,765; K. c. conjucta:
from 1,649 to 1,756; K. c. negrosensis: from 1,664 to 1,777). The Kaloula-VVouchered and
Kaloula-Species analyses successfully found all 1,785 UCE loci reported by Alexander et al.
(2017), but one locus was dropped due to short sequence lengths (all <150 bp). The phylogenies
produced from both supermatrices are congruent with results obtained by Alexander et al.
(2017). The tree files are available online for the Kaloula-VVouchered analysis

(https://osf.io/zxng8/) and the Kaloula-Species analysis (https://osf.io/crzp5/)

13

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table S3. Summary of all steps for the Kaloula-Vouchered analysis, which took ~25 minutes to complete (not including user-time).

Step Module Input details Flag details Elapsed time
Parse Loci Parse_Loci.py 5,041 loci to search; 38,568 records 0:02:06
Sequence Selection Filter_Segs_and_Species.py 1,785 loci -s allsegs, -f length, -m 150, --vouchered 0:01:13
Make_Acc_Table.py 1,784 loci --voucherize 0:00:02
Sequence Alignment Adjust_Direction.py 1,784 loci --threads 8 0:07:22
Align.py 1,784 loci, mafft -a mafft, --threads 8 0:14:23
Post-Alignment Fasta_Relabel_Seqgs.py 1,784 loci -r species, -s, --voucherize 0:00:03
Concatenation.py 1,784 loci, 18 taxa, 28,790 seqs --informat fasta, --outformat phylip, -s dash ~ 0:00:01

Total elapsed time 0:25:10

Table S4. Summary of all steps for the Kaloula-Species analysis, which took ~20 minutes to complete (not including user-time).

"9SUB9I| [UOITRUISIU| 0" AN-ON-AG-D0® Japun

Step Module Input details Flag details Elapsed time
Parse Loci Parse_Loci.py 5,041 loci to search; 38,568 records 0:02:05
Sequence Selection Filter_Seqs_and_Species.py 1,785 loci -s oneseq, -f length, -m 150 0:00:13
Make_Acc_Table.py 1,784 loci 0:00:02
Sequence Alignment Adjust_Direction.py 1,784 loci --threads 8 0:07:03
Align.py 1,784 loci, mafft -a mafft, --threads 8 0:10:25
Post-Alignment Fasta_Relabel_Seqgs.py 1,784 loci -I species, -S 0:00:03
Concatenation.py 1,784 loci, 14 taxa, 22,717 seqs --informat fasta, --outformat phylip, -s dash 0:00:01

Total elapsed time 0:19:52

a|ge|rene apew si 1| “Aumadiad uljuudaid ay) Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou
sem yaiym) uudauid siys 1oy spjoy 1ybBuAdod syl "6TOZ ‘9 JaquianoN paisod uoIsIsA SIyl :8z/8€S/T0TT 0T/610"10p//:sdny :10p wudaid Aixygolq

14

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

3 | Phylogeographic Dataset for Trachylepis sulcata

3.1 | Methods:. Trachylepis-Phylogeogr aphy and Trachylepis-Species Analyses

To evaluate the ability of SuperCRUNCH to reconstruct phylogeographic datasets from
GenBank data, we attempted to reconstruct the dataset of Portik et al. (2011) using their
published GenBank sequences. This dataset, which was partially published in Portik et al.
(2010), consists of four loci sequenced for 88 samples of the lizard species complex Trachylepis
sulcata, and several outgroups. We downloaded sequence data from GenBank on July 20, 2019
using the search term “Trachylepis sulcata”, which resulted in 442 records (<1 MB in size). We
created a locus search terms file specific to the four loci included in Portik et al. (2011): EXPHS5,
KIF24, RAGL, and ND2. These are a subset of the loci included in the Iguania supermatrix
analyses. We obtained taxon names directly from the starting sequence set using

Fasta Get_Taxa.py, and used the outputs to create a taxon list that targeted the focal species (T.
sulcata) and six outgroup species (T. aurata, T. punctulata, T. varia, T. variegata, T. vittata, and
T. wahlbergii). To reconstruct the phylogeographic dataset of Portik et al. (2011) we ran a
“vouchered” analysis (termed Trachylepis-Phylogeography), which would include all vouchered
samples in the final alignments. For comparison, we also created a species-level supermatrix
which would be composed of the seven species (termed Trachylepis-Species).

We conducted the same general steps for the Trachylepis-Phylogeography and the
Trachylepis-Species analyses. Given the taxon list was generated from the starting sequences, we
skipped the taxonomy assessment and instead began the analyses by searching for the four loci in
the 442 starting records using Parse_Loci.py. We performed similarity filtering using
Cluster_Blast_Extract.py for all loci. For the Trachylepis-Phylogeography dataset, we used

77 G

Filter_Segs and_Species.py to select sequences using the “oneseq”, “length”, and “vouchered”

15

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

options, requiring a minimum length of 200 bp. For the Trachylepis-Species dataset, we used
Filter_Segs and_Species.py to select sequences using the “oneseq” and “length” options,
requiring a minimum length of 200 bp. Accession tables were created using Make Acc_Table.py
(with or without the “voucherize” option), sequence directions were adjusted using
Adjust_Direction.py, and all loci were aligned using MAFFT with Align.py. Sequences were
relabeled with Fasta_Relabel _Segs.py using the “species” option (Trachylepis-Species) or the
“species” and “voucherize” options (Trachylepis-Phylogeography), file formats were converted
using Fasta_Convert.py, and concatenation was performed using Concatenation.py. In total, we
ran 10 separate steps using 10 modules for the Trachylepis-Phylogeography analysis (Table S5)
and the Trachylepis-Species analysis (Table S6). The input and output files for each step, along
with complete instructions, are available on the Open Science Framework for the Trachylepis-
Phylogeography analysis (https://osf.io/bgc5z/) and the Trachylepis-Species analysis
(https://osf.io/umswn/). We investigated if the phylogenies produced from each supermatrix were
concordant with results presented by Portik et al. (2011). For each supermatrix we ran an
unpartitioned RAXML analysis using the GTRCAT model and 100 rapid bootstraps to generate

support values. We compared the resulting topologies to those obtained by Portik et al. (2011).

3.2 | Results: Trachylepis-Phylogeography and Trachylepis-Species Analyses

The Trachylepis-Phylogeography analysis successfully reconstructed the phylogeographic
dataset of Portik et al. (2011). The analysis found sequences of the four loci (EXPHS5, KIF24,
RAG1, ND2) for all 88 vouchered samples of Trachylepis sulcata, which resulted in a total of
326 sequences. In addition, vouchered samples representing several outgroups from Portik et al.

