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Abstract

Electrophysiological recordings show that any visual stimulus produces a response in a large
population of differently tuned sensory neurons. However, it remains unclear how this
population response is used to make perceptual decisions. Major theories, such as probabilistic
population codes and neural sampling, assume that the population response can be flexibly
used for decision making. However, another possibility is that decision-making circuits do not
have access to the sensory population code but only to a summary of this code. These
possibilities can be disentangled for choices among n>2 discrete stimulus categories. In two
experiments, we asked subjects to choose between n=4 colors or n=6 symbols. We then used
the n-alternative condition to predict the performance on a different, 2-alternative condition
where only two colors or symbols were given as available alternatives on each trial. A
population model assuming that decision-making circuits have access to the whole distribution
of the sensory activation levels across all colors or symbols significantly overestimated the
performance in the 2-alternative condition. Instead, a summary model assuming that decision-
making circuits only have access to the sensory activity associated with the dominant color
predicted the 2-alternative condition very well and was preferred in Bayesian model
comparison. Finally, a third experiment asked subjects to make two decisions in a row and also
found the summary model to provide a better description of the data. These results show that
the full population code in sensory cortex may not be available for deliberate decision making,

at least within the context of decisions between discrete alternatives.


https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/537068; this version posted January 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Introduction

Perception has been conceptualized as a decision process for over a century and a half
(Helmholtz, 1856). According to this view, the outside world is encoded in a pattern of neural
firing and the brain needs to decide what these patterns signify. Although this view is widely
accepted, it remains unclear what type of information perceptual decisions are actually based

on.

Electrophysiological studies starting with Hubel and Wiesel (1970) have revealed how individual
neurons in various sensory areas of cortex respond to different stimuli. Such studies have
demonstrated that a single stimulus gives a rise to activity in a whole population of differently-
tuned neurons in sensory cortex. This population response must therefore form the foundation

of the information representations on which the brain makes decisions.

In fact, two prominent theories — probabilistic population codes and neural sampling —
postulate that deliberate decision making is performed directly on these sensory distributions.
Probabilistic population codes (Zemel et al., 1998; Pouget et al., 2000, 2003) treat the
population activity as representing uncertainty about stimuli in the form of probability
distributions. These probability distributions can then be used to perform various computations
such as cue combination (Ma et al., 2006). Neural sampling conceptualizes of neural activity in
sensory cortex as samples from a posterior distribution over external variables (Fiser et al.,
2010; Berkes et al., 2011; Haefner et al., 2016; Orban et al., 2016). The posterior distribution is

then used directly to make perceptual decisions.
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However, an alternative possibility is that only a summary of the population code in sensory
cortex is available for deliberate decision making. According to this view, the whole population
code may be used in certain circumstances such as mandatory cue combination (Hillis et al.,
2002) but not be available for novel, deliberate decisions. Such views are implicitly endorsed by
traditional theories such as signal detection theory (Green and Swets, 1966) and the drift
diffusion model (Ratcliff, 1978), which assume that, in 2-alternative tasks, the population code

is summarized down to a single number that is subsequently used for decision making.

These two views — decision making being based on the whole population code in sensory cortex
vs. only on a summary of this population code — are difficult to disentangle experimentally. The
challenge comes both because it is unclear what using the “whole” population code means in
practice and because there are many ways to extract a “summary” of the population code. An
even bigger challenge is that most research to date has focused on judging features
represented on a continuous scale such as orientation or motion direction (Ma et al., 2006;
Haefner et al., 2016), which are typically assumed to give rise to a Gaussian distribution of
neural activity. Such Gaussian distribution can be represented with no loss of information with
just two numbers — its mean and variability — thus blurring the distinction between making

