

1 Drug-like Fragments Inhibit *agr*-Mediated Virulence Expression in *Staphylococcus*
2 *aureus*
3

4 Ian F. Bezar^{1,2}, Ameya A. Mashruwala^{3,4,5}, Jeffrey M. Boyd³, Ann M. Stock^{1*}
5

6 ¹ Department of Biochemistry and Molecular Biology, Center for Advanced
7 Biotechnology and Medicine, Rutgers–Robert Wood Johnson Medical School,
8 Piscataway, New Jersey 08854, ²Graduate School of Biomedical Sciences at Robert
9 Wood Johnson Medical School, Piscataway, New Jersey 08854, ³Department of
10 Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901,
11 ⁴Graduate School–New Brunswick, Rutgers University, New Brunswick, New Jersey
12 08901, ⁵Current address: Department of Molecular Biology, Princeton University,
13 Princeton, New Jersey, *Corresponding Author: stock@cabm.rutgers.edu

14
15 In response to the increasingly problematic emergence of antibiotic resistance, novel
16 strategies for combating pathogenic bacteria are being investigated. Targeting the *agr*
17 quorum sensing system, which regulates expression of virulence in *Staphylococcus*
18 *aureus*, is one potentially useful approach for combating drug-resistant pathogens that
19 has not yet been fully explored. A previously published study of a fragment screen
20 resulted in the identification of five compound fragments that interact with the DNA-
21 binding domain of the response regulator AgrA from *S. aureus*. We have analyzed the
22 ability of these compounds to affect *agr*-mediated virulence gene expression in *S.*
23 *aureus* cells. Three of the compounds demonstrated the ability to reduce *agr*-driven

24 transcription of at the P2 and P3 promoters of the *agr* operon and increase biofilm
25 formation, and two of these compounds also showed the ability to reduce levels of
26 secreted toxins. The finding that the compounds tested were able to reduce *agr* activity
27 suggests that they could be useful tools for probing the effects of *agr* inhibition.
28 Furthermore, the characteristics of compound fragments make them good starting
29 materials for the development of compound libraries to iteratively improve the inhibitors.
30

31 **Introduction**

32
33 *Staphylococcus aureus* is a dangerous human pathogen and a leading cause of
34 endocarditis, bone and joint infections, pulmonary infections, and bacteremia¹. *S.*
35 *aureus* infections have become increasingly difficult to treat due to the growing
36 prevalence of antibiotic-resistant strains. Methicillin-resistant *S. aureus* (MRSA) strains
37 such as USA300 have become the predominant source of soft-tissue infections in the
38 USA^{2,3}. MRSA infections are often treated with vancomycin as a last-resort antibiotic;
39 however, strains resistant to vancomycin have been reported^{4,5}. Although clinical
40 observation of vancomycin resistance in infections has been relatively limited, the threat
41 highlights the urgent need for novel antibiotic therapies⁶.

42
43 In response to the problem of increasing antibiotic resistance, targeting bacterial
44 virulence rather than viability has been proposed. Because virulence expression and
45 regulation are important for the establishment and maintenance of an infection but are
46 otherwise non-essential, it has been argued that targeting virulence might be less likely

47 to lead to the development of resistance^{7,8}. While these potential advantages make the
48 idea of targeting virulence extremely appealing, this strategy remains largely untested.

49

50 In *S. aureus*, the *agr* quorum sensing system plays a major role in the regulation of
51 virulence⁹. The *agr* system coordinates the timing of the transition to an invasive mode
52 that entails increased production of virulence factors and a reduction in surface
53 proteins¹⁰. Infection models have shown that disruption of the timing of *agr* activation
54 leads to the attenuation of an infection¹¹. The importance of *agr*-mediated expression of
55 virulence genes has also been demonstrated in several infection models where *agr*-
56 deficient strains generate significantly milder infections than their wild-type (WT)
57 counterparts¹²⁻¹⁵.

58

59 The *agr* operon consists of four genes: *agrB*, *agrD*, *agrC*, and *agrA* that encode the
60 components of the quorum sensing system¹⁶. Transcription of the operon is driven by
61 the P2 promoter, which is activated by the response regulator AgrA in an autoregulated
62 fashion. *agrD* encodes a 46-amino acid pro-peptide that is processed and secreted
63 from the cell by the transmembrane endopeptidase AgrB^{17,18}. The mature secreted
64 AgrD is the auto-inducing peptide (AIP) of the quorum sensing system, which, after
65 building up to sufficient extracellular concentrations, is capable of activating the receptor
66 histidine kinase AgrC¹⁹. Activated AgrC promotes the transfer of a phosphoryl group to
67 the response regulator AgrA, which in turn activates transcription at the P2 promoter,
68 completing the auto-regulatory loop²⁰. Phosphorylated AgrA also promotes transcription
69 at the P3 promoter, leading to expression of RNAIII, a 514-nucleotide RNA molecule

70 that both serves as the transcript for the *hld* gene encoding δ-hemolysin and functions
71 as a regulatory RNA^{21,22}. RNAIII plays a central role in effecting the transition to a
72 virulent mode as it serves to enhance the expression of genes encoding toxins such as
73 *hla* (α-hemolysin) while reducing the expression of genes encoding surface proteins,
74 such as *spa* (protein A). The down-regulation of adhesion molecules upon the
75 activation of the *agr* system is accompanied by the increased expression of enzymes
76 capable of dissolving biofilm matrices, such as nucleases and proteases. Thus,
77 increased *agr* activity results in the inhibition of biofilm formation as well as facilitating
78 the dispersal of bacteria from pre-formed biofilms^{23,24}.

79

80 AgrA is a response regulator of the LytTR family, characterized by a DNA-binding
81 domain that is relatively uncommon among bacteria and absent from higher
82 organisms²⁵. LytTR domains are typically found in transcription factors that regulate
83 virulence gene expression²⁶. A previously conducted fragment screen against the AgrA
84 LytTR domain identified five compounds that interacted with the DNA-binding domain at
85 a common site that overlapped the DNA-binding surface. Three compounds were
86 shown to inhibit interactions of the AgrA DNA-binding domain with its target DNA in an
87 *in vitro* assay²⁷. Drug-like fragments, which are smaller than typical small-molecule
88 drugs and thus bind with relatively low affinity, are considered to be good starting points
89 in drug-development pipelines²⁸. We aimed to test the hypothesis that the previously
90 identified fragments, which target a DNA-interaction surface of AgrA, would inhibit AgrA
91 activity in *S. aureus* cells. Here we present data demonstrating that several of the
92 compounds identified in the original screen inhibit virulence gene activation in *S. aureus*

93 in ways that are consistent with inhibition of the *agr* system. These data suggest that
94 these molecules are not only useful for the study of effects of *agr* inhibition but also
95 have potential as starting molecules for the design of improved inhibitors.

96

97 **Results**

98

99 **Treatment with inhibitors results in decreased activation of the P3 promoter**

100 Phosphorylated AgrA drives transcription at the P3 promoter, leading to expression of
101 RNAlII²². To test the ability of the inhibitory compounds to disrupt the activation of
102 transcription by AgrA, we employed a cell-based reporter assay using a plasmid
103 containing the *gfp* gene under the transcriptional control of the P3 promoter²⁹.
104 Untreated WT cultures grown for 8 h demonstrated robust expression of GFP, indicating
105 strong transcription of RNAlII (Fig. 1a). In contrast, cultures grown in the presence of
106 compounds **1-4** at a concentration of 120 μ M resulted in reduced expression of GFP
107 (Fig. 1a). This concentration of the compounds did not inhibit growth (Supplementary
108 Fig. S1). Treatment with compound **5** did not significantly alter reporter activity. The
109 largest reduction in GFP expression was achieved with compound **1**, although levels
110 were not reduced to those of the Δ *agr*::*tet* strain, henceforth referred to as the Δ *agr*
111 strain. None of the compounds had significant effects on the Δ *agr* strain ($p>0.05$),
112 suggesting that the compounds exert their inhibitory effects via the *agr* system.
113 Compounds **1-3**, which showed the greatest inhibitory effects, were chosen for further
114 analyses. Treatment with compounds **1-3** had no effects on GFP expression in strains
115 containing transcriptional reporter plasmids for *dps* and *recA*, two genes that are not

116 known to be under *agr* regulation³⁰ (Supplementary Fig. S2). These data suggest that
117 the compounds do not act generally to reduce GFP expression and are consistent with
118 the interpretation that the compounds reduce transcription from the P3 promoter
119 through the *agr* system.

120

121 **Treatment with inhibitors reduces levels of transcripts directly regulated by AgrA**
122 AgrA directly regulates the transcription of several genes involved in virulence
123 regulation. It promotes the transcription of genes encoding the phenol-soluble modulin
124 (PSM) α and β proteins³⁰, the *agrBDCA* operon at the P2 promoter, and the regulatory
125 RNA, RNAlII, at the P3 promoter. Inhibition of AgrA is therefore expected to result in
126 reduced cellular levels of these AgrA-regulated transcripts. Quantitative real-time PCR
127 was performed to determine the transcript levels of *psma1*, *psm β 1*, *agrA*, and RNAlII in
128 cultures grown with each compound at a concentration of 120 μ M for 8 h. Levels of
129 each of the tested transcripts were significantly lower in cultures treated with
130 compounds **1-3** compared to those in untreated cultures (between 1.6-22 fold decrease
131 in expression) (Fig. 1b). The reduction of transcript levels upon treatment with the
132 compounds is consistent with the interpretation that the compounds interfere with
133 regulation of specific transcripts by AgrA.

134

135 **Treatment with inhibitors results in reduced cellular levels of AgrA**
136 AgrA drives transcription of the *agrBDCA* operon at the P2 promoter. Inhibition of AgrA
137 would therefore be expected to result in reduced cellular levels of AgrA. In order to test
138 whether the compounds reduced AgrA levels, western blots were employed to measure

139 levels of AgrA in a Δ spa strain. The Δ spa strain was used to avoid interference from the
140 immunoglobulin-binding protein A with western blotting. Compounds were added to
141 cultures upon reaching an OD of ~2.5, designated as time zero, at which AgrA levels
142 were moderate but detectable. Samples were collected after an additional 8 h of
143 growth, a point expected to exhibit high levels of AgrA, induced by high cell density
144 (Supplementary Fig. S3). In untreated samples, levels of AgrA approximately doubled
145 in the 8-h growth window (Fig. 2a). However, treatment with compounds **1-3** resulted in
146 a concentration-dependent reduction in levels of AgrA. Importantly, levels of AgrA from
147 cultures treated with each of the three compounds at concentrations of 250 μ M did not
148 increase significantly during the 8-h growth period, indicating nearly complete inhibition
149 of new AgrA synthesis.

