

1

2 **Increasing molar activity by HPLC purification improves <sup>68</sup>Ga-DOTA-NAPamide**  
3 **tumor accumulation in a B16/F1 melanoma xenograft model**

4

5

6 Jan Lennart von Hacht<sup>1¶</sup>, Sarah Erdmann<sup>1¶</sup>, Lars Niederstadt<sup>1</sup>, Sonal Prasad<sup>2,3</sup>, Asja  
7 Wagener<sup>1</sup>, Samantha Exner<sup>1</sup>, Nicola Beindorff<sup>2</sup>, Winfried Brenner<sup>3</sup>, Carsten  
8 Grötzinger<sup>1\*</sup>

9

10 <sup>1</sup>Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin  
11 Berlin, Germany

12 <sup>2</sup>Berlin Experimental Radionuclide Imaging Center (BERIC), Charité -  
13 Universitätsmedizin Berlin, Germany

14 <sup>3</sup>Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Germany  
15

16

17

18 \* Corresponding author

19  
20 E-mail: carsten.groetzinger@charite.de (CG)

21

22

23

24 ¶These authors contributed equally to this work.

25

26 **Abstract**

27 **Purpose:** Melanocortin receptor 1 is overexpressed in melanoma and may be a  
28 molecular target for imaging and peptide receptor radionuclide therapy.  $^{68}\text{Gallium}$   
29 labeling of DOTA-conjugated peptides is an established procedure in the clinic for  
30 use in positron emission tomography imaging. Aim of this study was to compare a  
31 standard labeling protocol against the  $^{68}\text{Ga}$ -DOTA peptide purified from the excess of  
32 unlabeled peptide.

33 **Procedures:** The MC1R ligand DOTA-NAPamide was labeled with  $^{68}\text{Ga}$  using a  
34 standard clinical protocol. Radioactive peptide was separated from the excess of  
35 unlabeled DOTA-NAPamide by HPLC. Immediately after the incubation of peptide  
36 and  $^{68}\text{Ga}$  (95 °C, 15 min), the reaction was loaded on a C18 column and separated  
37 by a water/acetonitrile gradient, allowing fractionation in less than 20 minutes.  
38 Radiolabeled products were compared in biodistribution studies and PET imaging  
39 using nude mice bearing MC1R-expressing B16/F1 xenograft tumors.

40 **Results:** In biodistribution studies, the non-purified  $^{68}\text{Ga}$ -DOTA-NAPamide did not  
41 show significant uptake in the tumor at 1 h post injection (0.78% IA/g). By the  
42 additional HPLC step, the molar activity was raised around 10,000-fold by completely  
43 removing unlabeled peptide. Application of this rapid purification strategy led to a  
44 more than 8-fold increase in tumor uptake (7.0% IA/g). The addition of various  
45 amounts of unlabeled DOTA-NAPamide to the purified product led to a blocking  
46 effect and a decreased specific tumor uptake, similar to the result seen with non-  
47 purified radiopeptide. PET imaging was performed using the same tracers for  
48 biodistribution. Purified  $^{68}\text{Ga}$ -DOTA-NAPamide, in comparison, showed superior  
49 tumor uptake.

50 **Conclusions:** We demonstrated that chromatographic separation of radiolabeled  
51 from excess unlabeled peptide is technically feasible and beneficial, even for short-  
52 lived isotopes such as  $^{68}\text{Ga}$ . Unlabeled peptide molecules compete with receptor  
53 binding sites in the target tissue. Purification of the radiopeptide therefore improved  
54 tumor uptake.

55 **Introduction**

56 Cutaneous malignant melanoma is one of the most lethal forms of cancer. Its  
57 incidence is increasing rapidly, making it a significant public health threat.[1]  
58 Melanocortin receptor 1 (MC1R) is overexpressed in most melanomas, making it a  
59 promising molecular target for diagnosis and peptide receptor radionuclide therapy  
60 (PRRT).[2, 3] Because of their low molecular weight, low immunogenicity and  
61 excellent tumor penetration, radiopeptides have attracted a steadily increasing  
62 interest in receptor-mediated tumor targeting.[4, 5]

63 Because of its enhanced spatial resolution and high sensitivity, positron emission  
64 tomography (PET) has been developed into a valuable diagnostic tool, particularly for  
65 the detection of small metastases. Since commercial <sup>68</sup>Germanium/<sup>68</sup>Gallium  
66 generators became widely available, <sup>68</sup>Ga labeling of chelator-conjugated peptides  
67 turned into an established clinical procedure for use in PET imaging.[6] Due to its  
68 short half-life (67.71 min), <sup>68</sup>Ga has a higher molar activity (lower mass/activity ratio)  
69 than other nuclides in nuclear medicine, resulting in an unfavorable reaction  
70 stoichiometry.[7] In the radiochemical chelation process of <sup>68</sup>Ga incorporation into  
71 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a high molar  
72 excess of DOTA-conjugated peptide over radiometal is usually used to attain high  
73 <sup>68</sup>Ga complexation yields. The applied excess of cold peptide mass for <sup>68</sup>Ga chelator  
74 loading typically ranges from 1,000-fold to 10,000-fold. This fraction is usually not  
75 removed before injection into the patient and it will compete for binding sites at the  
76 tumor, resulting in lower detection sensitivity. The aim of this study was to compare a  
77 standard labeling protocol against a labeling and HPLC-purification protocol, which  
78 removes the excess of unlabeled peptide. We investigated the influence of peptide

79 mass/molar activity on tumor accumulation of the MC1R ligand  $^{68}\text{Ga}$ -DOTA-  
80 NAPamide.

81 **Materials and Methods**

82 **Peptides**

83 DOTA-NAPamide was from ABX (Radeberg, Germany), [ $\text{Nle}^4, \text{d-Phe}^7$ ]-melanocyte-  
84 stimulating hormone (NDP-MSH) from peptides&elephants (Hennigsdorf, Germany).  
85 Peptides were analyzed by a Finnigan Surveyor MSQ Plus LC-MS (Thermo  
86 Finnigan, Bremen, Germany) to confirm the presence of the correct molecular mass.  
87 Peptides were used at a purity of greater than 95%.

88

89 **Competitive Binding and Saturation Assays**

90 [ $\text{Nle}^4, \text{d-Phe}^7$ ]-melanocyte-stimulating hormone (NDP-MSH) was iodinated with  $\text{Na}^{125}\text{I}$   
91 by the chloramine-T method and it was purified from unlabeled peptide by HPLC as  
92 described below. Saturation and competitive binding studies were performed with live  
93 cells. 40.000 B16/F1 cells were seeded per well into a 96-well flat bottom cell culture  
94 plate. For competitive binding, medium was removed and 50  $\mu\text{L}$  of binding buffer (50  
95 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.4, 5 mM  
96  $\text{MgCl}_2$ , 1 mM  $\text{CaCl}_2$ , 0.5% BSA, protease inhibitor cocktail cOmplete [Roche Applied  
97 Science, Penzberg, Germany]) with increasing concentrations of non-radioactive  
98 peptide was added to the cells. Additionally, 50  $\mu\text{L}$  binding buffer with 100,000 cpm of  
99  $^{125}\text{I}$ -[ $\text{Nle}^4, \text{d-Phe}^7$ ]-MSH was added. After 30 minutes of incubation at 37 °C, cells  
100 were washed 4 times with cold washing buffer (50 mM Tris-HCl pH 7.4, 125 mM  
101  $\text{NaCl}$ , 0.05% BSA). 100  $\mu\text{L}$  1 N  $\text{NaOH}$  was added to lyse cells. Lysates were  
102 transferred into vials and measured using a gamma counter (Wallac 1470 Wizard,  
103 PerkinElmer, Waltham, MA, USA). The saturation assay was performed by adding  
104 100  $\mu\text{L}$  of binding buffer with increasing amounts of  $^{125}\text{I}$ -NDP-MSH to the cells in the  
105 presence or absence of 1  $\mu\text{M}$  of unlabeled NDP-MSH.