(2010) and Portik et al. (2011) were also recovered, including T. aurata (2 individuals), T.

16

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

punctulata (3), T. varia (6), T. variegata (5), T. vittata (2), and T. wahlbergii (2). This resulted in
an additional 74 sequences, and the final concatenated alignment of all four loci (e.g., the
phylogeographic supermatrix) contained a total of 108 vouchered samples and 400 sequences.
The Trachylepis-Phylogeography analysis took 37 seconds to complete (not including user-time;
Table S5). The Trachylepis-Species analysis was run as a comparison to the Trachylepis-
Phylogeography analysis. It was used to select one representative sequence per species per locus,
for the purpose of creating a species-level matrix from these population-level data. The
Trachylepis-Species analysis resulted in a matrix containing 7 species (T. aurata, T. punctulata,
T. sulcata, T. varia, T. variegata, T. vittata, and T. wahlbergii), four loci, and a total of 26
sequences. The Trachylepis-Species analysis took 21 seconds to complete (not including user-
time; Table S6). The phylogenies produced from the phylogeographic matrix and the species-
level matrix were congruent with results presented by Portik et al. (2010) and Portik et al.
(2011). The tree files are available online for the Trachylepis-Phylogeography analysis

(https://osf.io/bge5z/) and the Trachylepis-Species analysis (https://osf.io/lumswn/).

17

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table S5. Summary of all steps for the Trachylepis-Phylogeography analysis, which took <1 minute to complete (not including user-
time).

Step Module Input details Flag details Elapsed time
Parse Loci Parse_Loci.py 4 loci to search; 442 records 0:00:01
Similarity Filtering Cluster_Blast_Extract.py 4 loci -b dc-megablast, -m span, --threads 4 0:00:13
Sequence Selection Filter_Seqs_and_Species.py 4 loci -s allsegs, -f length, -m 200, --vouchered 0:00:01
Make_Acc_Table.py 4 loci --voucherize 0:00:01
Sequence Alignment Adjust_Direction.py 4 loci --threads 8 0:00:02
Align.py 4 loci -a mafft, --threads 8 0:00:16
Post-Alignment Fasta_Relabel_Seqgs.py 4 loci -r species, --voucherize 0:00:01
Fasta_Convert.py 4 loci 0:00:01
Concatenation.py 4 loci, 108 taxa, 400 seqs --informat fasta, --outformat phylip, -s dash 0:00:01

Total elapsed time 0:00:37

Table S6. Summary of all steps for the Trachylepis-Species analysis, which took <30 seconds to complete (nhot including user-time).

"9SUB9I| [UOITRUISIU| 0" AN-ON-AG-D0® Japun

Step Module Input details Flag details Elapsed time
Parse Loci Parse_Loci.py 4 loci to search; 442 records 0:00:01
Similarity Filtering Cluster_Blast_Extract.py 4 loci -b dc-megablast, -m span, --threads 4 0:00:13
Sequence Selection Filter_Segs_and_Species.py 4 loci -s oneseq, -f length, -m 200 0:00:01
Make_Acc_Table.py 4 loci 0:00:01
Sequence Alignment Adjust_Direction.py 4 loci --threads 8 0:00:01
Align.py 4 loci -a mafft, --threads 8 0:00:01
Post-Alignment Fasta_Relabel_Seqgs.py 4 loci -r species 0:00:01
Fasta_Convert.py 4 loci 0:00:01
Concatenation.py 4 loci, 7 taxa, 26 seqs --informat fasta, --outformat phylip, -s dash 0:00:01

Total elapsed time 0:00:21

a|ge|rene apew si 1| “Aumadiad uljuudaid ay) Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou
sem yaiym) uudauid siys 1oy spjoy 1ybBuAdod syl "6TOZ ‘9 JaquianoN paisod uoIsIsA SIyl :8z/8€S/T0TT 0T/610"10p//:sdny :10p wudaid Aixygolq

18

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

4 | Population Datasetsfor Callisaurusand Uma
4.1 | Methods:. Callisaurus-Population and Uma-Population Analyses
We used SuperCRUNCH to generate new combinations of population-level datasets from
published sequences. We created independent population-level datasets for the lizard genera
Callisaurus and Uma (family Phrynosomatidae). These were chosen because we knew in
advance that some phylogeographic data were present across multiple studies (including Lindell
et al., 2005; Schulte & de Queiroz, 2008; Gottscho et al., 2017). However, we did not know
which loci would be most strongly represented. We therefore used SuperCRUNCH to survey the
availability of sequences. We downloaded sequence data from GenBank on January 25, 2019
using the search term “Phrynosomatidae”, which resulted in a 52MB fasta file containing 82,557
records. We obtained a taxon list directly from the fasta file, which was pruned to contents of
each respective genus for separate searches. For Callisaurus, this included 11 taxon names
(Callisaurus draconoides, Callisaurus d. bogerti, Callisaurus d. brevipes, Callisaurus d.
carmenens's, Callisaurusd. crinitus, Callisaurus d. draconoides, Callisaurus d. inusitanus,
Callisaurus d. myurus, Callisaurus d. rhodostictus, Callisaurus d. splendidus, Callisaurus d.
ventralis). For Uma, this included 10 taxon names (Uma exsul, Uma inornata, Uma notata, Uma
n. cowlesi, Uma n. notata, Uma n. rufopunctata, Uma paraphygas, Uma rufopunctata, Uma
scoparia, Uma s. scoparia). We recognize that some of the taxon names are synonyms, but we
included all names (without corrections) so as to find all available sequences and to obtain
counts of sequences for each respective name. We used the same set of 69 locus search terms
from our Iguania analysis to perform searches.

