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Abstract 1 

Asexual freshwater planarians are an attractive invertebrate model for high-throughput 2 

neurotoxicity screening, because they possess multiple quantifiable behaviors to assess distinct 3 

neuronal functions. Planarians uniquely allow direct comparisons between developing and adult 4 

animals to distinguish developmentally selective effects from general neurotoxicity. In this 5 

study, we used our automated planarian screening platform to compare the neurotoxicity of 15 6 

flame retardants (FRs), consisting of representative phased-out brominated (BFRs) and 7 

replacement organophosphorus FRs (OPFRs). OPFRs have emerged as a proposed safer 8 

alternative to BFRs; however, limited information is available on their health effects. We found 9 

11 of the 15 FRs (3/6 BFRs, 7/8 OPFRs, and Firemaster 550) caused adverse effects in both 10 

adult and developing planarians with similar nominal lowest-effect-levels for BFRs and OPFRs. 11 

This suggests that replacement OPFRs are comparably neurotoxic to the phased-out compounds. 12 

BFRs were primarily systemically toxic, whereas OPFRs, except Tris(2-chloroethyl) phosphate , 13 

shared a behavioral phenotype in response to noxious heat at sublethal concentrations, indicating 14 

specific neurotoxic effects. By directly comparing effects on adult and developing planarians, we 15 

further found that one BFR (3,3’,5,5’-Tetrabromobisphenol A) caused a developmental selective 16 

defect. Together, these results demonstrate that our planarian screening platform yields high 17 

content data resulting from assaying various behavioral and morphological endpoints, allowing 18 

us to distinguish selective neurotoxic effects and effects specific to the developing nervous 19 

system. Ten of these 11 bioactive FRs were previously found to be bioactive in other models, 20 

including cell culture and alternative animal models (nematodes and zebrafish). This level of 21 

concordance across different platforms emphasizes the urgent need for further evaluation of 22 

OPFRs in mammalian systems. 23 
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Abbreviations 5 

DNT, developmental neurotoxicity; FR, flame retardant; BFR, brominated flame retardant; 6 

PBDE, Polybrominated Diphenyl Ether; OPFR, organophosphorus flame retardant; NTP, 7 

National Toxicology Program; DMSO, dimethyl sulfoxide; HTS, high-throughput screening; 8 

LEL, lowest effect level; HTTK, high-throughput toxicokinetics; POD, point of departure  9 

 10 

1. Introduction  11 

Traditional hazard assessment using mammalian models cannot keep up with the speed of 12 

chemical development. The Toxic Substances Control Act Inventory lists approximately 68,000 13 

chemicals currently in use in the United States (https://www.epa.gov/tsca-inventory), but <2% 14 

have been evaluated for developmental neurotoxicity (DNT) (Smirnova et al., 2014). In vitro 15 

testing combined with bioinformatic analyses have emerged as a powerful tool to fill this need 16 

for more rapid chemical testing (Fritsche et al., 2018), but this approach faces limitations for 17 

predicting adverse effects on neuronal function (Smirnova et al., 2014; Tohyama, 2016). Non-18 

mammalian animal models, amenable to high-throughput, cost-effective screening, are a 19 

promising alternative solution for efficient DNT screening since they allow for automated 20 

behavioral assays to quantitatively evaluate different neuronal functions (Bal-Price et al., 2012).  21 

Flame retardants (FRs), widely added to commercial products for fire safety (Costa and 22 

Giordano, 2007; Salimi et al., 2017), are a class of chemicals which only have limited 23 
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mammalian data for safety assessment. Prior to 2005, brominated FRs (BFRs) such as 1 

polybrominated diphenyl ether (PBDE) mixtures were the primary FRs used in the United States 2 

(Hale et al., 2003). Since then, many were voluntarily phased-out due to growing evidence of 3 

their associations with impaired neurodevelopment and decreased fertility, exacerbated by their 4 

persistence in the environment and ability to bioaccumulate (Darnerud, 2003; Herbstman et al., 5 

2010; Stapleton et al., 2011; Talsness, 2008). Organophosphorus FRs (OPFRs) have gradually 6 

become replacements for PBDEs over the last decade (Stapleton et al., 2012; Stapleton et al., 7 

2014). Concerns exist that OPFRs, similar to PBDEs, may persist in the environment and 8 

bioaccumulate, but little is known about their potential toxicity (Hendriks and Westerink, 2015; 9 

Meeker and Stapleton, 2010; Stapleton et al., 2009; Van Der Veen and De Boer, 2012). 10 

Particularly concerning is the potential DNT of OPFRs, as they share structural similarities to 11 

organophosphorus pesticides, which adversely affect neurodevelopment and cause 12 

neurobehavioral impairments (González-Alzaga et al., 2014; Muñoz-Quezada et al., 2013; 13 

Ricceri et al., 2006; Slotkin et al., 2006). Previous work using a screening battery of in vitro and 14 

alternative animal models found that several OPFRs had comparable toxicity and potency to 15 

BFRs, including phased-out BDE-47 (Behl et al., 2015; Behl et al., 2016; Jarema et al., 2015), 16 

indicating that OPFRs may not be the safer alternative to BFRs that they have been marketed to 17 

be.  18 

Because the freshwater planarian Dugesia japonica is a good model to study 19 

organophosphorus pesticide neurotoxicity (Hagstrom et al., 2017; Hagstrom et al., 2018a; Zhang 20 

et al., 2018) and uniquely allows parallel screening of adult and developing animals to identify 21 

developmental-specific effects (Zhang et al., 2018), we herein evaluate the potential 22 

neurotoxicity and DNT of 15 FRs using a custom planarian high-throughput screening (HTS) 23 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/538280doi: bioRxiv preprint 

https://doi.org/10.1101/538280
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

platform. These FRs include 3 phased-out PBDEs (BDE-47, BDE-99, and BDE-153), 3 currently 1 

in-use BFRs (TBB, TBBPA, and TBPH), 8 in-use OPFRs (BPDP, EHDP, IDDP, IPP, TCEP, 2 

TCPP, TMPP, and TPHP), and one BFR mixture (FM550).   3 

Because D. japonica is a fairly new model for neurotoxicity studies, we briefly 4 

summarize its key features to familiarize the reader and refer to our recent review paper 5 

(Hagstrom et al., 2016) for an in-depth review of planarians as an alternative model for DNT. In 6 

asexual D. japonica planarians, neurodevelopment is solely achieved through neuroregeneration 7 

following asexual reproduction by fission, allowing neurodevelopment to be induced by head 8 

amputation. In addition, the similar sizes of  adult and regenerating/developing planarians allows 9 

for both worm types to be screened in parallel with the same assays (Hagstrom et al., 2015; 10 

Hagstrom et al., 2016; Zhang et al., 2018). Although the planarian central nervous system is 11 

morphologically simple, consisting of a bilobed cephalic ganglion and two ventral nerve cords, it 12 

is molecularly complex and highly compartmentalized. It shares the same major 13 

neurotransmitters as the vertebrate brain, including dopamine, serotonin, octopamine, GABA, 14 

and acetylcholine (Cebrià, 2007; Cebrià et al., 2002a; Cebrià et al., 2002b; Ross et al., 2017). 15 

Furthermore, planarians possess a large repertoire of diverse quantifiable behaviors, such as 16 

gliding and swimming, phototaxis, thermotaxis, and scrunching. The molecular mediators of 17 

some of these behaviors have been characterized, such as serotonergic neurons in gliding or 18 

transient receptor potential channels in thermotaxis (Birkholz and Beane, 2017; Inoue et al., 19 

2014; Nishimura et al., 2010) allowing these behaviors to be used to assess specific neuronal 20 

functions, and thus provide insight into the cellular effects of neurotoxicity. In summary, by 21 

testing diverse behaviors in both adult and regenerating/developing planarians, this platform 22 

uniquely allows differentiation of selective neurotoxic effects and effects specific to the 23 
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developing nervous system. 1 

The 15 FRs that are studied here comprise a subset of an 87-compound library from the 2 

National Toxicology Program (NTP) (Behl et al., 2018; Hagstrom et al., 2018b; Zhang et al., 3 

2018), which we had previously screened. However, in this previous study we had not evaluated 4 

these compounds in detail, because we focused on the comparison of compound classes (Zhang 5 

et al., 2018) and concordance with other systems (Hagstrom et al., 2018b). Moreover, we re-6 

screened these 15 FRs independently in a second screen and used the two independent screens to 7 

evaluate the robustness of our planarian screening platform. Thus, the present study serves a dual 8 

purpose: To more closely examine the potential neurotoxicity of FRs and to quantify screen 9 

robustness. To contextualize our results, we evaluated concordance to published data from 10 

zebrafish, nematode, and human, mouse, and rat cell-culture models (Behl et al., 2015; Behl et 11 

al., 2016; Jarema et al., 2015; Noyes et al., 2015). There was high concordance among the 12 

different alternative systems showing comparable DNT of OPFRs to BFRs, warranting further 13 

investigation into OPFR toxicity. 14 

 15 

 16 

2. Materials and methods  17 

2.1. Chemical library 18 

18 chemicals consisting of 6 BFRs (including phased-out BDE-47 and BDE-99), 8 19 

OPFRs, 1 BFR mixture, 2 negative controls, and 1 duplicate (TPHP) were screened in this study. 20 