106

107 **Radiolabeling of DOTA-NAPamide**

108 Radiolabeling experiments were performed on a Modular Lab PharmTracer synthesis  
109 module (Eckert & Ziegler, Berlin, Germany) which allows fully automated cassette-  
110 based labeling of gallium tracers utilizing a pharmaceutical grade  $^{68}\text{Ge}/^{68}\text{Ga}$   
111 generator (GalliaPharm, 1.85 GBq, good manufacturing practice (GMP)-certified;  
112 Eckert & Ziegler GmbH, Berlin, Germany). Cassettes were GMP-certified and sterile.  
113 They were used without pre-conditioning of the cartridges. Gallium generator at three  
114 months post calibration was eluted with aqueous HCl (0.1 M, 7 ml) and the eluate  
115 was purified on an ion-exchange cartridge followed by elution using 1 ml of 0.1 M HCl  
116 in acetone. An aliquot of DOTA-NAPamide, 50  $\mu\text{g}$  (stock solution 1 mg/ml in 10%  
117 DMSO, 90% water) was mixed with 500  $\mu\text{l}$  0.1 M HEPES buffer (pH 7) and heated for  
118 500 s at 95 °C. After the reaction, the reactor was cooled with 500 ml of saline and  
119 without post-processing. The contents of the reactor were directly used for  
120 subsequent HPLC purification.

121 **HPLC Purification**

122  $^{68}\text{Ga}$ -labeled peptide was separated from non-radioactive NAPamide by reverse  
123 phase HPLC on an Agilent 1200 system (Agilent, Waldbronn, Germany). The  
124 complete mixture from the reaction chamber was loaded on an Eclipse XDB-C18  
125 bonded silica column (Agilent, Waldbronn, Germany) and eluted with a linear  
126 gradient of acetonitrile (gradient 15 – 45% B in A over 20 min, flow rate of 1 ml/min,  
127 solvent A water + 0.1% trifluoroacetic acid (TFA), solvent B acetonitrile + 0.1% TFA,  
128 column at 55 °C).  $^{68}\text{Ga}$ -DOTA-NAPamide was detected using a FlowStar LB513  
129 detector (Berthold, Bad Wildbad, Germany) equipped with a BGO-X (5  $\mu\text{l}$ ) chamber.  
130 The unlabeled peptide moiety was detected via a diode array absorbance detector.

131  $^{68}\text{Ga}$ -DOTA-NAPamide was separated with the help of an automated fraction  
132 collector.

133

134 ***In vivo Biodistribution Assays***

135 B16/F1 cells ( $3 \times 10^6$ ) were inoculated subcutaneously on the right shoulder of NMRI-  
136 *Foxn1<sup>nu</sup>* /*Foxn1<sup>nu</sup>* mice (Janvier Labs, Saint-Berthevin, France). After 1-2 weeks,  
137 tumor bearing mice were injected with approximately 5 MBq of  $\text{Ga}^{68}$ -DOTA-  
138 NAPamide to the tail vein via a catheter. Mice were sacrificed and dissected 1 h after  
139 injection. The B16F1 tumor, blood, stomach, pancreas, small intestine, colon, liver,  
140 spleen, kidney, heart, lung, muscle and femur samples were weighed and uptake of  
141 radioactivity was measured by a gamma counter (Wallac 1470 Wizard, Perkin  
142 Elmer, Waltham, MA, USA). To determine the effect of unlabeled ligand on the tumor  
143 uptake, either 0.5 nmol or 0.05 nmol non-labeled DOTA-NAPamide was co-injected.

144

145 ***In vivo PET/MRI Imaging***

146 The study protocol was approved by the local committee for animal care according to  
147 the German law for the protection of animals. All applicable institutional and national  
148 guidelines for the care and use of animals were followed. Positron emission  
149 tomography (PET) / magnetic resonance imaging (MRI) (1 Tesla nanoScan PET/MRI  
150 Mediso, Hungary) was performed at the Berlin Experimental Radionuclide Imaging  
151 Center (BERIC), Charité – Universitätsmedizin Berlin. Anatomic MRI scans were  
152 acquired using a T2-weighted 2D fast spin echo sequence (T2 FSE 2D) with the  
153 following parameters: coronal sequentially, matrix 256x256x20 with dimensions  
154 0.36x0.36x1.5mm<sup>3</sup>, TR: 8695 ms, TE: 103 ms, and a flip angle of 180°. PET scans  
155 were performed for 90 min starting directly before intravenous injection of 0.15 mL of  
156 tracer, corresponding to a  $^{68}\text{Ga}$  activity of approximately 15 MBq). PET images

157 were reconstructed from the raw data with the following image sequence: 6 x 10 s,  
158 6 x 30 s, 5 x 60 s and 8 X 600 s. The tracer standardized uptake value (SUV) in the  
159 tumor tissue was determined by manual contouring of a volume of interest (VOI) of  
160 the PET images using PMOD 3.610 (PMOD Technologies, Zürich, Switzerland).

161 **Results**

162 **DOTA-NAPamide Binds to MC1R in vitro**

163 To confirm MC1R expression in the melanoma cell line B16/F1 and to assess the  
164 affinity of DOTA-NAPamide towards the receptor, competitive radioligand binding  
165 and saturation binding assays using  $^{125}\text{I}$ -labeled NDP-MSH were performed (Fig 1A).  
166 DOTA-NAPamide showed a high affinity for the murine MC1R expressed in the  
167 B16/F1 cells, with a calculated  $K_i$  of 0.37 nM and a  $K_D$  of 660 pM. To exclude a  
168 negative effect of gallium (Ga) incorporation into the DOTA chelator on binding  
169 affinity, competitive in vitro binding assays were performed using either DOTA-  
170 NAPamide or DOTA-NAPamide complexed with non-radioactive Ga. Figure 1B  
171 shows nearly identical concentration-response curves and  $K_i$  values (0.40 nM vs.  
172 0.43 nM) for unlabeled and Ga-labeled DOTA-NAPamide binding to B16/F1 cells.  
173 This demonstrated that chelation with Ga did not affect the affinity of DOTA-  
174 NAPamide towards the MC1R receptor.