We conducted the same general steps for the Callisaurus-Population and Uma-Population

analyses. Given the taxon list was generated from the starting sequences, we skipped the

19

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

taxonomy assessment and instead began each analysis by searching for the 69 loci in the 82,557
starting records using Parse _Loci.py. This resulted in the recovery of 50 loci for Callisaurusand
52 loci for Uma. We performed similarity filtering using Cluster_Blast_Extract.py for all loci.
We used Filter_Segs and Species.py to select sequences using the “allseqs” and “length”
options (but importantly not the “voucher” option), requiring a minimum length of 200 bp. We
used Fasta Filter_by Min_Segs.py to remove alignments with fewer than 8 sequences, which
resulted in the retention of 7 loci for Callisaurusand 5 loci for Uma. Sequence directions were
adjusted using Adjust_Direction.py, and all loci were aligned using MAFFT in Align.py.
Sequences were relabeled with Fasta Relabel Seqs.py using the “species_acc” option (which is
a combination of the taxon name and accession number), and file formats were converted using
Fasta Convert.py. In total, we ran 8 separate steps using 8 modules for both the Callisaurus-
Population analysis (Table S7) and the Uma-Population analysis (Table S8). The input and
output files for each step, along with complete instructions, are available for the Callisaurus-
Population analysis at https://osf.io/7gujb/, and for the Uma-Population analysis at
https://osf.io/e28tu/. For all genes, we ran separate unpartitioned RAXML analyses. We used the
GTRCAT model, and performed 100 rapid bootstraps to generate support values for the gene

trees.

4.2 | Results: Callisaurus-Population and Uma-Population Analyses
We used SuperCRUNCH to generate new combinations of published sequences, with the
intention of finding loci suitable for population-level analyses. We created a population-level

dataset for the lizard genus Callisaurus and a separate one for the genus Uma.

20

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

For the Callisaurus-Population analysis, we found 7 loci that contained eight or more
sequences, including five mitochondrial genes (12S, n=8; CO1, n=8; CYTB, n=93; ND1, n=8;
ND2, n=8) and two nuclear loci (MC1R, n=70; RAGL1, n=70). Among these seven genes, three
contained the most sequences (CYTB, MC1R, RAGL1), each with 70 or more. Across all genes,
there were 10 taxa represented (C. draconoides, C. d. bogerti, C. d. brevipes, C. d. carmenens's,
C. d. crinitus, C. d. draconoides, C. d. inusitanus, C. d. myurus, C. d. rhodostictus, C. d.
splendidud, C. d. ventralis). The Callisaurus analysis took 35 seconds to complete (not including
user-time; Table S7).

For the Uma-Population analysis, we found 5 genes that contained eight or more
sequences, which were all mitochondrial genes (12S, n=8; CO1, n=19; CYTB, n=191; ND1, n=8;
ND2, n=8). Among these genes, CYTB contained the greatest number of sequences (n=191) by a
considerable margin. Across all loci, there were 10 taxa found (U. exsul, U. inornata, U. notata,
U. n. cowles, U. n. notata, U. n. rufopunctata, U. paraphygas, U. rufopunctata, U. scoparia, U.
s. scoparia). The Uma analysis took 31 seconds to complete (not including user-time; Table S8).

Because sequences in these datasets were not necessarily from vouchered samples, the
sequences were labeled using the species name and GenBank accession number. This allowed
every sequence within an alignment to have a unique name, but as a result concatenation was not
possible. For these datasets, we created a gene tree from each alignment. The individual gene
trees produced from the 7 loci for Callisaurus and the 5 loci for Uma were congruent with
phylogenetic results presented by Schulte & de Queiroz (2008), Lindell, Méndez-de la Cruz, and
Murphy (2005), and Gottscho et al. (2017). All gene tree files are available online for the
Callisaurus-Population analysis (https://osf.io/7gujb/) and the Uma-Population analysis

(https://osf.iole28tu/).

21

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table S7. Summary of all steps for the Callisaurus-Population analysis, which took under a minute to complete (not including user-
time).

Step Module Input details Flag details Elapsed time
Parse Loci Parse_Loci.py 69 loci to search; 82,557 records 0:00:05
Similarity Filtering ~ Cluster_Blast_Extract.py 50 loci -b dc-megablast, -m span, --threads4 ~ 0:00:09
Sequence Selection Fasta_Filter_by Min_Seqgs.py 46 loci --min_seqs 8 0:00:01
Filter_Seqs_and_Species.py 7 loci -s allsegs, -f length -m 200 0:00:01
Sequence Alignment Adjust_Direction.py 7 loci --threads 8 0:00:02
Align.py 7 loci, mafft -a mafft, --threads 8 0:00:14
Post-Alignment Fasta_Relabel_Segs.py 7 loci -r species_acc, -S 0:00:01
Fasta_Convert.py 7 loci 0:00:01

Total elapsed time 0:00:35

Table S8. Summary of all steps for the Uma-Population analysis, which took under a minute to complete (not including user-time).

"9SUB9I| [UOITRUISIU| 0" AN-ON-AG-D0® Japun

Step Module Input details Flag details Elapsed time
Parse Loci Parse_Loci.py 69 loci to search; 82,557 records 0:00:06
Similarity Filtering ~ Cluster_Blast_Extract.py 52 loci -b dc-megablast, -m span, --threads 4 0:00:17
Sequence Selection Fasta_Filter_by Min_Segs.py 45 loci --min_seqs 8 0:00:01
Filter_Seqs_and_Species.py 5 loci -s allsegs, -f length -m 200 0:00:01
Sequence Alignment Adjust_Direction.py 5 loci --threads 8 0:00:01
Align.py 5 loci, mafft -a mafft, --threads 8 0:00:03
Post-Alignment Fasta_Relabel_Seqgs.py 5 loci -r species_acc, -S 0:00:01
Fasta_Convert.py 5 loci 0:00:01

Total elapsed time 0:00:31

a|ge|rene apew si 1| “Aumadiad uljuudaid ay) Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou
sem yaiym) uudauid siys 1oy spjoy 1ybBuAdod syl "6TOZ ‘9 JaquianoN paisod uoIsIsA SIyl :8z/8€S/T0TT 0T/610"10p//:sdny :10p wudaid Aixygolq