Table 1 lists the 17 unique chemicals with their name, chemical ID, type, supplier, structure, and 21 

purity information provided by the NTP (either as determined by the NTP or, if not available, 22 

from the chemical supplier’s certificate of analysis). The chemicals were provided by the NTP as 23 
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~20mM stocks in dimethyl sulfoxide (DMSO, Gaylord Chemical Company, Slidell, LA), with 1 

the exception of 2,2',4,4',5,5'-Hexabromodiphenyl ether (BDE-153), which was provided at 2 

10mM.  3 

 4 

 5 

Table 1. Summary of the screened chemical library with CAS number, chemical name, ID, type 6 

(BFR: brominated flame retardant, OPFR: organophosphorus flame retardant), chemical 7 

supplier, structure, and purity. When available, the determined purity (by the NTP) is provided, 8 

else the manufacturer supplied purity is provided. NA: not available.  9 
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CASRN Chemical name ID Type Supplier Structure Purity 

103-90-2 
Acetaminophen (4-

hydroxyacetanilide) 
 Negative 

control  
Sigma-Aldrich 

 

100% 

50-81-7 L-Ascorbic acid  Negative 

control  
Sigma-Aldrich 

 

100% 

5436-43-1 2,2',4,4'-Tetrabromodiphenyl ether BDE-47 BFR Cerilliant Corp. 

 

100% 

60348-60-9 2,2',4,4',5-Pentabromodiphenyl ether  BDE-99 BFR Cerilliant Corp. 

 

100% 

68631-49-2 2,2',4,4',5,5'-Hexabromodiphenyl ether  BDE-153 BFR 

Cerilliant Corp. via 

Battelle Memorial 

Institute 

 

100% 

183658-27-7 
2-ethylhexyl-2,3,4,5-

tetrabromobenzoate 
TBB BFR 

Toronto Research 

Chemicals 

 

NA 

79-94-7 3,3’,5,5’-Tetrabromobisphenol A TBBPA BFR Sigma-Aldrich 99.77% 
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26040-51-7 
Bis(2-ethylhexyl) 3,4,5,6- 

tetrabromophthalate  
TBPH BFR 

Toronto Research 

Chemicals 

 

NA 

860302-33-6 Firemaster 550 FM550 

BFR 

mixture 
† 

Chemtura Corporation 

 

NA 

56803-37-3 tert-Butylphenyl diphenyl phosphate BPDP OPFR 
Ubichem PLC via 

MRIGlobal 

 

98.22% 

1241-94-7 2- ethylhexyl diphenyl phosphate  EHDP OPFR TCI America 

 

98.67% 

29761-21-5 Isodecyl diphenyl phosphate IDDP OPFR 

 

Bayville Chemical 

Supply Company Inc. 

  

92.19% 

68937-41-7 Phenol, isopropylated, phosphate (3:1) IPP OPFR 

Ameribrom Inc. 

(screen 1) 

Amfinecom Inc. 

(screen 2) 

 

NA 

115-96-8 Tris(2-chloroethyl) phosphate TCEP OPFR Sigma-Aldrich 

 

99.07% 
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13674-84-5 tris(2-Chloroisopropyl)phosphate TCPP OPFR 

Albemarle 

Corporation via 

MRIGlobal 

 

  

99.47% 

1330-78-5 Tricresyl phosphate TMPP OPFR 

Sigma-Aldrich 

 (screen 1) 

Acros Organics 

(screen 2) 
 

100% 

115-86-6 Triphenyl phosphate* TPHP OPFR Sigma-Aldrich 

  

100% 

 

 † Firemaster 550 is a chemical mixture, comprised of 2-ethylhexyl-2,3,4,5-tertrabromobenzoate (TBB), bis(2-ethylhexyl) 

tetrabromophthalate (TBPH), triphenyl phosphate (TPP), and isopropylated triphenyl phosphate (IPTP) (Tung et al., 2017) 

*TPHP was provided as a duplicate in FR screen 2. Duplicate vials were from the same supplier with the same lot numbers.
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The tested FRs were a subset of the NTP 87-compound library, which we previously 1 

reported on (FR screen 1; (Zhang et al., 2018)). The NTP later provided us with another set of 2 

the library (now including 4 duplicate chemicals for a total of 91 chemicals), in which we only 3 

screened the subset of chemicals mentioned in this study (FR screen 2). Chemicals in the new 4 

library were provided as individual vials, stored at 4ºC and used within 2 months. For all but two 5 

chemicals (IPP and TMPP), the same supplier and mostly (14/17) the same chemical lot was 6 

used for the chemicals in both FR screen 1 and 2. TPHP was tested in duplicate in FR screen 2, 7 

using 2 separate stock vials from the same supplier and lot. The stocks of the negative control L-8 

ascorbic acid were from different lots, but had the same supplier with the same concentration and 9 

purities. Five of the chemical stocks differed slightly in concentration between the two libraries, 10 

but by at most 0.3mM. Additional information on the NTP library can be found in (Behl et al., 11 

2018).  12 

The chemicals were tested at 0.01, 0.1, 1, 10, and 100μM (0.005, 0.05, 0.5, 5, and 50μM 13 

for BDE-153), with a final DMSO concentration of 0.5% for all concentrations. Solvent control 14 

populations were exposed to 0.5% DMSO. Chemical dilutions for both libraries were done as 15 

described in (Zhang et al., 2018). 16 

 17 

2.2. FR screen in the planarian system 18 

Asexual D. japonica, originally obtained from Shanghai University (Shanghai, China) 19 

and cultivated in our lab for > 5 years, were used for all experiments. We screened the library 20 

with a custom, fully automated HTS platform using adult (intact) and regenerating, i.e. tail pieces 21 

regenerating a new head, planarians in parallel with the same assays, assessing morphological 22 

and behavioral endpoints at day 7 and day 12 (Figure 1).  Two independent screens, the original 23 
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NTP 87-compound library screen (“FR screen 1”) and the second, FR-only screen (“FR screen 1 

2”), were performed with 3 replicates (3 independent runs on different days) for each screen. For 2 

each replicate, n=8 regenerating and adult planarians were each screened for every chemical 3 

concentration. One adult or regenerating animal was loaded into each well of a 48-well plate 4 

(Genesee Scientific, San Diego, CA). Static exposure began on day 1, within 3 hours of 5 

amputation of the regenerating planarians, by adding the appropriate chemical concentration to 6 

the planarians’ aquatic environment. A solvent control population (n=8) exposed to 0.5% DMSO 7 

was included in every plate.  This DMSO concentration has no effect on planarian morphology 8 

or behavior (Hagstrom et al., 2015). The planarians were kept in the dark in the sealed 48-well 9 

plates for 12 days, with screening on days 7 and 12 (Figure 1).  By day 12, regenerating 10 

planarians are considered fully regenerated and behave like adults (Hagstrom et al., 2015; Zhang 11 

et al., 2018), thus the two screening days allow us to distinguish regeneration delays from 12 

regeneration defects.  13 

 14 

Figure 1. Schematic of overall screen flow in the planarian system. Exposure lasted 12 days. 15 

Amputated planarians (amputation at day 1) and adult planarians are loaded into 48-well plates 16 
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(one worm per well, and one worm type per plate) with the test chemicals at day 1, and assayed 1 

for different morphological and behavioral endpoints at day 7 and day 12. Scale bar: 1mm.  2 

 3 

A detailed description of our automated planarian screening platform and statistical 4 

workflow can be found in (Zhang et al., 2018). Briefly, adult and regenerating planarians were 5 

assessed using morphological and behavioral endpoints at day 7 and day 12 (Figure 1). Since 6 

dead worms generally disintegrate, lethality was quantified by automatic determination of the 7 

presence or absence of a body in each well. Eye regeneration was quantified by determining the 8 

percentage of planarians with 2 eyes regenerated (normal regeneration). For behavioral 9 

endpoints, we used computational image analysis to quantify animal behavior to assay 10 

unstimulated locomotion, negative phototactic behavior in response to blue light, the ability to 11 

react to a heat gradient in thermotaxis, and the ability to scrunch (musculature-driven, oscillatory 12 

escape gait (Cochet-Escartin et al., 2015)) in response to noxious heat. For statistical analysis, 13 

data from the replicate runs was compiled and each chemical concentration was compared with 14 

its own in-plate DMSO controls. Statistical significance was determined using either a one-tailed 15 

