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Abstract

Recent evidence show that neuroinflammation plays a role in many neurological diseases including

mild cognitive impairment (MCI) and Alzheimer’s disease (AD), and that free water (FW) modeling

from clinically acquired diffusion MRI (DTI-like acquisitions) can be sensitive to this phenomenon.

This FW index measures the fraction of the diffusion signal explained by isotropically unconstrained

water, as estimated from a bi-tensor model. In this study, we developed a simple FW processing

pipeline that uses a safe white matter (WM) mask without gray matter (GM)/CSF partial volume

contamination (WMsafe) near ventricles and sulci. We investigated if FW inside the WMsafe mask,

including and excluding areas of white matter damage such as white matter hyperintensities (WMHs)

as shown on T2 FLAIR, computed across the whole white matter could be indicative of diagnostic

grouping along the AD continuum.

After careful quality control, 81 cognitively normal controls (NC), 103 subjects with MCI and 42

with AD were selected from the ADNIGO and ADNI2 databases. We show that MCI and AD have

significantly higher FW measures even after removing all partial volume contamination. We also
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show, for the first time, that when WMHs are removed from the masks, the significant results are

maintained, which demonstrates that the FW measures are not just a byproduct of WMHs. Our

new and simple FW measures can be used to increase our understanding of the role of inflammation-

associated edema in AD and may aid in the differentiation of healthy subjects from MCI and AD

patients.

1. Introduction

White matter (WM) atrophy in Alzheimer’s disease (AD) was observed more than three decades

ago [1]. The microstrucutural changes observed in the WM of AD patients include axonal deterio-

ration, Wallerian degeneration, loss of myelin density, loss of oligodendrocytes, microglia activation

and vascualar degeneration [2, 3, 4, 5, 6, 7]. Numerous studies have shown that changes in the WM5

are an early event in the development of AD, happening in preclinical stages [3, 8, 9]. Changes in

the microstructure of WM have even been reported before measurable hippocampal atrophy in mild

cognitive impairment (MCI) [10] and preclinical AD [11]. More recent evidence shows that chronic

neuroinflammation also contributes to the process of neurodegeneration in AD and was recently

observed in the WM of AD patients [12].10

Microglia-induced neuroinflamation in patients have been mostly studied using PET imaging

ligands such as 11C-PK11195 [13]. However, to identify WM changes, diffusion MRI has been the

modality of choice [14]. Studies, in the past decade, have identified various regions in the WM where

the diffusion measures, mostly diffusion tensor imaging (DTI)-based measures such as fractional

anisotropy and mean, axial, and radial diffusivities, correlate with symptoms of MCI and AD [15, 16,15

17, 18, 19]. A more recent diffusion measure is the free water (FW) index, which measures the fraction

of the diffusion signal explained by isotropically unconstrained water [20], as estimated from a

regularized bi-tensor model. In white matter, this measurement represents either FW in extracellular

space around axons or FW contamination from cerebrospinal fluid in adjacent voxels. An elevated

FW index in white matter has been suggested to indicate neuroinflammation [21] and has been20

described in normal aging [22] and many neurological disorders such as schizophrenia [23, 24, 25],

Parkinson’s disease [26], and AD [27, 28, 29].

In AD patients, an association between the widespread increased FW and poorer attention,

executive functioning, visual construction, and motor performance was shown in [28, 29]. FW-

corrected DTI measures are more sensitive to differentiate AD groups compared to standard DTI25

measures [29]. In a longitudinal study, FW-corrected radial diffusivity, but not un-corrected radial
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diffusivity, was higher in the WM of MCI patients who converted to AD compared to MCI patients

who did not convert [27]. FW-corrected DTI measures also demonstrate greater sensitivity to

associations between AD pathology and white matter microstructure compared to standard DTI

measures [11].30

In this study, we developed a FW processing pipeline that uses a WM ”safe” mask (WMsafe)

without GM/CSF partial volume contamination and computed new and simple whole-brain FW

measures based on this WMsafe mask (including and excluding WMHs within the mask) for three

different groups (cognitively normal, MCI and AD subjects), selected from the ADNIGO and ADNI2

databases. The prevalence and degree of WMHs is known to increase with age [30] and therefore35

WMHs cannot be ignored in WM processing of aged groups. We show that our FW measures were

significantly higher in MCI and AD groups compared to NC, but only when using a WM safe mask.