22

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

5 | Adding Outgroupsto an Unpublished Supermatrix Project: Family Hyperoliidae

5.1 | Methods: Hyperoliid-Outgroup Analysis

We used SuperCRUNCH to perform a common but sometimes exceedingly difficult task in
phylogenetics: adding published outgroup sequences to an unpublished sequencing project. The
unpublished sequences were generated as part of Portik et al. (2019), which focused on the
systematics of hyperoliid frogs (family Hyperoliidae). These sequences are now available on
GenBank (MK497946-MK499204; MK509481-MK509743), but for this demonstration we
used the unpublished version of these sequences. This local dataset consisted of six loci
sequenced for ~128 species, but many species were represented by multiple vouchered samples.
It contains a total of 266 samples. The fasta file for the unpublished dataset contained 1,522
records (1.3MB), and the records were labeled according to the conventions described in the
online documentation (https://github.com/dportik/SuperCRUNCH/wiki/2:-Starting-
Sequences#ULS). For this analysis, we wanted to add all available GenBank sequence data for
the family Arthroleptidae, which is the sister family of Hyperoliidae (the ingroup). We used the
search term “Arthroleptidae” to download all available data from GenBank on October 25, 2019,
which resulted in a fasta file containing 2,977 records (3MB). For the local sequences, we
wanted to treat all samples as distinct (equivalent to a vouchered analysis), whereas for the
outgroups we simply wanted to include all possible data for a given species (equivalent to a
species-level analysis, in which sequences for a species most likely come from different
samples). Within the local sequences, we intentionally labeled the records such that the species
names was followed immediately by a museum/field identifier, which allowed us to take
advantage of the flexible “subspecies” option in SuperCRUNCH. The subspecies option allows

any three-part name to be used, and the third part of a name can contain either a subspecies label

23

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

or any alphanumerical identifier. We therefore used Fasta_Get_Taxa.py with the “numerical”
option to obtain a list of “subspecies” from the local sequences that actually contained the
museum/field codes instead of a subspecies label (e.g., Genus speciesidentifier as opposed to
Genus species subspecies), and treated these as “subspecies” throughout the analysis. We
independently used Fasta_Get_Taxa.py to obtain all taxon names in the arthroleptid outgroup
sequences, and created a taxon list composed only of species labels (e.g., no subspecies
included). The species labels of the arthroleptids (the outgroup) were combined with the
“subspecies” labels of the hyperoliids (the ingroup) to create a combined taxon list. We merged
the fasta files of the hyperoliid sequences and the arthroleptid sequences to create a single fasta
file of sequences. We constructed locus search terms for the 6 loci, which included one
mitochondrial gene (16S) and five nuclear loci (FICD, KIAA2013, POMC, RAG1, TYR). We
used these materials to create a custom supermatrix with SuperCRUNCH, which we termed the
Hyperoliid-Outgroup analysis.

We wanted to ensure that the sequences obtained for the outgroups closely matched the
regions for each gene present in our hyperoliid (local) sequence data. To accomplish this, we
used our local sequences as references during similarity filtering. In order to create the six
necessary reference files (a locus-specific fasta file composed of only hyperoliid sequences), we
ran Parse_Loci.py using the hyperoliid fasta file. We then ran Parse_Loci.py on the combined
hyperoliid and arthroleptid fasta file (containing GenBank and local sequences) to obtain all
sequences for each locus, and subsequently ran Reference Blast_Extract.py for each of the six
loci using the corresponding hyperoliid reference set. We used Filter_Seqs and Species.py to
select sequences with the “oneseq” and “length” options, requiring a minimum length of 200 bp.

Sequence directions were adjusted using Adjust_Direction.py, and all loci were aligned with

24

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

MAFFT using Align.py. Sequences were relabeled with Fasta Relabel Segs.py using the
“species” option with the “subspecies” feature (allowing the hyperoliid sequences to be labeled
as Genus speciesidentifier). After relabeling, concatenation was performed using
Concatenation.py. In total, we ran 8 separate steps using 7 modules for the Hyperoliid-Outgroup
analysis (Table S9). The input and output files for each step, along with complete instructions,
are available at: https://osf.io/q9nyx/. We ran an unpartitioned RAXML analysis on the final

supermatrix using the GTRCAT model and 100 rapid bootstraps.

5.2 | Results: Hyperoliid-Outgroup Analysis

The Hyperoliid-Outgroup analysis successfully incorporated GenBank sequences
(Arthroleptidae) and locally generated sequences (Hyperoliidae) to produce a supermatrix that
contained 6 loci, 365 terminals, and 1,724 sequences. The hyperoliid sequences included
multiple vouchered samples for many taxa, and the subspecies feature in SuperCRUNCH was
used to include museum/field identifiers as the “subspecies” component in their taxon names.
This strategy allowed us to successfully include all 266 samples (rather than selecting
representative sequences for each of the 128 species). In contrast, for the arthroleptids we simply
wanted to obtain the most complete data possible per species (linking vouchers was not
relevant). SuperCRUNCH allowed us to target species-level sampling for the outgroup, but
population-level sampling for the ingroup. We produced a dataset containing 1,509 sequences
and 266 samples for hyperoliids (local), and containing 225 sequences and 99 species for
arthroleptids (GenBank). The Hyperoliid-Outgroup analysis took 3 minutes and 45 seconds to

complete (not including user-time; Table S9). The phylogeny produced from the Hyperoliid-

25

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Outgroup supermatrix is congruent with that estimated by Portik et al. (2019). The tree file is

available online (https://osf.io/q9nyx/).

26

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table S9. Summary of all steps for the Hyperoliid-Outgroup analysis, which took ~4 minutes to complete (not including user-time).

Step Module Input Details Flag Information Elapsed time
Parse Loci Parse_Loci.py 6 loci, 4,499 records (for combined dataset) 0:00:01
Parse_Loci.py 6 loci, 1,522 records (for hyperoliid sequences only) 0:00:01
Similarity Filtering ~ Reference_Blast_Extract.py 6 loci -b dc-megablast, --max_hits 200, -m span, --threads 4 0:03:38
Sequence Selection Filter_Seqs_and_Species.py 6 loci -s oneseq, -f length, -m 200 0:00:01
Sequence Alignment Adjust_Direction.py 6 loci --threads 8 0:00:01
Align.py 6 loci -a mafft, --threads 8 0:00:01
Post-Alignment Fasta_Relabel_Segs.py 6 loci -I species, -S 0:00:01
Concatenation.py 6 loci --informat fasta, --outformat phylip, -s dash 0:00:01

Total elapsed time 0:03:45

"9su89|| [euolfeusslul 0"y AN-DN-AgG-DDe Japun
a|ge|rene apew si 1| “Aumadiad uljuudaid ay) Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou

sem yaiym) uudauid siys 1oy spjoy 1ybBuAdod syl "6TOZ ‘9 JaquianoN paisod uoIsIsA SIyl :8z/8€S/T0TT 0T/610"10p//:sdny :10p wudaid Aixygolq

27

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

6 | Super CRUNCH Comparison to PyPHLAWD

6.1 | Methods— PyPHLAWD Comparison

We compared the ability of SuperCRUNCH to construct species-level supermatrices, relative to
PYyPHLAWD (Smith & Walker, 2018), using two test clades (Iguania and Dipsacales).
Importantly, we focused on PyPHLAWD given that Smith & Walker (2018) showed that
PyPHLAWD outperformed other methods for supermatrix construction (specifically
phyloGenerator, PhyLoTA, and SUPERSMART). Therefore, if our method outperforms
PyPHLAWD, then it should represent the state-of-the-art for supermatrix construction. The
performance criteria used by Smith & Walker (2018) was the number of taxa and sequences
retrieved by each method. We used these criteria as well, but we also considered whether the
clades recovered by each method were consistent with current taxonomy. This latter criterion
should help detect whether the supermatrices generated by each method tend to yield
problematic phylogenetic results. These problematic results will not be apparent simply from the
number of taxa and sequences retrieved by each method.