150

151 An alternate explanation for the reduction in AgrA levels is that treatment with the
152 compounds led to an increase in the turnover of AgrA. To examine the effects of the
153 compounds on protein stability, cultures were pre-treated with the translational inhibitor
154 erythromycin prior to treatment with compounds **1-3**. Cultures were sampled
155 immediately prior to the addition of erythromycin, 20 min post addition of the
156 compounds, and finally after 8 h of incubation. In the absence of erythromycin, levels of
157 AgrA increased over time, while cultures grown with erythromycin maintained constant
158 levels of AgrA (Fig. 2b). The addition of compounds **1-3** to samples pre-treated with
159 erythromycin resulted in no significant difference in the levels of AgrA. These results
160 are consistent with the interpretation that the compounds disrupt *agr* activity by
161 interfering with the ability of AgrA to activate *agrBDCA* transcription.

162

163 **Treatment with inhibitors results in decreased production of exoproteins,**
164 **reduced hemolytic activity, and altered levels of the *spa* and *hla* transcripts**

165 The *agr* system regulates virulence in part by increasing the expression of exoproteins
166 such as hemolytic toxins³¹. Inhibition of AgrA activity would therefore be expected to
167 decrease exoprotein production and lead to decreased hemolytic activity. The presence
168 of exoproteins was analyzed in the spent media supernatant of cultures grown over a
169 period of 8 h. Exoprotein levels of the culture supernatant obtained from WT cultures
170 treated with compounds 1 and 2 were visibly decreased relative to those from untreated
171 cultures when analyzed using SDS-PAGE (Fig. 3a). In addition, differences in the
172 relative intensities of some bands were observed. No appreciable change in exoprotein
173 profiles was noted in the Δ agr strain upon treatment with the compounds.

174

175 To quantify the differences in levels of secreted proteins upon treatment with
176 compounds, total protein levels in the culture media were measured using a Bradford
177 protein assay. Secreted proteins were significantly reduced ($p<0.05$) in WT cultures
178 treated with compound **1** and compound **2**, but not compound **3** (Fig. 3b). No
179 appreciable change in protein levels was observed when Δ agr cultures were treated
180 with compounds (Supplementary Fig. S5). Similarly, treatment of the cultures with
181 compounds **1** and **2**, but not **3**, resulted in a significant decrease in the hemolytic activity
182 of culture supernatants ($p>0.05$) (Fig. 3c).

183

184 While expression of RNAlII alters expression of protein A and α -hemolysin via
185 modulation of translation²², down-stream effects of activation of *agr* system also lead to
186 altered transcription of the *spa* and *hla* genes^{30,32}. The effects of the compounds on the
187 transcription of the *spa* and *hla* genes were assessed using quantitative real-time PCR.
188 Addition of compounds **1-3** to cultures resulted in increased levels of *spa* transcripts
189 (Fig. 3d) and reduced levels of *hla* transcripts (Fig. 3e).

190

191 **Treatment with inhibitors promotes biofilm formation**

192 Activation of the *agr* system inhibits the formation of biofilms and promotes the dispersal
193 of biofilm matrices. Consequently, strains with inactive *agr* systems demonstrate
194 increased formation of biofilms²³. Therefore, inhibition of *agr* activity was expected to
195 promote biofilm formation. To assess levels of biofilm formation, cultures were
196 incubated in 96-well plates without shaking. While untreated cultures developed
197 moderate biofilms, treatment with compounds **1-3** resulted in increased biofilm
198 formation in a concentration-dependent manner (Fig. 4a-c). Interestingly, treatment with
199 compound **1** at a concentration of 125 μ M resulted in biofilm formation at a level
200 comparable to that of the Δ *agr* strain, suggesting that this compound is capable of
201 completely reversing AgrA-mediated repression of biofilm formation (Fig. 4d).

202

203 **Treatment with inhibitors results in decreased production of exoproteins in
204 strains of different *agr* types**

205 Across different strains of *S. aureus*, a region of hyper-variability exists within the *agr*
206 operon, encompassing the latter half of *agrB*, *agrD* and the first half of *agrC*³³. The

207 resultant differences in AgrB, AgrD, and the *N*-terminal domain of AgrC allow for the
208 production (in the case of AgrB and AgrD) and recognition (in the case of AgrC) of
209 different autoinducing peptides. Based on these differences, *S. aureus* strains are
210 classified as one of four *agr* types, numbered I-IV^{34,35}. In contrast to *agrB-C*, the
211 sequence of *agrA* is highly conserved within *S. aureus*, and therefore inhibition of AgrA
212 would be expected to affect strains of all *agr* types. The USA300 LAC strain belongs to
213 group I. We examined exoprotein levels in type II, III, and IV strains. Treatment with
214 compounds **1** and **2** resulted in decreased production of exoproteins in N315 (*agr* type
215 II), MW2 (*agr* type III), and MN EV (*agr* type IV) strains (Fig. 5). These data are
216 consistent with the proposed mechanism whereby the inhibitors are functioning primarily
217 through inhibition of AgrA.

218

219 **Compounds interact with AgrA with sub-millimolar affinity**

220 Binding of the compounds to AgrA_C was previously demonstrated by NMR
221 WATERGATE W5 LOGSY and chemical shift perturbation analyses²⁷, however, binding
222 affinities were not directly determined. Isothermal titration calorimetry (ITC) was used to
223 measure the affinity of compounds **1-3** for AgrA_C. Isotherms were easily fitted to one-
224 binding-site models. Fitting of the isotherms was improved by fixing the stoichiometry to
225 N=1. Fitting of the isotherm generated by compound **1** resulted in a measured ΔH of -
226 1154 ± 487.0 cal mol⁻¹, ΔS of 23.4 cal mol⁻¹deg⁻¹, and a K_d of 485 ± 39.3 μ M (Fig. 6a).
227 Fitting of the isotherm generated by compound **2** yielded a measured ΔH of $-423.4 \pm$
228 25.19 cal mol⁻¹, ΔS of 14.0 cal mol⁻¹deg⁻¹, and a K_d of 417 ± 62.9 μ M (Fig. 6b). Fitting of
229 the isotherm generated by compound **3** yielded a ΔH of -340.0 ± 35.53 cal mol⁻¹, ΔS of

230 17.0 cal mol⁻¹deg⁻¹, and a K_d of 110 ± 45.6 μM (Fig. 6c). The relatively large errors
231 associated with the fitting of these parameters can be attributed to difficulties in
232 analyzing low-affinity interactions.

233

234 **Discussion**

235

236 Inhibition of virulence has been proposed as a strategy for combating bacterial
237 infections because it exploits previously unexplored targets for inhibition and also has
238 the potential to limit selection for resistance. *S. aureus* is one pathogen for which
239 virulence inhibition is especially appealing as it produces an extensive array of harmful
240 virulence factors³⁶ and has a history of antibiotic resistance that dates back to the initial
241 introduction of penicillin³⁷. Within *S. aureus*, the *agr* quorum sensing system has been
242 specifically identified as a potential target for therapeutic development because of the
243 central role the system plays in regulating virulence gene expression. The potential of
244 this strategy is supported by studies using certain infection models that demonstrate
245 attenuated infections with *agr*-deficient strains^{11,13,14}. Despite the recent interest in the
246 strategy of targeting virulence, both the effectiveness of using a therapeutic agent to
247 target virulence and the reduction in selective pressure caused by such agents remain
248 unproven.

249

250 Because of the unusual three-dimensional fold of the AgrA DNA-binding domain and the
251 key role that AgrA plays in both virulence activation (by promoting expression of toxins)
252 and regulation (by activating the quorum sensing mechanism), AgrA has become a

253 target of interest for inhibiting virulence^{38,39}. Our previous fragment screen against the
254 AgrA DNA-binding domain identified five compounds with the potential to act as
255 inhibitors of AgrA²⁷. While these compounds were conclusively shown to interact with
256 the LytTR domain of AgrA, they were unproven in their abilities to inhibit *agr* activity in
257 *S. aureus* cells.

258

259 AgrA functions as a transcription factor, and thus the immediate effect of inhibiting AgrA
260 would be to alter the levels of AgrA-regulated transcripts. The presented studies
261 demonstrate that compounds **1-4** significantly reduced the expression of GFP driven by
262 the P3 promoter, and compounds **1-3** reduced levels of transcripts of *agrA*, RNAlII,
263 *psma*, and *psmβ*, strongly suggesting that the compounds are acting to interfere with
264 AgrA-regulated transcription. However, while the reduction in transcript levels were
265 significant, they were not comparable to levels seen in the *Δagr* strain, which were
266 below the threshold of detection under the tested conditions. Optimization of the
267 compounds will therefore be required to achieve complete inhibition of AgrA.

268

269 The expression of RNAlII in particular is of central importance for the transition to
270 virulence activation^{40,41}. RNAlII coordinates virulence activation via interaction with
271 multiple mRNA targets, resulting in both the direct regulation of some mRNAs and
272 indirect regulation via modulation of expression of regulators such as Rot and MgrA^{32,42-}
273 ⁴⁴. Because RNAlII expression impacts several layers of virulence regulation, it
274 substantially alters the expression profile of *S. aureus*, with studies suggesting that
275 approximately 70 extracellular proteins are regulated by RNAlII⁴⁵. Therefore, for an

276 AgrA inhibitor to function as an inhibitor of virulence activation, expression of RNAIII-
277 regulated virulence factors must be reduced. Consistent with decreased production of
278 RNAIII, treatment with compounds **1-3** reduced levels of secreted proteins and *hla*
279 transcript levels, and treatment with compounds **1** and **2** reduced hemolytic activity.
280 Furthermore, treatment with compounds **1-3** promoted biofilm formation and increased
281 levels of *spa* transcript. These effects are all consistent with a reduction in RNAIII
282 production. However, the reductions in these downstream effects were not directly
283 correlated with the reduction in RNAIII expression, likely reflecting the responsiveness
284 of individual RNAIII-regulated systems to the level of RNAIII. In addition, compounds **1-**
285 **3** were capable of significantly reducing the expression of AgrA itself, supporting the
286 interpretation that the compounds were acting by inhibiting transcription at both the P2
287 and P3 promoters. By reducing both the autoregulatory and virulence factor production
288 functions of AgrA, the potency of virulence inhibition could potentially be enhanced.
289 Together, these results suggest that the compounds inhibit virulence gene activation in
290 *S. aureus* cells in a manner that is consistent with inhibition of the *agr* system.