Fisher’s exact test for lethality, eye regeneration, phototaxis, and scrunching endpoints; Mann 16 

Whitney U-test for thermotaxis and unstimulated behavior; or two-tailed t-test for unstimulated 17 

behavior (depending on normality of the sample) using a significance level of 0.05. To extract 18 

biologically significant results from the statistically significant hits, “biological relevancy” 19 

cutoffs, based on the distribution of all control populations, were used to exclude hits that fell 20 

within the variability of the DMSO controls. Lastly, hits generated from inconsistent data from 21 

the different replicates were also excluded. For each endpoint, the lowest concentration which 22 

showed a significant effect (statistically and biologically) was defined as the lowest-effect-level 23 
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(LEL). For each chemical, the overall LEL was determined as the most sensitive LEL when 1 

considering all endpoints. All image analyses and statistical analyses were performed in 2 

MATLAB. 3 

The same experimental procedures and data analysis methods as described in detail in 4 

(Zhang et al., 2018) were used, except for the following differences in FR screen 2, building 5 

upon our experiences from FR screen 1: Firstly, since we found that food quality affects 6 

planarian fitness and sensitivity to chemicals (Zhang et al., 2018), we fed planarians used in FR 7 

screen 2 commercial freeze-dried organic chicken liver (Amazon, Seattle, WA) to better control 8 

food quality and thus minimize animal fitness variability. Secondly, “biological relevance 9 

cutoffs”, used to minimize false positives by accounting for variability of the solvent controls in 10 

each endpoint (Zhang et al., 2018), were updated by using the combined DMSO control samples 11 

from the previous NTP 87-compound screen (n=87 control samples) and the later FR-only screen 12 

(n=18 control samples) for a total control population of n=105 samples, with each sample 13 

consisting of n=24 planarians. Thirdly, the background noise speed threshold used in the 14 

phototaxis assay was recalculated based on the mean speed in the unstimulated behavioral assay 15 

of the expanded DMSO controls. Hits due to hyper- (rather than hypo-) activity in unstimulated 16 

behavior or hits which were concentration-independent were not included, because they were not 17 

conserved when compiling all 6 runs together, suggesting they may be artifacts.  18 

 19 

2.3. Robustness analysis of planarian screening platform 20 

The robustness of our planarian screening platform was evaluated by comparing the 21 

results obtained from six replicate runs (n=8 planarians per condition per replicate) from the two 22 

independent FR screens, FR screen 1 and 2. It is reasonable to assume that using all 6 replicates 23 
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provides the most accurate results given the large sample size (n=48). We therefore compared 1 

the results of compiling different numbers of replicates (3, 4, or 5) with the results obtained by 2 

compiling 6 replicates. As described previously (Zhang et al., 2018), we used a 3-step (statistical 3 

test, biological relevance cutoff, and inconsistency check) statistical workflow to determine 4 

whether a chemical showed bioactivity, defined as a significant adverse effect, in any endpoint. 5 

Herein, we refer to the determination of bioactivity (i.e. bioactive or inactive) in each endpoint as 6 

a “readout” to distinguish it from a bioactive “hit”, which refers to having an adverse effect at an 7 

endpoint. Since the biological relevance cutoffs are meant as a means to distinguish normal wild-8 

type noise levels, biological relevance cutoffs were determined based on the total control 9 

population of n=105 control samples (see Section 2.2), and were applied equally to these 10 

different sets of compiled data (i.e. the same cutoffs, determined from this total control 11 

population, were used for 3, 4, 5, or 6 replicates). For the inconsistency check, instances were 12 

excluded where more than half of a set of replicates (i.e. >1 out of 3 replicates, >2 out of 4 13 

replicates, >2 out of 5 replicates, or >3 out of 6 replicates) were within the biological relevancy 14 

cutoffs. Although the majority of the experimental procedures were consistent between the two 15 

screens, some differences existed which could affect the reproducibility of the screens. For 16 

example, varying food quality (between different home-made batches and between home-made 17 

and commercial sources) affects animal health and thus affects the animals’ sensitivity to 18 

chemical exposure (Zhang et al., 2018). Different chemical batches can also cause variability due 19 

to differences in stock concentrations and potential variability in the serial dilution process. 20 

Therefore, we chose replicates (different plates from different days) with the most similar 21 

conditions (i.e. in the same screen) to minimize experimental variability and to focus on the 22 

robustness of the system itself. To compile 3 replicates, we chose the 3 replicates from FR screen 23 
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2. To compile 4 (or 5) replicates, we chose 1 (or 2) replicate(s) from FR screen 1 in addition to 1 

the 3 replicates from FR screen 2. Firstly, overall chemical bioactivity (i.e. whether the chemical 2 

was bioactive in any endpoint or inactive in all endpoints) in different sets of replicates (3, 4, 5, 3 

or 6) was compared.  Secondly, concordance of the bioactivity of the readouts (i.e. whether the 4 

chemical was deemed bioactive or inactive in a specific endpoint) between the data using 3, 4, or 5 

5 replicates and the data using 6 replicates were compared. Lastly, the concordance of the 6 

sensitivity of the concordant bioactive readouts (i.e. LEL of the bioactive readout) was compared 7 

between the data using 3, 4, or 5 replicates and the data using 6 replicates.  8 

  9 

2.4. Comparison with other alternative models 10 

To directly compare our results with published data from other alternative models, we 11 

consulted the literature (Behl et al., 2015; Behl et al., 2016; Jarema et al., 2015; Noyes et al., 12 

2015) and focused on studies which had screened the majority of the same FRs. Studies which 13 

only tested one or a few of these FRs were not included in the comparison. We extracted the 14 

points-of-departures (PODs) and LELs reported in these papers for relevant developmental and 15 

developmental neurotoxic endpoints and focused only on the concentration-dependent hits for 16 

LELs to facilitate cross-system comparisons. Specifically, we extracted PODs for developmental 17 

toxicity and developmental neurotoxicity reported in (Behl et al., 2015),  LELs for 18 

developmental behavior in (Jarema et al., 2015), LELs for larval development in (Behl et al., 19 

2016), and LELs for all endpoints reported in (Noyes et al., 2015). Only data for regenerating 20 

planarians was used for this analysis as the comparative studies used developing models.  21 

To quantitatively determine the agreement between the different alternative animal 22 

studies, Cohen’s kappa (κ) was calculated for each pairwise comparison where κ = (observed 23 
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agreement - probability of chance agreement)/(1- probability of chance agreement) (McHugh, 1 

2012). The 95% confidence intervals were quantified as κ ± (1.96 x the standard error). Of note, 2 

the Noyes et al. study showed a κ=0 for all comparisons because it had no inactives in this set of 3 

9 FRs, leading to a high probability of agreement due to chance. 4 

 5 

2.5. Relevance of findings in planarians to human biomonitoring data 6 

To provide toxicologists and regulators with context of how toxicity in planarians may 7 

relate to human exposure levels, we compared the concentrations which elicited toxicity in 8 

planarians  to measured or estimated human plasma concentrations of several of the tested FRs 9 

using high throughput toxicokinetic modeling (HTTK)  (Rotroff et al., 2010; Sipes et al., 2017; 10 

Wetmore et al., 2012; Wetmore et al., 2013). The underlying model assumes that in vitro media 11 

concentrations are equivalent to human plasma concentrations and is traditionally used for cell-12 

based or high-throughput screens. While recognizing the limitation that the planarian is an 13 

integrated system with more extensive kinetics than cell system models, this effort provides a 14 

baseline comparison that can be adjusted with increasing information of planarian kinetics. As 15 

such, this work directly compares estimated or measured (wherever available) human plasma 16 

concentrations with the regenerating planarian LEL media concentrations. Human biomonitoring 17 

data were unit-converted using HTTK modeling to estimate internal plasma concentrations in 18 

children and consisted of breast milk, handwipes, and house dust, and plasma and cord-blood 19 

serum levels of FRs as previously described (Alzualde et al., 2018). Briefly, the 3-compartment 20 

model in the HTTK R package (version 1.7) (Pearce et al., 2017; Wambaugh et al., 2015) with 21 

input chemical parameters from ADMET Predictor 7.2 (Simulations Plus, Inc., Lancaster, CA, 22 

USA) was used. Child peak plasma concentrations (over 1 year) were estimated for TPHP and 23 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/538280doi: bioRxiv preprint 

https://doi.org/10.1101/538280
http://creativecommons.org/licenses/by-nc/4.0/


18 
 

TMPP from breastmilk, child hand wipe, and house dust samples (Kim et al., 2014; Sugeng et 1 

al., 2017). Adult plasma values for TBBPA and BDE47, as well as cord blood serum for TBBPA 2 

and child plasma for BDE47 were used (Cariou et al., 2008; Stapleton et al., 2012; Wang et al., 3 