PyPHLAWD retrieves sequences by interfacing directly with a GenBank database
release. It was initially designed to produce orthologous sequence clusters using “all-by-all”
clustering methods, but it also offers an option to target specific loci by incorporating sets of
user-supplied reference sequences (referred to as a “baited” analysis). To search for the same set
of 69 loci for Iguania, we performed a “baited” analysis in PyPHLAWD (“v1.0”, Aug 20, 2018
release) with baits consisting of sequences used for the Iguania-Thorough analysis (e.g., mtDNA
references) or obtained from them (e.g., the nuclear loci recovered). This PyPHLAWD analysis
(termed Iguania-PyPHLAWND) was run using the default settings in the configuration file. All

output files for the Iguania-PyPHLAWD analysis are provided at: https://osf.io/vyxj4/.

28

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

PyPHLAWD does not offer an option to exclude subspecies, and the taxonomy used relies on the
NCBI Taxonomy database. As a result, the taxonomy for the PyPHLAWD analysis was
incompatible with the taxonomy we obtained from the Reptile Database (Uetz et al., 2018).
Therefore, after the analysis we “corrected” the taxonomy by updating names and removing all
subspecies in the alignments. As the steps for performing concatenation in PyPHLAWD were
unclear, we concatenated the updated alignments using the Concatenation.py module in
SuperCRUNCH to produce a final supermatrix.

Although we had already run two species-level supermatrix analyses for Iguania using
SuperCRUNCH (Iguania-Thorough, Iguania-Fast), these analyses used sequences downloaded
from GenBank directly. For these analyses, it would not be possible to determine if differences
in the resulting supermatrices (relative to PyPHLAWD) were due to differences in methodology
or differences in the starting sequences used. To allow a direct comparison to PyPHLAWD, we
used the Iguania sequence set fetched directly by PyPHLAWD (134,028 records) to perform an
additional SuperCRUNCH analysis (termed Iguania-Constrained). For this analysis, we
performed an initial taxon assessment of the starting sequences and relabeled records using
updated names. Locus parsing, similarity filtering, sequence selection, direction adjustment, and
alignment used the same options and settings as the Iguania-Fast analysis. We chose the Iguania-
Fast settings because several of these steps resembled options in PyPHLAWD, including
sequence selection by length, and alignment with MAFFT. We did not remove any loci based on
a minimum requirement for the number of sequences (<30) to allow better comparison to
PyPHLAWD. Alignments were relabeled, trimmed, and concatenated following the steps

outlined in the Iguania-Thorough analysis. In total, we ran 12 separate steps using 12 modules

29

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

for the Iguania-Constrained analysis (Table S10). The input and output files for each step, along
with complete instructions, are available at: https://osf.io/za2ug/.

We further compared the ability of SuperCRUNCH and PyPHLAWD to construct
supermatrices by performing additional analyses using the plant clade Dipsacales. This was the
example dataset used by Smith and Walker (2018). Following Smith and Walker (2018), we
searched for the same four loci (ITS, matK, rbcl, trnL-trnF) using a “baited” analysis in
PyPHLAWD (*v1.0”, Aug 20, 2018 release) using their provided bait sets. This PyPHLAWD
analysis (termed Dipsacales-PyPHLAWD) was run using the default settings in the configuration
file. All output files for the Dipsacales-PyPHLAWD analysis are provided at:
https://osf.io/7jge4/.

We performed a SuperCRUNCH analysis using the Dipsacales sequence set fetched by
PyPHLAWD using the GenBank release database (12,348 records), which we termed
Dipsacales-Constrained. The taxonomy table produced by PyPHLAWD was used to create a
taxon list for this analysis, which included subspecies. The taxonomy table also contained the
original description lines for the downloaded sequences, which we examined to create locus
search terms for the four loci. We searched for sequences using Parse_Loci.py. We performed
similarity filtering for each of the four loci using Reference Blast Extract.py, using the
corresponding bait set as the reference sequences. We selected representative sequences per
taxon for all loci using the “onseq” and “length” options in Filter_Seqs and Species.py,
requiring a minimum length of 200 bp. We performed sequence direction adjustments for the
remaining 60 loci using Adjust_Direction.py, and performed multiple sequence alignment using
MAFFT in Align.py. We constructed a table of GenBank accession numbers for all filtered

sequences using the Make Acc_Table.py module. We relabeled sequences in all alignment files

30

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

using the “species” option and “subspecies” feature in Fasta Relabel Segs.py, and subsequently
trimmed alignments using the gap-threshold option in trimAl with a threshold value of 0.1, as
implemented in Trim_Alignments_Trimal.py. We skipped format conversion and concatenated
the alignments to produce the final supermatrix. In total, we ran 9 separate steps using 9 modules
for the Dipsacales-Constrained analysis (Table S11). The input and output files for each step,
along with complete instructions, are available at: https://osf.io/937yu/.

We constructed a total of four supermatrices for Iguania (Iguania-Thorough, Iguania-
Fast, Iguania-Constrained, Iguania-PyPHLAWD), and two supermatrices for Dipsacales
(Dipsacales-PyPHLAWD, Dipsacales-Comparison). We summarized differences in the content
of the supermatrices, including the total number of taxa, loci, and sequences. In addition, we
evaluated differences in the resulting phylogenetic trees from these supermatrices. For each
supermatrix we ran an unpartitioned RAXML analysis, and used the GTRCAT model and 100
rapid bootstraps to generate a phylogeny with support values. We evaluated the number of
genera, subfamilies, and families recovered as monophyletic in the four different Iguania trees,
and the number of monophyletic genera in the two different Dipsacales trees. All tree files are

available at: https://osf.io/vgwu3/.