decisions based on the whole population code or a summary of it (Figure 1A).
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Figure 1. Decision making about continuous vs. discrete stimuli. (A) Decision making for
continuous-scale stimuli. Stimulus features represented on a continuous scale, such as
orientation, are typically assumed to give rise to a Gaussian distribution of neural activity in
sensory cortex. For such stimuli, the sensory population response (left) can be summarized
without any loss of information by only considering the distribution’s mean, u, and standard
deviation, o (right). These differing but equivalent in their informational content representations
make it difficult to determine whether decision-making circuits have access to the full sensory
population code vs. a summary of it. (B) Decision making for discrete alternatives. In cases
where a stimulus can come from several discrete alternatives (e.g., options A, B, and C), a
stimulus can be assumed to give rise to a different amount of sensory cortex activity associated

with each alternative (left panel). A summary of this distribution will likely involve information
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loss. One possible summary representation consists of passing only the highest activity onto
decision-making circuits (right panel). This information loss will become apparent if subjects
have to choose between the other alternatives (e.g., alternatives A and C). Therefore, it is

possible to adjudicate between decision-making circuits having access to the whole sensory

population code vs. a summary of that code.

However, determining whether decisions are based on the whole sensory distribution or a
summary of it becomes tractable in cases where subjects decide between discrete stimulus
categories. In such cases, the underlying sensory response can be simplified to a distribution of
the evidence available for each discrete stimulus category. At the same time, any summary of
this distribution will involve significant information loss, thus making it possible in principle to

adjudicate between the two possibilities (Figure 1B).

Here we used such discrete stimulus categories in three different experiments. All experiments
featured a condition where subjects picked the most frequently presented stimulus among all
of the possible stimulus categories (four different colors in Experiment 1 and six different
symbols in Experiments 2 and 3). Based on these responses, we estimated the parameters of a
model describing subjects’ internal distribution of sensory responses. We then included
conditions where subjects were told to pick between only two alternatives after the offset of
the stimulus (Experiments 1 and 2) or to make a second choice if the first one was incorrect

(Experiment 3). These conditions allowed us to compare different models of how the sensory
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population code was actually used for decision making. To anticipate, we found robust
evidence that decisions in our experiments were based on a summary of the population code
rather than the whole distribution of activity for each stimulus category. These results indicate
that perceptual decision-making circuits may not have access to the full population code and
that significant amount of simplification is likely to occur before information is used for

deliberate decisions.
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Results
In order to determine whether perceptual decision making uses the whole sensory population
code or only a summary of it, we performed three experiments in which subjects made choices

about discrete stimulus categories.

Experiment 1 required subjects to pick which of four possible colors — blue, red, green, and
white — was most frequently presented (Figure 2). The stimulus consisted of 49 colored circles
arranged in a 7x7 square presented for 500 ms. On each trial, one color was randomly chosen
to be “dominant” and 16 circles were painted in that color, whereas the remaining three colors
were “non-dominant” and 11 circles were painted in each of those colors. The experiment
featured two different condition. In the 4-alternative condition, subjects picked the dominant
color among the four possible colors. In the 2-alternative condition, after the stimulus
presentation, subjects were asked to choose between the dominant and one randomly-chosen
non-dominant color. Note that in both conditions, the subjects’ task was always to correctly

identify the dominant color.
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Figure 2. Task for Experiment 1. Each trial consisted of a fixation period (500 ms), stimulus
presentation (500 ms), and untimed response period. The stimulus comprised of four different
colored circles (red, green, blue, and white). One of the colors (white in this example) was
presented more frequently (16 circles; dominant color) than the other colors (11 circles each;
non-dominant colors). Subjects’ task was to indicate the dominant color. Two conditions were
presented in different blocks. In the 4-alternative condition, subjects chose between all four
colors. In a separate 2-alternative condition, on each trial subjects were given a choice between

the dominant and one randomly chosen non-dominant color.

Using subjects’ responses in the 4-alternative condition, we estimated the parameters of the
sensory distribution representing the activity level for each color. For these computations, we

made only basic assumptions regarding the between-trial variability of the activity level, which
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was drawn from a Gaussian distribution with a standard deviation of 1. The estimated

parameters could then be used to simulate the single-trial activation levels for each color.