175

176 **Fig 1:** DOTA-NAPamide and Ga-DOTA-NAPamide are high affinity ligands for the  
177 melanocortin 1 receptor (MC1R):  $^{125}\text{I}$ -NDP-MSH ligand displacement and saturation  
178 assays performed with whole B16/F1 cells. **A** Various concentrations of NAPamide  
179 were used to displace  $^{125}\text{I}$ -NDP-MSH. The inset shows a saturation experiment to  
180 determine the dissociation constant. **B**  $^{125}\text{I}$ -NDP-MSH ligand displacement assay to  
181 assess the impact of gallium chelation on DOTA-NAPamide. Curve fits were  
182 performed in GraphPad Prism by applying a one-site binding equation. (n=3; mean  
183  $\pm$  SEM)

184

185

186

187 **Unlabeled DOTA Peptide Can Be Removed by HPLC**

188 For removal of unlabeled excess of DOTA-NAPamide and of non-incorporated  $^{68}\text{Ga}$   
189 after completion of the radiochemical reaction, the product was transferred from the  
190 reactor to an HPLC equipped with a C18 reverse-phase column and a fraction  
191 collector. Figure 2A shows an exemplary separation run for  $^{68}\text{Ga}$ -DOTA-NAPamide  
192 and unlabeled DOTA-NAPamide. Free  $^{68}\text{Ga}$  does not exhibit a distinct interaction  
193 with the C18 column and elutes close to the dead time of the HPLC. For the labeling  
194 reaction, the peptide was used in an excess compared to  $^{68}\text{Ga}$  (10,000:1 molar ratio)  
195 and it showed a slightly prolonged retention time in comparison to  $^{68}\text{Ga}$ -DOTA-  
196 NAPamide. This was exploited to purify  $^{68}\text{Ga}$ -DOTA-NAPamide (Fig 2A). To  
197 demonstrate that an excess of unlabeled peptide would displace  $^{68}\text{Ga}$ - $^{68}\text{Ga}$ -DOTA-  
198 NAPamide from its receptor, the radiotracer was incubated on B16/F1 cells in vitro  
199 either alone or with a 1,000-fold or 10,000-fold excess of DOTA-NAPamide (Fig 2B).  
200 Indeed, both concentrations of unlabeled peptide were able to displace the  
201 radiopeptide as compared to incubation with buffer. In comparison to purified tracer  
202 alone, a 1,000-fold excess led to an approximately 20% decrease and a 10,000-fold  
203 excess of unlabeled peptide diminished the overall binding to less than 50% (Fig 2B).

204

205 **Fig 2: A** Reverse-phase HPLC chromatogram of a  $^{68}\text{Ga}$ -DOTA-NAPamide  
206 purification. The dashed line shows the radiodetector signal and the peak there  
207 represents the  $^{68}\text{Ga}$ -DOTA-NAPamide fraction, while the solid line shows the 280 nm  
208 absorption signal with the peak of DOTA-NAPamide. The area surrounded by dotted  
209 lines represents the purified fraction used in in-vivo experiments. **B** In-vitro  
210 displacement of  $^{68}\text{Ga}$ -DOTA-NAPamide from B16/F1 cells by an excess of unlabeled  
211 DOTA-NAPamide (n=3; mean +/- SEM).

212 **Purification of the Tracer Leads to an Improved Tumor Uptake**

213 Fig 3 shows the results of an in-vivo biodistribution experiment in B16/F1 xenograft-  
214 bearing mice 1 hour after i.v. injection of  $^{68}\text{Ga}$ -DOTA-NAPamide. The non-purified  
215 tracer from the standard procedure showed a very low uptake into subcutaneously  
216 grown B16/F1 tumor xenografts (0.78% IA/g). Removal of unlabeled DOTA-  
217 NAPamide led to a more than 8-fold increase in tumor uptake, with 7.0% IA/g in the  
218 tumor for the purified  $^{68}\text{Ga}$ -DOTA-NAPamide. Except for a moderate uptake in the  
219 kidneys, all other tissues showed only a small uptake of the tracer, mostly below  
220 0.5% IA/g. In animals treated with  $^{68}\text{Ga}$ -DOTA-NAPamide produced by the standard  
221 procedure, the kidney uptake was slightly higher compared to the purified tracer  
222 (4.56% IA/g vs. 3.07% IA/g) (Fig 3).

223

224 **Fig 3:** Biodistribution at 1 h after i.v. injection of approximately 5 MBq radiotracer  
225 along with approximately 0.5  $\mu\text{g}$  peptide. Results of  $^{68}\text{Ga}$ -DOTA-NAPamide produced  
226 by the standard protocol (n=7) are shown in light gray, and results obtained with the  
227 purification protocol (n=7) are shown in dark gray. (mean +/- SEM; \*\*\*p= 0.0001)

228

229 **Tumor Uptake Enhancement is Reversed by Coinjection of Unlabeled Peptide**

230 The effect of cold peptide mass was studied by injecting a constant amount of  
231 purified  $^{68}\text{Ga}$ -DOTA-NAPamide together with different amounts of unlabeled DOTA-  
232 NAPamide. Mice were injected with 5 MBq (~50 fmol) alone or with an additional  
233 1,000-fold (50 pmol) or 10,000-fold (500 pmol) excess of unlabeled peptide. This  
234 10,000-fold excess of unlabeled peptide corresponds to the molar ratio in the  
235 standard protocol. The coinjection of DOTA-NAPamide led to significant loss of  
236 uptake in the MC1R-expressing B16/F1 tumor xenografts (Fig 4). While purified  $^{68}\text{Ga}$ -

237 DOTA-NAPamide showed an uptake of 6.7% IA/g, coinjection of 50 pmol cold DOTA-  
238 NAPamide decreased the total uptake to 3.8% IA/g. 500 pmol coinjected peptide led  
239 to an approximately 6-fold decrease to 1.1% IA/g (Fig 4).

240

241 **Fig 4:**  $^{68}\text{Ga}$ -DOTA-NAPamide biodistribution at 1 h after i.v. injection of  
242 approximately 5 MBq radiotracer. Purified  $^{68}\text{Ga}$ -DOTA-NAPamide was injected either  
243 alone or in parallel with an excess of unlabeled DOTA-NAPamide (1,000-fold or  
244 10,000-fold excess over radiotracer). (n=3 per group; mean +/- SEM; \*\*\*\*p= 0.0001)

245

#### 246 **PET imaging confirms the results of biodistribution studies**

247 Mice bearing subcutaneous B16/F1 tumors on their right shoulder were injected with  
248 approximately 15 MBq  $^{68}\text{Ga}$ -DOTA-NAPamide in different formulations. Each mouse  
249 was given a different DOTA-NAPamide composition (A standard procedure, B  
250 purified, C purified + 1,000-fold excess of cold peptide, D purified + 10,000-fold  
251 excess of cold peptide). Dynamic PET images were taken from 5 to 90 minutes after  
252 injection. Fig 5 shows all four tested conditions at 1 h post injection. The tumor  
253 showed an increase in uptake of  $^{68}\text{Ga}$ -DOTA-NAPamide for the purified and the  
254 purified + 1,000-fold excess of cold peptide conditions (Fig 5 B and C). For the  
255 injections with a 10,000-fold excess of unlabeled peptide, the tracer uptake was on a  
256 similarly low level as for the unpurified tracer (Fig 5 A and D). Since the peptide is  
257 excreted through the kidneys into the bladder, a high signal was observed in both  
258 organs (kidneys not visible in Fig 5 due to their location in a different plane).

259 **Fig 5:** Coronal sections from MRI and PET scans of mice bearing B16/F1 tumors on  
260 the right shoulder at 1 h after tail vein injection of  $^{68}\text{Ga}$ -NAPamide with various ratios

261 of labeled and unlabeled peptide. **A** T2-weighted MRI (corresponding to PET image  
262 in B) **B** unpurified  $^{68}\text{Ga}$ -DOTA-NAPamide **C** HPLC-purified  $^{68}\text{Ga}$ -NAPamide **D** HPLC-  
263 purified  $^{68}\text{Ga}$ -NAPamide + 1,000-fold excess of DOTA-NAPamide, and **E** HPLC-  
264 purified  $^{68}\text{Ga}$ -NAPamide + 10,000-fold excess of DOTA-NAPamide.