2013). Exposure values obtained were the range, as well as the geometric mean for: adult 4 

plasma, child plasma, cord serum, and TPHP child handwipe; median for: breastmilk and TMPP 5 

child handwipe, and maximum median for house dust. 6 

 7 

2.6. Cholinesterase activity staining in OPFR treated planarians 8 

To determine whether OPFR toxicity was correlated with inhibition of 9 

acetylcholinesterase activity, adult planarians were incubated in either 0.5% DMSO, 10 µM 10 

EHDP (an active OPFR in planarians) or 100 µM TCEP (an inactive OPFR in planarians) for 12 11 

days and then fixed and stained to visualize acetylthiocholine catalysis as previously described 12 

(Hagstrom et al., 2018a; Zheng et al., 2011), with a staining incubation of 3.5 hours. The staining 13 

was performed in duplicate on separate days on a total of 6 worms per chemical (3/day) and 12 14 

DMSO controls (6/day). Supplementary Figure 1 is representative of all imaged worms. 15 

 16 

 17 

3. Results 18 

A library of 15 FRs and 2 negative controls (acetaminophen and L-ascorbic acid) (Table 19 

1), was screened in adult and regenerating planarians to assess their effects on mortality, eye 20 

regeneration, and behavior. These chemicals were screened twice, once as part of the NTP 87-21 

compound library screen (FR screen 1) (Zhang et al., 2018) and once as a new, independent 22 

screen of the FR-specific subset of a newly obtained version of the library (FR screen 2), with 3 23 
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replicate runs in each screen (total n=24 per screen). Therefore, we compared the results obtained 1 

from these two independent screens using the same screening methodology to evaluate the 2 

robustness and reproducibility of our planarian screening platform. Moreover, as our previous 3 

study of the NTP 87-compound library focused on the screening methodology and major trends 4 

seen in the screen, herein we provide more in-depth insight of the toxicological profiles induced 5 

by this discrete subset of chemicals. The raw and analyzed data are available in Mendeley Data 6 

and Supplementary File 1, respectively. 7 

 8 

3.1. Robustness of the planarian FR screen 9 

To evaluate the robustness and reproducibility of our planarian screening platform, we 10 

compared the results obtained from compiling different numbers of replicates from the two 11 

independent screens (FR screen 1 and FR screen 2) (Figure 2). Compiled results for the 12 

individual replicates and different sets of replicates can be found in Supplemental File 1. Of the 13 

18 screened chemicals, IPP and TMPP were provided by two different suppliers for the two 14 

screens (Table 1). Therefore, given potential unknown variability between the different chemical 15 

batches, IPP and TMPP were excluded from the robustness evaluation. Notably, a recent screen 16 

with developing zebrafish found significant readout differences between IPP stocks from three 17 

different suppliers  (Noyes et al., 2015), confirming potential variability among suppliers.   18 
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Figure 2. Comparison of lowest-effect-levels (LELs) identified for each endpoint by compiling 1 

data from 3, 4, 5, or 6 replicates in regenerating and adult planarians. Readouts, i.e. whether 2 

bioactivity was detected in a particular endpoint, were determined for each endpoint using 3, 4, 3 

or 5 replicates from the 2 screens and compared with the readouts determined from 6 replicates. 4 

“-” indicates the chemical was inactive in that endpoint. Loss of a bioactive readout (deemed 5 

bioactive in 6 replicates but not 3, 4, or 5) are in dark grey. False positive readouts (deemed 6 

bioactive in 3, 4, or 5 replicates but not 6) are in yellow. Endpoint readouts which differed in 7 

sensitivity/potency (still bioactive in both screens but with different LELs) are in blue. The 8 

overall LEL of each chemical is listed in a separate column. IPP and TMPP (in red text) were 9 

excluded from the robustness evaluation since the chemical supplier differed between the two 10 

screens. 11 

 12 

To determine the robustness of our data, we evaluated both the overall agreement on 13 

bioactivity identification and potency (LELs) from any endpoints, and the agreement on 14 

bioactivity and LEL per endpoint when comparing across different numbers of compiled 15 

replicates. Firstly, we evaluated the key findings, i.e. general determination of toxicity from any 16 

endpoint and overall potency. In all sets of compiled data (3, 4, 5, or 6 replicates), the same 17 

10/16 chemicals, including the duplicate TPHP, caused adverse effects in at least one assay 18 

endpoint in both adult and regenerating planarians. Thus, the overall chemical hit-call was 19 

unchanged regardless of the number of replicates used. Furthermore, we also found that the 20 

sensitivity of the system generally did not differ among the different numbers of replicates as the 21 

overall LELs, i.e. the most sensitive LEL from any assay endpoint for each chemical, were the 22 

same for almost all bioactive chemicals in 3/4/5 replicates versus 6 replicates. Only BDE-47 had 23 
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an overall LEL, which differed depending on the number of replicates analyzed. The overall LEL 1 

for adult planarians exposed to BDE-47 was lower (i.e. more potent) when using 3 and 4 2 

replicates compared to using 6 replicates. Significant effects were found at 10 µM BDE-47 in 3 

day 7 and 12 unstimulated behavior when analyzing 3 or 4 replicates but not 6, because in FR 4 

screen 1 BDE-47 generally showed decreased sensitivity in this assay, which we attribute to 5 

differences in animal fitness caused by differences in food quality (Zhang et al., 2018). 6 

Secondly, because one of the strengths of our planarian screening platform is the ability 7 

to distinguish effects on different neuronal functions using various behavioral readouts, we 8 

compared the bioactivity of each endpoint readout using the compiled data of 3, 4, or 5 replicates 9 

with the compiled data of all 6 replicates (Figure 2, Table 2). Of the 144 readouts in regenerating 10 

planarians and 128 readouts in adult planarians, the bioactivity (either bioactive or inactive) 11 

determined with 6 replicates was highly concordant (≥ 96%) with that of 3, 4, and 5 replicates 12 

(Table 2). Differences were mostly due to loss of detection of bioactive readouts in 3, 4, or 5 13 

replicates (compared to 6 replicates), although there were a few readouts which were found to be 14 

bioactive in 3, 4, or 5 but not 6 replicates. Generally, loss of bioactive readouts in 3, 4, or 5 15 

replicates was correlated with fewer replicates, as the smaller sample size limited the ability to 16 

detect statistically significant effects. However, this primarily only occurred at concentrations 17 

which also yielded significant lethality. Thus, in these cases, there was not enough data from 18 

alive animals to yield a statistically significant effect on a morphological or behavioral endpoint. 19 

This suggests that some specific defects (e.g. scrunching) may be masked by overt systemic 20 

toxicity and lethality, especially in smaller sample sizes.  The only exception to this trend was 21 

IDDP, where differences in readout bioactivity were not due to low sample size but instead from 22 

inconsistency among the different replicates from the two independent screens. Furthermore, we 23 
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evaluated sensitivity concordance by comparing the LELs determined from the different 1 

replicate sets for the concordant bioactive readouts (Table 2) to determine whether the same 2 

concentration-dependent phenotypic profiles were identified in the different replicates. In 3 

regenerating tails, all concordant bioactive readouts for all endpoints had the same LELs across 4 

all sets of compiled data. In adult planarians, ≥ 97% of the concordant bioactive readouts had the 5 

same LELs using 3/4/5 replicates compared with using 6 replicates. Together, these data show 6 

the high reproducibility among the different replicates in both endpoint-specific bioactivity and 7 

potency and that our current screening strategy using 3 replicates is sufficiently robust.  8 

TPHP was screened as a duplicate in FR screen 2 (FR-specific library screen). The results 9 

of the duplicates were consistent in any set of compiled data, being bioactive in the same 10 

endpoints at the same LELs (Figure 2), underlining the robustness and reproducibility of our 11 

planarian screening platform.  12 

 13 

Table 2. Bioactivity concordance of readouts and sensitivity concordance of concordant 14 

bioactive readouts of the data using 3, 4, or 5 replicates compared with the data using 6 15 

replicates. Data are shown for regenerating (R) and adult (A) planarians. IPP and TMPP were 16 

excluded from the analysis. Bioactivity concordance of readouts was determined as the number 17 

of readouts showing the same bioactivity (bioactive or inactive) as using 6 replicates, out of the 18 

total number of readouts (9 for regenerating and 8 for adult planarians) for all 16 chemicals. 19 

