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Summary

Delineating cell lineages is a prerequisite for interrogating the genesis of cell types. CRISPR/Cas9 can edit
genomic sequence during development which enables to trace cell lineages. Recent studies have demonstrated
the feasibility of this idea. However, the optimality of the encoding or reconstruction processes has not been
adequately addressed. Here, we surveyed a multitude of reconstruction algorithms and found hierarchical
clustering, with a metric based on the number of shared Cas9 edits, delivers the best reconstruction. However,
the trackable depth is ultimately limited by the number of available coding units that typically decrease
exponentially across cell generations. To overcome this limit, we established two strategies that better sustain
the coding capacity. One involves controlling target availability via use of parallel gRNA cascades, whereas
the other strategy exploits adjustable Cas9/gRNA editing rates. In summary, we provide a theoretical basis
in understanding, designing, and analyzing robust CRISPR barcodes for dense reconstruction of protracted
cell lineages.

Introduction

Genome-wide single-cell molecular pro�ling has enabled detailed analysis of cell identity and opened an
opportunity to trace cell lineage in complex tissues. The identities of individual cells can be inferred from
gene expression patterns, via single-cell RNA sequencing. As to cells' lineage relations, one can cluster related
cells based on inheritance of the same somatic mutations acquired by their common precursors. However,
unlike single-cell transcriptomes which can be readily veri�ed, the retrospectively built cell phylogeny is only
testable in a deterministic lineage that has already been mapped. Since scientists aim to map previously
uncharacterized lineages, it is critical to know both the optimal means for reconstruction and the limitations
of the methodology. Theoretical modeling is therefore an essential step in designing an ideal lineage tracing
experiment.

Cell lineage reconstruction is guided by the developmentally acquired mutations that are retrieved from
single cell sequencing. Therefore, the number and diversity of mutations limits the scope and resolution
of the cell lineages that can be built. Although the genome can carry innumerable spontaneous mutations
[1], sequencing each nucleotide of every sampled cell is not only technically challenging but also �nancially
unrealistic. By contrast, the CRISPR technology is based on gRNA-directed mutagenesis by Cas9 and allows
for generation of �genetic barcodes�. These barcodes consist of well-de�ned units containing gRNA target
sequences that one can assess with speci�c primers. Versatile designs are possible with such CRISPR-based
genetic barcodes. First, the virtually in�nite gRNA variants permit recruitment of diverse endogenous and/or
exogenous sequences into the barcode. Second, a single gRNA target spans only 23 base pairs, thus a densely
packed coding block can carry 40 targets per kb. Third, the CRISPR-induced mutations within a given
gRNA target site or across adjacent sites are largely predictable and thus programmable. Fourth, there exist
variant Cas9-related enzymes that can elicit distinct mutations via cutting the DNA or modifying speci�c
nucleotides. Finally, one can restrict Cas9 activity to cycling cells to prevent post-mitotic mutagenesis, which
would be extremely helpful/important for lineage reconstruction. Moreover, for targeted cell lineage analysis,
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we can also drive Cas9 expression only in the lineage(s) of interest. The enormous versatility of Cas9 plus the
superior programmability and trackability of genetic barcodes make CRISPR a uniquely powerful tool for
deciphering cell lineages. Establishing a sophisticated system for modeling CRISPR-coded cell lineages would
expedite the exploration of creative CRISPR barcode designs. Modeling is the ideal �rst step to mapping
complex cell lineages with near single-cell-division resolution.

As in the phylogenetic analysis of biological species, the task for reconstructing cell lineage is to build
`trees' where leaves represent the examined objects (i.e. sampled cells) and the branching patterns outline
the implicated developmental history. Because of these similarities, phylogenetic methods are often employed
for reconstructing cell lineage trees. The key elements in reconstruction are internal nodes that represent the
precursors that give rise to di�erentially marked descendants. The strategies for estimating those internal
nodes therefore govern how to derive a tree that best describes the phylogenetic relationships of leaves. The
underlying assumptions in deriving these strategies, however, are di�erent between evolutionary phylogeny
and CRISPR-coded cell lineage tracking. For example, the number of possible sites of phylogenetic mutations
is often regarded as in�nite, whereas the number of CRISPR-coding target sites is limited to those in the
barcodes. CRISPR-based mutations are often �xed once mutated (with the exception of homing CRISPR
[2]), whereas evolutionary mutations can be overwritten by succeeding mutations. Given these di�erences,
the CRISPR-based method requires independent investigation of optimal reconstruction methods and of the
intrinsic limitations of the encoding process.

Knowing the general topology of the underlying cell lineages is also critical for informative cell phylogeny
studies. There are two basic modes of cell division. These result in daughter cells with either distinct
(asymmetric) or equivalent (symmetric) potentials. Via asymmetric cell division, a stem cell can produce
an intermediate precursor which can either divide once into two often distinct post-mitotic cells (type 1) or
can itself divide asymmetrically yielding a secondary series of precursors with further restricted potential
(type 2). Some long-lived stem cells (e.g. Drosophila neuroblasts) can undergo many rounds of self-renewing
asymmetric cell divisions and thus produce an extended cell lineage. By contrast, a developing tissue may
expand exponentially through symmetric cell divisions of existing cells (type 3). Distinct challenges exist
in tracking lineages across di�erent topologies. Protracted stem-cell-type lineages across many generations
require sustained encoding. Whereas, cells that undergo symmetric expansion can carry more coincident
mutations. A versatile genetic system for cell phylogeny studies should work robustly for mapping diverse
types of cell lineages. Pre-validation in silico is essential to ensure the versatility of any system.

Here, we used theoretical modeling and computer simulation to explore the generation of CRISPR bar-
codes as well as the algorithms for reconstructing CRISPR-coded cell lineages. We began with modeling
the dynamics of the CRISPR-editing assuming a constant Cas9 editing rate across targets and cells. This
assumption leads to an exponential reduction in the number of new Cas9 edits along the lineage depth
(generation), which therefore severely constrains the trackable lineage depth. We calculated the number of
encoding units (Cas9 target sites) minimally required for faithfully tracking every cell cycle in an extended
cell lineage. The number of necessary encoding units depends upon the Cas9 editing rate. We found that the
optimal editing rate for tracking a series of N cell cycles is simply 1/N. However, even with an optimal editing
rate, the number of units needed for tracking protracted Drosophila neuronal lineages (~100 cell cycles per
lineage) would be extremely daunting. To enhance the depth of coverage, we explored additional strategies
for sustaining the coding capacity beyond the limit set by the exponential reduction. We conceived of two
plausible systems that deliver just enough new edits per cell cycle for an entire lineage and thus greatly
improve the barcoding e�ciency. The �rst method depends upon making di�erent gRNAs available over
time to eliminate early depletion of encoding units. To accomplish this, we propose gRNA cascades. The
other solution depends on adjustable Cas9 editing rates, as the desired editing rate increases as the number
of available targets decreases.

In search for an optimal tree-building method, we evaluated the depth-dependent error rates in a variety
of reconstruction algorithms. We examined those previously employed for CRISPR-based lineage tracking as
well as a multitude of di�erent hierarchical clustering methods. Intriguingly, the most faithful tree building
was achieved through hierarchical clustering with a distance metric based on the shared edits (an expansion of
Russell-Rao metric to non-binary cases) and the complete linkage method. We found that the distance matrix
derived from shared edits contains the lineage depth information in a way best suited for reconstructing the
lineage in the proper order. In conclusion, The knowledge gained through our theoretical modeling and
computer simulation will facilitate dense reconstruction of cell lineages, essential for comprehensive analysis
of organism development.
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Figure 1: Dynamics of encoding
(A) Schematics of the model of the CRISPR encoding process. Critical prameters: nU : number of encoding
units, nL: number of edit outcomes, r: edit rate/division. (B) Schematics showing how average numbers
of edited units transition as cells divide. s = 1 − r. (C) Average (nUrsk−1) and 99% range of new edits
(calculated from binomial distribution B(nU, rsk−1) at each cell cycle (blue lines), probability of no-edit
(green, (1− rsk−1)nU and unit depletion (orange, (1− sk)nU ), nU = 50 and r = 0.2. (D) Heatmap showing
the maximum depth where probability of no-edit is smaller than 0.01 for ranges of edit rates (y-axis: 0.01
to 0.20) and number of units (x-axis: 10 to 500). (z = argmaxk((1 − rsk−1)nU < 0.01), maximum depth
where P (noedit) < 0.01, color-coded). (E) Capacity vs. depth for nL = 1 ∼ 4. Capacity is the number
of encodable states, and equals nUCnenL

ne where ne is the average number of edited units and at depth
k :ne(k) = nU(1− sk).