291
292 The compounds examined in this study inhibited several different aspects of *agr*-
293 mediated virulence factor activation, suggesting that they could serve as useful tools for
294 experimental validation of the strategy of targeting the *agr* system to combat *S. aureus*
295 infections. Pressing questions regarding the strategy of targeting the *agr* system to
296 combat *S. aureus* infections remain unanswered. One of the most problematic issues is
297 the promotion of biofilm formation that is associated with a reduction in *agr* activity.
298 Formation of biofilms is associated with an increase in antibiotic resistance⁴⁶, and *agr*

299 deficiency has been associated with types of infections for which biofilm formation is
300 especially prevalent⁴⁷. It is possible that the therapeutic efficacy of *agr* inhibition would
301 depend on the type of infection being treated. Furthermore, the nature of the *agr*
302 quorum sensing system suggests that the activation of virulence gene expression must
303 be precisely timed in order to be effective. In fact, specifically timed transient inhibition
304 has been shown to attenuate model infections¹¹. In light of these timing requirements, it
305 is likely that inhibition at a point either too late or too early during an infection may
306 reduce or eliminate the efficacy of *agr* inhibition. Discovering the ideal timing of
307 virulence factor inhibition is important for analyzing the effectiveness of the strategy.
308 Finally, the question of whether or not inhibiting virulence results in selective pressure
309 that leads to the development of resistance as seen with traditional antibiotics is still
310 unknown. These questions may be more easily answered using chemical inhibitors that
311 allow variation in both timing and dose, rather than by use of genetic mutations.
312 Compound **1**, the strongest inhibitor we tested, reduced *agr* activity in many assays to
313 levels close to those of an *agr* mutant, indicating that compound **1** may be almost as
314 effective as using mutant strains while retaining the flexibility of using chemical
315 inhibition.

316

317 Across all of the assays that were employed, a consistent pattern emerged where
318 compound **1** was the most potent inhibitor followed by compounds **2** and **3**. It is
319 interesting that that the affinity of compound **1** determined by ITC analyses was
320 significantly lower than that of compounds **2** or **3**. The discrepancy between the
321 strength of binding (where compounds **2** and **3** bound tighter than compound **1**) and the

322 results from cellular assays (where compound **1** was consistently a stronger inhibitor
323 than both compounds **2** and **3**) is likely explained by other characteristics of compound
324 **1** that allow it to function better as an inhibitor either during uptake or within the cellular
325 environment. Compounds **1-3** all bind with K_d 's in the range of 10^{-4} M. These modest
326 binding affinities are typical of small compounds identified in fragment screens, with the
327 expectation that affinities can be greatly increased as the compounds are built out²⁸.

328

329 Recently, several attempts to develop inhibitors of the *agr* system have been pursued
330 using different strategies. Approaches using AIP analogs⁴⁸, identifying natural product
331 inhibitors⁴⁹, and using traditional chemical inhibition⁵⁰⁻⁵⁵ have yielded promising results.
332 In particular, two compounds, Savirin⁵⁴ and ω -Hydroxyemodin (OHM)⁵⁵, are suspected
333 of inhibiting the LytTR domain of AgrA and are likely to behave similarly to the inhibitory
334 compounds reported in the present study. Both Savirin and OHM were shown to
335 reduce *agr* activity within *S. aureus* and were also effective at reducing the severity of
336 infections in mouse models^{54,55}. Interestingly, OHM shares structural features with
337 compound **1**: both the xanthene base of compound **1** and the anthraquinone OHM
338 feature a similar three-ringed foundation. However, without experimental data to
339 determine how each compound interacts with the AgrA LytTR domain, the importance
340 of the structural similarities of the compounds to their inhibitory functions cannot be
341 assessed.

342

343 All five of the compounds tested in these studies originated from a fragment screen
344 library. Fragments are designed to explore large areas of chemical space and to serve

345 as good starting points for the development of therapeutics as they are small in size and
346 amenable to further chemical modifications. The three compounds that we have shown
347 to substantially, albeit incompletely, inhibit *agr* activity in *S. aureus* cells are logical
348 starting points for further development. However, it should be noted that our previous
349 studies indicate that all five of the compounds bind to AgrA at a similar site, targeting a
350 region of the LytTR domain that overlaps with a surface involved in DNA binding. Thus
351 all compounds might be considered as potential candidates for future pursuit. Just as
352 the affinities of compound **1** and compound **3** are not correlated with the strength of
353 inhibition in cells, the differences observed in the potency of inhibition across all
354 compounds could be due to many different characteristics that are likely to be altered as
355 the size and the complexity of the fragments are increased to enhance affinity,
356 specificity, and intracellular inhibitory activity.

357

358 **Materials and Methods**

359

360 **Compounds used**

361 9H-xanthene-9-carboxylic acid, 2-(4-methylphenyl)-1,3-thiazole-4-carboxylic acid, 4-
362 hydroxy-2,6-dimethylbenzonitrile, 4-phenoxyphenol, and [5-(2-thienyl)-3-
363 isoxazolyl]methanol were obtained from Sigma-Aldrich, MO (Table 1). Unless otherwise
364 indicated, stock solutions were freshly prepared with 2.4 mM compound in 100%
365 anhydrous dimethylsulfoxide (DMSO).

366

367 **Bacterial growth conditions**

368 Unless otherwise stated, the *S. aureus* strains used in this study (Table 2) were
369 constructed in the *S. aureus* community-associated USA300 strain LAC that was cured
370 of the native plasmid pUSA03, which confers erythromycin resistance⁵⁶. Unless
371 specifically mentioned, *S. aureus* cells were cultured either using aerobic growth with a
372 flask/tube headspace to culture medium volume ratio of 10:1 or in 96-well plates
373 containing 200 μ L total volume (detailed procedure below). Liquid cultures were grown
374 at 37°C in Trypticase Soy Broth (TSB) with shaking at 200 rpm unless otherwise
375 indicated. Difco Bacto agar was added (15 g L⁻¹) for solid medium. For routine plasmid
376 maintenance, liquid media were supplemented with chloramphenicol (10 μ g mL⁻¹) or
377 erythromycin (3.3 μ g mL⁻¹).

378

379 **Growth inhibition assays**

380 Overnight cultures were inoculated into 20-mL tubes containing 5 mL of either TSB,
381 TSB supplemented with 5% v/v DMSO, or 5% v/v DMSO with the indicated
382 concentration of compound to an OD (600 nm) of 0.05. The OD was measured at
383 regular intervals to generate growth curves.

384

385 **GFP reporter assays**

386 Overnight cultures were inoculated into 2 mL of TSB supplemented with 0.5% w/v
387 glucose, 5% v/v DMSO, 120 μ M compound, and antibiotics appropriate for plasmid
388 retention to an OD (600 nm) of 0.1. Following 8 h of growth, fluorescence and OD were
389 measured using a Thermo VarioSkan plate reader. Green Fluorescent Protein (GFP)
390 fluorescence was measured by excitation at 485 nm and emission at 535 nm.

391

392 Data were analyzed by normalizing GFP fluorescence to OD (600nm) and then
393 subtracting the normalized fluorescence of a control strain carrying a non-fluorescent
394 vector (JMB1242, a WT background strain containing the pCM28 vector⁵⁷) from values
395 for experimental cultures to account for background signal. Normalized fluorescence
396 values from three triplicates were averaged and compound-treated samples were
397 compared to those of untreated (DMSO only) samples using a Student's t-test to
398 determine statistical significance.

399

400 **Real-Time Quantitative PCR**

401 Overnight cultures were inoculated into 2 mL of TSB supplemented with 0.5% w/v
402 glucose, 5% v/v DMSO, and 120 μ M compound. Following 8 h of growth, aliquots
403 corresponding to 1.0 OD·mL were collected. The samples were centrifuged at 16,000 x
404 g for 1 min, pellets were resuspended in RNAProtect Bacteria Reagent (Qiagen,
405 Germany) and incubated at room temperature for 5 min. Cells were pelleted by
406 centrifugation at 16,000 x g for 1 min, RNAProtect Bacteria Reagent was discarded, and
407 samples were stored at -80°C. Cells were re-suspended and washed twice with a lysis
408 buffer consisting of 50 mM Tris, 150 mM NaCl at pH 8.0. To lyse the resuspended
409 cells, lysostaphin was added to 15 μ g mL⁻¹ and cells were incubated at 37°C for 30 min.
410 RNA was extracted using TRIzol (Invitrogen, CA); contaminating DNA was degraded
411 using a Turbo DNA-free kit (Invitrogen, CA); and cDNA was generated using a High-
412 Capacity cDNA Reverse Transcription Kit (Applied Biosystems, CA). Primers for qPCR
413 were designed using Primer3Plus⁵⁸ and are listed in Table 3. qPCR was performed

414 using a GoTaq qPCR Master Mix kit (Promega, WI) and a QuantStudio 3 Real-Time
415 PCR System (Applied Biosystems, CA). Data were processed and analyzed with
416 REST2009 software⁵⁹.

417

418 **Western blotting**

419 To determine AgrA levels, overnight cultures of USA300 LAC *spa::kan* were inoculated
420 into 25 mL of growth media to an OD of 0.05. Cultures were grown to an OD of ~2.5 at
421 which time aliquots corresponding to 1.3 OD·mL were collected. The samples were
422 centrifuged at 16,000 x g for 1 min and pellets were washed with 1x PBS before
423 freezing and storage at -20°C. The cultures were then split and compounds were
424 added to a final concentration of 120 µM and 5% v/v DMSO. Samples were again
425 collected after 8 h of growth and processed as described above.