Using the parameters estimated from the 4-alternative condition, we considered the
predictions for the 2-alternative condition for two different models: (1) a “population model,”
according to which perceptual decisions are based on the whole distribution of activities over
the four colors, and (2) a “summary model,” according to which perceptual decisions are based
on a summary of the whole distribution. There are a number of ways to create a summary of
the distribution. However, in the context of this task, the only relevant information is the order
of activation levels from highest to lowest (this order determines how a subject would pick
different colors as the dominant color in the 2-alternative condition). Other information, such
as average activity level, is irrelevant to the task here. We first considered an extreme summary
model that consists of the activity level for the one color with highest level of activity. Other
summary models in which decision-making circuits have access to the activity levels of the first

n>1 largest activations are examined later.

The population and summary models could be easily compared because they make different
predictions about a subject’s performance in the 2-alternative task. To explain the reason
behind the differing model predictions, it is helpful to first consider when the two models make
the same predictions. First, the models make the same prediction when the dominant color
gives rise to the highest activity level. In such cases, that color would be selected according to

both the population and summary models resulting in a correct choice (Figure 3A). Second, the

11
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models also make the same prediction when the alternative option given to the subject
happens to have the highest activity. In such cases, the alternative option would be selected

according to both the population and summary models resulting in an incorrect choice (Figure

3B).

A Highest activity in the dominant color

Population model Summary model
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Figure 3. Predictions of the population and summary models for subjects’ choices in the 2-

alternative condition. The population model (left panels) assumes that decision-making circuits

12
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have access to the activity levels associated with each of the four colors (four gray bars),
whereas the summary model (right panels) assumes that decision-making circuits only have
access to the highest activity level (single gray bar). In all examples, the dominant circle is white
and subjects are given a choice between white and green. (A) When the highest activity happens
to be at the dominant color, both models predict that the subject would correctly choose the
dominant color. (B) When the highest activity happens to be for the alternative color, both
models predict that the subject would incorrectly choose the alternative color. (C) The two
models’ prediction diverge when the highest activity is associated with a color other than the
two presented alternatives. In such cases, the activation for the dominant color is likely to be
higher than for the alternative color, so according to the population model, subjects would
ignore the color with the highest activity (red color in the example here) and correctly pick the
dominant color in the majority of the trials. However, according to the summary model, subjects
have no information about the activation levels for the dominant and alternative colors and

would thus correctly pick the dominant color on only 50% of such trials.

The population and summary models diverge in their behavior when the highest activity is
associated with a color that is not among the two options (Figure 3C). In such cases, the
summary model postulates that subject have no activity-related information on which to base
their decision and thus must randomly select between the two colors options. It is clear that
such cases would result in the summary model having 50% accuracy rate (chance level). At the

same time, the population model postulates that subjects would select the color with higher

13
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activity between the two options. The accuracy rate of the population model would thus
depend on the probability of having higher activity in the dominant color than in the alternative
color. Given that the dominant color typically produces higher activity level than the alternative
option, the accuracy rate in such trials would be significantly higher than 50%. Therefore, for
these types of trials, the population and summary models make different predictions with the

population model predicting a higher performance level.

The intuition above was borne out in the actual model predictions produced by the population
and summary models. Indeed, based on the performance in the 4-alternative condition
(average accuracy = 69.2%), the population and summary models predicted an average
accuracy of 84.2% and 79.7% in the 2-alternative condition, respectively. Compared to the
actual subject performance (average accuracy = 78%), the population model overestimated the
accuracy in the 2-alternative conditions for 29 of the 32 subjects (average difference = 6.21%,
t(31) = 8.19, p = 3.02 x 10°). Surprisingly, the summary model also overestimated the accuracy
in the 2-alternative condition but the misprediction was much smaller (average difference =
1.72%, t(31) = 2.35, p = .025) (Figure 4A). Indeed, the absolute error of the predictions of the
population model (average = 6.24%) was significantly larger than for the summary model
(average = 3.61%; t(31) = 5.65, p = 3.36x 10°®). Overall, the summary model predicted the
accuracy in the 2-alternative condition better than the population model for 26 of the 32

subjects (Figure 4B).