Results

Dynamics of CRISPR barcode editing across cell generations

To understand the dynamics of the CRISPR barcode editing, we model the process of editing nU units of
targets where the rate of editing per cell division is r. We assume the editing rate is equal and independent
across units and cell division (Fig.1A). Unlike traditional phylogeny, once a unit is edited, it cannot be edited
again. Hence homing CRISPR encoding is excluded from the current model. We also denote the number of
editing outcome as nL (number of levels/alleles), which have equal probability (p = 1/nL) of being chosen at
each editing event. Most of these assumptions are simpli�ed. For example, allele choice is likely to be biased
and editing rate could vary between targets. However, we began with this simpli�ed model to delineate the
basic dynamics of CRISPR-barcoding with relatively simple mathematics.

Having a certain number of new edits at each cell cycle is critical for high-resolution reconstruction of a
lineage. We call the number of cell divisions experienced by a cell depth. At given depth, under the above
assumptions, the number of newly edited units follows a binomial distribution with the success probability
as r and the number of trials being the number of remaining unedited units. On average, the number of
remaining unedited units decreases exponentially: nU(1− r)k−1 for a depth of k; thus the average expected
number of newly edited units also drops exponentially: nUr(1−r)k−1 (Fig.1B, C). This phenomenon suggests
that the ability to tell ancestral relationship in a lineage also rapidly decreases.

To record contiguous cell cycles along the lineage depth, we need to know the distribution of the number
of new edits at each depth. Since the convolution of binomial distribution is again binomial, this distribution
can be easily calculated (see supplement) and the 99% range of the number of new edits at each depth is
shown in Fig.1C (vertical blue lines). One noticeable �nding from this plot (other than exponential decay)
is that the occurrence of �no-edit� (i.e. #new-edits=0) happens well before all the units are edited (Fig.1C
green and orange lines). This indicates that encoding failure (i.e. cannot distinguish parent-children) happens
much earlier than depletion of unedited units. Fig.1D shows the maximum depth where probability of no-edit
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is less than 0.01 for a range of edit rates and of total units. For a �xed edit rate, one needs to increase the
number of units to sustain the encoding over a larger depth. For a �xed number of total units, there is an
optimal edit rate. For example, for nU = 20, edit rates of 0.3 ∼ 0.7 are required to achieve a maximum
encoding depth of two. By contrast, for nU = 500, edit rates of 0.02 ∼ 0.03 could support new edits in each
of 39 contiguous cell cycles. This analysis reveals that a extremely large number of coding units would be
required for dense reconstruction of protracted cell lineages.

We also need to ensure su�cient number of encodable states (coding capacity) to confer co-derived cells
with distinct codes. That is, especially crucial when mapping an exponentially increasing population of
cells. Besides the number and possible assortment of cumulative edits, the number of levels (alleles) per unit
contributes signi�cantly to the coding capacity at a given depth. Fig.1E exempli�es how various numbers
of levels (nL) may impact the average capacity. First, this capacity is depth dependent since the number of
edited units is depth dependent. Second, for nL = 1 the capacity converges to 1, since all fully edited codes
are identical. Therefore, for systems with nL = 1, such as MEMOIR [3], care must be taken to stop editing
while there is still enough encoding capacity. Third, when the number of units is reasonable, a small number
of levels ( nL > 1) per unit can encode a fairly large system. Even with nL = 2, the coding capacity exceeds
1012 for nU = 40 and reaches 10150 for nU = 500. Therefore, except for covering an enormous system with
limited units, the number of levels is less critical than the number of units or the edit rate (as long as it is
greater than 1).

Most biological systems are relatively small (e.g. 3.72 × 1013 cells per human body [4]) compared to
the coding capacity of hundreds of units. However, a large caveat is that cellular production could involve
rather protracted linear cell lineages (e.g. a typical neural stem cell in the tiny Drosophila brain undergoes
∼ 100 serial cell cycles). Given the above modeling on editing dynamics, we need to further explore how to
maximize the depth of coverage with a minimal number of coding units.

Robust and e�cient encoding of protracted cell lineages

From modeling a simple scheme of cumulative editing (Fig.1C), we can determine the average number of new
edits needed to obtain (with 99.9% probability) at least one new edit per cell cycle. Ensuring at least one new
edit per cell cycle will enables us to di�erentiate each step of lineage depth. For a small rate (r < 0.1), we
calculate the average number of expected new edits needed to be seven (nlog(1−r) ∼ nr ≤ log(0.001) ∼ −7).
Therefore, using seven as the minimal number of new edits per cell cycle, we can determine how many total
coding units are needed (for a given editing rate) to record an entire lineage with 100 consecutive cell cycles.
The optimal editing rate for recording 100 serial cell cycles is 0.01 with total required units of 1893 (Fig.2A
middle). We de�ne the e�ciency of this scenario as 37%, derived as the ratio of the total units minimally
required to cover the entire lineage (700) over the actual required number of units (1893). Lowering the editing
rate reduces the e�ciency because the majority of units are left unedited (Fig.2A left). By contrast, higher
editing rates rapidly consume excessive units and therefore would require even more astonishing numbers of
total units to sustain new edits throughout 100 serial cell cycles (Fig.2A right).

We calculated the coding e�ciency across a range of lineage depth and a wide range of editing rates
(Fig.2B). We learn that the maximal e�ciency for recording serial cell cycles with simple cumulative editing
can barely reach 40%. In general, for a desired depth of d, the optimum edit rate happens at r = 1/d with
e�ciency of (1 − 1/d)d−1, which is < 0.4 for d > 6. Moreover, the coding e�ciency is very sensitive to the
editing rate (Fig.2B), which is often uncontrollable. Modifying the editing dynamics would establish a more
robust barcoding systems with higher e�ciency and therefore enable dense reconstruction of protracted cell
lineages.

To achieve the best possible coding e�ciency with stochastic edits, we must maintain the average number
of expected new edits around seven throughout the entire lineage. We envision two strategies to render the
average number of expected new edits relatively stable across serial cell cycles, one controlling availability of
units and the other controlling the edit rate. The �rst strategy involves subsets of the barcodes to be edited
in successive bouts, where gRNAs targeting particular coding units are activated in a step-wise manner. The
second strategy depends on varying the editing rate across serial cell cycles to compensate for the otherwise
exponential reduction in editable units along the lineage depth. A promoter of an endogenous gene with
proper expression dynamics maybe used for gRNA promoter.