265

## 266 **Tracer kinetics**

267 To obtain kinetic profiles, mice were imaged for up to 90 minutes after injection of  
268 either of the four different tracer formulations. Images were reconstructed over short  
269 intervals: 10/30/60 seconds until 10 minutes p.i. and over 10 minutes thereafter. Fig  
270 6A shows the kinetics for the purified  $^{68}\text{Ga}$ -DOTA-NAPamide. After defining volumes  
271 of interest (VOIs) for the tumor in each mouse, the resulting standardized uptake  
272 values were plotted over time from dynamic PET data. Early tracer kinetics in the  
273 tumor confirm the advantage of tracer purification: in the first 5 - 10 minutes after  
274 injection, the tracer reaches a maximum level in the tumors for all tested conditions  
275 (Fig 6B). Thereafter, uptake was slowly decreasing over the next 90 minutes. In the  
276 animal treated with a 1,000-fold excess of cold peptide mass, the initial amount of  
277 radioactivity in the tumor is slightly higher (SUV 0.63) than in the other tumors (mean  
278 SUV 0.43). Of note, the slope of tracer decrease in B16/F1 tumors was less steep for  
279 the purified  $^{68}\text{Ga}$ -DOTA-NAPamide.

280 **Fig 6: A** Short-interval reconstruction from dynamic PET data of a mouse bearing a  
281 B16/F1 tumor on the right shoulder after tail vein injection of 5 MBq purified  $^{68}\text{Ga}$ -  
282 NAPamide. Injected peptide amounts: 0.34 nmol (unpurified and 10,000-fold excess),  
283 3.4 nmol (1,000-fold excess) and 3.4 pmol (purified). **B** Time-activity relationships of  
284  $^{68}\text{Ga}$ -DOTA-NAPamide B16/F1 tumor accumulation derived from dynamic PET data  
285 obtained after injection of four different tracer formulations (n=1).

286 **Discussion**

287 The feasibility of targeting metastatic melanoma with MC1R ligands for nuclear  
288 medicine has been studied as early as 1990 and has since resulted in a multitude of  
289 ligand-chelator conjugates applied for biodistribution, SPECT and PET  
290 experiments.[8, 9] Froidevaux et al. developed the 8mer metabolically stable high-  
291 affinity MC1R ligand DOTA-NAPamide that showed favorable biodistribution and  
292 tumor uptake values ranging from 7.56% to 9.43% IA/g at 4 h p.i.[10] The  
293 radionuclides used were of moderate half-life (2.81 d for  $^{111}\text{In}$ , 3.26 for  $^{67}\text{Ga}$ ). Another  
294 study with  $^{64}\text{Cu}$ -DOTA-NAPamide reported ~4% IA/g at 4 h p.i.[11] Only recently, one  
295 study used the short-lived  $^{68}\text{Ga}$  with this tracer demonstrating tumor demarcation in  
296 PET imaging yet not reporting biodistribution data for the B16/F10 tumors used.[12]  
297 However, no clinical study has been reported for the use of MC1R analogs in  
298 melanoma imaging so far.

299 In experiments preceding this study, we performed biodistribution studies using the  
300 MC1R ligands  $^{68}\text{Ga}$ -DOTA-NDP-MSH and  $^{68}\text{Ga}$ -DOTA-NAPamide in the B16/F1  
301 melanoma model, yet failed to achieve the high tumor uptake previously reported for  
302 the longer-lived  $^{111}\text{In}$  and  $^{67}\text{Ga}$  complexes. We hypothesized that the unfavorable  
303 stoichiometry of the chelation reaction of the peptide conjugate with  $^{68}\text{Ga}$  and the  
304 resulting high excess of unlabeled ligand prevented higher tumor uptake due to  
305 competition for MC1R binding sites. Therefore, in the current study we aimed to  
306 compare a standard  $^{68}\text{Ga}$  labeling protocol against a labeling and HPLC-purification  
307 protocol, which removes the excess of unlabeled peptide. We investigated the  
308 influence of peptide mass/molar activity on tumor accumulation of the MC1R ligand  
309  $^{68}\text{Ga}$ -DOTA-NAPamide using biodistribution and PET imaging.

310 For the standard labeling protocol used in this study, the product of 350 MBq  $^{68}\text{Ga}$ -  
311 DOTA-NAPamide (3.4 pmol  $^{68}\text{Ga}$ ) is accompanied by 34 nmol (50  $\mu\text{g}$ ) of unlabeled  
312 peptide, resulting in a 10,000-fold excess over the radioligand. Due to this  
313 stoichiometry, the theoretical molar activity of 103.000 GBq/ $\mu\text{mol}$  for pure  $^{68}\text{Ga}$ -  
314 DOTA-NAPamide is diminished to an effective molar activity of just 10 Gbq/ $\mu\text{mol}$ .  
315 Lowering the peptide amount in the chelation reaction was no remedy as it  
316 dramatically reduces the radiochemical yield.

317 HPLC purification of the radiopeptide, however, improved tumor uptake in  
318 biodistribution studies by a factor of more than 8-fold, resulting in a tumor-to-kidney  
319 ratio of 2.33 and tumor-to-tissue ratios of better than 15 for all organs investigated  
320 (Fig 3). While others have argued HPLC purification was not convenient in clinical  
321 practice and developed solid phase extraction of  $^{68}\text{Ga}$ -exendin as an alternative  
322 method [13], we found using an HPLC to fractionate tracer was feasible and efficient.  
323 As most radiochemical laboratories have this instrumentation in place for routine  
324 quality control, cost may not be limiting. The procedure can also be performed rapidly  
325 - within 15 to 20 min. Similar successful approaches to purify  $^{11}\text{C}$ ,  $^{18}\text{F}$  and  $^{67}\text{Ga}$   
326 tracers have been reported.[14-16] However, with production of  $^{68}\text{Ga}$  tracers shifting  
327 towards kit preparation, HPLC purification may not have much clinical future. In  
328 addition, the enhancement of molar activity may not be of critical importance for the  
329 imaging of humans as the applied amount of activity (and thus, peptide) is several  
330 orders of magnitude lower than for rodents.

331 The appropriate amount of cold peptide mass or the best molar activity for optimal  
332 tumor imaging has been a matter of investigation for more than two decades now.  
333 Using the somatostatin receptor ligand  $^{111}\text{In}$ -pentetreotide, an early study by  
334 Breeman et al. found moderate molar activities (0.6, 6.0 MBq/ $\mu\text{g}$ ) to yield the highest

335 uptake in rat pancreas, while higher and lower values showed reduced uptake.[17]  
336 However, the majority of subsequent studies demonstrated that for efficient receptor  
337 targeting, low peptide doses should be administered. De Jong et al e.g.  
338 systematically investigated the effects of varying peptide mass at constant or varying  
339 molar activity on organ activity using  $^{111}\text{In}$ - [DOTA<sup>0</sup>,Tyr<sup>3</sup>]octreotide in tumor-bearing  
340 rats.[18] This study identified a principal detrimental effect of increasing peptide  
341 doses in both experimental settings with pancreas and tumor only showing limited  
342 benefit of an increased peptide dose of 0.2 (pancreas) or 0.5  $\mu\text{g}$  (CA20948 tumors).  
343 Increasing amounts of radiolabeled peptide at constant molar activity were also used  
344 investigating the  $^{67}\text{Ga}$ -labeled GRPR ligand BZH3.[19] A peptide amount of 15 pmol  
345 per mouse showed highest tumor uptake (10.9% IA/g), with 5, 45 and 135 pmol  
346 yielding somewhat lower results (7.98, 8.0, 6.25% IA, respectively). Of note,  
347 intestines showed a continuously decreasing % IA/g uptake with increasing amounts  
348 of peptide, suggested to be due to increasing saturation of receptors. With limited  
349 molar activity of the  $^{68}\text{Ga}$  tracer, significant peptide dose reduction was only feasible  
350 at the expense of very small activities, insufficient for high-quality imaging in  
351 mice.[19]