6.2 | Results— PyPHLAWD Comparison

6.2.1 | Supermatrix Results

SuperCRUNCH generally outperformed PyPHLAWD in all comparisons and resulted in higher
numbers of sequences and taxa for the Iguania and Dipsacales datasets (Tables S12-S14). The
analysis of Dipsacales was smaller in scope. SuperCRUNCH obtained better results, but the

supermatrices generated by each method were generally similar (versus iguanians, see below).

31

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

For Dipsacales, we successfully replicated the results of Smith and Walker (2018) in terms of the
number of species recovered. The Dipsacales-PyPHLAWD analysis resulted in a supermatrix
containing 4 loci, 641 taxa, and 1,510 total sequences (Table S14), and took 1 minute and 16
seconds to complete. The Dipsacales-Constrained analysis in SuperCRUNCH resulted in a
supermatrix containing 4 loci, 651 taxa, and 1,589 total sequences, and took 1 minute and 14
seconds to complete (not including user-time; Table S11). The Dipsacales-Constrained analysis
recovered more sequences for 3 out of the 4 loci, and both analyses recovered an equal number
of sequences for 1 locus (Table S14).

The Iguania-PyPHLAWD analysis resulted in a supermatrix containing 66 loci, 1,069
species, and 10,397 total sequences (Table S13), and took 18 minutes to complete. The Iguania-
Constrained analysis in SuperCRUNCH generated a supermatrix containing 67 loci, 1,359 taxa,
and 12,676 total sequences (Table S13). The analysis took 1 hour and 8 minutes to complete (not
including user-time; Table S10). Among the 66 loci shared between the two analyses, the
Iguania-PyPHLAWD analysis recovered more sequences for 5 loci (7%), the Iguania-
Constrained analysis recovered more sequences for 19 loci (29%), and both analyses recovered
equal numbers of sequences for 43 loci (64%; Table S12). These two analyses relied on starting
sequences obtained through a GenBank database release. They were outperformed by all other
SuperCRUNCH analyses of Iguania that used data downloaded from GenBank directly by us
(including Iguania-Thorough and Iguania-Fast; Table S13). In particular, the Iguania-Thorough
analysis in SuperCRUNCH vastly outperformed the Iguania-PyPHLAWD analysis. It recovered
more species (1,426 vs. 1,069) and total sequences (13,307 vs. 10,397) despite having fewer loci
in the final supermatrix (it initially found 67 loci but discarded 6 because of the minimum

sequence filter).

32

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

A per-locus comparison for Iguania revealed the largest difference in performance
between the PyPHLAWD analysis and any of the three SuperCRUNCH analyses was for loci
containing “complex” records (those consisting of multiple loci or non-overlapping regions).
These included the mitochondrial genes, as well as RAG1 (Table S12). Given the same set of
starting sequences, PyPHLAWD found only 37% of the total mtDNA sequences recovered by
SuperCRUNCH in the Iguania-Constrained analysis, and recovered only four of the seven
mitochondrial genes with reasonable success (>50 sequences).

The likely source of this issue is the close match between baits and sequences required by
PYPHLAWD, with close matches required in both length and divergence (S. Smith, personal
communication). PyPHLAWD does not automatically trim query sequences after similarity
searches. Rather, it passes or fails an entire sequence based on set threshold values (such as
percent identity and minimum or maximum length). In the case of “complex” mtDNA records,
the entire multigene sequence would pass or fail, rather than being trimmed to the target region.
It may have been possible for us to obtain better results by changing these default settings.
However, given this design and the sequence length heterogeneity present in “complex” records,
it is unclear if there is an optimal setting that would allow all target sequences to be found for
these types of loci. Inspection of the similarity searching outputs from SuperCRUNCH confirms
this idea (i.e., outputs containing the starting lengths, BLAST coordinates, and trimmed lengths
of input sequences). In the case of COL (for which no sequences were recovered with
PyPHLAWD), we used several reference sequences spanning the entire length of the COL1 gene
(~1,500 bp) as the “baits”. All input sequences containing CO1 fell into two categories: (1) they
were purely on target but <700 bp in length, or (2) they were “complex” records in which CO1

represented less than 50% of the length of the total sequence. Both of these scenarios appeared to

33

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

cause severe problems for the similarity searches in PyPHLAWD (particularly the matched
length requirement between bait and sequence), and the default settings caused both categories of
sequences to fail this filter. Although we might have obtained better results for one category of
sequences for CO1 by using different settings, this would have driven losses for the other
category of sequences. Given that the characteristics of the input sequences are generally
unknown (e.g., “simple” vs. “complex”, length heterogeneity), this makes finding appropriate
“baits” and defining appropriate settings extremely challenging. Thus, significant losses of data
for some loci are expected to occur with PyPHLAWD, as we observe here.

The results for the nuclear loci (e.g., “simple” records) were more similar between
methods, and both methods obtained the same number of sequences for 43 loci. In some cases,
PyPHLAWD obtained more sequences for nuclear loci. Two of these cases revealed a limitation
of the label-searching method of SuperCRUNCH, as synonomous gene names for the two loci
(R35 vs. GPR14, ZEB2 vs. ZHFX1b) resulted in the loss of actual homologous sequences by
SuperCRUNCH. However, we also identified at least one case in which PyPHLAWD included
paralogous sequence data (ENC1 contained ENC6 sequences), which artificially inflated the total
number of sequences for that locus. We did not observe these paralogous sequences (of ENC6)
in the ENC1 alignment created using SuperCRUNCH. Instead, these paralogous sequences were

eliminated because they did not contain the gene abbreviation or description terms for ENC1.