426

427 Cell-free extracts were prepared by resuspending cell pellets in 100 µL of a pH 7.6 lysis
428 buffer consisting of 20 mM Tris-HCl, 0.5 mM CaCl₂, 50 mM NaCl, 40 µg mL⁻¹ DNase I,
429 and 20 µg mL⁻¹ lysostaphin. The lysis mixture was incubated at 37°C for 1 h, after
430 which 4x SDS-PAGE sample loading buffer spiked with purified AgrA_C (for use as a
431 loading control; purification previously described³⁸) was added to a final concentration of
432 1x. Samples were analyzed by electrophoresis using a 15% polyacrylamide SDS-
433 PAGE gel. Protein was transferred to a nitrocellulose membrane, labeled with anti-
434 AgrA_C rabbit antisera (Supplementary Fig. S3) and Cy5 goat anti-rabbit IgG secondary
435 antibody (Life Technologies, CA), and visualized using a FluorChem Q Imager.
436 Quantitation of band densities was performed using ImageJ software⁶⁰.

437

438 **Isolation of culture supernatants for exoprotein analysis**

439 Culture supernatants for exoprotein analyses (exoprotein profiles, protein quantitation,
440 and hemolytic activity) were obtained simultaneously as described previously^{61,62}.
441 Overnight cultures of USA300 LAC and USA300 *agr::tet* were inoculated into tubes
442 containing 5 mL of fresh TSB supplemented with 0.5% w/v glucose, 120 µM compound
443 and 5% v/v DMSO to an OD of 0.1. After 8 h of growth, cell densities were normalized
444 by diluting with fresh media. Cultures were centrifuged at 4,000 x g for 20 min to pellet
445 cells and the supernatants were passed through 0.2-µm filters and held at 4°C or frozen
446 at -80°C for long-term storage.

447

448 **Exoprotein profiling assay**

449 For SDS-PAGE analysis, supernatants were concentrated by precipitation with
450 trichloroacetic acid by addition to a final concentration of 10% w/v as previously
451 described⁶¹. Samples were incubated on ice for 30 min before centrifugation at 4,000 x
452 g for 20 min. Pellets were washed twice with cold acetone, resuspended in 0.025 the
453 original sample volume of 1x SDS-PAGE loading buffer, and stored at -20°C. Aliquots
454 of triplicates were pooled, analyzed by 15% polyacrylamide SDS-PAGE, and visualized
455 with Coomassie Brilliant Blue. Images were captured using a FluorChem Q Imager.

456

457 **Quantitative analysis of secreted protein**

458 Total protein secreted was determined using a Coomassie reagent-staining assay. 5 µL
459 of the filtered supernatant was pipetted into a clear flat-bottom UV plate and 250 µL of

460 1x Advanced Protein Assay Reagent (Cytoskeleton Inc., CO) was added and mixed.
461 The plate was equilibrated at room temperature for 10 min and absorbances at 595 and
462 450 nm were measured. The data were processed using the ratio of the absorbance at
463 595 nm to that at 450 nm for all samples⁶³. Ratios for the USA300 LAC *agr::tet* samples
464 were subtracted from the other samples to correct for non-*agr* related exoproteins. The
465 averages of triplicates for samples from cultures treated with compounds were
466 compared to untreated compounds with significance determined by a Student's t-test.

467

468 **Hemolytic activity assay**

469 Hemolytic activity was assessed using a modification of the protocol described by Sully
470 *et al.*⁵⁴. Defibrinated rabbit blood (Hemostat Laboratories) was washed by centrifuging
471 cells at 1000 x g for 5 min followed by gently resuspending in ice-cold 1x PBS, and
472 repeating until the supernatant was clear. Blood cells suspended in 1x PBS or dH₂O
473 were used to determine baselines for no lysis or complete lysis, respectively. The
474 washed red blood cells were added to the plate containing extracts diluted in 1x PBS
475 and controls to achieve final concentrations of 1% rabbit blood and dilutions of culture
476 extract from 1:4 to 1:256. Reactions were mixed by gentle pipetting and incubated at
477 37°C for 1 h. After incubation, the plates were centrifuged at 1000 x g for 5 min at 4°C.
478 100-µL aliquots of the supernatants were transferred to a 96-well UV-transparent plate
479 and the absorbance at 415 nm was measured. Values of the PBS control were
480 subtracted from the experimental data, and the difference was normalized to the
481 absorbance values from the dH₂O wells. These values were plotted versus the
482 concentration of extract to generate an activity curve, which was fitted to a four-

483 parameter logistic model using SigmaPlot 10 (Systat Software, Inc., CA). The
484 calculated EC₅₀ from the fitting was then inverted to generate the HA₅₀. HA₅₀ values
485 from cells treated with compounds were compared to those from untreated samples
486 (DMSO only) with statistical significance determined by Student's t-tests.

487

488 **Static model of biofilm formation assay**

489 Biofilm formation was examined as described elsewhere, with minor modifications^{61,64,65}.
490 Overnight cultures were diluted into biofilm media⁶⁴ in the presence or absence of
491 compounds, added to the wells of a 96-well plate and incubated statically at 37°C for 22
492 h. Prior to harvesting the biofilms, the OD (590 nm) of the cultures was determined.
493 The plate was subsequently washed with water, biofilms were heat-fixed at 60°C, and
494 the plates and contents were allowed to cool to room temperature. Biofilms were
495 stained with 0.1% w/v crystal violet and destained with 33% v/v acetic acid. The
496 absorbance of the resulting solution was recorded at 570 nm, standardized to an acetic
497 acid blank, and subsequently normalized to the OD of the cells upon harvest.

498

499 **AgrA *in vivo* stability assay**

500 Overnight cultures of USA300 LAC *spa::kan* were inoculated into 25-mL cultures to an
501 OD of 0.05. The cultures were grown to an OD of 2.0 and samples were collected in
502 volumes equivalent to 1.3 OD·mL. Cells from these aliquots were harvested by
503 centrifugation at 18,000 x g for 1 min, washed with 1x PBS, and pellets were frozen at
504 -20°C for storage. The remaining cultures were split and erythromycin was added to a
505 final concentration of 10 µM to all cultures except a control. After an incubation of 20

506 min, samples were again removed and processed. Compounds were added to the
507 remaining cultures to a final concentration of 120 μ M and 5% v/v DMSO. Samples were
508 collected after 8 h of growth. All samples were processed for western blotting and
509 analyzed as described above.

510

511 **Isothermal titration calorimetry**

512 Purified AgrA_C was dialyzed into 20 mM sodium citrate buffer, 250 mM NaCl, and 1 mM
513 (tris(2-carboxyethyl)phosphine) at pH 6.0. The dialysate was retained and used to
514 prepare the compounds. DMSO was added to 5% v/v with an AgrA_C concentration of
515 ~375 μ M for use with compounds **1** and **2** and 250 μ M for use with compound **3**.
516 Compounds **1** and **2** were prepared to concentrations of 10 mM and compound 3 was
517 prepared to 5 mM in the above citrate buffer supplemented with DMSO. Each
518 compound was titrated into the protein solution using a MicroCal iTC 200
519 Microcalorimeter (Malvern Instruments, UK) at 25°C. The data were processed,
520 analyzed, and fitted using the Origin 7.0 MicroCal module (OriginLab, MA).

521

522 **Data availability**

523 All data generated or analysed during this study are included in this published article.

524

525 **Acknowledgements**

526

527 We thank Dr. Alexander Horswill for providing the pCM41 plasmid and the MN EV(406)
528 strain. We also thank Dr. James Millonig and Dr. Paul Matteson for the use of the Real-

529 Time PCR machine and assistance with qPCR experiments. This work was supported
530 in part by the National Institutes Health grant R01GM047958 to AMS, the United States
531 Department of Agriculture MRF project NE-1028 to JMB, and the Charles and Johanna
532 Busch Foundation to JMB. IFB was supported in part by a National Institutes of Health
533 Graduate Training grant (T32 GM008360).

534

535 **Author contributions**

536

537 IFB and AAM performed experiments and analyzed data. IFB wrote the manuscript. All
538 authors designed experiments, reviewed data and reviewed the manuscript.

539

540 **Additional information**

541

542 The authors declare no competing interests.

543 **References**

544 1 Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G.
545 *Staphylococcus aureus* infections: epidemiology, pathophysiology, clinical
546 manifestations, and management. *Clin. Microbiol. Rev.* **28**, 603-661, (2015).

547 2 King, M. D. *et al.* Emergence of community-acquired methicillin-resistant *Staphylococcus*
548 *aureus* USA 300 clone as the predominant cause of skin and soft-tissue infections. *Ann.*
549 *Intern. Med.* **144**, 309-317, (2006).

550 3 Skov, R. L. & Jensen, K. S. Community-associated methicillin-resistant *Staphylococcus*
551 *aureus* as a cause of hospital-acquired infections. *J. Hosp. Infect.* **73**, 364-370, (2009).

552 4 Levine, D. P. Vancomycin: a history. *J. Hosp. Infect.* **42 Suppl 1**, S5-12, (2006).

553 5 Tenover, F. C. & Moellering, R. C. The rationale for revising the Clinical and Laboratory
554 Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for
555 *Staphylococcus aureus*. *Clin. Infect. Dis.* **44**, 1208-1215, (2007).

556 6 Gould, I. M. VRSA-doomsday superbug or damp squib? *Lancet Infect. Dis.* **10**, 816-818,
557 (2010).

558 7 Heras, B., Scanlon, M. J. & Martin, J. L. Targeting virulence not viability in the search for
559 future antibacterials. *Br. J. Clin. Pharmacol.* **79**, 208-215, (2015).

560 8 Rasko, D. A. & Sperandio, V. Anti-virulence strategies to combat bacteria-mediated
561 disease. *Nat. Rev. Drug Discov.* **9**, 117-128, (2010).

562 9 Le, K. Y. & Otto, M. Quorum-sensing regulation in staphylococci-an overview. *Front.*
563 *Microbiol.* **6**, 1174, (2015).

564 10 Bronner, S., Monteil, H. & Prévost, G. Regulation of virulence determinants in
565 *Staphylococcus aureus*: complexity and applications. *FEMS Microbiol. Rev.* **28**, 183-200,
566 (2004).

567 11 Wright, J. S., Jin, R. & Novick, R. P. Transient interference with staphylococcal quorum
568 sensing blocks abscess formation. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 1691-1696, (2005).

569 12 Cheung, G. Y. C., Wang, R., Khan, B. a., Sturdevant, D. E. & Otto, M. Role of the
570 accessory gene regulator *agr* in community-associated methicillin-resistant
571 *Staphylococcus aureus* pathogenesis. *Infect. Immun.* **79**, 1927-1935, (2011).