352 Brom et al. compared the effect of co-injected unlabeled peptide over 5 orders of  
353 magnitude in in vivo biodistribution studies.[13] Low doses of unlabeled exendin-3, in  
354 the molar range of co-injected radioactive [ $\text{Lys}^{40}(^{111}\text{In})$ ]exendin-3 did not show a clear  
355 effect on tumor uptake. Eventually, the addition of 0.3  $\mu\text{g}$  (~60 pmol) cold peptide led  
356 to a decrease in tumor uptake of the radioactive tracer. This dose was approximately  
357 300-fold higher than the administered amount of  $^{111}\text{Indium}$ -labeled exendin. The  
358 same group compared the effect of co-injected unlabeled DOTA-minigastrin over four  
359 orders of magnitude (0.1 – 100  $\mu\text{g}$ ) in in vivo biodistribution studies. They observed

360 an increasing drop in tumor uptake of their labeled DOTA-minigastrin for all tested  
361 amounts of cold co-injections (50 pmol - 50 nmol).[20] Using the standard labeling  
362 procedure in the current study, 500 pmol of unlabeled peptide were injected with an  
363 activity of 5 MBq  $^{68}\text{Ga}$ -DOTA-NAPamide. A detrimental effect of higher peptide dose  
364 had also been described in the first study describing DOTA-NAPamide as an MC1R  
365 tracer: tumor uptake at 170 pmol or 420 pmol peptide was much lower than with just  
366 20 pmol.[10]

367 Chelators with higher labeling efficiency than DOTA may represent an alternative  
368 approach to obtaining high molar activities. Recently, the effect of varying molar  
369 activities (0.5 - 1,000 GBq/ $\mu\text{mol}$ ) was studied for the two integrin-targeting  $^{68}\text{Ga}$ -  
370 TRAP peptides  $^{68}\text{Ga}$ -aquibephrin and  $^{68}\text{Ga}$ -avebetrin in biodistribution and PET  
371 imaging.[12] With this chelator (TRAP), very high molar activities (up to 5,000  
372 GBq/ $\mu\text{mol}$ ) could be produced during radiochemical labeling without additional HPLC  
373 purification.[21] Again, highest tumor uptake was found with highest molar activities  
374 with similar tumor-to-kidney ratios for all tested conditions. However, tumor-to-muscle  
375 ratios reached a maximum at 6 nmol (~3.5 GBq/ $\mu\text{mol}$ ), indicating a benefit for  
376 moderate molar activities when muscle signal is limiting.[12] A variety of factors may  
377 lead to this, including target expression levels in muscle and other organs. Further  
378 studies will have to elucidate the relationship between expression, biodistribution and  
379 optimal molar activity for tumor imaging.

380

381

382 **Conclusions**

383

384 Choosing the right molar activity and finding a way to obtain it in an efficient way  
385 remains to be a challenge during the introduction of new tracers. We showed that  
386 separation of radiolabeled and cold peptide via HPLC is technically feasible and  
387 beneficial, even for short-lived isotopes such as  $^{68}\text{Ga}$ . Unlabeled peptide molecules  
388 can strongly compete with receptor binding sites in the target tissue. Purification of  
389 the radiopeptide improved tumor uptake in biodistribution studies and PET/MRI  
390 scans. Production of higher molar activity radiotracers may not only be important for  
391 imaging, but may also improve uptake and thus efficacy in therapeutic procedures  
392 such as PRRT.

393 **Acknowledgements**

394

395 This work was supported by a grant from the German Ministry of Education and  
396 Research (BMBF grant IPT614A to CG), and in part by the Deutsche  
397 Forschungsgemeinschaft (DFG) for PET/MRI use (INST 335/454-1FUGG).

398

## 399 Literature

- 400 1. Gladfelter P, Darwish NHE, Mousa SA. Current status and future direction in the management  
401 of malignant melanoma. *Melanoma Res.* 2017;27(5):403-10. doi: 10.1097/CMR.0000000000000379.  
402 PubMed PMID: 28800028.
- 403 2. Siegrist W, Solca F, Stutz S, Giuffre L, Carrel S, Girard J, et al. Characterization of receptors for  
404 alpha-melanocyte-stimulating hormone on human melanoma cells. *Cancer Res.* 1989;49(22):6352-8.  
405 PubMed PMID: 2804981.
- 406 3. Tafreshi NK, Silva A, Estrella VC, McCurdle TW, Chen T, Jeune-Smith Y, et al. In vivo and in  
407 silico pharmacokinetics and biodistribution of a melanocortin receptor 1 targeted agent in preclinical  
408 models of melanoma. *Mol Pharm.* 2013;10(8):3175-85. doi: 10.1021/mp400222j. PubMed PMID:  
409 23763620; PubMed Central PMCID: PMCPMC3785103.
- 410 4. Fani M, Maecke HR. Radiopharmaceutical development of radiolabelled peptides. *Eur J Nucl  
411 Med Mol Imaging.* 2012;39 Suppl 1:S11-30. doi: 10.1007/s00259-011-2001-z. PubMed PMID:  
412 22388624.
- 413 5. Reubi JC, Maecke HR. Peptide-based probes for cancer imaging. *J Nucl Med.*  
414 2008;49(11):1735-8. doi: 10.2967/jnumed.108.053041. PubMed PMID: 18927341.
- 415 6. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled  
416 DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? *Eur J  
417 Nucl Med Mol Imaging.* 2007;34(7):982-93. doi: 10.1007/s00259-006-0317-x. PubMed PMID:  
418 17225119.
- 419 7. Velikyan I, Beyer GJ, Bergstrom-Pettermann E, Johansen P, Bergstrom M, Langstrom B. The  
420 importance of high specific radioactivity in the performance of 68Ga-labeled peptide. *Nucl Med Biol.*  
421 2008;35(5):529-36. doi: 10.1016/j.nucmedbio.2008.03.002. PubMed PMID: 18589296.
- 422 8. Bard DR, Knight CG, Page-Thomas DP. A chelating derivative of alpha-melanocyte stimulating  
423 hormone as a potential imaging agent for malignant melanoma. *Br J Cancer.* 1990;62(6):919-22.  
424 PubMed PMID: 2257220; PubMed Central PMCID: PMCPMC1971552.
- 425 9. Raposinho PD, Correia JD, Oliveira MC, Santos I. Melanocortin-1 receptor-targeting with  
426 radiolabeled cyclic alpha-melanocyte-stimulating hormone analogs for melanoma imaging.  
427 *Biopolymers.* 2010;94(6):820-9. doi: 10.1002/bip.21490. PubMed PMID: 20564045.
- 428 10. Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, et al. A  
429 gallium-labeled DOTA-alpha-melanocyte- stimulating hormone analog for PET imaging of melanoma  
430 metastases. *J Nucl Med.* 2004;45(1):116-23. PubMed PMID: 14734683.
- 431 11. Cheng Z, Xiong Z, Subbarayan M, Chen X, Gambhir SS. 64Cu-labeled alpha-melanocyte-  
432 stimulating hormone analog for microPET imaging of melanocortin 1 receptor expression. *Bioconjug  
433 Chem.* 2007;18(3):765-72. doi: 10.1021/bc060306g. PubMed PMID: 17348700; PubMed Central  
434 PMCID: PMCPMC4143155.
- 435 12. Notni J, Steiger K, Hoffmann F, Reich D, Schwaiger M, Kessler H, et al. Variation of Specific  
436 Activities of 68Ga-Aquibeprin and 68Ga-Avebetrin Enables Selective PET Imaging of Different  
437 Expression Levels of Integrins alpha5beta1 and alphavbeta3. *J Nucl Med.* 2016;57(10):1618-24. doi:  
438 10.2967/jnumed.116.173948. PubMed PMID: 27151985.
- 439 13. Brom M, Oyen WJ, Joosten L, Gotthardt M, Boerman OC. 68Ga-labelled exendin-3, a new  
440 agent for the detection of insulinomas with PET. *Eur J Nucl Med Mol Imaging.* 2010;37(7):1345-55.  
441 doi: 10.1007/s00259-009-1363-y. PubMed PMID: 20111963; PubMed Central PMCID:  
442 PMCPMC2886138.
- 443 14. Katsifis A, Papazian V, Jackson T, Loc'h C. A rapid and efficient preparation of  
444 [123I]radiopharmaceuticals using a small HPLC (Rocket) column. *Appl Radiat Isot.* 2006;64(1):27-31.  
445 doi: 10.1016/j.apradiso.2005.06.006. PubMed PMID: 16129607.
- 446 15. Lim SM, Katsifis A, Villemagne VL, Best R, Jones G, Saling M, et al. The 18F-FDG PET cingulate  
447 island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. *J Nucl  
448 Med.* 2009;50(10):1638-45. doi: 10.2967/jnumed.109.065870. PubMed PMID: 19759102.