6.2.2 | Phylogenetic Results
We compared phylogenetic trees estimated from the supermatrices for the four analyses of
Iguania, and the two analyses of Dipsacales. For each iguanian phylogeny, we evaluated the

number of genera, subfamilies, and families recovered as monophyletic. The Iguania-Thorough,

34

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Iguania-Fast, and Iguania-Constrained analyses recovered all 14 families as monophyletic with
high support, whereas Iguania-PyPHLAWD only recovered 13 of 14 families as monophyletic.
The PyPHLAWD analysis failed to support the monophyly of Agamidae (i.e., Chamaeleonidae
is nested inside Agamidae), even though agamid monophyly has been strongly supported in
previous supermatrix analyses (Pyron et al. 2013; Zheng & Wiens, 2016) and phylogenomic
analyses (Streicher, Schulte, & Wiens 2016). All four Iguania analyses recovered all 10
subfamilies as monophyletic with high support (all >95%). Comparisons of genera were more
complex, as the trees each contained a different number of species and genera. The Iguania-
Thorough phylogeny contained 111 genera, including 68 monophyletic genera, 16 non-
monophyletic genera, and 27 genera represented by a single species. The Iguania-Fast phylogeny
contained 108 genera, including 65 monophyletic genera, 15 non-monophyletic genera, and 28
genera represented by a single species. The Iguania-Constrained phylogeny contained 106
genera, including 64 monophyletic genera, 13 non-monophyletic genera, and 29 genera
represented by a single species. The Iguania-PyPHLAWD phylogeny contained 94 genera,
including 58 monophyletic genera, 12 non-monophyletic genera, and 24 genera represented by a
single species. Although PyPHLAWD and SuperCRUNCH produced somewhat similar scores
for these metrics, the Iguania-Thorough phylogeny contained an additional 357 taxa and 17
genera not present in the PyPHLAWD phylogeny. The phylogenies and corresponding
assessments of the groupings present are provided at: https://osf.io/zxhby/.

For the plant family Dipsacales, we only compared the monophyly of genera. In this
regard, the Dipascales phylogeny produced from the SuperCRUNCH supermatrix was also
higher quality than the phylogeny from the PyPHLAWD supermatrix. These trees contained

different numbers of species, but the same number of genera. The Dipsacales-Constrained

35

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

phylogeny from SuperCRUNCH contained 42 genera, including 24 monophyletic genera, 9 non-
monophyletic genera, and 9 genera represented by a single species. The Dipsacales-PyPHLAWD
phylogeny contained 42 genera, including 20 monophyletic genera, 11 non-monophyletic genera,
and 11 genera represented by a single species. The phylogenies and corresponding assessments

of the groupings present are provided at: https://osf.io/zxhby/.

36

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table S10. Summary of all steps for the Iguania-Constrained analysis, which took ~1 hour to complete (not including user-time).

Step Module Input Details Flag Information Elapsed time

Assess Taxonomy Taxa_Assessment.py 134,028 records --no_subspecies 0:00:10
Rename_Merge.py Relabeled 430 records 0:00:01

Parse Loci Parse_Loci.py 69 loci to search, 133,962 records --no_subspecies 0:00:25

Similarity Filtering

Sequence Selection
Sequence Alignment

Post-Alignment

Cluster_Blast_Extract.py
Reference_Blast_Extract.py
Filter_Seqs_and_Species.py
Adjust_Direction.py
Align.py
Make_Acc_Table.py
Fasta_Relabel_Seqgs.py
Trim_Alignments_Trimal.py
Concatenation.py

58 loci

9 loci

67 loci

67 loci

67 loci

67 loci

67 loci

67 loci

67 loci, 1,359 taxa, 12,676 seqs

-b dc-megablast, --max_hits 200, -m span, --threads 4 0:18:04
-b dc-megablast, --max_hits 200, -m span, --threads 4 ~ 0:44:41

-s oneseq, -f length, -m 200, --no_subspecies 0:00:10
--threads 8 0:00:56
-a mafft, --threads 4 0:04:27

0:00:01
-r species 0:00:01
-f fasta, -a gt 0:00:01
--informat fasta, --outformat phylip, -s dash 0:00:01

Total elapsed time 1:08:58

Table S11. Summary of all steps for the Dipsacales-Constrained analysis, which took ~1 minute to complete (not including user-time).

Step Module Input Details Flag Information Elapsed time
Parse Loci Parse_Loci.py 4 loci to search, 12,348 records 0:00:01
Similarity Filtering Reference_Blast_Extract.py 4 loci -b dc-megablast, -m span, --threads 4 0:00:26
Sequence Selection Filter_Seqs_and_Species.py 4 loci -s oneseq, -f length, -m 200 0:00:01
Sequence Alignment Adjust_Direction.py 4 loci --threads 8 0:00:07
Align.py 4 loci -a mafft, --accurate, --threads 8 0:00:35
Post-Alignment Make_Acc_Table.py 4 loci -S 0:00:01
Fasta_Relabel_Seqgs.py 4 loci -r species, -S 0:00:01
Trim_Alignments_Trimal.py 4 loci -f fasta, -a gt, --gt 0.1 0:00:01

Concatenation.py

4 loci, 651 taxa, 1,589 seqs

"9SUB9I| [UOITRUISIU| 0" AN-ON-AG-D0® Japun

--informat fasta, --outformat phylip, -s dash 0:00:01

Total elapsed time 0:01:14

37

a|ge|rene apew si 1| “Aumadiad uljuudaid ay) Aejdsip 03 asuadl| e AlxHolq pajuelb sey oym ‘Japuny/ioyine ay si (Maiaal 1aad Ag payiiad jou
sem yaiym) uudauid siys 1oy spjoy 1ybBuAdod syl "6TOZ ‘9 JaquianoN paisod uoIsIsA SIyl :8z/8€S/T0TT 0T/610"10p//:sdny :10p wudaid Aixygolq

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Table S12. The total number of sequences for each locus in the supermatrix produced by each

analysis for the clade Iguania.

oo Type Loosame 9T (B g
mtDNA 12S 325 489 499 530
16S 9 544 560 580
COo1 - 353 482 481
CYTB 348 494 508 516
ND1 109 203 208 209
ND2 523 928 945 1006
ND4 1 504 540 552
Nuclear ADNP 142 142 142 145
AHR 133 133 133 137
AKAP9 177 180 180 184
AMEL 10 13 <30 <30
BACH1 183 183 183 187
BACH2 29 30 30 31
BDNF 375 379 380 394
BHLHB2 146 146 146 149
BMP2 140 140 140 143
CAND1 145 145 145 149
CARD4 139 139 139 141
CILP 143 143 143 145
CMOS 443 439 447 463
CXCR4 143 143 143 145
DLL1 140 140 140 140
DNAH3 137 137 137 141
ECEL1 150 150 150 150
ENC1 94 41 41 45
EXPH5 148 148 148 149
FSHR 145 145 145 148
FSTL5 141 141 141 144
GALR1 137 137 137 138
GHSR 132 132 132 132
GPR37 140 140 140 144
HLCS 137 137 137 139
INHIBA 140 140 141 145
KIAA1217 - - - -
KIAA1549 - - - -
KIAA2018 15 15 <30 <30
KIF24 139 139 139 139
LRRN1 132 132 132 132
LZTS1 122 122 122 122