572 13 Heyer, G. et al. *Staphylococcus aureus* *agr* and *sarA* functions are required for invasive
573 infection but not inflammatory responses in the lung. *Infect. Immun.* **70**, 127-133, (2002).

574 14 Montgomery, C. P., Boyle-Vavra, S. & Daum, R. S. Importance of the global regulators
575 *Agr* and *SaeRS* in the pathogenesis of CA-MRSA USA300 infection. *PLoS One* **5**,
576 e15177, (2010).

577 15 Wardenburg, J. B., Patel, R. J. & Schneewind, O. Surface proteins and exotoxins are
578 required for the pathogenesis of *Staphylococcus aureus* pneumonia. *Infect. Immun.* **75**,
579 1040-1044, (2007).

580 16 Kornblum, J., Kreiswirth, B., Projan, S. J., Ross, H. & Novick, R. P. in *Molecular Biology*
581 *of the Staphylococci* 373-402 (1990).

582 17 Zhang, L., Gray, L., Novick, R. P. & Ji, G. Transmembrane topology of AgrB, the protein
583 involved in the post-translational modification of AgrD in *Staphylococcus aureus*. *J. Biol.*
584 *Chem.* **277**, 34736-34742, (2002).

585 18 Zhang, L. & Ji, G. Identification of a staphylococcal AgrB segment(s) responsible for
586 group-specific processing of AgrD by gene swapping. *J. Bacteriol.* **186**, 6706-6713,
587 (2004).

588 19 Lina, G. et al. Transmembrane topology and histidine protein kinase activity of AgrC, the
589 *agr* signal receptor in *Staphylococcus aureus*. *Mol. Microbiol.* **28**, 655-662, (1998).

590 20 Novick, R. P. et al. The *agr* P2 operon: An autocatalytic sensory transduction system in
591 *Staphylococcus aureus*. *Mol. Gen. Genet.* **248**, 446-458, (1995).

592 21 Janzon, L., Lofdahl, S. & Arvidson, S. Identification and nucleotide sequence of the
593 delta-lysin gene, *hld*, adjacent to the accessory gene regulator (*agr*) of *Staphylococcus*
594 *aureus*. *Mol. Gen. Genet.* **219**, 480-485, (1989).

595 22 Novick, R. P. *et al.* Synthesis of staphylococcal virulence factors is controlled by a
596 regulatory RNA molecule. *EMBO J.* **12**, 3967-3975, (1993).

597 23 Boles, B. R. & Horswill, A. R. *agr*-mediated dispersal of *Staphylococcus aureus* biofilms.
598 *PLoS Path.* **4**, e1000052, (2008).

599 24 Dastgheyb, S. S. *et al.* Role of phenol-soluble modulins in formation of *Staphylococcus*
600 *aureus* biofilms in synovial fluid. *Infect. Immun.* **83**, 2966-2975, (2015).

601 25 Gao, R., Mack, T. R. & Stock, A. M. Bacterial response regulators: versatile regulatory
602 strategies from common domains. *Trends Biochem. Sci.* **32**, 225-234, (2007).

603 26 Nikolskaya, A. N. & Galperin, M. Y. A novel type of conserved DNA-binding domain in
604 the transcriptional regulators of the AlgR/AgrA/LytR family. *Nucleic Acids Res.* **30**, 2453-
605 2459, (2002).

606 27 Leonard, P. G., Bezar, I. F., Sidote, D. J. & Stock, A. M. Identification of a hydrophobic
607 cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit
608 DNA binding. *Biochemistry*. **51**, 10035-10043, (2012).

609 28 Hajduk, P. J., Huth, J. R. & Fesik, S. W. Druggability indices for protein targets derived
610 from NMR-based screening data. *J. Med. Chem.* **48**, 2518-2525, (2005).

611 29 Malone, C. L. *et al.* Fluorescent reporters for *Staphylococcus aureus*. *J. Microbiol.*
612 *Methods* **77**, 251-260, (2009).

613 30 Queck, S. Y. *et al.* RNAIII-independent target gene control by the *agr* quorum-sensing
614 system: insight into the evolution of virulence regulation in *Staphylococcus aureus*. *Mol.*
615 *Cell* **32**, 150-158, (2008).

616 31 Elek, S. D. & Levy, E. Distribution of haemolysins in pathogenic and non-pathogenic
617 staphylococci. *J. Pathol. Bacteriol.* **62**, 541-554, (1950).

618 32 Huntzinger, E. *et al.* *Staphylococcus aureus* RNAIII and the endoribonuclease III
619 coordinately regulate *spa* gene expression. *EMBO J.* **24**, 824-835, (2005).

620 33 Dufour, P. *et al.* High genetic variability of the *agr* locus in *Staphylococcus* species. *J.*
621 *Bacteriol.* **184**, 1180-1186, (2002).

622 34 Jarraud, S. *et al.* Exfoliatin-producing strains define a fourth *agr* specificity group in
623 *Staphylococcus aureus*. *J. Bacteriol.* **182**, 6517-6522, (2000).

624 35 Ji, G., Beavis, R. & Novick, R. P. Bacterial interference caused by autoinducing peptide
625 variants. *Science* **276**, 2027-2030, (1997).

626 36 Otto, M. *Staphylococcus aureus* toxins. *Curr. Opin. Microbiol.* **17**, 32-37, (2014).

627 37 Stryjewski, M. E. & Corey, G. R. Methicillin-resistant *Staphylococcus aureus*: an evolving
628 pathogen. *Clin. Infect. Dis.* **58 Suppl 1**, S10-19, (2014).

629 38 Sidote, D. J., Barbieri, C. M., Wu, T. & Stock, A. M. Structure of the *Staphylococcus*
630 *aureus* AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of
631 binding. *Structure* **16**, 727-735, (2008).

632 39 Galperin, M. Y. Telling bacteria: do not LytTR. *Structure* **16**, 657-659, (2008).

633 40 Novick, R. P. Autoinduction and signal transduction in the regulation of staphylococcal
634 virulence. *Mol. Microbiol.* **48**, 1429-1449, (2003).

635 41 Brionesky, D. *et al.* *Staphylococcus aureus* RNAIII and its regulon link quorum sensing,
636 stress responses, metabolic adaptation, and regulation of virulence gene expression.
637 *Annu. Rev. Microbiol.* **70**, 299-316, (2016).

638 42 Morfeldt, E., Taylor, D., von Gabain, A. & Arvidson, S. Activation of alpha-toxin
639 translation in *Staphylococcus aureus* by the trans-encoded antisense RNA, RNAIII.
640 *EMBO J.* **14**, 4569-4577, (1995).

641 43 Boisset, S. *et al.* *Staphylococcus aureus* RNAIII coordinately represses the synthesis of
642 virulence factors and the transcription regulator Rot by an antisense mechanism. *Genes*
643 *Dev.* **21**, 1353-1366, (2007).

644 44 Gupta, R. K., Luong, T. T. & Lee, C. Y. RNAIII of the *Staphylococcus aureus* *agr* system
645 activates global regulator MgrA by stabilizing mRNA. *Proc. Natl. Acad. Sci. U.S.A.* **112**,
646 14036-14041, (2015).

647 45 Ziebandt, A. K. *et al.* The influence of *agr* and *sigmaB* in growth phase dependent
648 regulation of virulence factors in *Staphylococcus aureus*. *Proteomics* **4**, 3034-3047,
649 (2004).

650 46 Sakoulas, G. *et al.* Reduced susceptibility of *Staphylococcus aureus* to vancomycin and
651 platelet microbicidal protein correlates with defective autolysis and loss of accessory
652 gene regulator (*agr*) function. *Antimicrob. Agents Chemother.* **49**, 2687-2692, (2005).

653 47 Fowler Jr., V. G. *et al.* Persistent bacteremia due to methicillin-resistant *Staphylococcus*
654 *aureus* infection is associated with *agr* dysfunction and low-level *in vitro* resistance to
655 thrombin-induced platelet microbicidal protein. *J. Infect. Dis.* **190**, 1140-1149, (2004).

656 48 Tal-Gan, Y., Ivancic, M., Cornilescu, G., Yang, T. & Blackwell, H. E. Highly stable,
657 amide-bridged autoinducing peptide analogues that strongly inhibit the AgrC quorum
658 sensing receptor in *Staphylococcus aureus*. *Angew. Chem.* **55**, 8913-8917, (2016).

659 49 Muhs, A. *et al.* Virulence inhibitors from brazilian peppertree block quorum sensing and
660 abate dermonecrosis in skin infection models. *Sci. Rep.* **7**, 42275, (2017).

661 50 Khodaverdian, V. *et al.* Discovery of antivirulence agents against methicillin-resistant
662 *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* **57**, 3645-3652, (2013).

663 51 Hendrix, A. S. *et al.* Repurposing the nonsteroidal anti-inflammatory drug diflunisal as an
664 osteoprotective, antivirulence therapy for *Staphylococcus aureus* osteomyelitis.
665 *Antimicrob. Agents Chemother.* **60**, 5322-5330, (2016).

666 52 Yu, G., Kuo, D., Shoham, M. & Viswanathan, R. Combinatorial synthesis and *in vitro*
667 evaluation of a biaryl hydroxyketone library as antivirulence agents against MRSA. *ACS*
668 *Comb. Sci.* **16**, 85-91, (2014).

669 53 Kuo, D. *et al.* Novel quorum-quenching agents promote methicillin-resistant
670 *Staphylococcus aureus* (MRSA) wound healing and sensitize MRSA to β -lactam
671 antibiotics. *Antimicrob. Agents Chemother.* **59**, 1512-1518, (2015).

672 54 Sully, E. K. *et al.* Selective chemical inhibition of *agr* quorum sensing in *Staphylococcus*
673 *aureus* promotes host defense with minimal impact on resistance. *PLoS Path.* **10**,
674 e1004174, (2014).

675 55 Daly, S. M. *et al.* ω -Hydroxyemodin limits *Staphylococcus aureus* quorum sensing-
676 mediated pathogenesis and inflammation. *Antimicrob. Agents Chemother.* **59**, 2223-
677 2235, (2015).

678 56 Boles, B. R., Thoendel, M., Roth, A. J. & Horswill, A. R. Identification of genes involved
679 in polysaccharide-independent *Staphylococcus aureus* biofilm formation. *PLoS One* **5**,
680 e10146, (2010).