14
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Figure 4. Comparisons between the population and summary models in Experiment 1. (A) Task
accuracy in the 2-alternative condition observed in the actual data (white bar), and predicted by
the population (light gray bar) and summary (dark gray bar) models. The predictions for both
models were derived based on the data in the 4-alternative condition. (B) Individual subjects’
differences in the accuracy in the 2-alternative condition between the two models and the
observed data. (C) Difference in Akaike Information Criterion (AIC) between the population and
the summary models. Positive AIC values indicate that the summary model provides a better fit
to the data. Each dot represents one subject. The gray horizontal lines at £3 and +10 indicate
common thresholds for suggestive and strong evidence for one model over another. The red
triangle indicates the average AlIC difference. The summary model provided a better fit than the

population model for 30 of the 32 subjects.
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Beyond simply checking accuracy levels, we further compared the model fits to the whole
distribution of responses. We found that the Akaike Information Criterion (AIC) favored the
summary model by on average 24.30 points (Figure 4C), which corresponds to the summary
model being 1.86 x 10° times more likely than the population model for the average subject.
Across the whole group of 32 subjects, the total AIC difference was thus 777.63 points,
corresponding to the summary model being 7.26 x 10 times more likely in the group. Note
that since the population and summary models had the same number of parameters, the same
results would be obtained regardless of the exact metric employed (e.g., the BIC differences

would be exactly the same).

Finally, we constructed another summary model, according to which deliberate decisions had
access to highest two activations of the sensory distribution (the 2-Highest model). We found
that the 2-Highest model (average predicted accuracy = 83.5%) significantly overestimated the
observed accuracy level for the 2-alternative condition (average difference = 5.46%, t(31) =
7.49, p = 1.94 x 10®) (Supplementary Figure 1A). Correspondingly, the absolute errors in the
prediction of the 2-Highest model for the 2-alternative condition (average = 5.86%) is larger
compared to the summary model (t(31) = 2.24, p = 4.07 x 10°). Model comparison favored the
summary model over the 2-Highest by an average 11.86 AIC points (corresponding to the
summary model being 357.41 times more likely for the average subject) and by 379.39 AIC
points in the group as a whole (corresponding to the summary model being 2.42 x 108 times
more likely in the group) (Supplementary Figure 1B and C). Note that within the context of this

experiment, a model assuming that decision-making circuits have access to the three highest
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sensory activation levels (3-Highest model) is functionally equivalent to the population model.
Indeed, for such 3-Highest model, the activity level which is not represented is always the
lowest; therefore, the 3-Highest model allows one to still order all four activity levels in

descending order making it equivalent to the population model.

These results strongly suggest that within the context of our experiment, decision-making
circuits do not have access to the whole sensory population distribution. We sought to confirm
and generalize these findings in two additional, pre-registered experiments. For Experiment 2,
we made several modifications: (1) we changed the stimulus from color to symbols, (2) we
raised the number of stimulus categories from four to six, and (3) we significantly increased the
number of trials per subject in order to obtain stronger results on the individual subject level.
Specifically, we presented the six symbols ‘?’, ‘#, ‘S, ‘%’, ‘+’, and >" such that the dominant
symbol was presented 14 times and each non-dominant symbol was presented 7 times (Figure
5A). The 49 total symbols were again arranged in a 7x7 grid. Each subject completed a total of

3,000 trials that included equal number of trials in 6-alternative and 2-alternative conditions.
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Figure 5. Task and results for Experiment 2. (A) The task in Experiment 2 was similar to
Experiment 1 with the exception of using six different symbols (‘?’, ‘#, ’S’, ‘%’, ‘+’, and >’)
instead of four different colors. One of the symbols was presented more frequently (14 times,
dominant symbol) than the others (7 times each, non-dominant symbols) and subjects’ task was
to indicate the dominant symbol. Two conditions were presented in different blocks: a 6-
alternative condition where subject chose between all six symbols and a 2-alternative condition
where subjects were given a choice between the dominant and one randomly chosen non-
dominant symbol. (B) Task accuracy in the 2-alternative condition observed in the actual data
(white bar), and predicted by the population (light gray bar) and summary (dark gray bar)
models. The predictions for both models were derived based on the data in the 6-alternative

condition. (C) Individual subjects’ differences in the accuracy of the 2-alternative condition
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between the two models and the observed data. (D) Difference in Akaike Information Criterion
(AIC) between the population and the summary models. Positive AIC values indicate that the
summary model provides a better fit to the data. Each dot represents one subject. The red
triangle indicated the average AIC difference. The summary model provided a better fit than the

population model for nine out of 10 subjects.