Sequentially supplying gRNAs to edit separate pools of CRISPR targets would naturally increase the
depth of coverage, as it would eliminate the problem of over editing at the earlier phase. The challenge
is how to automate this process and distribute the overall coding capacity as evenly as possibly across
an entire lineage. Recently, we developed a pair of novel strategies that utilize Cas9 as genetic switches.
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Figure 2: Dynamics of encoding
(A) Schematics showing the e�ciency e for three cases of edit rates for simple exponential encoding process.
The shadowed areas indicate wasted units. In the case of low edit rate (left panel), the waste resides mainly
in the depth larger than the desired depth (100). In the case of high edit rate (right panel), the waste
resides mainly in the initial phase. (B) Heatmap showing the e�ciencies for various edit rates and desired
depths for simple exponential encoding process. (C) Schematics showing a single cascade encoding process
(top) and parallel cascades (bottom). (D) Average new edits (divided by total number of units) for parallel
cascades with various number of cascade steps. Average is calculated as sum of in�nite parallel cascades. (E)
Similar to panel B, e�ciencies of the cascade process for various edit rates and desired depths. (F) (Left two
panels) Average number of new edits (middle solid lines), standard deviations (vertical bars) and minimum
and maximum (dashed lines) of the number of new edits at each depth are shown for simple exponential case
(1st panel) and for cascade process (2nd panel). Cascade process is realized with 10 parallel cascades of 14
steps with 7 target units per block and a single block of 65 pre-activated targets, constituting total of 1045
targets. (Righ two panels) Percentages of occurrences of no-edit at each depth are shown for simple (blue) and
cascade (orange) processes. (G) (1st panel) An example of optimum variable edit rates when max_r = 0.1.
(2nd panel) Similar to left two panels of F. Average, standard deviation, minimum and maximum of the new
edits corresponding to the variable edit rate in the 1st panel are shown. (3rd panel) Zoomed in view of the
percentage of no-edit. (4th panel) Optimum e�ciency for di�erent max_r in the case of desired depth of
100.
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CaSSA [5] permits gRNA-dependent gene reconstitution. Based on the CaSSA system, CLADES (Garcia-
Marques et al., in preparation) provides a strategy for gRNA-dependent gRNA reconstitution. Using this
methodology, we can reconstitute distinct gRNAs in a preprogrammed sequence as a cascade. Like other
CRISPR edits, the Cas9-dependent progression of the gRNA cascade is stochastic. This means that a single
cascade would produce uneven editing throughout lineage development. However, by combining multiple
independent (parallel) cascades, the overall progression of the serial editing can be smoothened (Fig.2C, D).

To aid modeling cascade-driven serial edits, we assume comparable rates for gRNA reconstitution and
editing of discrete gRNA-speci�c targets. In addition, we assume in�nite parallel cascades (where mathemat-
ics is simpler) in the assessment of the best possible coding e�ciency the cascade system can achieve. Plotted
in Fig.2D are the average edits per cell generation (shown as percentage of total units) for increasing numbers
of cascade steps. Intriguingly, as the number of steps increase from 2 to 15, the distribution of edits across the
depth is gradually �attened. This increases the e�ciency of the unit usage. This �attened portion can readily
extend beyond 100 serial cell cycles, enabling tracking of protracted lineages. Utilizing such plots, we can
derive the highest achievable e�ciency, with parallel gRNA cascades, for various combinations of editing rate
and desired depth (Fig.2E). Compared to simple cumulative CRISPR edits, the cascade-based system not
only increases the maximum e�ciency from 0.37 to 0.70 but also greatly broaden the high-e�ciency domain
to a wide range of editing rates (Fig.2B vs. Fig.2E). As to practical applications using limited numbers of
parallel cascades, we demonstrate via computer simulation that a system with 10 parallel 14-step cascades to
drive editing of 1045 units in total can e�ectively cover 100 serial cell cycles with ∼ 7 new edits per cell cycle.
Without cascades, the depth of coverage for 1045 coding units drops from 100 to ∼ 30 cell cycles. Taken
together, our modeling demonstrates that driving CRISPR edits with parallel gRNA cascades can improve
the coding e�ciency by delivering a rather constant number of new edits per cell cycle up to a desired depth.

Another potential way to maintain a constant number of new edits per cell cycle is by increasing the editing
rate along the depth. This increased editing rate can ensure new edits even as the number of unedited units
drops. Strikingly, we can achieve a coding e�ciency of 0.91 by setting the editing rate inversely proportional
to the depth: rk = ne0/(nU − k ∗ ne0), where ne0 is the desired number of edits per generation, which is 7
here. In such a system, the average number of new edits per cycle is kept at ne0. We further restrict rk from
exceeding a de�ned maximum editing rate (max_r), which in Fig.2G is 0.1. The resulting curve of increasing
editing rate mimics the ascending expression levels of some temporal genes (e.g. Syp) in the cycling neural
stem cells. Therefore, we can possibly ramp up the editing rate by simply placing Cas9 expression under
the control of a temporal gene promoter such as Syp [6]. In summary, modeling the dynamics of cumulative
CRISPR edits has informed us how to encode protracted cell lineages with robust and e�cient barcodes.

Faithful reconstruction of densely encoded cell lineages

Now that we have modeled the best ways to perform CRISPR/Cas9 encoding, the next question is how best to
decode a CRISPR/Cas9 coded lineage. Table 1 summarizes lineage reconstruction methods used in previous
publications. Due to obvious similarity between lineage branching and evoluationary phylogeny, phylogenetic
algorithms such as maximum parsimony[13] and neighbor joining[14] have been used with CRISPR/Cas9
coded datasets. Other groups have used a custom graph-based algorithm (LINNAEUS[9]), or hierarchical
clustering together with a distance metric and linkage method ([12, 3]). Despite the variety of algorithms
available to decode CRISPR/Cas9 encoded lineage data, no systematic comparison has yet been performed.

We therefore set out to evaluate all of these algorithms. In addition, we also explored an extensive
combinations of linkage methods and metrics for hierarchical clustering. For this purpose, we simulated a
diverse set of ground truth trees as inputs (642 di�erent trees), then codes of the leaf nodes are supplied to
various algorithms for reconstruction, then errors of the outputs were calculated against the ground truth
trees.

As we showed in the previous section, the number of new edits decreases rapidly as the depth increases,
therefore we expect the reconstruction reliability to also be depth dependent. This means that the recon-
struction error rate should be much smaller for an earlier depth. To evaluate reconstruction performances
of the whole tree, several inter-tree distance metrics such as the Robinson-Foulds metric[15] or pair-wise
shortest path di�erence[16] etc. have been previously used. Here, we adapted the Robinson-Foulds metric
in a depth dependent manner for a much �ner understanding of the reconstruction error (Fig.3A, see legend
and methods for details).

We simulated the CRISPR encoding process for a range of parameters (nU, r, nL) with di�erent division
modes (type 1: asymmetric division and type 3: symmetric division, see method for details). Some examples
of optimal cases for simple exponential encoding were also include (bottom 4 cases in Fig.3C). In some
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Figure 3: Performance evaluation of various reconstruction methods
(A) A simple example showing calculation of depth dependent error rate. The blue nodes in the original
tree have matching nodes in the reconstructed tree but red nodes do not. At each depth in the original
tree, the ratio of the number of the red nodes to the total number of nodes in that depth is the depth
dependent error rate. (B) Depth dependent error rates for select conditions of inputs and reconstruction
algorithms. The inputs shown here are Type1 (see method). Number of units (nU), edit rate (r), number
of levels (nL) are as indicated. Number of trees (nT ) indicate how many trees are combined and number
of replicates (rep) indicate how many repeats are performed to generate the averaged traces. The errorbars
indicate standard errors. Some conditions (such as linnaeus) does not show up which indicates that the
execution took too long and terminated. (C) Heatmap of area under the curve (AUC) for depth <25 for all
the conditions (inputs/algorithms) tested. The parameters for inputs are encoded as in panel B and shown in
y-axis. The x-axis is common to next panel D and indicates the algorithms tested. For details on the inputs
and algorithms see methods and supplements. (D) Averages of the AUC for all the input conditions. Error
bar indicate standard error. For hierarchical clustering methods, linkage method (such as average, centroid)
and distance metric (such as Euclid, hamming) combinations are indicated as (linkage)_(metric). Red star
indicates the reconstruction method with the lowest error rate. Smaller gray stars indicate other methods
statistically indistinguishable to the lowest case.
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Assay Name Tree Building Method Comments Ref

(sc)GESTALT Maximum Parsimony by
Camin- Sokal algorithm (using
PHYLIP- mix, encoding each
pattern as 0 or 1)

Since a pattern can span multiple targets,
if each pattern is treated as a unit, then
they may not be independent to each
other.