Sensitivity concordance of concordant bioactive readouts using 3/4/5 replicates was determined 20 

as the number of bioactive readouts with the same LEL as in 6 replicates, out of the total number 21 

of concordant bioactive readouts (numbers in first two columns) for all 16 chemicals in this set 22 

of compiled data. 23 
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Bioactivity concordance of 

readouts 

Sensitivity concordance of bioactive 

concordant readouts 

  

R  

(144 readouts) 

A 

(128 readouts) 

R (concordant 

bioactive readouts) 

A (concordant 

bioactive readouts) 

3 replicates 138 (96%) 123 (96%) 138 (100%) 119 (97%) 

4 replicates 139 (97%) 124 (97%) 139 (100%) 123 (99%) 

5 replicates 142 (99%) 124 (97%) 142 (100%) 124 (100%) 

 1 

 2 

3.2. OPFRS are more potent than BFRs in planarians 3 

 After confirming our data is robust and reproducible, we used the compiled data from all 4 

6 replicates to delve into the details of FR toxicity. Eleven of the 15 unique FRs caused adverse 5 

effects in both adult and regenerating planarians in at least 1 endpoint (Figure 3). The duplicate 6 

chemical, TPHP, was consistent between batches and thus the results are only shown once. The 7 

bioactive FRs consisted of 3 of the 6 BFRs (BDE-99, BDE-47, TBBPA), 7 of the 8 OPFRs 8 

(IDDP, TCPP, EHDP, IPP, BPDP, IPP, TMPP, TPHP), and the FM550 mixture. TBPH, BDE-9 

153, TBB, TCEP, as well as the two negative control chemicals, were inactive in both worm 10 

types at the tested concentrations. All chemicals were screened at 5 test concentrations (see 11 

Materials and Methods, Section 2.1); however, hits were only observed at the two highest 12 

concentrations, 10 and 100 µM. Due to poor solubility, BDE-153 was tested at a maximum 13 

concentration of 50µM, which may explain its inactivity, since the other BDE compounds were 14 

only active at 100µM.  15 
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 1 

Figure 3. Overview of the planarian screening data of 15 unique flame retardants and 2 negative 2 

controls using 6 replicates. Heat maps of effects of brominated flame retardants (BFRs), 3 

organophosphorus flame retardants (OPFRs), a BFR mixture, and negative controls on 4 

regenerating (Top) and adult (Bottom) planarians for all endpoints with lowest-effect-level 5 

shaded. Only the highest two of the five tested concentrations showed effects in planarians. 6 

TPHP was screened as a duplicate in FR screen 2, but only shown once here since the results 7 

were consistent. Note that BDE-153 was screened at a maximum concentration of 50 µM.  8 

 9 

Using the high-content data obtained by screening for effects on planarian morphology 10 

and a variety of diverse behaviors, we determined whether any specific toxicities were induced 11 

by the different FRs. Eight FRs in regenerating planarians (BDE-99, TBBPA, TCPP, EHDP, 12 

IPP, BPDP, TMPP, and TPHP) and 6 FRs in adult planarians (TCPP, EHDP, IPP, BPDP, TMPP, 13 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 1, 2019. ; https://doi.org/10.1101/538280doi: bioRxiv preprint 

https://doi.org/10.1101/538280
http://creativecommons.org/licenses/by-nc/4.0/


26 
 

and TPHP) caused adverse outcomes on morphological and/or behavioral endpoints at 1 

concentrations where animal viability was not affected, suggesting specific non-systemic toxicity 2 

at these concentrations. Although causing sublethal effects in regenerating planarians, two BFRs, 3 

BDE-99 and TBBPA, only showed toxicity concomitant with lethality in adult planarians, due to 4 

increased sensitivity to lethality in the adult worms. Similar increased sensitivity of adult 5 

planarians to the lethal effects of some chemicals has been observed previously (Hagstrom et al., 6 

2015; Zhang et al., 2018).  7 

Next, we further examined which specific endpoints were affected by the sublethal 8 

concentrations of the different FRs. Scrunching, a planarian musculature-driven gait used as an 9 

escape response to specific adverse stimuli such as noxious heat (Cochet-Escartin et al., 2015), 10 

was the most sensitive endpoint with 7 and 6 FRs causing scrunching defects at sublethal 11 

concentrations in regenerating and adult planarians, respectively. To a lesser extent, sublethal 12 

effects were also seen on unstimulated behavior (regenerating planarians in TBBPA and adult 13 

planarians in IPP) and eye regeneration (TBBPA and TCPP). Interestingly, in addition to effects 14 

on eye regeneration, TCPP affected almost all behavioral endpoints (with the exception of day 7 15 

phototaxis in regenerating planarians) in both worm types in the absence of lethality. Together, 16 

these toxicological profiles demonstrate the power of the large number of diverse endpoints to 17 

discern specific toxic effects from systemic toxicity and pinpoint effects on specific neuronal 18 

functions, such as neuromuscular communication.  19 

Our planarian HTS platform has the unique advantage of allowing direct comparisons of 20 

chemical effects on adult and developing/regenerating animals. By doing so, we found TBBPA 21 

caused a developmental selective defect on day 12 unstimulated behavior, since effects on this 22 

endpoint were seen at 10µM in regenerating but not adult planarians (Figure 3). Of note, this 23 
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concentration did induce lethality in 24% of adult planarians at day 12 (see Supplemental File 1). 1 

However, this low level of lethality, although statistically significant, may suggest that any overt 2 

systemic toxicity at this concentration would not be potent enough to mask effects in other 3 

endpoints. Furthermore, TBBPA and TCPP caused eye regeneration defects at a sublethal 4 

concentration. Thus, while most compounds adversely affected both adult and developing 5 

animals, some compounds displayed additional developmental-specific toxicities. 6 

Lastly, to ask whether OPFRs are safer alternatives to BFRs, we compared the 7 

toxicological profiles induced by the two types of FRs. The OPFRs generally showed higher 8 

potency than the BFRs with LELs of 10µM in 5 out of 7 bioactive OPFRs, whereas the bioactive 9 

BFRs, except for TBBPA, had LELs of 100µM. TBBPA had a LEL of 10µM in both adult and 10 

regenerating planarians, with the most endpoints affected at this concentration, compared to the 11 

other FRs.  12 

Taken together, the bioactive OPFRs were at least as potent as BDE-47, which was 13 

phased-out due to concerns about its toxicity (Stapleton et al., 2014), emphasizing the 14 

importance of evaluating the toxicity of these supposedly safer replacement FRs. Almost all 15 

bioactive OPFRs (6/7 and 5/6 for regenerating and adult planarians, respectively) induced 16 

specific sublethal effects on scrunching. This was not seen to the same extent in the BFRs, where 17 

only 1 bioactive BFR (BDE-99) showed sublethal effects on scrunching and only in regenerating 18 

planarians. Thus, by assaying a variety of different neuronal functions in planarians, we were 19 

able to differentiate toxicities elicited by different chemical domains, suggesting that our system 20 

provides specificity. 21 

 22 

3.3. Concordance of bioactive hits between planarians and other alternative models 23 
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While several of the 15 FRs that we screened have been previously studied in other 1 

systems, including rodents (Cope et al., 2015; EFSA, 2011; Moser et al., 2015; Nakajima et al., 2 

2009; National Toxicology Program, 1991; Viberg and Eriksson, 2011) and other alternative 3 

models (Alzualde et al., 2018; Bailey and Levin, 2015; Cano-Sancho et al., 2017; Glazer et al., 4 

2018; Oliveri et al., 2015; Slotkin et al., 2017; Usenko et al., 2016), only a handful of studies 5 

have performed direct multi-FR comparisons as provided here. Fourteen of the 15 unique FRs 6 

tested in this screen have been previously studied in developing zebrafish, nematodes, and in 7 

vitro cell-based (mouse embryonic stem cell, human neural stem cell, and rat neuron) systems 8 

with some FRs showing developmental toxicity or DNT. Thus, herein, we compared our 9 

planarian data with these published results (Behl et al., 2015; Behl et al., 2016; Jarema et al., 10 

2015; Noyes et al., 2015) to contextualize our findings (Table 3, Figure 4). The FM550 mixture 11 

was excluded from this comparison because it was not screened in any of these previous studies. 12 

Comparisons were made with the overall regenerating planarian LEL, i.e. most sensitive LEL 13 

from any endpoint, determined from the compiled data of 6 replicates from FR screens 1 and 2 14 