We also show, for the first time, that when WMHs are removed from the mask, the significant results

remained, which demonstrates that FW measures are not just a byproduct of WMHs.

2. Methods40

2.1. Study participants

226 subjects from the ADNIGO and ADNI2 databases passed the necessary quality assurance

(QA) phases of the diffusion MRI analysis pipeline (described below). Of those participants, 81 (38

males, 43 females) were cognitively normal (normal control, NC), 103 (69 males, 34 females) had

a diagnosis of mild cognitive impairment (MCI) and 42 (25 males, 17 females) had a diagnosis of45

AD. Age range per group was between 67 and 95 years for NCs, between 60 and 95 years for MCIs

and bewteen 61 and 97 for ADs. Mean age was 78.46 for NCs, 79.0 for MCIs and 79.38 for ADs.

All participants had good general health, good hearing and seeing abilities, no depression or bipolar

condition, no history of alcohol or drug abuse and completed at least six grades of education. Also,

NCs had no memory impairment and their clinical dementia rating (CDR) was 0. MCI subjects50

included early and late MCI with impaired memory and a CDR of 0.5, while AD subjects met

criteria for dementia and had a CDR between 0.5 and 1 [31]. Participants did not suffer from any

neurological disorders other than MCI and AD such as brain tumor, multiple sclerosis, Parkinson’s

disease, or traumatic brain injury.
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Figure 1: Pipeline of the proposed method: (1) the DWI and T1w images are first preprocessed, (2) the three

modalities are co-registered of which (3) are extracted the FW map, the tissue map and the WMHs areas. (4) the

combination of the three maps leads to the proposed FW metrics.

2.2. MRI data acquisition55

Data used in the preparation of this article were obtained from the Alzheimers Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission to-

mography (PET), other biological markers, and clinical and neuropsychological assessment can be60

combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimers

disease (AD). For up-to-date information, see www.adni-info.org.

Of the available modalities, we used the T1w, diffusion weighted imaging (DWI) and fluid atten-

uation inversion recovery (FLAIR) scans. The DWI scans were acquired along 41 evenly distributed

directions using a b-value of 1000 s/mm2 with a 1.3 × 1.3 × 2.7 mm3 spatial resolution. The T1w65

and FLAIR scans were acquired at 1.2 × 1.05 × 1.05 and 0.85 × 0.85 × 5 mm3 spatial resolution,

respectively. Data was acquired at 58 different North-American locations.

2.3. MRI processing pipeline

The processing pipeline is illustrated in Figure 1. At first, the T1w and DW images were

denoised with a non-local means method robust to Rician noise [32], followed by an MRI bias

field correction performed with ANTs N4 correction tool [33]. The brain mask (BM) was then
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processed and the skull was removed using the BEaST brain extraction software [34]. We referred

to these methods as the preprocessing step in Figure 1. Then, the T1w and FLAIR images were

nonlinearly registered to the 1x1x1 up-sampled diffusion space with ANTs registration [33]. Tissue

segmentation was then performed on the transformed T1w to obtain a binary map of the CSF, GM,

and WM. This was done using ANTs Atropos [33]. In order to prevent any CSF contamination in

regions susceptible to partial volume effect, a “safe WM mask” (WMsafe) was built by combining

the following morphological operations on the CSF, WM, GM and brain binary masks:

WMsafe = ((WM − (GM ⊕R1))− (CSF ⊕R1)) ∩ (BM 	R15), (1)

where Rn is a 3D structuring element of radius n, ⊕ is the dilatation operator, 	 is the erosion op-

erator and ∩ the intersection operator as illustrated in Figure 1. Using the FLAIR and T1w images,70

a binary map of WMHs was also computed using volBrain [35]. The bi-tensor model proposed by