[7, 8]

MEMOIR Hierarchical clustering with
average linkage (UPGMA), with
custom tie breaking. Also
NJ(Neighbor Joining) and
Maximum Parsimony are used
for simulation.

MEMOIR "scratch pad" only has two
states (intact and mutated). This only
works for limited depth range, since if all
the scratch pad are mutated, they cannot
be distinguished.

[3]

LINNAEUS Custom algorithm (top-down,
ordered by the abundance of
scar among cells)

Uniqueness of scar, i.e. a same scar
(pattern) does not happen as two
independent events), is a critical
assumption of the algorithm, which is
often not met.

[9]

Molecular Recorder Likelihood maximizing tree
search with FNW (Frequency
Normalized Weighting) of
mutations to bias against more
likely trees.

Belongs to the same category as Max.
Parsimony in a sense that they are both
forward tree search strategies maximizing
some objective function (parsimony or
likelihood). This class of algorithm is very
slow.

[10]

Salvador-Martinez Neighbor Joining using PAUP*
and FastTree (for large samples)

Neighbor Joining is used over Maximal
Parsimony due to speed issues.

[11]

Byungjin Hwang Hierarchical clustering with
Jaccard distance metric.

Uses L1 repeats as targets and base editor
for encoding. Largest number of units
(>200). ( First tried LINNAEUS method
but switched to hierarchical method. )

[12]

Table 1: Summary of previously employed CRISPR-based lineage reconstruction methods

cases, 3 trees (nT = 3) are combined to assess whether algorithms can successfully separate them. From the
simulated trees, leaf nodes were extracted as inputs. Each input was then supplied to all of the surveyed
algorithms and the reconstructions were evaluated against the ground truth. For the same set of parameters,
this is repeated 50 times (17 when number of trees is 3) to account for the randomness of editing. Then the
average depth dependent errors were calculated. Plotted in Fig.3B are a subset of conditions showing the
average depth dependent error rates. As expected, earlier depths have smaller error rates. There are also
clear performance di�erences between di�erent algorithms. In some cases, (PHYLIP mix or SCITE), the
execution took more than 20 min and so reconstruction was terminated and �agged as a failure (white boxes
in Fig.3C). This was more than 2000 times the typical execution time of other algorithms (see Fig.Supp.7).

Fig.3C, D summarizes the performances of di�erent algorithms with various inputs. For simplicity, the
area under the curve (AUC) of the depth dependent error rate (with depth < 25) is shown. Fig.3C,D displays
the false negative error rate (proportion of original nodes not reconstructed). We also assessed false positive
error rate by calculating how many of the reconstructed nodes are absent from the original tree (Fig.Supp.4).
In addition, we also calculated the false negative/positive error rate using more permissive error metrics (see
Fig.Supp.5,6 and method). From these surveys, we found that hierarchical clustering with complete linkage
and the Russell-Rao metric and FastTree2 which is based on Neighbor-Joining performs best over all.

For the metrics for binary numbers, such as hamming distance, we extended their de�nitions non-binary
cases to distinguish levels (when nL > 1 , see supplement). The Russell-Rao metric is one of such metric
and with this extension, it is 1 minus the proportion of the number of edited units which have the same level
between two codes. Therefore, we call this variation of RussellRao metric, �SharedEdits� (i.e. edits shared
by two cells). Presumably these shared edits are inherited from a common ancestor.

Why tracking SharedEdits outperforms more elaborate distance metrics?

In the previous section, we observed varied reconstruction performances between di�erent hierarchical clus-
tering methods. Hierarchical clustering iteratively merges a pair with the shortest distance and generates
an ancestor node. Therefore, the choice of metric a�ects which pair is merged. To understand why the
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Figure 4: Why sharededits metric outperforms others
(A) Average depth dependent error rates for hierarchical clustering method with complete linkage for di�erent
distance metrics. Input is type 1, nU = 180, nL = 3, r = 0.1, nT = 1 and 500 replicates are used to calculate
the average. Blue dashed lines show the error rates for original inputs. Orange dashed lines show the error
rates after original inputs are modi�ed to have no code duplication. The rest of the lines show the error rates
with depth constraint (with depth width indicated) together with code duplication removal. (B) Pairwise
average distances between nodes in di�erent depths. Diagonals (k0, k0) are averages of distances between a
progenitor and a leaf, (see panel E red and blue nodes at depth k0). O�-diagonals (k0, k1) are averages of
minimum distances between a leaf (blue node at depth k1) and nodes in depth k0 (both red and blue nodes
at depth k0). (C) Heatmap showing the color-coded �depth delta� (see panel E) for each depth (y-axis) and
replicate (x-axis). (D) (top row) Average frequencies of distance swap or tie across trials. (bottom row)
Average depth delta when distance is swapped or tied. (E) De�nition of depth delta.
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SharedEdits metric outperforms other metrics, we �rst factored out a common component, code duplica-
tion. Code duplication causes reconstruction errors regardless of the metric used. Code duplication between
parent-o�spring pairs occur either when all the units are edited (unit depletion) or when the remaining num-
ber of un-edited units is low causing no edits (Fig.1C green line). Code duplication can also happen between
non-parent-o�spring pairs by chance but with a much lower frequency. Since no metric can distinguish cells
with a same code, code duplication results in a tie and thus error (in half of the cases if tie breaking is
random).

To remove the e�ect of code duplication, we modi�ed the simulated trees to eliminate nodes with dupli-
cated codes (see methods) and assessed the depth dependent error rate after reconstruction (Fig.4A orange
dashed lines). This procedure dramatically reduced the error rates for the SharedEdits, Kulsinski metrics
but not for Jaccard, Hamming or Euclid metrics. We investigated the places where errors occured and no-
ticed that for the latter groups of metrics, there was a lot of precocious merging of shallower nodes. To
remove the precocious merging, we then added a constraint that the depths of merging pairs be less than
a given distance from the deepest remaining node during reconstruction (Fig.4A solid lines, see method).
This constraint drastically reduced the error rate for the latter three metrics. This strongly indicate that the
SharedEdits and Kulsinski metrics contain depth information suitable for proper reconstruction, whereas the
latter three metrics do not.

To understand this in more detail, we plotted heatmaps showing the distances between nodes of di�erent
depths (Fig.4B). One noticeable di�erence between initial two and the latter three metrics is the diagonal
part, distance to self. In fact, the SharedEdit and Kulsinski metrics are not full distance metrics but pseudo
distance metrics in that the self-distances are not necessarily zero. This turned out to be a prerequisite
for a more relevant feature of these metrics, that the distance between nodes is essentially a the depth
of the shallower node and monotonically decreases with depth. This is indicated in the inverted L-shape
patterns of the distance matrices, though this is approximately so for Kulsinski metric, as can be seen from
the distortion of the inverted L-shape patterns in Fig.4B. Because of this property, the SharedEdits and
Kulsinski metrics would calculate that a larger distance for a pair with shallower nodes than the proper
merge pair, thus preventing precocious merging of shallower nodes. With the latter three metrics, despite
the minimal distances of the proper merge pairs (diagonal elements in Fig.4B), the distortion surrounding
the diagonal elements are likely to cause inappropriate precocious pairs with distances that are equal to or
even smaller than the proper pair.