449 16. Van Laeken N, Kersemans K, De Meestere D, Goethals I, De Vos F. Improved HPLC purification  
450 strategy for [11C]raclopride and [11C]DASB leading to high radiochemical yields and more practical  
451 high quality radiopharmaceutical formulations. *Appl Radiat Isot.* 2013;78:62-7. doi:  
452 10.1016/j.apradiso.2013.04.009. PubMed PMID: 23676564.

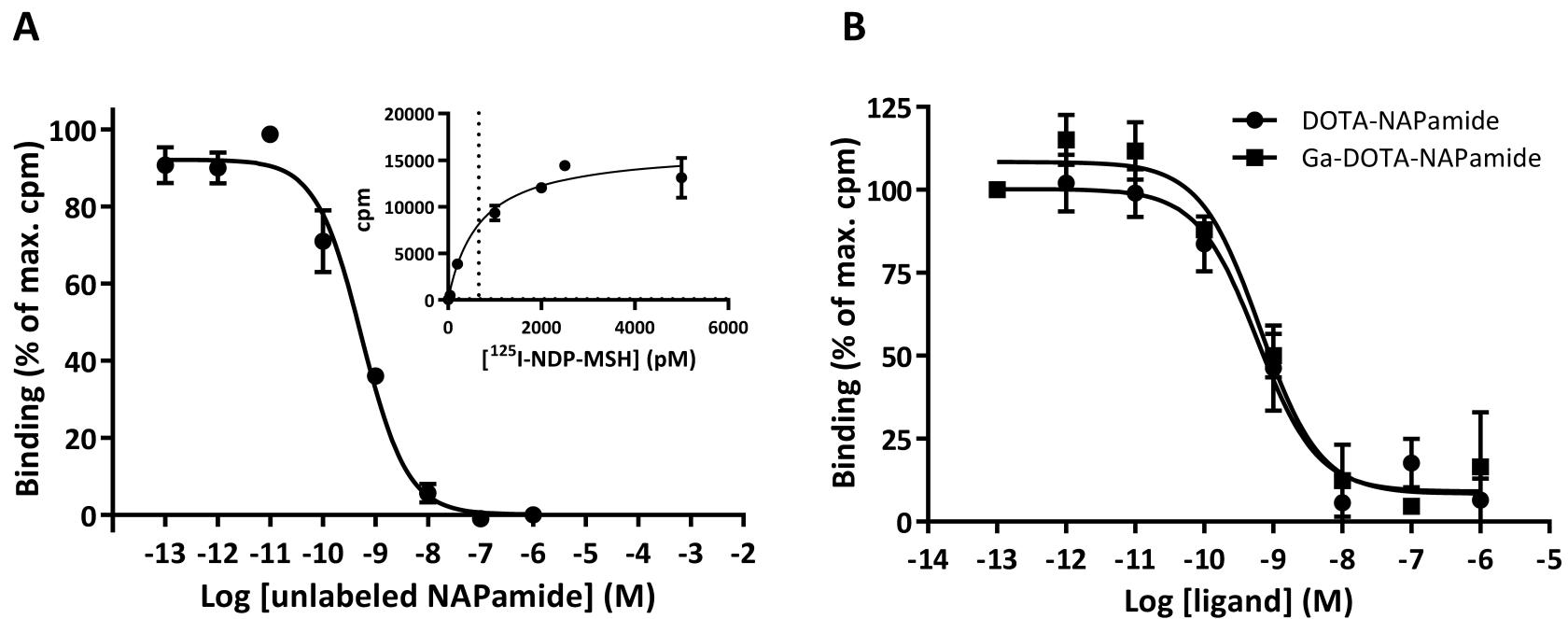
453 17. Breeman WA, Kwekkeboom DJ, Kooij PP, Bakker WH, Hofland LJ, Visser TJ, et al. Effect of  
454 dose and specific activity on tissue distribution of indium-111-pentetreotide in rats. *J Nucl Med.*  
455 1995;36(4):623-7. PubMed PMID: 7699456.

456 18. de Jong M, Breeman WA, Bernard BF, van Gameren A, de Bruin E, Bakker WH, et al. Tumour  
457 uptake of the radiolabelled somatostatin analogue [DOTA0, TYR3]octreotide is dependent on the  
458 peptide amount. *Eur J Nucl Med.* 1999;26(7):693-8. PubMed PMID: 10398816.

459 19. Schuhmacher J, Zhang H, Doll J, Macke HR, Matys R, Hauser H, et al. GRP receptor-targeted  
460 PET of a rat pancreas carcinoma xenograft in nude mice with a 68Ga-labeled bombesin(6-14) analog.  
461 *J Nucl Med.* 2005;46(4):691-9. PubMed PMID: 15809493.