(see Methods Section 2.4, Table 3 and Figure 4).  15 

First, we compared the overall chemical hit calls between the different systems to 16 

determine whether the same FRs were identified as bioactive, i.e. caused significant adverse 17 

effects, in the different models. Thirteen of the 14 shared FRs were previously found to be 18 

bioactive in at least one model; however, not all 14 FRs were tested in all systems or studies. IPP 19 

was the only FR found to be bioactive in all tested systems. TBB was the only FR which was 20 

inactive in all screens; however, it was only tested in our study and the (Noyes et al., 2015) 21 

zebrafish study. Generally, the alternative animal models detected more bioactive FRs than the in 22 

vitro models (Table 3). Of the 9 FRs tested in the in vitro models, 8 were bioactive in any model, 23 
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with at most 7 detected in any one model (human stem cell neurite outgrowth). The majority of 1 

effects caused by the FRs in the in vitro models occurred concomitantly with cytotoxicity, 2 

suggesting non-specific effects.3 
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Table 3. Comparison of developmental and/or developmentally neurotoxic endpoints used to evaluate FR toxicity between 1 

regenerating planarians and different alternative developing models. Lowest-effect-level (LEL) or point-of-departure (POD) for each 2 

model are listed in µM. Dash (-) indicates that there was no toxicity detected at the tested concentrations. An empty cell indicates that 3 

this chemical was not tested in this model. The number in brackets represents the LELs when considering concentration-independent 4 

and hyper-active effects. Bold text indicates that the effects were detected at sublethal concentrations.  5 

  BFRs OPFRs 

Model Assay TBPH BDE-153 TBB BDE-99 BDE-47 TBBPA TCEP IDDP TCPP EHDP IPP BPDP TMPP TPHP 

Planarian 
Morphology and and/or 

behavior (LEL) 
- - - 100 100 10 - 100.5 100 10 10.05 10.05 10 9.95 

Zebrafish 

Embryonic development 

(POD)a 
  

 

 
  

28.2 4.6 - - 

 

15.3 4.9 9.8 15.4 2 

Developmental behavior 

(LEL)b 
    4 - 12 -  12 3.8 - 4 0.4     

  
 

  
  

[2.1] [1.2] 
 

    

Developmental 

malformations and/or 

behavior (LEL) c 

0.64 6.4 - 0.64 0.0064 0.0064 64 6.4 64 64 0.064 0.64 0.0064 0.64 

[6.4E-
4] 

[0.064] [6.4E-4] [0.0064]     [0.0064] [0.0064] [0.64] [0.0064]   [0.0064] [0.0064] [0.0064] 

Nematode 

Larval development (POD)a   
 

 
 

0.6 10.1 - 3.9   2.3 3.2 3.3 95.5 0.9 

Larval development and/or 

feeding  (LEL)d 
      0.16 0.4 3.2 - 2.5 

  

1.6 1.6 2.5 100 0.16 

In vitro 

Mouse stem cell 

differentiation (POD) a 
     - 1.1 - - 

 

- 0.4 - - - 

Human stem cell 

neuroprogenitor 

proliferation (POD) a 

    - - - 2.3 

 

1 1.9 2 7.4 - 

Rat neurite outgrowth 

(POD) a 
    - - - - 

 
- 21 14.9 - - 

Human stem cell neurite 

outgrowth (POD) a 
        1 1.2 - 1.1 

  
0.9 0.5 1.2 - 1.1 
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a, data from (Behl et al., 2015); b, data from (Jarema et al., 2015); c, data from (Noyes et al., 2015); d, data from (Behl et al., 2016) 1 
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Figure 4. A. Interaction of bioactivity of the 14 flame retardants (FRs) with the different tested 1 

alternative animal models. Each box represents the interactions of this FR with the different 2 

models and studies, coded by different colors, where active interactions are in pink and inactive 3 

interactions are in grey. FRs with both active and inactive interactions signify that the chemical 4 

showed different effects in different studies/models. B. Quantification of concordance between 5 

alternative animal models for 9 FRs screened in all alternative animal models using Cohen’s 6 

kappa (κ), listed as κ ± 95% confidence intervals (McHugh, 2012). Of note, the Noyes et al study 7 

showed a kappa of 0 for all comparisons because it had no inactives in this set of 9 FRs. For (A) 8 

and (B), studies are listed as:  a, data from (Behl et al., 2015); b, data from (Jarema et al., 2015); 9 

c, data from (Noyes et al., 2015); d, data from (Behl et al., 2016). C. Comparison of toxicity 10 

potency of 14 FRs in regenerating planarians and other alternative developing models. The data 11 

for the individual studies are overlaid on a box and whisker plot compiling the lowest-effect-12 

levels (LELs) and points-of-departure (PODs) for the different FRs in all the different models. 13 

Stars represent planarian LELs, filled dots represent LELs/PODs in developing zebrafish and 14 

nematode models (Behl et al., 2015; Behl et al., 2016; Jarema et al., 2015; Noyes et al., 2015), 15 

and diamonds represent PODs in in vitro cell-based models (Behl et al., 2015). The x-axis shows 16 

the FRs in decreasing order of potency (lowest effect concentration).  17 

 18 

Due to the increased specificity and higher similarity to our planarian screening platform, 19 

we focused our concordance analysis on the alternative developing/regenerating animal models 20 

(planarians, nematodes, and zebrafish). The chemical hit calls for the 14 FRs tested in these 21 

models were highly concordant. The two invertebrate systems, nematodes and planarians, had 22 

perfect hit concordance for the 10 FRs tested in both systems. These 10 FRs were also tested in 23 
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at least one zebrafish study and showed high concordance among the three models (considering 1 

all studies together) with the same 9 chemicals eliciting adverse effects in at least one study from 2 

each system (Table 3, Figure 4A). Of these 10 FRs, only TCEP had discordant results between 3 

the different systems, as it was bioactive in two of the zebrafish studies, but inactive in the third 4 

zebrafish study and in nematodes and planarians.  5 

As this example illustrates, some discrepancies were found across different studies using 6 

the same model. Detailed comparisons are shown in Table 3 and Figure 4A. We used Cohen’s 7 

kappa, which also considers agreement due to chance (McHugh, 2012), to quantify concordance 8 

across the different studies for the 9 shared FRs (Figure 4B). As expected, we found perfect 9 

agreement between the two nematode studies and our planarian study. However, all other 10 

comparisons yielded substantial agreement or only agreement due to chance, even when 11 

comparing different studies in the same system, demonstrating that methodological differences 12 

between labs studying the same system can be as impactful as interspecies differences. This 13 

emphasizes the importance of transparency, so results from different studies can be adequately 14 

compared and compiled to leverage the strength of multi-system testing. 15 

We also compared the sensitivity (i.e. chemical potency) of our regenerating planarian 16 

screening data to those of the comparative alternative model studies (Figure 4C, Table 3). 17 

Notably, some of these studies, including ours herein, evaluated toxicity potency using the 18 

nominal test concentrations (i.e. LEL) (Behl et al., 2016; Jarema et al., 2015; Noyes et al., 2015) 19 

while others used modeling approaches to calculate a point-of-departure (POD) (Behl et al., 20 

2015). Eight of the 10 FRs causing adverse effects in planarians (BDE-47, TBBPA, BPDP, 21 

EHDP, IPP, TMPP, TPHP, and TCPP) had overall LELs (from any endpoint) in the regenerating 22 

planarian system within an order of magnitude of the effect concentration (LEL or POD) in at 23 
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least one of the other studies using zebrafish, nematode, and in vitro cell-based models (Figure 1 

4C, Table 3).  2 

 3 

 4 

4. Discussion 5 

4.1. Robustness of planarian screening platform 6 

Robustness of screening data is indispensable for building confidence in a new testing 7 

platform. In previous proof-of-concept work (Hagstrom et al., 2015), we used post-hoc statistical 8 

power analysis to determine that  n=24 specimen per condition were necessary to achieve 9 

sufficient power. Here, we experimentally verified the validity of our current test strategy, testing 10 

in 3 replicate runs with n=8 each, through direct comparison of the reproducibility of data 11 

obtained from using 3 (n=24), 4 (n=32), or 5 replicates (n=40) with 6 replicates (n=48). We 12 

found that our planarian platform is robust and that 3 replicates were sufficient to identify all 13 

chemical hit-calls, distinguishing the same bioactive chemicals as 6 replicates. Moreover, 14 

readout bioactivity and sensitivity (i.e. LELs) of the different endpoints were highly concordant 15 

among the different sets of replicates. Loss of bioactive readouts with less replicates was only 16 

found for morphological or behavioral endpoints at lethal concentrations. Since all endpoints, 17 

except lethality, were quantified from the data from living animals, high lethality led to a small 18 

sample size and limited the power to detect a statistically significant effect. Moreover, lethality 19 

suggests overt systemic toxicity at these concentrations which may have masked effects at more 20 

specific endpoint readouts. Given the overt toxicity at lethal concentrations, many labs only 21 

evaluate more sensitive morphological or behavioral effects at sublethal concentrations, 22 

disregarding effects at lethal concentrations (Alzualde et al., 2018; Jarema et al., 2015; Truong et 23 
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al., 2014). All together, these data indicate that different number of replicates (from 3-6) yield 1 

very similar results, validating that our current screening strategy using 3 replicates is able to 2 

robustly identify chemical bioactivity and different toxicities.  3 

 4 

4.2. The role of in vitro HTS for DNT 5 

As laid out in the introduction, few mammalian guideline studies have been conducted to 6 

evaluate the DNT of chemicals, including the FRs tested herein. High-throughput in vitro assays, 7 

coupled with bioinformatic analysis, have emerged to fill this gap by quickly and efficiently 8 

evaluating potential chemical toxicity. However, our comparison of several human and rodent 9 

cell culture assays with non-mammalian whole animal models found that the alternative animal 10 

models were better at identifying specific developmental or developmental neurotoxic effects at 11 

sublethal concentrations (Table 3). When considering all compared in vitro assays, 8/9 FRs were 12 

found to be bioactive; however, 6 of these bioactive FRs were only identified in 1 or 2 assays 13 