To see whether this is in fact the case, we calculate the occurrences of precocious pairs being either
smaller (swap) or equal to (tie) the distance of the proper merge pair (see Fig.4C, E). We separated the
cases of distance swap and tie because they contribute di�erently to the error rates. Swaps always lead
to errors, however, in the case of ties, the proper merge pair can be selected by chance. The number of
swaps with the SharedEdits metric was extremely low (Fig.4D top rows). While the Kulsinski metric had
fewer ties than SharedEdits, it had much larger swaps resulting in potentially more errors. As expected,
the other three metrics had much higher occurrences of swaps (and in some cases ties). Moreover, when we
quanti�ed the distance of the improper merge pair (depth delta, see Fig.4E), the latter three metrics had
much larger values (Fig.4C, Fig.4D bottom rows), whereas SharedEdits and Kulsinski always had a depth
delta less than 3 (Fig.4C, D). These indicate that overall distance characteristics of the SharedEdits and
Kulsinski metrics (Fig.4B) prevented the frequent precocious merging of shallower nodes. In the cases where
precocious merging occurred, it was restricted to a local range. Between the SharedEdits and Kulsinski
metrics, we found that distance swaps occurred more frequently in Kulsinski and the depth deltas were larger
(Fig.4D), thus SharedEdits performs better than Kulsinski. When swap/tie frequencies were calculated for
depth-delta<2 (Fig.Supp.8), the frequencies closely resembled that of residual error in Fig.4A, indicating
we've captured the source of the errors.

Since SharedEdits errors are almost always due to distance tie, we tried several tie-breaking methods.
Unfortunately, none of them made noticeable improvement (Fig.Supp.9).

In summary, the SharedEdit metric outperforms other metrics because it encodes depth information in a
manner that enables the reconstruction to proceed from the deepest pair to shallower pairs in a proper order.

Discussion

CRISPR permits multiplex genome editing, which greatly facilitates engineering of intricate genetic bar-
codes for tracking cell lineages. Through theoretical modeling and computer simulation, we demonstrate
the unparalleled promise of CRISPR-derived genetic barcodes in mapping protracted cell lineages with a
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single-cell-division resolution. We learned that the patterns of edits shared across barcodes best depict cell
lineage relations. While in hindsight this observation seems rather obvious, it has been overlooked in pre-
vious reconstructions of CRISPR-coded cell lineages. Appraising cell relatedness based on shared barcode
edits permits the best reconstruction of cell phylogeny. However, the lineage depth one can track remains
severely limited for standard encoding process especially when the total unit number is small and high editing
rates are needed to ensure robust barcode editing in early cell cycles. Our modeling demonstrated that it
is possible to slow down the depletion of available coding units without sacri�cing robust barcode editing.
We can accomplish this by utilizing parallel gRNA cascades enabled by CLADES (Garcia-Marques et al.,
in preparation) or by using variable edit rates. With these encoding methods, we estimate that we need
approximately one thousand independent coding units to densely track stem-cell-type lineages across 100 cell
generations. Given CRISPR's enormous versatility, it should be possible to develop further sophisticated
genetic barcodes for comprehensive analysis of whole-organism development.

Engineering CRISPR barcodes in vivo

Creating genetic barcodes for tracking cell lineages requires DNA sequences editings speci�cally in cycling
cells. For continuous tracking, the early DNA edits should not be erased by later edits. For CRISPR
encoding, we can provide units containing gRNA target sequences clustered together in a transgene(s) [17,
9, 7] or we can target widely distributed endogenous sequences, such as transposon-related repeats [12].
As to tandem targets, one major concern is interference from nearby targets. Two double strand breaks
within the barcode could result in deletion of all intervening targets including those already edited [7]. Such
complications would compromise overall coding capacity and could disrupt hierarchical clustering (due to the
loss of various earlier edits). Targeting endogenous repeats, by contrast, would better ensure independent
edits. Encouragingly, one recent study has demonstrated the feasibility of editing endogenous L1 elements in
cultured cell lineage tracking [12]. However, utilizing endogenous sites requires detailed characterization of
the genome to identify ideal targets (in terms of editing e�ciency and edit retrievability) that also play no
role in normal development. Given the above pros and cons, the possibility of dispersing exogenous gRNA
targets (e.g. placing them sparsely on a bacterial arti�cial chromosome) should also be explored as a way to
avoid inter-target deletions. Another solution would be to create diverse barcodes via DNA base editing (e.g.
use of Cas9-deaminase) rather than through repair of double-strand DNA breaks. In the absence of nuclease
activity, one should be able to maintain independent edits among tandemly packed gRNA targets. However,
one may need to increase the number of coding units drastically to compensate for the lower editing rates
observed with existing Cas9 base editors.

The great versatility in the control of Cas9 further enhances the power of CRISPR in creating genetic
barcodes. First, one should be able to modulate the editing rates by altering Cas9 expression levels. Moreover,
for e�cient barcoding of protracted cell lineages, Cas9 activity could possibly be dynamically controlled to
achieve robust, yet minimal editing in each cell cycle. Second, one can express Cas9 in speci�c spatiotemporal
patterns for tracking speci�c cell lineages or speci�c developmental stages. Further, it is important to restrict
Cas9 to cycling cells to prevent post-mitotic editing, which would be non-informative and may overshadow
precursor-derived edits especially in long-lived extant cells (e.g. neurons). Finally, gRNAs govern the target
speci�city of Cas9 actions. The virtually in�nite speci�city of gRNAs endows an unlimited multiplex power,
which can be exploited to build further sophisticated genetic barcodes (see next). In brief, we see it feasible
to record any dynamic biological activities across cell generations using CRISPR-derived genetic barcodes.

Robust and e�cient encoding

Robust barcoding requires occurrence of new edits in every cell cycle. Fewer coding units are needed to ensure
robust barcoding for the higher editing rate. However, the higher the editing rate, the faster the available
coding units would be depleted, thus preventing deep encoding. This dilemma makes tracking protracted
stem-cell-type lineages extremely challenging. Given a hundred coding units, we need an editing rate of ~0.1
to achieve robust barcoding in early depth. But at a rate of 0.1, a hundred total coding units could not
sustain robust barcoding beyond 10 cell generations (Fig.1D). At an editing rate of 0.1, to continuously track
100 cell generations (as needed for mapping most Drosophila neuronal lineages), we would need a daunting
number (>2 million, Fig.4A) of coding units. Notably, we can drastically reduce the needed number of coding
units to around two thousand by simply decreasing the editing rate to ~0.01. However, most of the units
are still not e�ciently utilized (Fig.4A). To improve barcoding e�ciency, we should instead modulate the
availability of coding units or edit rates across the depth of cell lineages. For maximal e�ciency, we should
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use up all coding units and distribute the edited units randomly and evenly throughout the entire length of
each lineage.

Strikingly, using parallel gRNA cascades to drive the editing, we can consume most coding units and
distribute the edits rather evenly throughout a protracted lineage. Reserving separate pools of coding units
for editing at di�erent developmental times has been practiced manually by injecting a second gRNA set at a
later stage of zebra�sh development [7]. Thanks to CLADES (Garcia-Marques et al., in preparation) which
allows serial reconstitution of multiple gRNA variants, we can now automate the process of supplying distinct
gRNAs in a cascade to serially edit di�erent subsets of coding units. We found that in�nite parallel cascades
mathematically produces a �at consumption of codes across depth (Fig.4D), enabling an e�cient encoding
process compared to the simple exponential case (Fig.4E). We also showed that this idealized behavior of
in�nite parallelism is essentially reproducible with a rather small number (10) of parallel cascades (Fig.4F).

We also showed that controlling editing rate can lead to very robust and e�cient encoding system (Fig.4G).
Even though the control of edit rate is not perfect, the e�ciency is expected to be very high. The editing
rate may be controllable by driving Cas9/gRNA under endogenous gene promoters which mimic the desired
dynamics (such as Syp [6]) or under small molecule inducible promoters and manipulating the concentration
of the inducer molecules. The change in the cell cycle duration can also be utilized. For example, Drosophila
neuroblasts divide quickly in the early phase but the division becomes slow in the later phase of development.
If Cas9/gRNA edit rate is constant per duration, then the change of cell cycle duration e�ectively increases
the edit rate per division[10]. The exact con�guration which may be able to achieve desired edit rate change
should be a subject of future studies.