Pasternak et al. [20] was fit onto the DW signal. The result of this fit is a fraction representing the

contribution of unconstrained water to the original signal and a new signal representing the tissue

contribution. The fraction of unconstrained water contribution in a voxel is what we commonly call

FW volume and the 3D image of this FW volume is called the FW map. The tissue signal is the75

FW-corrected DWI signal, as it represents the signal without its unconstrained component. The

safe white matter mask, the WMH mask, and the FW map were then used to extract the mean

FW value (µFW ) and the relative FW volume (rFW ). The rFW is the total volume of FW voxels

within the safe white matter mask with FW values greater than 0.1, divided by the total volume of

the safe white matter mask. rFWm and µFWm are defined as such:80

rFWm =
volume(FWm > 0.1)

volume(m)
, (2)

µFWm = FWm, (3)

where m ∈ {WMsafe,WMHs,WMsafe −WMHs}. The 0.1 threshold was chosen to minimize the

impact of noise on the rFW metric. All processing was done using a Nextflow [36] pipeline with all

software dependencies bundled in a Singularity container [37] ensuring quick and easy reproducibility

of the results.

2.4. Statistics85

A cross-sectional analysis was performed at the first available time point comparing rFW and

µFW in NC (n=81), MCI (n=103), and AD (n=42). An analysis of variance (ANOVA) was per-
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formed to test for a main effect of diagnostic group followed by a post-hoc pairwise Tukey test to

assess differences between sub groups [38]. A log transformation was applied to the rFW and µFW

metrics to improve normality of the distribution before analyses [39].90

2.5. Quality assurance

Out of all available subjects in ADNI2 and ADNIGO, 239 had at least one time point with all

the images required (T1w, DWI and FLAIR) to go through the processing pipeline. Visual QA was

performed on all images of all time points and those with problems impossible to correct (missing

brain parts, acquisition artifacts) were rejected. Gradient information was also QA-ed to make sure95

every DWI image had 41 evenly distributed direction on one single acquisition shell. This first QA

pass eliminated 9 subjects bringing the count of subjects with usable data to 230. Visual inspection

was performed on brain extraction of T1w and DWI as well as on the non-linear registration of the

FLAIR on the T1w and of the T1w on DWI. Every tissue segmentation mask (WM, GM, CSF) as

well as the WMH mask was inspected. This second QA pass eliminated 4 subjects, 3 with artefacts100

in the DWI images causing improbable values in metrics and one with an obviously incorrect T1

brain mask, leaving 226 subjects with usable data for the group analysis.

3. Results

As shown in Table 1 results of the initial ANOVA tests show a significant main effect of group

membership across all regions of interests. Post-hoc Tukey tests show that both rFW and µFW are105

significantly higher in the WMsafe for MCI and AD subjects than for NC subjects whether or not

WMHs were included. Interestingly, when looking at rFW and µFW specifically within the WMH

mask we do see significant between-group differences but with lesser effect and neither of them being

able to separate both NC-MCI and NC-AD.

To represent the spatial differences in free water repartition between groups, every T1W image110

already registered in diffusion space was non-linearly registered to the MNI152 space with the ANTs

registration tool [33]. The resulting transformations were applied to the free water volumes. Mean

and standard deviation free water volume for each group was computed and used to obtain a z-

score volume of each subject compared to each group. These z-score volumes were averaged and

thresholded at z ≥ 2 standard deviations to obtain binary group comparison volumes.115

In both the NC vs AD and NC vs MCI comparisons, the voxels showing differences are mostly

located in the corticospinal tract (CST) and bundles of the limbic system such as the cingulum and
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Table 1: The F-statistic obtained from the ANOVA test is displayed in the first column and the rest of the table shows

the Tukey post-hoc pairwise group differences(on log-scale) with the standard error in parentheses. The statistical

significance(in bold) is shown as: * p<0.05, ** p<0.01, *** p<0.001.