(primarily the human stem cell systems). The two rodent cell culture assays only yielded 2 hits 14 

each, both of which were also detected by the human stem cell assays. The majority of the in 15 

vitro effects were found concomitantly with cytotoxicity, while selective sublethal effects were 16 

more apparent in the alternative animal models. A recent study evaluating a small number of 17 

BFRs and OPFRs in rat neural stem cells and neuronotypic PC12 cells was able to distinguish 18 

effects on neurodifferentiation from cytotoxicity (Slotkin et al., 2017), suggesting that certain 19 

types of cell culture assays may be more suited for DNT studies than others. Thus, while current 20 

in vitro techniques are extremely powerful for rapid screening of toxicants on other organ 21 

systems, they may have limited value for detecting potential developmental toxicity or DNT, 22 

because they inherently lack the necessary complexity for detecting functional perturbations that 23 
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are independent of systemic toxicity. Alternative whole animal systems present an opportunity to 1 

fill this gap between in vitro and mammalian animal models.  2 

 3 

4.3. Need for transparency in screening methodology and analysis  4 

As shown in Figure 4B, intraspecies differences in chemical hit-calls between different 5 

studies were as big as interspecies differences. Additionally, even when a chemical was 6 

identified as bioactive in two studies from the same model, sensitivity could vary dramatically. 7 

For example, the zebrafish data from (Noyes et al., 2015) shows increased sensitivity (up to 3 8 

orders of magnitude difference) to 4 FRs (TBBPA, BPDP, IDDP, and IPP) when compared to 9 

the other published zebrafish studies (Table 3).  10 

Important methodological differences in experimental design and data analysis may 11 

explain these differences. For example, we tested the FRs in log-steps, whereas several of the 12 

other studies used smaller concentration steps, thus the large dose gaps in our study limits precise 13 

comparisons of potency. In addition, how significant effects are determined can vary 14 

dramatically between laboratories. Some use statistics alone, while others, like ourselves 15 

incorporate additional stringency tests including biological relevancy cutoffs and inconsistency 16 

checks (Zhang et al., 2018). Our statistical pipeline is based on empirical observations to reduce 17 

the false positive rate, but may limit sensitivity. For example, we found our biological relevancy 18 

cutoffs removed 72% of statistically significant hits, which changed the LELs of 8 chemicals 19 

(Supplementary Table 1). However, the majority of the removed hits were concentration-20 

independent. i.e. effects were seen at lower but not the subsequent higher concentrations, and 21 

some were hits in negative controls, together suggesting that these excluded hits are likely false 22 

positives (Zhang et al., 2018). Variability can also arise due to using LELs vs PODs to determine 23 
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potency. LELs are limited to the tested concentrations, and thus the respective POD could lie 1 

somewhere within the range of the LEL and the next lower tested concentration level. Therefore, 2 

because the different experimental approaches and statistical criteria used to evaluate bioactivity 3 

and potency are as important as differences between species, transparency of methodology is 4 

crucial to make system comparisons meaningful and build confidence in these new approaches 5 

for complementing mammalian toxicity testing. 6 

 7 

4.4. Comparisons of different models emphasizes the value of a battery approach 8 

To contextualize the results of our planarian screen with what is known for FR toxicity, 9 

we compared the available data from alternative, non-mammalian animal models and found that 10 

our results were highly concordant. Eight of 10 common FRs tested in planarians, zebrafish, and 11 

nematodes were bioactive in at least one study in all three systems (Table 3 and Figure 4A). 12 

Thus, these shared bioactive FRs affected multiple models and multiple endpoints, spanning 13 

effects on development, neurodevelopment, and general neuroactivity, indicating multiple 14 

mechanisms may be involved in their toxicity. Battery approaches such as these are powerful 15 

because they allow parallel interrogation of different species and endpoints, from the cellular to 16 

organismal level, to integrate multiple lines of evidence and build confidence in preliminary 17 

hazard assessment. 18 

In addition to comparing with other toxicological models, comparing with human 19 

environmental exposure can contextualize the relevancy of observed toxicity in a given system. 20 

Therefore, we overlaid our regenerating planarian screening results to measured or estimated in 21 

vivo plasma concentrations using the HTTK R-package (Figure 5) (Alzualde et al., 2018; Pearce 22 

et al., 2017). The nominal water concentrations at which effects were seen in regenerating 23 
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planarians are significantly greater (1-2 orders of magnitude) than the highest estimated 1 

concentrations based on reported human exposure levels. These human exposure values have 2 

also been recently compared with the nominal and internal LELs in a developing zebrafish 3 

screen (Alzualde et al., 2018). While the zebrafish nominal LELs were generally closer to the 4 

human exposure levels than planarian nominal LELs, the majority were also outside of the range 5 

of human exposure. One possible interpretation of these data is that the toxicity observed in these 6 

alternative models are irrelevant because it occurs at higher concentrations than what was 7 

estimated from average human exposure data. However, care has to be taken when performing 8 

these comparisons, because the modeled data does not take into account differences in uptake 9 

routes and levels, metabolism, or possible tissue accumulation over time as it is modeling plasma 10 

concentration. Accumulation represents a tangible risk factor particularly for FRs as both BFRs 11 

and OPFRs have been suggested to bioaccumulate (Hale et al., 2003; Hendriks and Westerink, 12 

2015; Hou et al., 2016; Nakajima et al., 2009). In fact, when comparing internal and nominal 13 

concentrations, a zebrafish study found vast differences among the different FRs, with up to 14 

~600X increases in internal FR concentrations in day 4 zebrafish larvae compared to the nominal 15 

concentrations (Alzualde et al., 2018).   16 

For all systems comparisons, it is imperative to understand the differences between 17 

nominal water concentrations and internal doses, particularly at the site of action. For example, 18 

although the human exposure data is based on human plasma concentrations, these may not 19 

reflect the relevant concentrations at the site of action, i.e. the nervous system. Similarly, the 20 

toxicity in the alternative animal models discussed herein are based on nominal water/media 21 

concentrations and not doses. Since the effective internal concentrations in the animals are 22 

unknown, strong conclusions of comparative sensitivity and their relevancy to human exposure 23 
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are difficult to make. Thus, understanding the potential for toxicity, even at nominal 1 

concentrations which may, at first glance, seem irrelevant to human exposure, are important for 2 

risk assessment. 3 

 4 

 5 

Figure 5. Overlay of the LELs in regenerating planarians with available human exposure data. 6 

Unit-converted measured flame retardant concentrations in adult plasma, child plasma, and cord 7 

plasma, as well as HTTK R-package estimated child plasma concentrations from breastmilk, 8 

child handwipe, and house dust were plotted (colored bars and circles). The bars represent the 9 

range, while the respective circles represent the geometric mean, median, or maximum median as 10 

noted in the Methods (Section 2.5). The lower and upper range of the unit-converted (plasma) 11 

and HTTK-estimated internal concentrations were calculated using the lowest and highest 12 

reported values, respectively. The LELs (nominal concentrations) in planarians (black dots) were 13 

based on the most potent effect at any endpoint in regenerating planarians (Table 3 and Figure 14 

3). 15 

 16 
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4.5. Replacement FRs show comparable neurotoxicity to phased out PBDEs  1 

In this screen, we evaluated the neurotoxicity and DNT of 15 FRs (6 BFRs, 8 OPFRs, 2 

and 1 BFR mixture) and found that 11 (3 BFRs, 7 OPFRs, and the BFR mixture) caused adverse 3 

effects in both adult and regenerating planarians. It should be noted that the 3 inactive BFRs, 4 

BDE-153, TBPH, and TBB have relatively high molecular weights (550-706 g/mol). Moreover, 5 