Taking all factors into consideration, we propose a cascade barcoding system for tracking Drosophila brain
cell lineages with ~1000 coding units in total. This elaborate system ensures occurrence of 7 or more new
edits per cell cycle (98% of the time) in all cell cycles, and consumption of >70% of the 1000 units by the
end of 100 serial cell generations. Such cascade barcoding systems, driven by targeted Cas9 induction, would
allow us to e�ciently reconstruct cell phylogeny with single-cell-cycle resolution for any complex tissue.

A better cell lineage reconstruction method

Various reconstruction methods have been utilized for CRISPR-based cell lineage codes (Table 1). Here, we
explored the performances of these methods as well as other combinations of metrics and linkage methods in
hierarchical clustering (Fig.3C). Notably, we found hierarchical clustering with a previously unused metric
outperforms all other methods (Fig.3D). This metric, which we call SharedEdits, is based on the number of
common edits.

We found that the reason the SharedEdits metric outperforms other metrics is because it contains the
depth information in a way appropriate for reconstructing the tree in a proper order (Fig.4). The SharedEdits
distance of a pair is essentially determined by the number of edits the common ancestor of the pair has. This
helps to prevent precocious merging of nodes in shallower levels and promotes the appropriate bottom-up
reconstruction of cell lineages. Other metrics (Jaccard, Hamming and Euclid) do not possess this property,
and by imposing restriction in allowed depth during reconstruction, a drastic proportion of the reconstruction
errors (> 50%) can be corrected (Fig.4A 3rd-5th panels, orange vs. green lines). The Kulsinski metric has
a similar property to SharedEdits, but depth constraint can still improve the error rate (Fig.4A 2nd panel).
This indicates that the way it contains the depth information is still not ideal. In contrast, the SharedEdits
metric error rates did not improve upon depth constraint (Fig.4A 1st panel), indicating that the manner
SharedEdits contains the depth information is near ideal.

No reconstruction method can solve the ambiguities associated with code duplication. Thus, the errors
caused by code duplication set the limit in the reconstruction error rates. By arti�cially removing code
duplication events, we found that the reconstruction using SharedEdits produces very small error rates
(Fig.4A 1st panel orange line). This indicates that the reconstruction method based on SharedEdits is very
close to optimum.

Since the residual errors (errors without code duplication) for the SharedEdits metric are mainly due to
distance tie (Fig.4C, D), we have tried to improve it further by incorporating other metrics or factors (such
as number of leaves under each node) to break the tie. These e�orts produced little to no improvements
(data not shown). We have not yet tried to combine other methods such as Nearest Neighbor Interchange
which incorporate scores from larger structures or later steps.
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Additional needs for further sophisticated algorithms

For practical applications, we have tested the robustness of our optimized tree-building method in multiple
aspects, including variable editing rates and unequal choice of edit outcomes, as well as substantial cell loss.
We found that it performs robustly as long as the barcoding is su�cient and intact. However, the program in
its current state is vulnerable to random loss of various coding units, which can happen in the code retrieval
process (e.g. single cell genomic PCR and sequencing). This weakness argues again for the importance of
having integrated barcodes that can be readily retrieved as a whole, thus protecting against random loss of
code. Nonetheless, there are clearly unmet needs, including recovery of missing code and the scalability in
processing big data sets, which we hope to address in the future with additional sophisticated algorithms.

In summary, we have found a better method for reconstructing CRISPR-coded cell lineages than previ-
ously used. This method is based on the metric using the number of shared Cas9 edits. We have further
demonstrated alternative encoding strategies in tracking every cell cycle across numerous cell generations
with high e�ciency. Such versatile genetic barcoding empowered by CRISPR technology will revolutionize
how we study biological organisms.

Materials and Methods

Depth dependent error rate

There are several distance metrics that quanti�es similarity between trees. Of these, Robinson-Foulds distance
(RF distance)[15] is arguably the most frequently used. For two rooted trees, RF distance counts 0 for internal
nodes which exist in both and 1 for which exist only in one tree (internal node match is determined by the
set of leaves under the node). We extended this metric to depend on depth in the following way. We �rst
designate one of the trees (usually the original simulated tree) as base tree and �ag each internal nodes of the
base tree depending on whether it has a matching internal node in the other tree (usually the reconstructed
tree). Then for each depth of the base tree, we calculate the proportion of the nodes which do not have
a matching node in the other tree (Fig.3A). This set of numbers is a natural extension of RF distance to
depend on depth, albeit being normalized per depth. We call these numbers �match� error rates. If we use
original tree as the base, then this error rate is false negative error rate since it counts the original nodes not
present in the reconstructed tree. If we use reconstructed tree as the base, the it becomes false positive error
rate since it counts the reconstructed nodes not in the original tree.

There are other ways to extend whole tree metrics to depend on depth. For example, we can restrict the
target of matching to be in the same depth in the other tree in the above example, or we can �rst restrict
trees to subtrees down to a depth and then calculate whole tree distance between these subtrees as depth
dependent distance. We have tried these metrics as well with similar qualitative results (data not shown).
We have also extended another tree metric, pairwise cell shortest-path distance[16] in to a depth dependent
metric using subtrees described above. This also resulted in qualitatively similar results (data not shown).

The above match error rate is highly sensitive since it �ags an internal node as an error node even if only
one leaf contained in the node is wrongly assigned out of many other leaves. To devise an error metric which
can distinguish 1 wrong assignment out of 100 versus 10 wrong assignments out of 100, we search the node in
the non-base tree which has the maximal similarity to the base node in terms of leaf set similarity measured
by Jaccard index. We then assign for each depth average max Jaccard similarities for nodes in the depth.
We call this depth dependent error metric jaccard error.

Lineage tree simulations

Here we tested two types of lineage trees. One increases linearly with depth (type1), and the other increases
exponentially with depth (type3). A type 1 progenitor asymmetrically divides and generates one type1 and
one ganglion mother cell (GMC) which turns into two terminal cells (leaf nodes). We simulated CRISPR
encoding to happen once during a cell cycle before cell division, which resulted in the two o�springs of a
GMC sharing one code, so we can simply say type1 progenitor generates another type1 progenitor node, one
GMC and one leaf node. A type 3 progenitor symmetrically divides and generates two type 3 progenitors.
At the desired depth, we stop the division and simply set those nodes without o�spring to be leaf nodes. For
the inputs to the reconstruction algorithms, only codes from leaf nodes are supplied.
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Reconstruction algorithms

We tested reconstruction algorithms previously used in CRISPR-based lineage tracing publications. Of these
Neighbor-Joining (NJ) [14] and maximum parisimony [13] are from traditional phylogeny �eld. We used the
same software packages and settings as much as possible. In some cases, we also tested other implementation
or settings as well. For NJ, we used PAUP* [18] with several di�erent setting (see table below) and FastTree
[19] as these are used in the previous CRISPR-based lineage tracing publications. We also tested nj function
from skbio.tree Python package (http://scikit-bio.org) as an alternative implementation since it accepts input
as distance matrix. For maximum parsimony, we used mix from PHYLIP package [20] which was used in
GESTALT publications [7, 8]. We also tested a software package (scite [21]) from tumor lineage �eld as
an example of algorithms which utilize a stochastic search algorithm such as MCMC method. For method
used in LINNAEUS paper [9], we modi�ed the author's R script to accept input in a more convenient
format but used as is otherwise. For hierarchical clustering, we tested combinations of 7 linkage methods
(average, centroid, complete, median, single, ward and weighted) and 5 distance metrics (euclid, hamming,
jaccard, kulsinski, russellrao). Distance metrics are chosen to include popular ones (euclid, hamming) as
well as ones used in previous publications (jaccard) and top performing metrics (russellrao and kulsinski)
from preliminary survey of more extensive set of metrics. For binary metrics (hamming, jaccard, kulsinski
and russellrao), we modi�ed them to distinguish edit outcome levels (see supplement for exact de�nition).
The linkage function in scipy.cluster.hierarchy Python package (http://www.scipy.org) is used to perform
the hierarchical clustering. Most of the standalone programs output in nexus or newick formats. We used
DendroPy (http://dendropy.org) to parse these outputs. See supplemental material for exact details on
algorithm used in Fig.3.