Just as in Experiment 1, we computed the parameters of the sensory population code using the
trials from the 6-alternative condition (average accuracy = 50.5%, chance level = 16.7%) and
used these parameters to compare the population and summary models’ predictions for the 2-
alternative condition. We found that the average accuracy in the 2-alternative condition
(71.6%) was slightly underestimated by the summary model (predicted accuracy = 70.1%, t(9) =
2.76, p = .022) but was again significantly overestimated by the population model (predicted
accuracy = 77.5%, t(9) = 9.41, p = 5.92 x 10°®) (Figure 5B). Individually, the summary model
provided better prediction of the accuracy in the 2-alternative condition for nine out of the 10

subjects (Figure 5C).

Further, we compared the population and summary models’ fits to the whole distribution of
responses. We found that the summary model was preferred nine of our 10 subjects and the
difference in AIC values in all these nine subjects were larger than 25 points. The AIC values of
the one subject for whom the population model was favored over the summary model differed

only by 7.8 points. On average, the summary model had an AIC value that was 57.79 points
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lower than the population model corresponding to the summary model being 3.55 x 102 times
more likely for the average subject (Figure 5D). Across the whole group of 10 subjects, the total
AIC difference was thus 577.94 points, corresponding to the summary model being 3.14 x 10?°

times more likely in the group.

Finally, we again investigated the predictions of the additional 2-Highest and 3-Highest models,
according to which the highest two or three (respectively) activations were available for
deliberate decisions. We found that the 2-Highest model overestimated the observed accuracy
in the 2-alternative condition (74.9%; t(9) = 5.65, p = 3.13 x 10*) and provided worse fit to the
data compared to the summary model (average AIC difference = 18.81 points, total AIC
difference = 188.07 points) (Supplementary Figure 2). The 3-Highest model fared even worse. It
overestimated the accuracy in the 2-alternative condition even more severely (76.6%; t(9) =
8.27, p = 1.69 x 107°) and provided much worse fit to the data compared to the summary model
(average AIC difference = 39.87 points, total AIC difference = 398.65 points) (Supplementary

Figure 2).

Taken together, Experiments 1 and 2 suggest that the system for deliberate decision making

may not have access to the whole population of sensory activations. This conclusion is based on
experiments that differed in the nature of the stimulus, the number of stimulus categories, and
the amount of trials that subjects performed. Nevertheless, both Experiments 1 and 2 relied on

the same design of comparing 4- (or 6-) and 2-alternative conditions.
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Therefore, in order to further establish the generality of our results, in Experiment 3 we
employed a different experimental design. We used the same stimulus as in Experiment 2,
presented all 6 alternatives on every trial, but additionally gave subjects the opportunity to
provide a second answer on about 40% of error trials (Figure 6A). We only allowed a second
answer on a fraction of the trials in order to discourage subjects from preparing two responses
while still viewing the stimuli. Using the performance on the first answer, we could then

compare the predictions of the population and summary models for the second answers.
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Figure 6. Task and results for Experiment 3. (A) The same stimuli as in Experiment 2 were used in
Experiment 3 but the task was slightly different. Subjects always reported the dominant symbol

among all six alternatives. However, on 40% of the trials in which they gave a wrong answer,
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subjects were given the opportunity to make a second guess. (B) Task accuracy for the second
answer observed in the actual data (white bar), predicted by the population model (light gray
bar), predicted by the Summary & Random Choice model (dark gray bar), and predicted by the
Summary & Strategic Choice model (black bar). The predictions of the three models were
derived based on subjects’ first answers. (C) Individual subjects’ differences in the accuracy of
the second answer between each model’s prediction and the observed data. (D) Difference in
Akaike Information Criterion (AIC) between the population and the two summary models.
Positive AIC values indicate that the summary model provides a better fit to the data. Each dot

represents one subject. The red triangle indicates the average AIC difference.