TBPH and BDE-153 had solubility issues at the highest tested concentration (100 and 50 µM, 6 

respectively) (Zhang et al., 2018). Thus, these issues could have contributed to their inactivity in 7 

our planarian screen. TCEP, the only OPFR inactive in our planarian screen, was also inactive in 8 

all studies (in vivo and in vitro) except for 2 zebrafish studies (Table 3) (Jarema et al., 2015; 9 

Noyes et al., 2015). Additionally, inactivity in nematodes was likely not an issue of limited test 10 

concentrations as TCEP was tested at up to 1mM without any observed effects. Only the Jarema 11 

et al and Noyes et al studies found TCEP to be bioactive in zebrafish developmental behavioral 12 

endpoints, albeit at relatively higher concentrations than the other tested FRs, suggesting 13 

relatively low potency. In agreement with the results in worms, studies with Long-Evans rats 14 

found no significant DNT was induced by oral exposure (gavage) of up to 90 mg/kg/day TCEP 15 

from gestational day 10 to weaning (Moser et al., 2015). 16 

Several currently used FRs, including one in-use BFR, were found to be similarly or 17 

more toxic than the phased-out PBDEs in planarians. TBBPA, a BFR which is still currently 18 

widely in use, was found to cause specific, sublethal effects on unstimulated behavior (day 7 and 19 

12) and eye regeneration in regenerating planarians (Figure 3), and was more potent than the 20 

phased-out BDE-47 and -99. In addition, effects on day 12 unstimulated behavior were selective 21 

to regenerating planarians. Together, these results suggest TBBPA caused selective adverse 22 

effects on planarian development. Although thus far guideline animal studies have not 23 
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demonstrated any teratogenic effects of TBBPA (EFSA, 2011), developmental defects were 1 

observed in several alternative models compared here, including planarians, zebrafish (Noyes et 2 

al., 2015), and nematodes (Behl et al., 2015; Behl et al., 2016) at concentrations of 10 µM and 3 

below, suggesting conserved mechanisms of toxicity which may need to be re-examined in the 4 

context of human risk assessment. In addition, in mice, TBBPA has been reported to cause 5 

neurobehavioral defects after acute exposure and act as a thyroid endocrine disruptor (Nakajima 6 

et al., 2009; Viberg and Eriksson, 2011). 7 

Similarly, almost all of the tested OPFRs, which were marketed as safer alternatives to 8 

BFRs, were found to be at least as toxic as the phased-out BDEs in planarians. Our results 9 

resonate with previous studies in nematode, zebrafish and human, mouse, and rat cell culture, 10 

which similarly found that most OPFRs had comparable activity to BFRs (Alzualde et al., 2018; 11 

Behl et al., 2015; Behl et al., 2016; Jarema et al., 2015; Noyes et al., 2015). However, because of 12 

the range of behaviors tested in our planarian platform, which assay various neuronal functions, 13 

we were able to differentiate the toxicities of OPFRs compared to the BFRs. OPFRs generally 14 

caused more sublethal, specific neurotoxic effects whereas BFRs were primarily systemically 15 

toxic, as discussed in detail in section 4.6.  16 

 17 

4.6. Behavioral profiling in planarians adds screening specificity 18 

The majority (5/7) of the bioactive OPFRs in regenerating and adult planarians showed 19 

specific, sublethal effects on scrunching, which were not seen to the same extent in the BFRs. 20 

Scrunching is an oscillatory, musculature-driven escape gait in planarians that is induced by 21 

specific adverse stimuli such as noxious heat (Cochet-Escartin et al., 2015), but is not a generic 22 

response to all noxious environments (Cochet-Escartin et al., 2016). Although scrunching shares 23 
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qualitative features, such as muscle-based motion and increased mucus secretion, with other 1 

muscle-driven body shape changes, such as peristalsis, it can be quantitatively distinguished 2 

using four characteristic parameters: frequency and asymmetry of body length oscillations, 3 

speed, and maximum elongation (Cochet-Escartin et al., 2015). Scrunching is also distinctively 4 

different from other body undulations described in the literature, including snake-like behaviors 5 

and seizures (Ross et al., 2018). 6 

Scrunching defects, as tested in our HTS platform, therefore point to specific adverse 7 

effects on one or multiple molecular targets controlling the underlying signaling cascade from 8 

stimulus sensation to muscle contraction, mucus secretion, and locomotion. Importantly, some of 9 

the molecular targets that mediate scrunching have been previously identified. For instance, it 10 

has been shown that the Transient Receptor Potential Channel Ankyrin 1 (TRPA1) is required 11 

for proper scrunching in response to tail amputation (Arenas et al., 2017). TRPA1 is also an 12 

indirect sensor of noxious heat in planarians (Arenas et al., 2017) and we have recently 13 

confirmed that TRPA1 activation is required for heat-induced scrunching (unpublished results). 14 

Additionally, cholinergic neurotransmission, which is responsible for coordinating planarian 15 

motor functions (Nishimura et al., 2012), is likely important for scrunching, as this gait relies on 16 

muscle contraction. We have previously characterized two putative genes responsible for 17 

cholinesterase activity in D. japonica and found them to be sensitive to inhibition by 18 

organophosphorus pesticides and linked to behavioral defects (Hagstrom et al., 2017; Hagstrom 19 

et al., 2018a). Organophosphorus compounds share the ability to inhibit cholinesterase, though 20 

their potency can vary due to structural and pharmacokinetic differences (Taylor, 2018). Because 21 

comparable concentrations of organophosphorus pesticides, such as parathion and chlorpyrifos 22 

(Zhang et al., 2018), also cause scrunching defects, this phenotype is likely representative of the 23 
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shared cholinergic toxicity. Consistent with this idea, we found an almost complete loss of 1 

cholinesterase activity in day 12 adult planarians exposed to 10 µM EHDP, which causes 2 

scrunching defects. In contrast, cholinesterase activity in day 12 adult planarians exposed to 100 3 

µM TCEP, which was the only inactive OFPR in our planarian screen, was indistinguishable 4 

from controls (Supplementary Figure 1). Similarly, it was previously shown that DNT of 4 5 

OPFRs tested in medaka was correlated with changes in acetylcholinesterase activity. For 6 

example, TPHP caused developmental and behavioral defects concomitant with significant 7 

acetylcholinesterase inhibition whereas TCEP, which had no significant effect on 8 

acetylcholinesterase activity, had much milder toxic effects (Sun et al., 2016b). Lack of 9 

significant effects of TCEP on acetylcholinesterase activity or transcription were also found in 10 

developing zebrafish (Sun et al., 2016a). Together, these studies indicate that the inactivity of 11 

TCEP in these different models may result from its inability to significantly inhibit 12 

acetylcholinesterase at the tested concentrations.  13 

Our behavior-rich planarian system can be a powerful complement to existing developing 14 

zebrafish and nematode models, with their respective morphological breadth and genetic 15 

tractability. Because we can directly compare toxicities in regenerating and adult planarians, we 16 

are able to distinguish toxic from developmental toxic effects, which is not directly possible in 17 

these other systems. For example, we found developmentally selective effects on day 12 18 

unstimulated behavior following exposure to 10µM TBBPA in regenerating but not adult 19 

planarians, suggesting TBBPA may act on specific developmental processes or on processes 20 

which are more sensitive during development. The shared effects and potencies of the other 21 

bioactive FRs on both regenerating and adult planarians suggest a potential shared mechanism of 22 

toxicity, with effects on overall neural function rather than neurodevelopment directly. Together, 23 
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these examples illustrate that, in a single screen, the planarian platform is uniquely able to 1 

differentiate DNT from neurotoxicity and distinguish effects on specific neuronal functions.  2 

 3 

 4 

5. Conclusions 5 

Here, we showed, using the concrete example of screening 15 FRs, that our planarian 6 

HTS platform generates robust data and allows us to distinguish systemic toxicity from 7 

neurotoxicity and developmentally selective effects from general neurotoxicity. Additionally, the 8 

diverse behaviors tested in this planarian system allowed us to differentiate class-dictated 9 

phenotypic signatures, particularly evidenced by the shared effect of OPFRs, but not BFRs, on 10 

planarian scrunching. Concordance between this planarian study and previous studies in cell 11 

culture, nematodes and developing zebrafish, demonstrating the comparable toxicity of 12 

replacement OPFRs with BFRs emphasizes the urgent need for further evaluation of OPFRs in 13 

mammalian systems. 14 

 15 

 16 

6. Supplementary data description 17 

Compiled data for each endpoint and comparisons between individual replicates can be found in 18 

Supplementary File 1. Additional data on the differences between our determined hits and initial 19 

statistically significant effects can be found in Supplementary Table 1. Results from the 20 

cholinesterase activity staining of EHDP and TCEP can be found in Supplementary Figure 1. 21 

 22 

 23 
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