681 57 Pang, Y. Y. *et al.* *agr*-Dependent interactions of *Staphylococcus aureus* USA300 with
682 human polymorphonuclear neutrophils. *J. Innate Immun.* **2**, 546-559, (2010).

683 58 Untergasser, A. *et al.* Primer3--new capabilities and interfaces. *Nucleic Acids Res.* **40**,
684 e115-e115, (2012).

685 59 Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST) for
686 group-wise comparison and statistical analysis of relative expression results in real-time
687 PCR. *Nucleic Acids Res.* **30**, e36-e36, (2002).

688 60 Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of
689 image analysis. *Nat. Methods* **9**, 671-675, (2012).

690 61 Mashruwala, A. A., Bhatt, S., Poudel, S., Boyd, E. S. & Boyd, J. M. The DUF59
691 containing protein SufT is involved in the maturation of iron-sulfur (FeS) proteins during
692 conditions of high FeS cofactor demand in *Staphylococcus aureus*. *PLoS Genet.* **12**,
693 e1006233, (2016).

694 62 Mashruwala, A. A. *et al.* *Staphylococcus aureus* SufT: an essential iron-sulphur cluster
695 assembly factor in cells experiencing a high-demand for lipoic acid. *Mol. Microbiol.* **102**,
696 1099-1119, (2016).

697 63 Zor, T. & Selinger, Z. Linearization of the bradford protein assay increases its sensitivity:
698 theoretical and experimental studies. *Anal. Biochem.* **236**, 302-308, (1996).

699 64 Beenken, K. E., Blevins, J. S. & Smeltzer, M. S. Mutation of *sarA* in *Staphylococcus*
700 *aureus* limits biofilm formation. *Infect. Immun.* **71**, 4206-4211, (2003).

701 65 Lauderdale, K. J., Boles, B. R., Cheung, A. L. & Horswill, A. R. Interconnections between
702 Sigma B, *agr*, and proteolytic activity in *Staphylococcus aureus* biofilm maturation. *Infect*
703 *Immun* **77**, 1623-1635, (2009).

704 66 Higgins, J., Loughman, A., van Kessel, K. P., van Strijp, J. A. & Foster, T. J. Clumping
705 factor A of *Staphylococcus aureus* inhibits phagocytosis by human polymorphonuclear
706 leucocytes. *FEMS Microbiol. Lett.* **258**, 290-296, (2006).

707 67 Kuroda, M. *et al.* Whole genome sequencing of meticillin-resistant *Staphylococcus*
708 *aureus*. *Lancet* **357**, 1225-1240, (2001).

709 68 Centers for Disease Control and Prevention (CDC). Four pediatric deaths from
710 community-acquired methicillin-resistant *Staphylococcus aureus*—Minnesota and North
711 Dakota, 1997-1999. *JAMA* **282**, 1123-1125, (1999).

712 69 Quave, C. L. *et al.* *Castanea sativa* (European Chestnut) leaf extracts rich in ursene and
713 oleanene derivatives block *Staphylococcus aureus* virulence and pathogenesis without
714 detectable resistance. *PLoS One* **10**, e0136486, (2015).

715 70 Mashruwala, A. A. & Boyd, J. M. The *Staphylococcus aureus* SrrAB regulatory system
716 modulates hydrogen peroxide resistance factors, which imparts protection to aconitase
717 during aerobic growth. *PLoS One* **12**, e0170283, (2017).

718 71 Mashruwala, A. A. *et al.* Nfu facilitates the maturation of iron-sulfur proteins and
719 participates in virulence in *Staphylococcus aureus*. *Mol. Microbiol.* **95**, 383-409, (2015).

720

721

722 Figure 1

723 AgrA-driven transcription is inhibited by compounds. **(a)** Plasmid-based GFP
724 expression driven by the P3 promoter is inhibited by compounds. Cultures were grown
725 for 8 h in the presence of the indicated compound (Cpd.) at a concentration of 120 μ M
726 or DMSO alone (-). Bars represent OD-normalized fluorescence averaged from three
727 separate experiments relative to the untreated sample (normalized to 100) with error
728 bars indicating standard deviations. Statistical significance relative to the sample
729 without compound was determined using a Student's t-test (* p<0.05, ** p<0.01). **(b)**
730 Compounds reduce transcript levels of genes directly regulated by AgrA. mRNA was
731 isolated for qPCR analysis after cultures were grown for 8 h in the presence of the
732 indicated compound (Cpd.) at a concentration of 120 μ M or DMSO alone. Bars
733 represent the fold change in mRNA level from treated cultures relative to untreated
734 cultures averaged from three separate experiments. Statistical significance and 95%
735 confidence intervals (displayed as error bars) were determined using REST2009
736 software⁵⁹ (* p<0.05, ** p<0.01).

737

738 Figure 2

739 Compounds reduce levels of AgrA without altering AgrA stability. **(a)** Cultures of
740 USA300 *spa::kan* were grown to OD 2.5 (represented by t=0 and the lower dashed line)
741 at which time the cultures were divided and compounds were added at the indicated
742 concentrations. Samples were harvested after 8 h of growth and AgrA levels were
743 determined by western blotting. The results of three separate blots (one for each
744 compound) analyzed in parallel are shown. Bars indicate densitometry quantitation of

745 AgrA band intensities averaged from three independent experiments normalized to the
746 8-h sample without compound (-, DMSO only, represented by the upper dashed line)
747 with error bars representing standard deviations. **(b)** Cultures of USA300 *spa::kan* were
748 grown to OD 2.0, at which time samples were taken and erythromycin was added to a
749 concentration of 10 μ M. Additional samples were taken upon addition of compounds at
750 20 min of incubation with erythromycin and at 480 min of incubation. The results of
751 three separate blots (one for each compound) analyzed in parallel are shown. The level
752 of AgrA before the addition of erythromycin is depicted by the dashed line. Bars
753 represent the averages of three replicates normalized to untreated cultures (t=0) for
754 samples collected at 20 and 480 min with standard deviations shown as error bars.
755 Statistical significance relative to the samples of erythromycin-treated cultures without
756 compound (t=20, 480) was determined using a Student's t-test (* p<0.05, ** p<0.01).

757

758 Figure 3
759 Expression of exoproteins and surface proteins in *S. aureus* is altered by compounds.
760 Cultures of WT and Δagr were grown in the absence or presence of compounds at a
761 concentration of 120 μ M for 8 h of post-treatment growth. **(a)** Secreted proteins were
762 isolated from culture media and samples were analyzed using SDS-PAGE. **(b)** The
763 concentration of total secreted protein was determined using a Bradford protein assay.
764 Levels of *agr*-dependent protein secreted by WT in the absence and presence of
765 compounds were estimated by subtracting the level of secreted protein in Δagr from the
766 average levels in WT determined from three replicates. Bars represent values relative
767 to the untreated sample (normalized to 1) with errors bars representing standard

768 deviations. **(c)** Hemolytic activity was assessed after 8 h of growth by adding dilutions
769 of filtered culture media to defibrinated rabbit blood and measuring liberated
770 hemoglobin. HA₅₀ values were calculated and are shown with error bars representing
771 the standard error of the mean. **(d-e)** Compounds alter transcript levels for *spa* **(e)** and
772 *hla* **(f)**. mRNA was isolated for qPCR analysis after cultures were grown for 8 h in the
773 presence of the indicated compound at a concentration of 120 μ M or DMSO alone.
774 Bars represent the fold change in mRNA level from treated cultures relative to untreated
775 cultures averaged from three separate experiments. Statistical significance and 95%
776 confidence intervals (displayed as error bars) were determined using REST2009
777 software (* p<0.05, ** p<0.01).

778

779 **Figure 4**

780 Treatment with compounds promotes biofilm formation. **(a-c)** WT and Δ agr cultures
781 were grown statically in the presence of compounds to promote biofilm formation. After
782 staining plates with crystal violet, biofilms were quantified by measuring absorbance at
783 570 nm. Bars and error bars represent absorbances and standard deviations of 6
784 replicates, respectively. **(d)** Biofilm formation of WT and Δ agr cultures treated with
785 compound **1** at a concentration of 120 μ M are shown normalized to the untreated WT
786 sample with error bars representing standard deviations from 6 replicates. Statistical
787 significance relative to the untreated sample for each strain was determined using a
788 Student's t-test (* p<0.05). Representative images of stained wells are included in each
789 panel.

790

791 Figure 5

792 Treatment with compounds reduces exoprotein expression among *S. aureus* strains of
793 *agr*-types II-IV. The concentration of total protein secreted into culture media was
794 determined using a Bradford assay, and levels were normalized to those of untreated
795 samples. Statistical significance relative to the untreated samples was determined
796 using a Student's t-test (* p<0.05).

797

798 Figure 6

799 Compounds bind to AgrA_C with sub-millimolar affinity. ITC experiments were performed
800 by titrating (**a**) compound **1** (10.0 mM) into 375 μ M AgrA_C, (**b**) compound **2** (10.0 mM)
801 into 375 μ M AgrA_C, and (**c**) compound **3** (5.0 mM) into 250 μ M AgrA_C. After subtraction
802 of the heat of dilution, isotherms were fitted to a one-binding-site model to generate
803 thermodynamic parameters.