The population model makes a clear prediction about the second answer — subjects should
choose the stimulus category with the highest activation from among the remaining five
options. The second answer will thus have relatively high accuracy because the presented
stimulus category is likely to produce one of the highest activity levels (Supplementary Figure
3A). Note that in the context of this experiment, the 2-Highest and 3-Highest models are
functionally equivalent to the population model since they both represent the category with
the second highest activity and both allow that this stimulus category be chosen with the

second answer.

On the other hand, the summary model is consistent with at least two response strategies for

the second answer. The summary model only features information about the stimulus category
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with highest activity, and thus once that stimulus category is chosen as the first answer, the
model postulates that the subject does not have access to the activations associated with the
other stimulus categories. One possible scenario, therefore, is for the subject to make their
second answer at random. This model would result in chance level (20%) performance. We call
this the “Summary & Random Choice” model (Supplementary Figure 3B). However, another
possibility is for the subject to make the second answer strategically. One available strategy is
for subjects to pick the stimulus category of a randomly recalled symbol from the 7x7 grid.
Given that subjects inspected the stimuli for 500 ms, they could easily remember one location
with a symbol other than the one they picked for their first answer. We call this the “Summary

& Strategic Choice” model (Supplementary Figure 3C). According to this model, the second

14 (# locations of the dominant symbol) 1

answer will be correct on or 33.3% of the time.

42 (total # of remaining locations) T3

Conversely, each of the four remaining incorrect categories will be chosen on

#locati f each non-domi bol . .
7 (# locations of each non-dominant symbol) _ 1, 16 704 of the time (Supplementary Figure 4).

42 (total # of remaining locations) 6

To adjudicate between these three models, we first examined subjects’” accuracy on the first
answer. Subjects responded correctly in their first answer on 50.7% of the trials (chance level =
16.7%). Using this performance, we computed the parameters of the population code as in
Experiments 1 and 2 in order to generate the models’ predictions for the second answer. We
found that subjects’ accuracy for the second answers was 29.6%. This value was greatly
overestimated by the population model, which predicted accuracy of 40.89% (t(9) = 7.04, p =
6.09 x 10°; Figure 6B). On the other hand, the Summary & Random Choice model greatly

underestimated the observed accuracy (predicted accuracy = 20%, t(9) = 5.55, p = 3.55 x 10%).
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Finally, the Summary & Strategic Choice model produced the most accurate prediction
(predicted accuracy = 33.3%, t(9) = 2.18, p = .057). On an individual subject level, the population
model overestimated the accuracy of the second answer for all 10 subjects, the Summary &
Random Choice model underestimated the accuracy of the second answer for all of the 10
subjects, whereas the Summary & Strategic Choice model was best calibrated overestimating
the accuracy of the second answer for 7 subjects and underestimating it for the remaining 3

subjects (Figure 6C).

Formal comparisons of the models’ ability to fit the full distribution of responses for the second
answers demonstrated that the population model provided the worst overall fits (Figure 6D).
Indeed, the population model resulted in AIC values that were higher than the Summary &
Random Choice model by an average of 18.05 points (corresponding to 8.29 x 103-fold
difference in likelihood in the average subject) and a total of 180.46 points (corresponding to
1.53 x 103°-fold difference in likelihood in the group). The population model underperformed
the Summary & Strategic Choice model even more severely (average AIC difference = 37.29
points, corresponding to 1.25 x 10%-fold difference in likelihood in the average subject; total AIC
difference = 372.93 points, corresponding to 9.57 x 108-fold difference in likelihood in the
group). Thus, just as Experiments 1 and 2, Experiment 3 provided strong evidence that decision-

making circuits do not have access to the whole distribution of sensory responses.
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Discussion

We investigated whether decision-making brain circuits have access to the complete population
codes in sensory cortex or only to a summary form of these codes. We designed three
experiments with multiple (either four or six) discrete stimulus categories where the population
and summary models made clearly different predictions. The results across all experiments
showed that the population model did not provide a good fit to the data. Instead, the summary
model, which assumes that decision-making circuits only have access to information about the
highest-activity stimulus category, consistently provided better fit. These results strongly
suggest that deliberate decision making, at least when performed on discrete stimulus

categories, only has access to a summary form of the sensory population code.