Removal of code duplication

To �lter out the e�ect of code duplication, we �rst compared all the pairs of nodes using hamming distance and
detected duplicated pairs as entries with 0. We then removed nodes with duplicated code with larger depth.
When the node being removed is not a leaf node, child nodes of the node are reconnected to the parent node
of the node being removed. In the case of trees used in Fig.4 (type 1, nU = 180, nL = 3, r = 0.1, nT = 1),
this removal procedure shrunk the tree depth to < 40. The exact topology of the trees depend on the instance
(trial).

Depth constraint in reconstruction

Depth constraint during reconstruction is enforced so that the minimum estimated depth of the next merging
pair should be within the current maximum estimated depth minus 2. For leaf nodes, depths are assigned
using the original tree information. For internal nodes with matching node in original tree, again depth
information from the original tree is used. For internal nodes without matching node, depth is inferred as
minimum depth of the nodes under the node minus 1.
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Supplementary Materials

Cascade e�ciency with various parameter ranges
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Figure Supp.1: Parameter ranges for CLADE cascade system
To calculate optimum case of cascade system, we �rst need to specify the range of cascade steps (15 in A
and 300 in B) and the range of edit rates (0.01 to 0.5). Within these �xed ranges of cascade steps and edit
rates, we can �nd the optimal combination of these for desired depth to achieve maximal e�ciency. Panels
shown in A and B shows relationships between these parameters. Panel C shows the optimal e�ciency and
edit rate for �xed steps in the case of desired depth of 100.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2019. ; https://doi.org/10.1101/538488doi: bioRxiv preprint 

https://doi.org/10.1101/538488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Variable edit rate robustness against linear approximation
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Figure Supp.2: Piece-wise linear approximation of variable edit rate system
Various piece-wise linear approximation of variable edit rate system are shown. When optimal variable
edit rate is approximated by piece-wise linear rates, the reachable depth and e�ciency are reduced. The
e�ciencies are, however, still much higher than those achievable by simple exponential encoding.
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Variable edit rate robustness against noise

A

B

C

D

0 50 100 150

0.05

0.10

ed
it 

ra
te

edit rate
linear approx.
optimal

0 50 100 150
depth

0

5

10

15

20

#n
ew

 e
di

ts

depth=104
 eff=0.95

linear approx

0 50 100 150
0

2

4

6

8

10

%

% no-edits (zoomed in)

0 50 100 150

0.05

0.10

ed
it 

ra
te

edit rate
linear approx.
optimal

0 50 100 150
depth

0

5

10

15

20

#n
ew

 e
di

ts

depth=103
 eff=0.94

linear approx

0 50 100 150
0

2

4

6

8

10

%

% no-edits (zoomed in)

0 50 100 150

0.05

0.10

ed
it 

ra
te

edit rate
linear approx.
optimal

0 50 100 150
depth

0

5

10

15

20

#n
ew

 e
di

ts

depth=103
 eff=0.94

linear approx

0 50 100 150
0

2

4

6

8

10

%

% no-edits (zoomed in)

0 50 100 150

0.05

0.10

ed
it 

ra
te

edit rate
linear approx.
optimal

0 50 100 150
depth

0

5

10

15

20

#n
ew

 e
di

ts

depth=13
 eff=0.12

linear approx

0 50 100 150
0

2

4

6

8

10

%

% no-edits (zoomed in)

Figure Supp.3: E�ect of noise in variable edit rate system
Various noise level proportional to the rate are introduced to the variable edit rate system (A:10%, B:20%,
C:30% and D:40%). The system is robust against up to 30% noise.
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Performance evaluation: Match error (False positive rates)
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Figure Supp.4: False positive error rates measured by match error
Similar to Fig.3 but false positive error rates (proportion of reconstructed nodes not present in the original
tree) are shown.
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Performance evaluation: Jaccard error (False negative rate)
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Figure Supp.5: False negative error rates measured by Jaccard error
Similar to Fig.3 but false negative error rates using Jaccard error (see method) are shown.
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Performance evaluation: Jaccard error (False positive rate)
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Figure Supp.6: False positive error rates measured by Jaccard error
Similar to Fig.3 but false pasitive error rates using Jaccard error (see method) are shown.
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Performance evaluation: execution time
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Figure Supp.7: Program execution duration summary
Summary of execution duration for each program/input combinations. Note the scale for duration (sec) is in
logarithm.
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Type1 error source supplements
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Figure Supp.8: Type1 error source supplement.
(A) Distance swap/tie frequencies for depth delta<2. The third panel shows combined frequency calculated
as swap + tie/2. (B) E�ect of various tie-breaking. �di�� uses hamming distance to break the tie. �editn�
calculates how many units are edited and chooses one with the largest number of edits. ��rst�,�last� chooses
the �rst (or last) of the ties. �random� randomly chooses one from ties.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2019. ; https://doi.org/10.1101/538488doi: bioRxiv preprint 

https://doi.org/10.1101/538488
http://creativecommons.org/licenses/by-nc-nd/4.0/


Error source for type3 tree
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Figure Supp.9: Performance comparison of metrics: type3 case
Similar to Fig.4 but calculated against type3 case (nU = 30, L = 3, r = 0.1, depth = 7, nt = 1, nrep = 500)
. Instead of depth-delta, we calculated �width� (de�ned in panel D) for each depth. Panel E shows the case
of L=20 instead of L=3. Shared edits and kulsinski metrics improve with larger number of levels but three
other metrics do not.
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Details of algorithm execution

Abbreviation in Fig.3 Package Metric Comments

fasttree FastTree2 n/a Levels are encoded as nucleotide string (ATCG; if
levels are more than 3, then multiple characters are
used) and codes are then converted to FASTA
format and supplied to standalone fasttree
executable, with option �-nt -gtr�. Unedited code
(root) is include in the input and then used to
reorder nodes in the output (re-rooting).

(linkage)_(distance) scipy euclid,
hamming,
jaccard,
russellrao,
kulsinski

Input to the scipy hierarchical clustering method is
a distance matrix and which linkage method
(average, centroid, complete, median, single, ward,
weighted) to use.

linnaeus LINNAEUS n/a Unit and level combination is treated as one entity
(called scar) and its presence is indicated for each
cell as an input. Linnaeus produces an output tree
with scars as nodes. We converted this to a tree
with cells as nodes by replacing scars with
matching cells.

phylip_mix PHYLIP n/a Unit and level combination is treated as one entity
and its presence/absence is represented as 1 or 0.
Thus, codes of length nuare converted to strings of
0 and 1 of length nunl. Weights are calculated as
log ratio of counts of each unit/level combination to
the maximum counts and encoded in a character
array. Then mix program is executed with
i�le,P,W,2,3,Y,w�le options, where i�le and w�le
are the names of input and weight �les.

nj_hamming scikit-bio hamming skbio.tree.nj function takes distance matrix as an
input, hamming distance is used. Re-rooted as in
the case of FastTree.

nj_russellrao scikit-bio russellrao Similar to above, russellrao distance is used.

paup_nj_nosm PAUP* n/a Codes are converted as FASTA as in fasttree as
inputs. NJ method is speci�ed. No user stepmatrix
is speci�ed. Since NJ is unrooted, re-rooting is done
as in FastTree.

paup_nj_smset PAUP* n/a As in above, but stepmatrix is speci�ed with log of
inverse frequency as the weights. (Same as in [11]).

paup_upgma_nosm PAUP* n/a As in paup_nj_nosm but upgma method is used
instead of nj.

paup_upgma_smset PAUP* n/a As in paup_nj_smset but upgma method is used
instead of nj.