F(2, 223) NC-MCI(SE) NC-AD(SE) MCI-AD(SE)

rFWWMsafe−WMHs 16.02*** -0.52(0.18)*** -0.86(0.23)*** -0.34(0.20)

µFWWMsafe−WMHs 13.58*** -0.49(0.17)*** -0.70(0.19)*** -0.21(0.20)

rFWWMsafe
12.79*** -0.53(0.19)*** -0.90(0.22)*** –0.36(0.21)

µFWWMsafe
12.66*** -0.50(0.17)*** -0.74(0.20)*** -0.23(0.20)

rFWWMHs 4.14* -0.13(0.07)* -0.14(0.10) -0.01(0.09)

µFWWMHs 3.80* -0.13(0.08) -0.18(0.10)* -0.05(0.10)

Figure 2: Spatial repartition in free water differences across groups

the fornix. Figure 2 shows that intensity and location of significant z-score clusters is different when

comparing AD or MCI to NC.

4. Discussion120

We have shown that MCIs and ADs have significantly higher FW metrics compared to NCs.

There was a correlation between FW and age but it was found to be weak and consistent across all

groups. We also demonstrated that the use of a safe WM mask is critically important to prevent

partial volume contamination that can perturb the overall results. Our new and simple FW measures
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can be used to increase our understanding of the role of inflammation-associated edema in AD and125

may aid in the differentiation of healthy subjects from MCI and AD patients. Significant results were

also obtained when WMHs were removed from the WM mask, which demonstrate that FW metrics

differences between group were not due to white matter lesions that can be seen on T2 FLAIR

images as WMHs. In fact, a key observation of this study is that FW in MCI and AD subjects is

globally distributed through the WM and is not specifically associated to WMHs or other regions130

typically associated to cognition like the limbic system.

Neither FW metrics could differentiate between MCI and AD subjects. This result could be

attributed to the study design since measuring FW metrics in non-specific anatomical brain region

such as the whole WM gives a very broad picture of the FW content in the brain, which may hide

localized differences. Analyzing FW content along specific WM bundles would be expected to yield135

more specific results. To do so, tractography would then be used to reconstruct the global WM

architecture followed by an automated segmentation of several key WM bundles such as the fornix,

cingulum, corpus callosum, and association tracts (arcuate fasciculus, uncinate, inferior longitudinal

and inferior fronto-occipital fasciculus). FW metrics would be analyzed along those bundles, as done

in apparent fiber quantification (AFQ) [40] and tract-profiling [41]. Future work would also include140

looking at how FW correlates with abeta and tau data available in ADNI to further support the

hypothesis that FW is a good correlate measurement of neuroinflammation.

However, FW metrics also have limitations, i.e. they are derived from a bi-tensor model, which

is limited to representing a FW compartment and a single fiber population. However, it is estimated

that 66 to 90 percent of brain WM voxels contain at least two fiber populations [27, 28]. In those145

voxels, the estimated contribution of the FW compartment is incorrectly estimated, since some signal

arising from the fiber populations not fitted to the single fiber tensor will be assigned to the FW

compartment. To correct this bias, a FW model accounting for more than one fiber population would

need to be used to better fit the signal. While a more sophisticated model would certainly better

characterize the information contained in the non-free-water portion of the signal and give more150

accurate free water indices, these models require multi-shell DWI acquisitions which are unavailable

in ADN2 and ADNIGO.

5. Conclusion

This study demonstrates that after removing partial volume contamination as well as WMHs

lesions, the free water content of healthy looking white matter differentiates MCI and AD groups155
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from healthy subjects. Our method is based on existing DTI-like diffusion data, is atlas free, requires

no registration with a reference brain, no PET scan, no tractography, has few tunable parameters,

and takes a few minutes only of computation. The method is a simple but powerful approach that

may be used in the context of patient selection and stratification for novel treatments that are aimed

at treating or preventing inflammation components of AD using legacy or standard diffusion MRI160

data. The significant differences of our FW metrics between NC and MCI as well as NC and AD may

demonstrate the potential of FW as a tool to study neuroinflammation. We intend to extend this

work with analyses of FW metrics in specific white matter bundles and sections of bundles. Also,

characterization over time of our new FW metrics in an MCI population could help differentiate

those older adults who will remain relatively stable and those who will progress to AD, which has165

utility for patient selection and stratification of subjects in preclinical stages of AD.
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