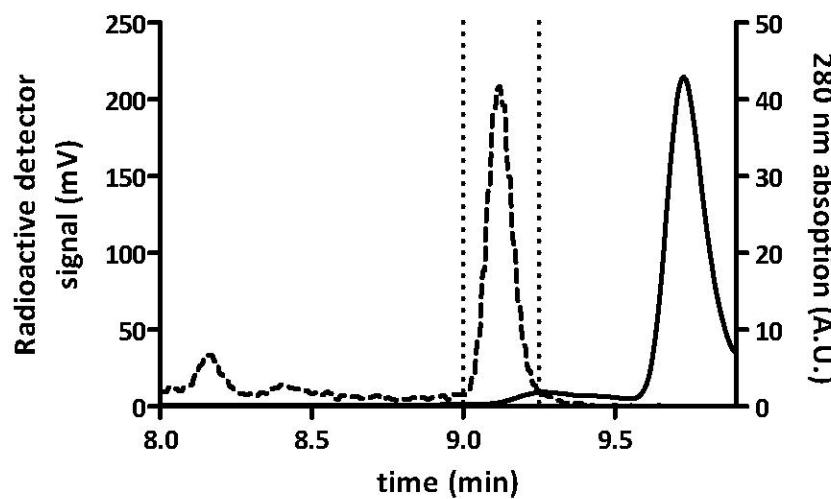
462 20. Brom M, Joosten L, Laverman P, Oyen WJ, Behe M, Gotthardt M, et al. Preclinical evaluation  
463 of 68Ga-DOTA-minigastrin for the detection of cholecystokinin-2/gastrin receptor-positive tumors.  
464 *Mol Imaging.* 2011;10(2):144-52. PubMed PMID: 21439259; PubMed Central PMCID:  
465 PMCPMC3123532.

466 21. Notni J, Simecek J, Hermann P, Wester HJ. TRAP, a powerful and versatile framework for  
467 gallium-68 radiopharmaceuticals. *Chemistry.* 2011;17(52):14718-22. doi: 10.1002/chem.201103503.  
468 PubMed PMID: 22147338.