38

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

MCI1R 40 40 40 40
MKL1 114 114 151 153
MLL3 123 123 123 123
MSH6 163 164 164 168
MXRA5 104 104 107 107
MYH2 - - - -
NGFB 169 169 169 173
NKTR 215 221 221 227
NOS1 9 9 <30 <30
NT3 350 355 365 368
PDC 19 19 <30 <30
PNN 269 269 274 277
PRLR 420 420 438 440
PTGER4 147 147 147 149
PTPN 114 114 115 115
R35 300 288 299 303
RAG1pl 344 429 439 455
RAG1p2 290 361 390 397
RAG2 - 2 <30 <30
REV3L 28 29 <30 30
RHO 38 13 58 58
SLC30A1 144 144 144 147
SLC8Al 144 144 144 148
SLC8A3 143 143 143 146
SNCAIP 249 249 249 252
SOCS5 17 17 <30 152
TRAF6 149 149 149 151
UBN1 147 148 148 151
VCPIP 131 131 131 133
ZEB2 164 154 154 157
ZFP36L1 141 141 141 143

39

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Table S13. The total number of loci, taxa, sequences, and the concatenated alignment length

produced by each analysis for the clade Iguania.

Analysis Loci Species Genera Sequences Alignment length
Iguania-PyPHLAWD 66 1,069 94 10,397 66,100 bp
Iguania-Constrained 67 1,359 106 12,676 58,315 bp
Iguania-Fast 60* 1,399 108 12,978 52,827 bp
Iguania-Thorough 61* 1,426 111 13,307 53,319 bp

*Note that an additional filter that required a minimum of 30 taxa per locus removed several loci
for Iguania-Fast (n=7) and Iguania-Thorough (n=6).

Table S14. The total number of sequences for each locus in the supermatrix produced by each

analysis for the clade Dipsacales.

Dipsacales- Dipsacales-
Locus PngHLAWD Constrained
ITS 556 583
matK 322 344
rbcl 299 299
trnL-trnF 333 363

40

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

7 | References

Alexander, A. A., Su, Y.-C., Oliveros, C. H., Olson, K. V., Travers, S. L., & Brown, R. M.
(2016). Genomic data reveals potential for hybridization, introgression, and incomplete
lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow-
mouth frogs. Evolution, 71, 475-488.

Faircloth, B. C. (2016). PHYLUCE is a software package for the analysis of conserved genomic
loci. Bioinformatics, 32, 786—788.

Gottscho, A. D., Wood, D. A., Vandergast, A. G., Lemos-Espinal, J., Gatesy, J., & Reeder, T. W.
(2017). Lineage diversification of fringe-toed lizards (Phrynosomatidae: Uma notata
complex) in the Colorado Desert: delimiting species in the presence of gene flow. Molecular
Phylogenetics and Evolution, 106, 103-117.

Lindell, J., Méndez-de la Cruz, F. R., & Murphy, R. W. (2005). Deep genealogical history
without population differentiation: discordance between mtDNA and allozyme divergence in
the zebra-tailed lizard (Callisaurus draconoides). Molecular Phylogenetics and Evolution,
36, 682-694.

Portik, D. M., Bauer, A. M., & Jackman, T. R. (2010). The phylogenetic affinities of Trachylepis
sulcata nigra and the intraspecific evolution of coastal melanism in the western rock skink.
African Zoology, 45, 147-159.

Portik, D. M., Bauer, A. M., & Jackman, T. R. (2011). Bridging the gap: Western rock skinks
(Trachylepis sulcata) have a short history in South Africa. Molecular Ecology, 20,

1744-1758.

41

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Portik, D. M., Wood Jr., P. L., Grismer, J. L., Stanley, E. L., & Jackman, T. R. (2012).
Identification of 104 rapidly-evolving nuclear protein-coding markers for amplification
across scaled reptiles using genomic resources. Conservation Genetics Resources, 4, 1-10.

Portik, D. M., Bell, R. C., Blackburn, D. C., Bauer, A. M., Barratt, C. D., Branch, W. R., Burger,
M., Channing, A., Colston, T. J., Conradie, W., Dehling, J. M., Drewes, R. C., Ernst, R.,
Greenbaum, E., Gvozdik, V., Harvey, J., Hillers, A., Hirschfeld, M., Jongsma, G. F. M.,
Kielgast, J., Kouete, M. T., Lawson, L., Leaché, A. D., Loader, S. P., Létters, S., van der
Meijden, A., Menegon, M., Muller, S., Nagy, Z. T., Ofori-Boateng, C., Ohler, A., Papenfuss,
T. J., RoBler, D., Sinsch, U., Rodel, M. -O., Veith, M., Vindum, J., Zassi-Boulou, A. -G., &
McGuire, J. A. (2019). Sexual dichromatism drives diversification within a major radiation
of African amphibians. Systematic Biology, 68, 859-875.

Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of
Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93.

Schulte II, J. A., & de Queiroz, K. (2008). Phylogenetic relationships and heterogeneous
evolutionary processes among phrynosomatine sand lizards (Squamata, Iguanidae) revisited.
Molecular Phylogenetics and Evolution, 47, 700-716.

Smith, S. A., & Walker, J. F. (2018). PyPHLAWD: A python tool for phylogenetic dataset
construction. Methods in Ecology and Evolution, 10, 104-108.

Stamatakis, A. (2014). RAXML version 8: a tool for phylogenetic analysis and post-analysis of
large phylogenies. Bioinformatics, 30, 1312-1313.

Streicher, J. W., Schulte, J. A., & Wiens, J. J. (2016). How should genes and taxa be sampled for
phylogenomic analyses with missing data? An empirical study in iguanian lizards. Systematic

Biology, 65, 128-145,

42

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/538728; this version posted November 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Townsend, T. M., Alegre, R. E., Kelley, S. T., Wiens, J. J., & Reeder, T. W. (2008). Rapid
development of multiple nuclear loci for phylogenetic analysis using genomic resources: an
example from squamate reptiles. Molecular Phylogenetics and Evolution, 47, 129-142.

Uetz, P., Freed, P., & HoSek, J. (2018). The Reptile Database. Available at: http://www.reptile-
database.org.

Zheng, Y., & Wiens, J. J. (2016). Combining phylogenomic and supermatrix approaches, and a
time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and

4,162 species. Molecular Phylogenetics and Evolution, 94, 537-547.

43

https://doi.org/10.1101/538728
http://creativecommons.org/licenses/by-nc-nd/4.0/