804

Table 1 Compound Fragments

Compound Fragment	Maybridge Library Code	Molecular Structure	Molecular Formula	Molecular Weight (g/mol)	Compound Name	Source
1	RH 00001		C ₁₄ H ₁₀ O ₃	226.23	9H-xanthene-9-carboxylic acid	Sigma-Aldrich
2	MO 07123		C ₁₁ H ₉ NO ₂ S	219.26	2-(4-methylphenyl)-1,3-thiazole-4-carboxylic acid	Sigma-Aldrich
3	RDP 00221		C ₉ H ₉ NO	147.18	4-hydroxy-2,6-dimethylbenzonitrile	Sigma-Aldrich
4	BTB 14064		C ₁₂ H ₁₀ O ₂	186.21	4-phenoxyphenol	Sigma-Aldrich
5	CC 23109		C ₈ H ₇ NO ₂ S	181.21	[5-(2-thienyl)-3-isoxazolyl]methanol	Sigma-Aldrich

Table 2 Strains and plasmids

<i>S. aureus</i> Strain Background	<i>agr</i> Type	Relevant Genotype	Strain Number	Reference
USA300 LAC	I	WT	JMB1100	56
USA300 LAC	I	<i>agr::tet</i>	JMB1977	22
USA300 LAC	I	<i>spa::kan</i>	JMB1923	66
N315	II	WT		67
MW2	III	WT		68
MN EV	IV	WT		69

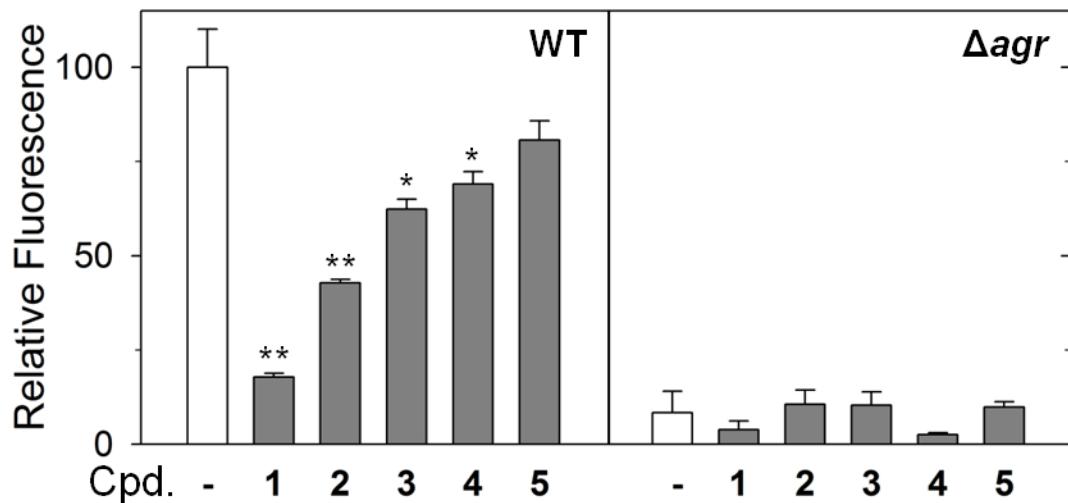
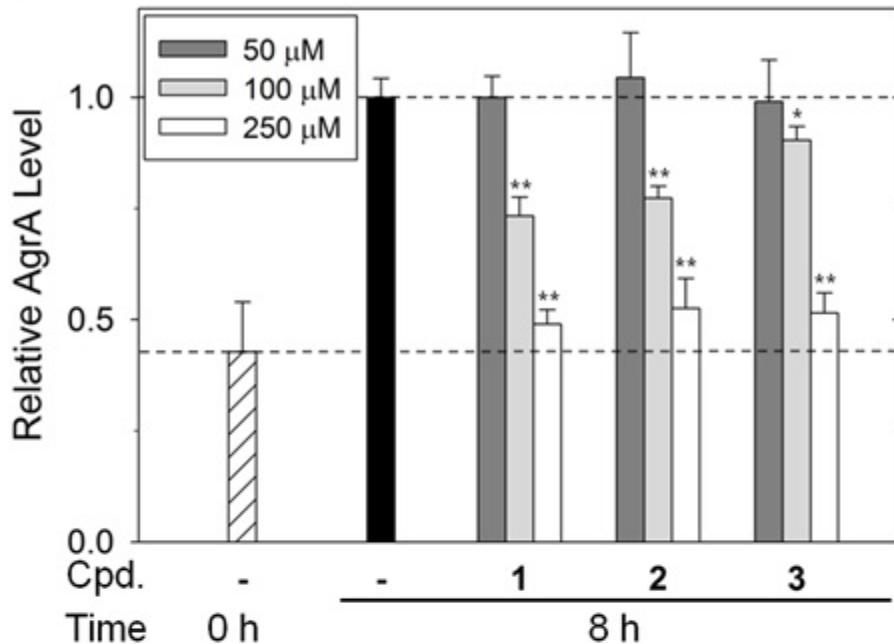

Plasmid	Source/Reference
pCM41	P3-GFP Reporter
pCM11_dpsp	<i>dps</i> -GFP Reporter
pCM11_recAp	<i>recA</i> -GFP Reporter
pCM28	Non-fluorescent Control Vector

Table 3 qPCR Primers

Primer	Sequence
<i>agrA</i> Forward	ACGAGTCACAGTGAACCTTAC
<i>agrA</i> Reverse	GACAACAATTGTAAGCGTGT
<i>RNAIII</i> Forward	TTTATCTTAATTAGGAAGGAGTGA
<i>RNAIII</i> Reverse	TGAATTGTTCACTGTGTCG
<i>hla</i> Forward	GTACAGTTGCAACTACCTGA
<i>hla</i> Reverse	CCGCCAATTTTCCCTGTATC
<i>spa</i> Forward	AACCTGGTCAAGAACTTGGT
<i>spa</i> Reverse	CTGCACCTAAGGCTAATGAT
<i>psma</i> Forward	GAAGGGGGCCATTACAT
<i>psma</i> Reverse	GTTGTTACCTAAAAATTACCAAGT
<i>psmβ</i> Forward	TGGAAGGTTTATTAAACGCA
<i>psmβ</i> Reverse	AAACCTACGCCATTCAAC
<i>gyrB</i> Forward	ATCTGGTCGTGACTCTAGAA
<i>gyrB</i> Reverse	TGTACCAAATGCTGTGATCA