scite SCITE n/a Codes are converted to strings of 0,1 as in
phylip_mix and supplied as an input to scite and
executed with options �-i i�le -n nm -m nc -r 2 -l
400001 -fd 1e-2 -ad 1e-1 -transpose�, where i�le is
input �le name, nm is number of mutations, nc is
number of cells

Table Supp.1: Settings for algorithms in Fig.3
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Probabilistic Model of CRISPR Editing

The number of edited units, e1, from total of nu units with per cell division edit rate of r follows binomial
distribution which we denote B(nu, r). That is, probability of getting e1 edits is P (e1) = B(nu, r)(e1) =

nu
Ce1r

e1(1 − r)nu−e1 . The complement of this, i.e. the number of un-edited units, n1 = nu − e1, follows
B(nu, s), where s = 1 − r. In the second round of edits, getting e2 new edits again follows binomial
distribution: B(n1, r), but with a di�erent parameter n1 which depends on the outcome of the 1st round.
The combined distribution is a multinomial distribution:

M(nu; r, rs, s
2)(e1, e2, n2) =

nu!

e1!e2!n2!
re1(rs)e2(s2)n2

Where n2 = nu − e1 − e2 is the number of unedited units after 2nd division. In general, after k cell division,
probability of getting e1, e2, . . . , ek edits at each division is a multinomial distribution:

M(nu; r, rs, rs
2, . . . , rsk−1, sk)(e1, e2, . . . , ek, nk) =

nu!

e1!e2! . . . ek!nk!
re1(rs)e2 . . . (rsk−1)ek(sk)nk

Where nk = nu −
∑k

i=1 ek is the number of unedited units after k-th division (Fig.1B). Because of the
property of the multinomial distribution (next section, Lemma 3), the total number of edited units after k

cell division, tk =
∑k

i=1 ek, follows binomial distribution B(nu, r + rs + rs2 + ... + rsk−1) = B(nu, 1 − sk).
Similarly, the number of unedited units nk follows binomial distribution B(nu, s

k) with standard deviation√
nusk(1− sk), (Fig.1C). We will de�ne e�ective editing rate at depth k as rk = 1− sk and its compliment

as sk = 1− rk = sk.

Properties of Multinomial Distribution

Lemma 1. Sum of two random variables x12 = x1 + x2 in a multinomial distribution M(n; r1, r2, . . . , rk)
follows multinomial distribution M(n; r1 + r2, r3, . . . , rk).

Proof. Using binomial expansion:

(r1 + r2)
x12 =

∑
x1+x2=x12

x12!

x1!x2!
rx1
1 rx2

2

it follows probability for x12 which is a sum of x1, x2 over x1 + x2 = x12 is:

P (x1 + x2 = x12) =
∑

x1+x2=x12

n!

x1!x2!x3! . . . xk!
rx1
1 rx2

2 rx3
3 . . . rxk

k

=

( ∑
x1+x2=x12

x12!

x1!x2!
rx1
1 rx2

2

)(
n!

x12!x3! . . . xk!

)
rx3
3 . . . rxk

k

= (r1 + r2)
x12

(
n!

x12!x3! . . . xk!

)
rx3
3 . . . rxk

k

thus, x12 (and x3, . . . , xk) follows M(n; r1 + r2, r3, . . . , rk).

Lemma 2. Sum of random variables in multinomial distribution again follows multinomial distribution whose
rate is the sum of rates of summed variables.

Proof. Apply lemma 1 multiple times.

Lemma 3. Multinomial distribution integrated over all but one variable is a binomial distribution:∑
x2,...,xk

M(n; r1, . . . , rk) = B(n, r1)

Proof. Applying lemma 2 on variables x2, . . . , xkwill yield the desired result since a multinomial distribution
of degree 2 is a binomial distribution.
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Lemma 4.
∑n

x=y B(n, r1)(x)B(x, r2)(y) = B(n, r1r2)(y)

Proof. Using,(
n
x

)(
x
y

)
=

n!

x!(n− x)!

x!

y!(x− y)!
=

n!

y!(n− y)!

(n− y)!

(n− x)!(x− y)!
=

(
n
y

)(
n− y
n− x

)
and replacing n− x = x′, where x′ : 0→ n− y, since x : y → n,

lhs =
n∑

x=y

(
n

x

)
rx1 (1− r1)

n−x
(
x

y

)
ry2(1− r2)

x−y

=

n−y∑
x′=0

(
n

y

)(
n− y

x′

)
rn−x

′

1 ry2(1− r1)
x′(1− r2)

n−x′−y

=

(
n

y

)
(r1r2)

y

n−y∑
x′=0

(
n− y

x′

)
rn−x

′−y
1 (1− r1)

x′(1− r2)
n−x′−y

=

(
n

y

)
(r1r2)

y

n−y∑
x′=0

(
n− y

x′

)
(1− r1)

x′(r1(1− r2))
n−y−x′

=

(
n

y

)
(r1r2)
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(
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Figure Supp.10: 5 random variables for code match between two cells
The number of units which share the same edits between two cells is denoted xx. The number of units which
are edited in both cells but not same is denoted xy. The numbers of units edited only in one cell are denoted
xz1and xz2. The number of units unedited in both cells is denoted zz.

We denoted the number of outcomes of editing in a unit as nl (excluding unedited state) and assumes the
probability of choosing any outcome is the same, i.e.: p = 1/nL. When considering two lineage codes, there
are 5 basic random variables which quanti�es the di�erence between them (Fig.Supp1A). These are: Xzz,
which is the number of unit unedited in both, Xxz1 and Xxz2, which are the number of units edited in one
but not the other, Xxx, which is the number of units edited in both and having the same edit outcome, and
Xxy, which is the number of units edited in both but with di�erent outcomes. For single round of edits, these
variables sum up to the total number of units,nU(= n0), and follow multinomial distribution with rates rs
(for Xxz1 and Xxz2), r

2p (for Xxx), r
2q (for Xxy), and s2(for Xzz), where q = 1− p. When comparing two

sibling codes, which are at the depth of k (Fig.Supp1B), we need to take into account the distribution of the
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number of unedited units at depth k − 1: nk−1. For example, probability of getting Xxy,is:

P (Xxy) =
∑
nk−1

P (Xxy|nk−1)P (nk−1)

=
∑
nk−1

B(nk−1, r
2q)(Xxy)B(n0, sk−1)(nk−1)

= B(n0, r
2qsk−1)(Xxy)

using Lemma 4 in the previous section. That is, rate is simply multiplied by sk−1. Similarly forXxz1, Xxz2

and Xzz. For Xxx, we need to take into account shared code up to the previous depth k − 1,which is
tk−1 ∼ B(n0, rk−1) = B(n0, 1− sk−1), so the rate becomes 1− sk−1 + r2psk−1. In general, if two codes are
separated as in Fig.Supp1C, then, the rates for Xxx, Xxy, Xxz1, Xxz2, Xzz are

Xxx : rk0
+ sk0

rk10
rk20

p = (1− sk0) + sk0(1− sk10)(1− sk20)p

Xxy : sk0
rk10

rk20
q = sk0(1− sk10)(1− sk20)q

Xxz1 : sk0
sk10

rk20
= sk1(1− sk20)

Xxz2 : sk0
sk20

rk10
= sk2(1− sk10)

Xzz : sk0
sk20

sk10
= sk1+k2−k0

where k10 = k1 − k0 and k20 = k2 − k0.
Using these variables, we can also de�ne the (extended) distance metrics between two lineage codes as

follows:

drussellrao = 1− Xxx

nU

dkulsinski =
Xxz1 +Xxz2 −Xxx + nU

Xxz1 +Xxz2 + nU

djaccard =
Xxz1 +Xxz2 +Xxy

Xxz1 +Xxz2 +Xxy +Xxx

dhamming =
Xxz! +Xxz2 +Xxy

nU
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