What do the current results imply for decision-making circuits’ access to the population codes
produced by features represented on a continuous dimension such as stimulus orientation or
motion direction? Theories like probabilistic population codes (Zemel et al., 1998; Pouget et al.,
2000, 2003; Ma et al., 2006) and neural sampling (Fiser et al., 2010; Berkes et al., 2011; Haefner
et al., 2016; Orban et al., 2016) have typically been applied to such continuous situations.
Importantly, in many cases the population and summary models may actually be functionally
equivalent for stimuli represented on a continuous dimension. Indeed, electrophysiological
recordings suggest that the population code produced by a particular stimulus orientation or
motion direction follows a roughly Gaussian distribution. If the population code is Gaussian, it
can be summarized without loss of information with only its mean and variance. If

normalization (Reynolds and Heeger, 2009; Carandini and Heeger, 2012) had been applied so
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that the total firing can be expected to sum to a constant, then the population code can be
summarized by the level of activity of the most active neuron. This is possible because the
identity of this neuron signals the mean of the distribution, and the level of its activity is
proportionate to the standard deviation of the distribution. This last representation is
equivalent to the summary model used here. These considerations demonstrate that the
population and summary models are functionally equivalent in the context of most existing
experiments where Gaussian sensory distributions can be assumed. Nevertheless, the
population and summary models may be distinguishable for non-Gaussian (e.g., multimodal)

distributions even for stimuli represented on a continuous scale.

If decision-making circuits indeed only have access to a summary form of the sensory
population, does that mean that absolutely no computations can be based on the complete
population codes? At present, we are agnostic about this issue. It is possible that some forms of
automatic multisensory integration are accomplished by computing with the whole population
codes in two different parts of sensory cortex (Hillis et al., 2002; Prsa et al., 2012; Saarela and
Landy, 2015). Other automated computations may also use the whole sensory population
codes. Nevertheless, it appears that non-automatic, flexible, and deliberate decision making

only has access to a summary of the sensory population code.

Our findings can be interpreted as suggesting that complex visual displays are represented as a
point estimate: that is, the decision-level representation features only the best guess of the

system (e.g., “60°” orientation, “red” color, or “+” symbol). The possibility of a decision-level
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representation consisting of a single point estimate has been thoroughly debunked (Pouget et
al., 2003; Knill and Pouget, 2004; Fiser et al., 2010; Ma, 2010; Ma and Jazayeri, 2014). For
example, a point estimate does not allow us to rate how confident we are in our decision
because we lack a sense of how uncertain our point estimate is. Given that humans and animals
can use confidence ratings to judge the likely accuracy of their decisions (Metcalfe and
Shimamura, 1994; Kiani and Shadlen, 2009; Mamassian, 2016), decision-making circuits must

have access to more than a point estimate of the stimulus.

It should therefore be clarified that our summary model does not imply that decision making
operates on point estimates. Indeed, as conceptualized in Figure 1, the summary model
assumes that subjects have access to both the identity of the most likely stimulus category
(e.g., the color “white”) and the level of activity associated with that stimulus category. The
level of activity can then be used as a measure of uncertainty, and confidence levels can be
based on this level. Such confidence ratings will be less informative than the perceptual
decision, which is exactly what has been observed in a number of studies (Maniscalco and Lau,
2012; Rahnev et al., 2015; Rahnev and Denison, 2018). In addition, this type of confidence
generation may explain findings that confidence tends to be biased towards the level of the
evidence for the chosen stimulus category and tends to ignore the level of evidence against
that stimulus category (Zylberberg et al., 2012; Koizumi et al., 2015; Maniscalco et al., 2016;
Samaha et al., 2016; Peters et al., 2017; Talluri et al., 2018). Thus, a summary model, consisting

of the identity of the most likely stimulus and the level of activity associated with this stimulus,
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appears to be broadly consistent with findings related to how people compute uncertainty and

is qualitatively different than a decision-level representation consisting of a point estimate.