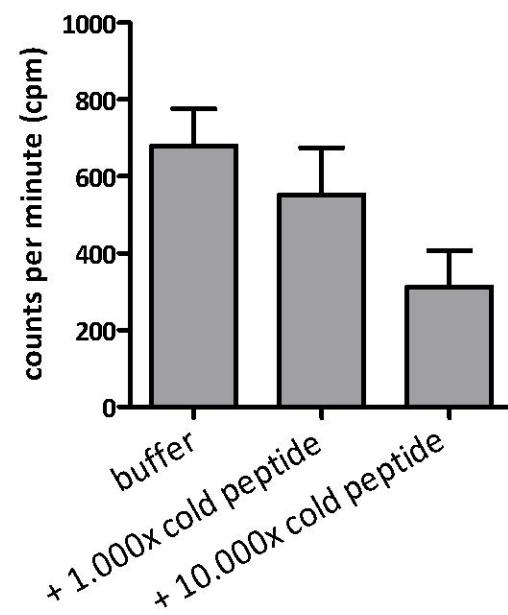

469

470

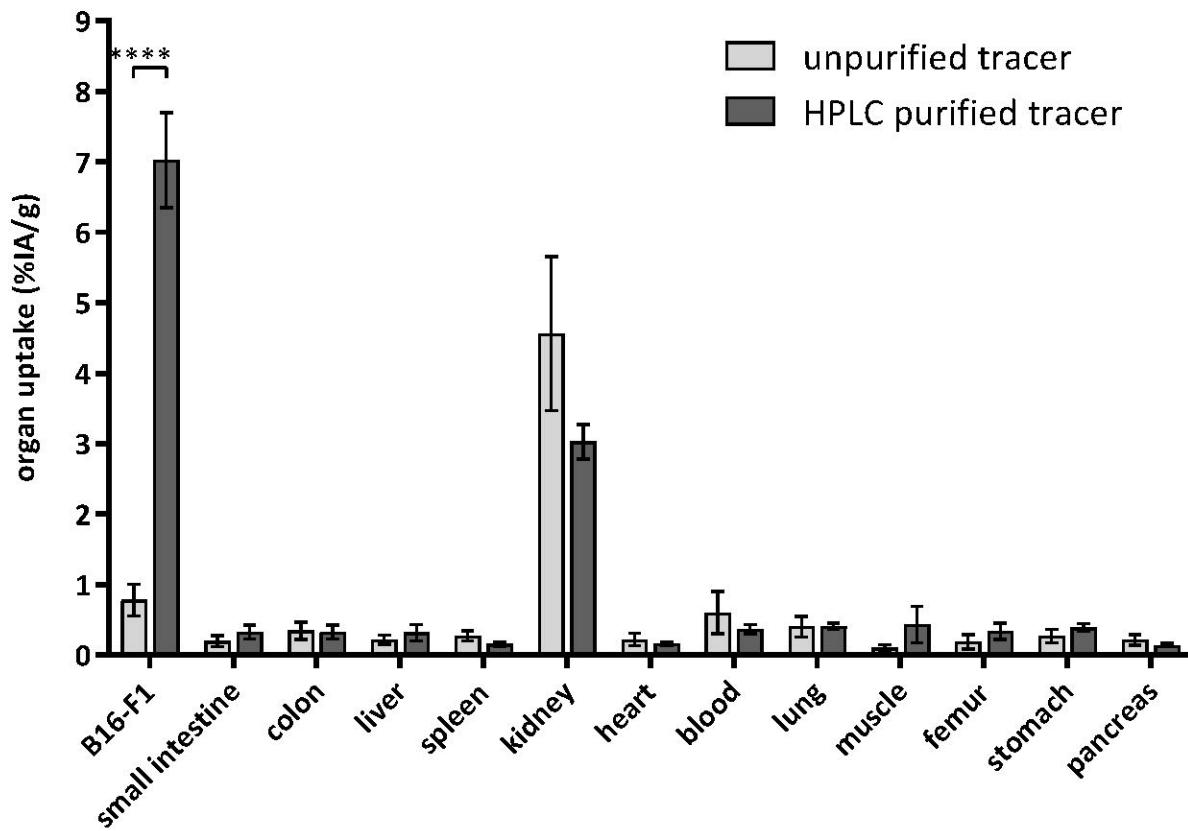
471


472  
473

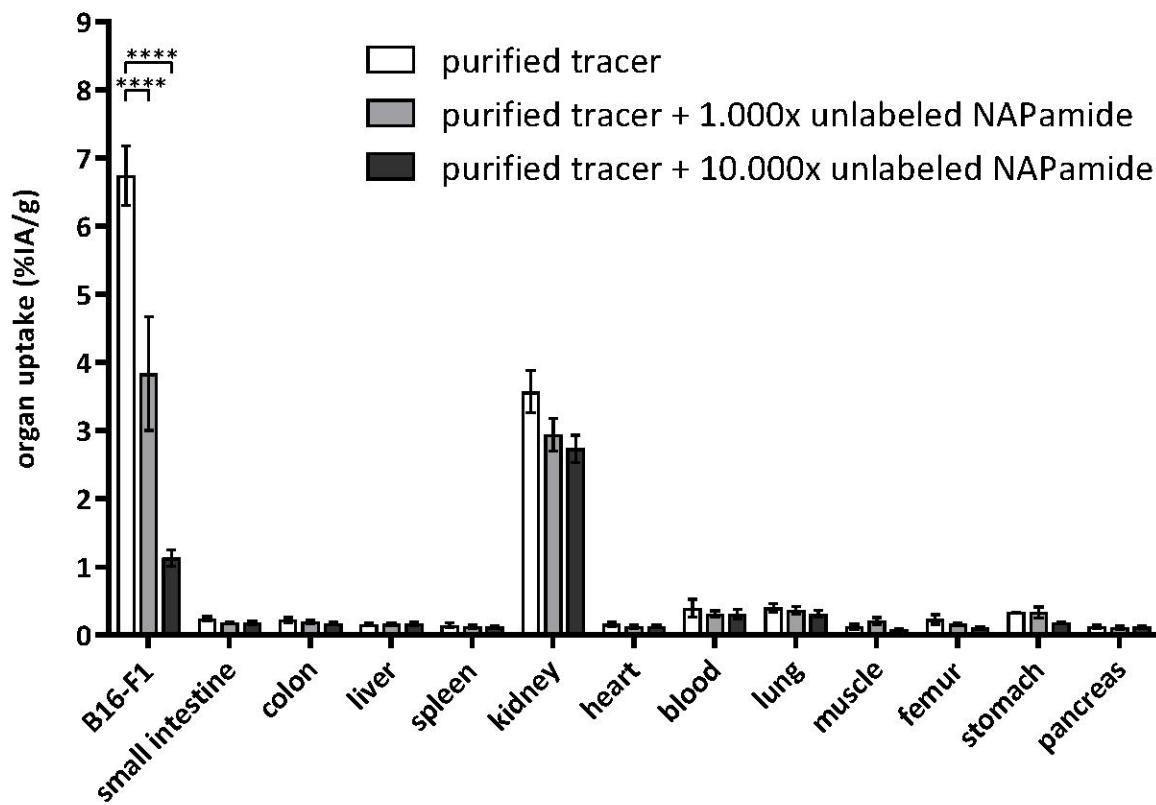
**Figure 1**



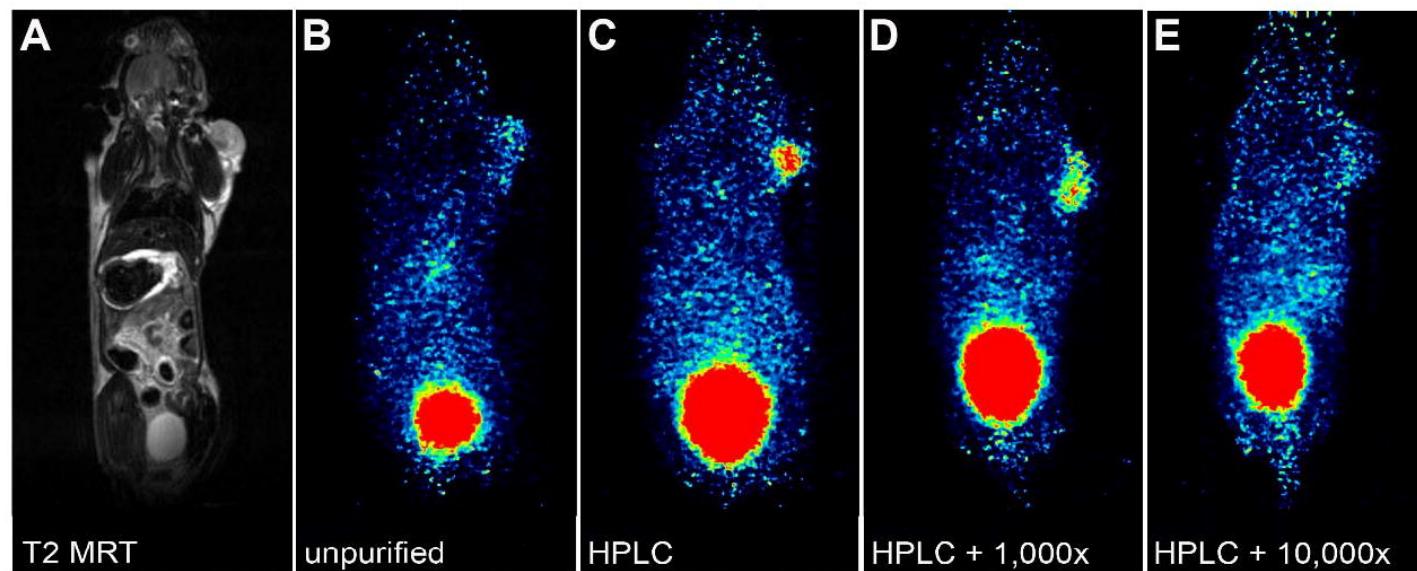

**Figure 2**


**A**

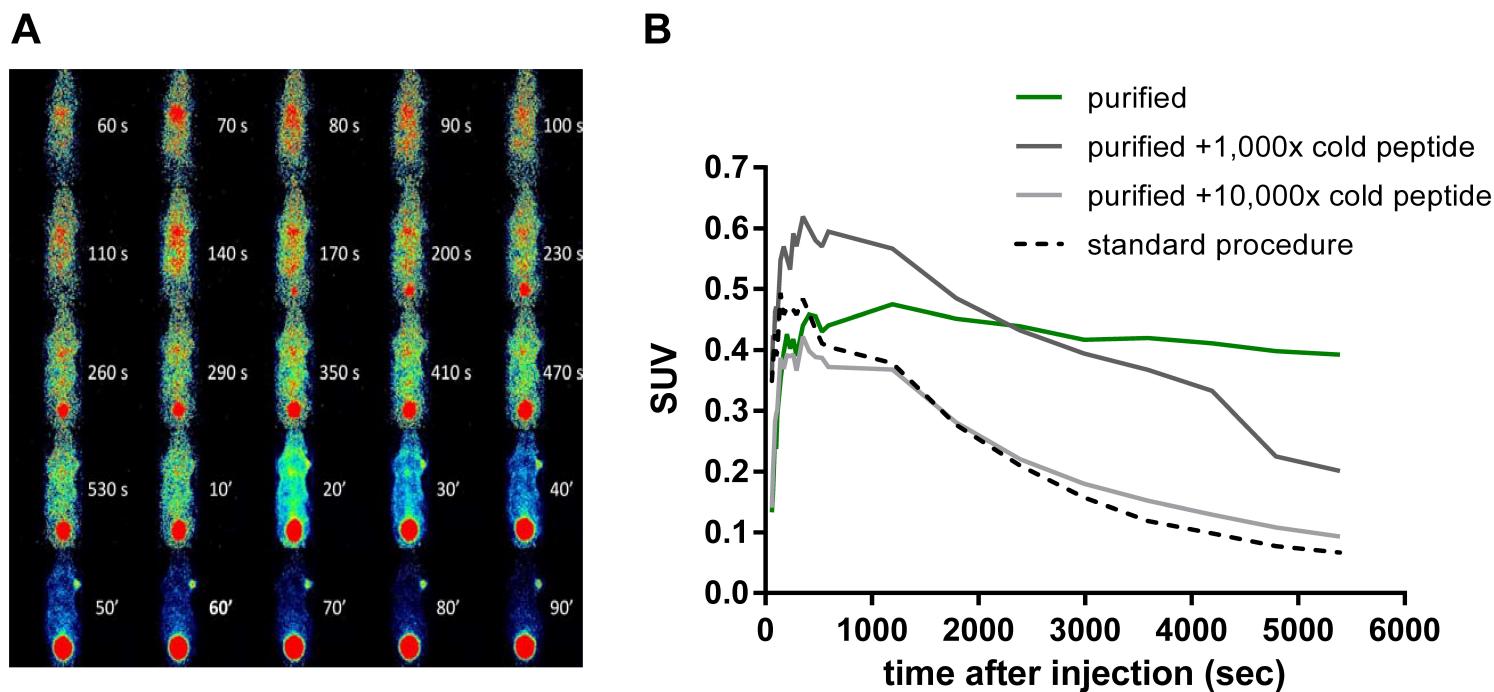



**B**




**Figure 3**




**Figure 4**



**Figure 5**



**Figure 6**