Figure 1

a



b

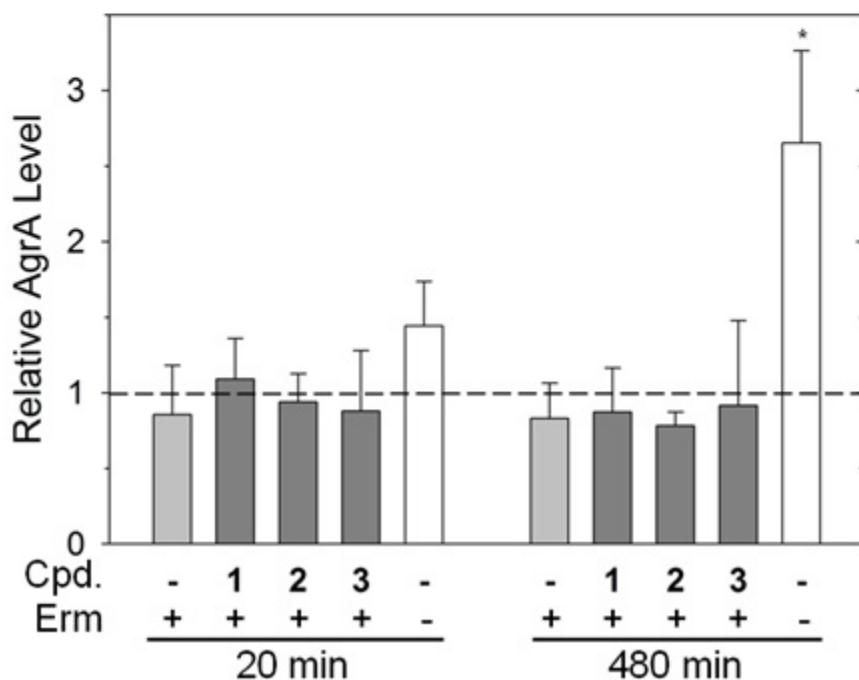
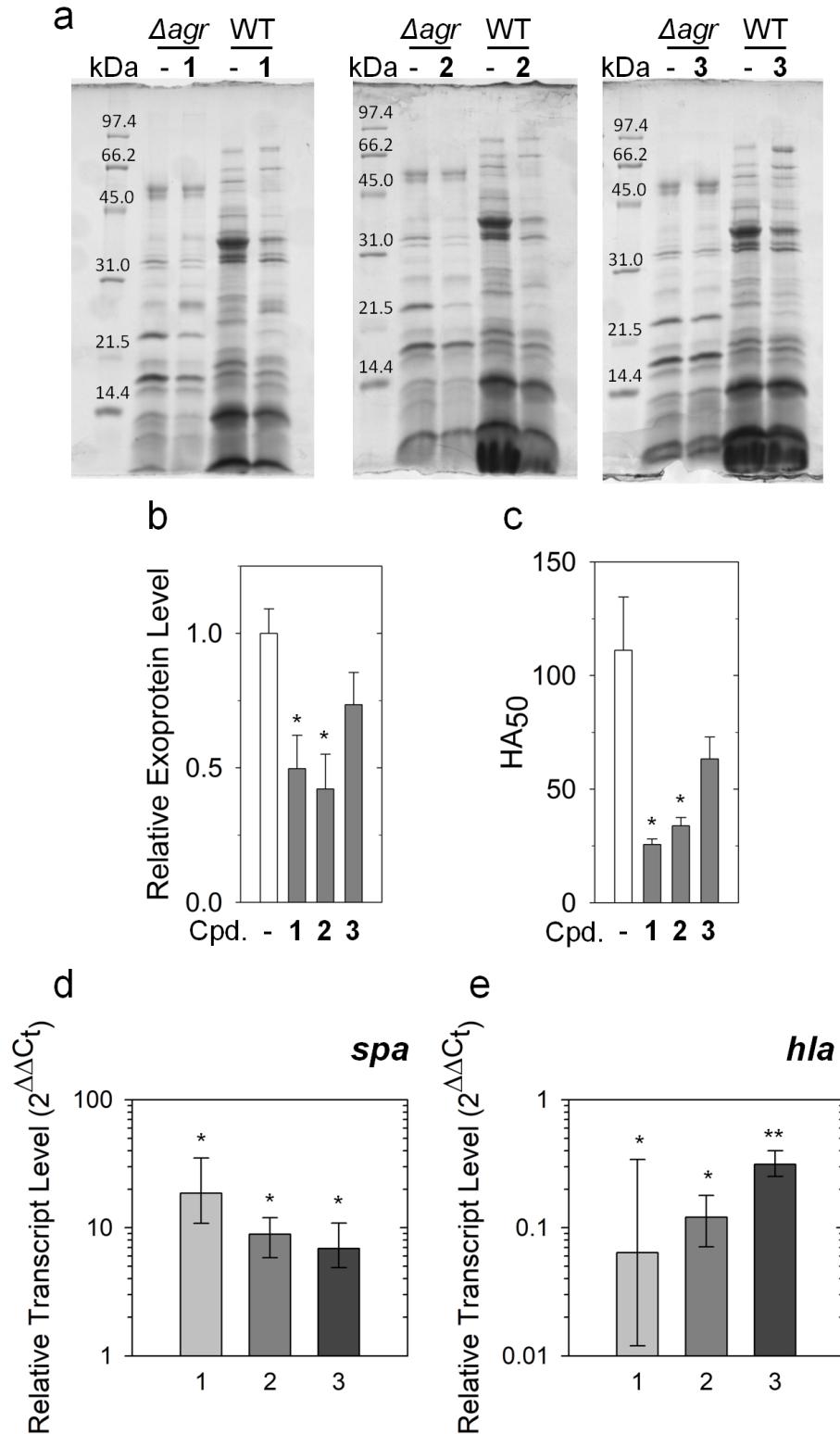
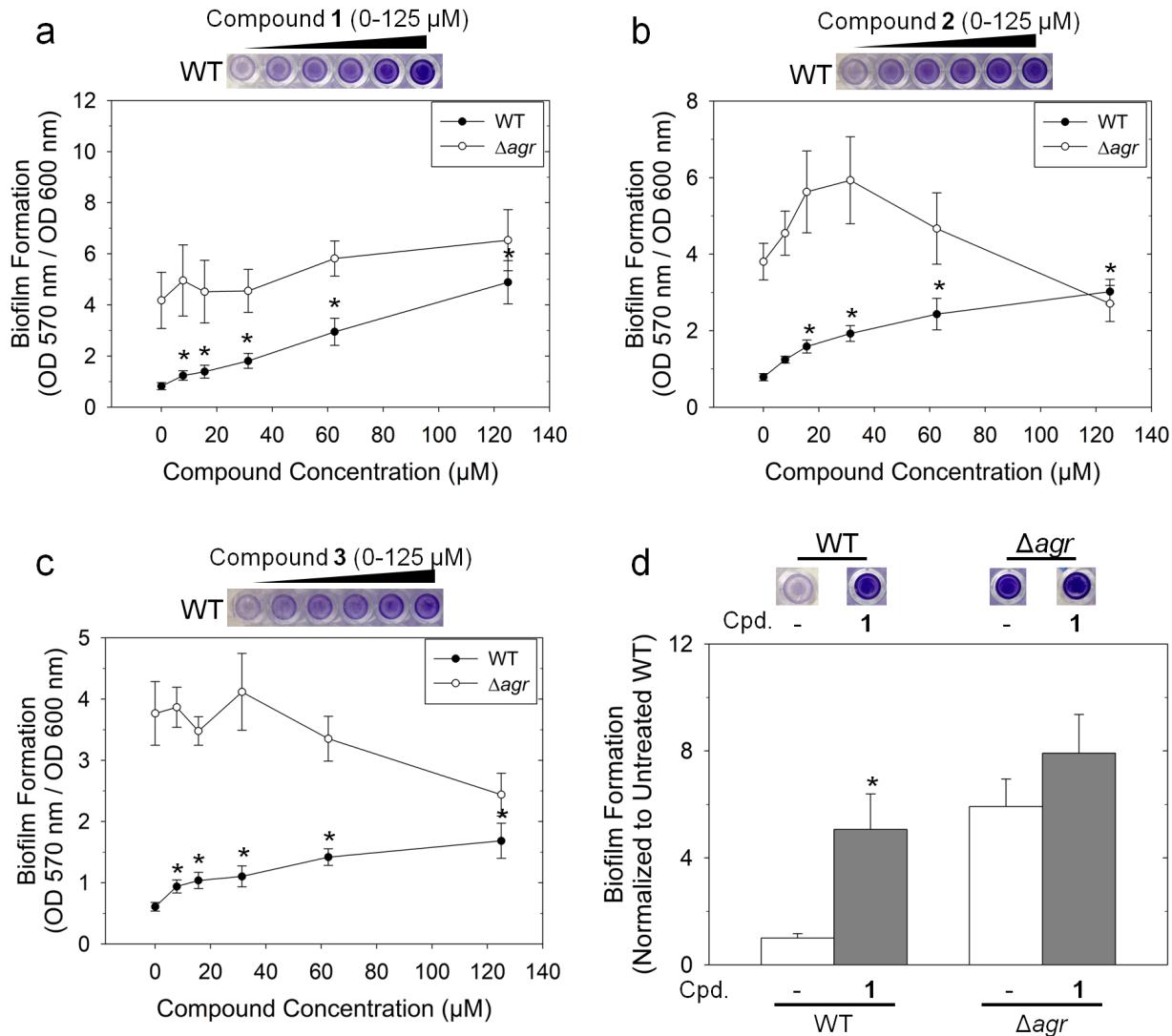
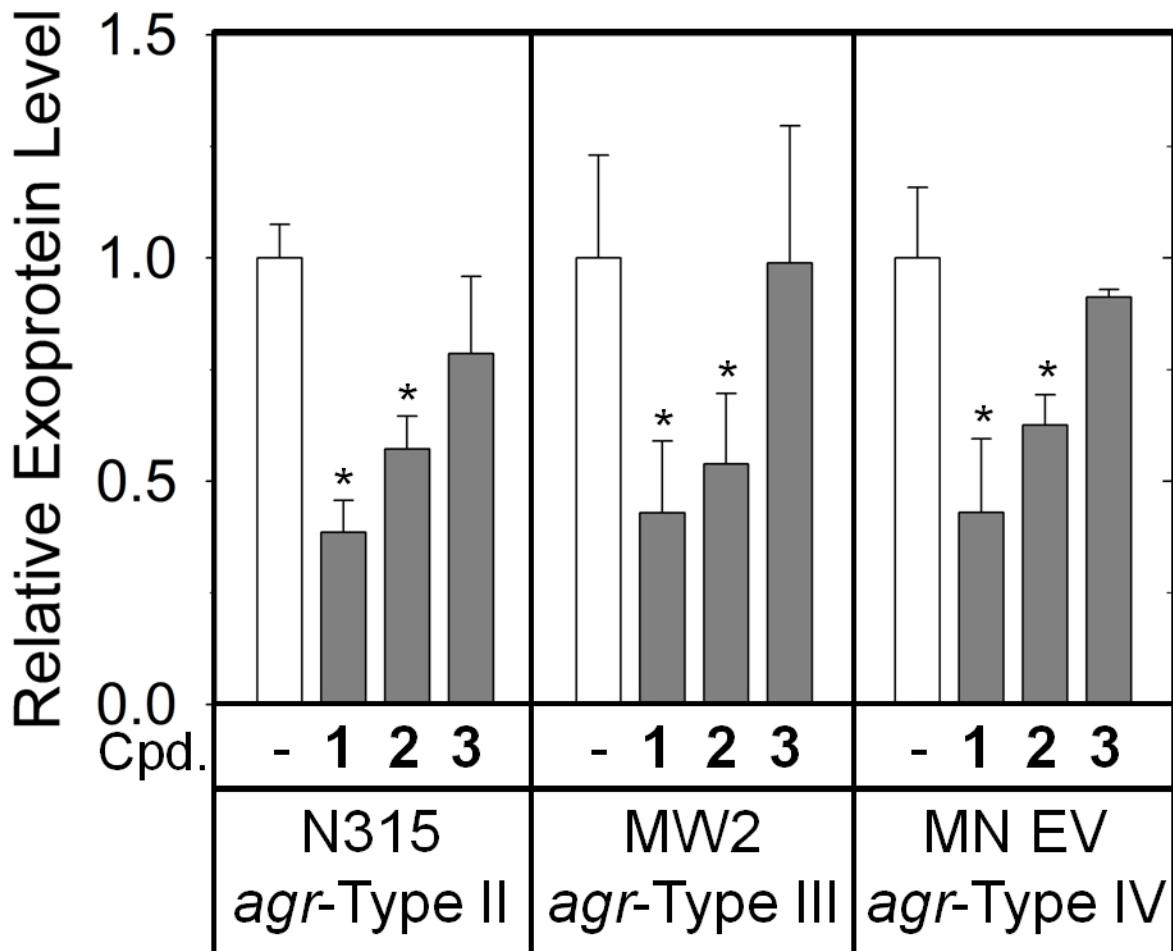


Figure 2


a


b


Figure 3

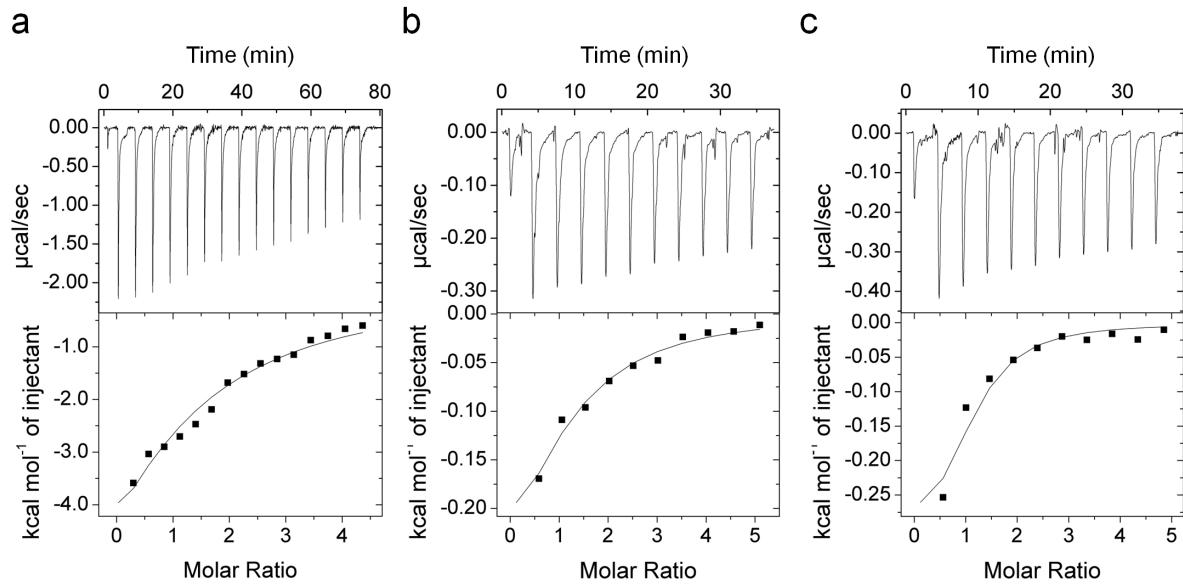

Figure 4

Figure 5

Figure 6