Another important question concerns whether any additional information is extracted from the
sensory population code beyond what is assumed by the summary model. It is well known that
humans can quickly and accurately extract a high-order “gist” of a scene (Potter, 1975, 1976;
Greene and Oliva, 2009), as well as the statistical structure of an image (Fiser and Aslin, 2001).
Therefore, it appears that rich information is extracted during the time when the stimulus is
being viewed. For example, the subjects in our Experiment 1 were certainly aware that four
different colors were presented in each display and would had noticed if we ever have
presented additional colors. Nevertheless, within the context of our experiments, both the gist
and the statistics of the scene remained unchanged between displays and therefore could not
be used to improve performance on the task. In any case, we do not claim that rich information
about the visual scene cannot be quickly and efficiently extracted (it can). What our results do
suggest, however, is that decision-making circuits do not create a copy of the detailed sensory

population code that can be used after the disappearance of the stimulus.

A related question concerns whether the decision-making circuits could ever access the whole
population code. We believe that they can as long as the stimulus remains on the screen.
However, the representation within the decision-making circuit itself may be of severely limited

bandwidth. This is why, once the stimulus disappears, the richness of the sensory population
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code may be gone and only a limited-bandwidth summary representation within decision-

making circuits may remain.

In conclusion, we found evidence from one exploratory (Experiment 1) and two preregistered
(Experiments 2 and 3) studies that deliberate decision making for discrete stimulus categories is
performed based on a summary of, rather than the whole, sensory population code. These
results demonstrate that, at least within the context of discrete stimulus categories, flexible
computations may not be performed using the sensory activity itself but only a summary form

of that activity.
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Methods

Subjects

A total of 52 subjects participated in the three experiments (32 in Experiment 1, 10 in
Experiment 2, and 10 in Experiment 3). Each subject participated in only one experiment. All
subjects provided informed consent and had normal or corrected-to-normal vision. The study

was approved by the Georgia Tech Institutional Review Board.

Apparatus and experiment environment

The experiments stimuli were presented on a 21.5-inch iMac monitor in a dark room. The
distance between the monitor and the subjects was 60 cm. The stimuli were created in

MATLAB, using Psychtoolbox 3 (Pelli, 1997).

Experiment 1

The stimulus consisted of 49 circles colored in four different colors — red, blue, green, and white
— presented in a 7x7 grid on black background. The diameter of each colored circle was .24
degrees and the distance between the centers of two adjacent circles was .6 degrees. The grid
was located at the center of the screen. On each trial, one of the four colors was “dominant” —
it was featured in 16 different locations — whereas the other three colors were non-dominant
and were featured in 11 locations each. The exact locations of each color were pseudo-

randomly chosen so that each color was presented the desired number of times.
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A trial began with a 500-ms fixation followed by 500-ms stimulus presentation. Subjects then
indicated the dominant color in the display and provided a confidence rating without time
pressure. There were three different conditions in the experiment. In the first condition,
subjects could choose any of the four colors (4-alternative condition). In the second condition,
after the stimulus offset subjects were asked to choose between only two options that were
not announced in advance — one was always the correct dominant color and the other was a
randomly selected non-dominant color (2-alternative condition). Finally, in the third condition,
subjects were told in advance which two colors will be queried at the end of the trial (advance

warning condition).

Subjects completed six runs, each consisting of three 35-trial blocks (for a total of 630 trials).
The three conditions used in the experiment were blocked such that one block in each run
consisted entirely of trials from one condition and each run included one block from each
condition. Subjects were given 15-second breaks between blocks and untimed breaks between
runs. Before the start of the main experiment, subjects completed a training session where they
completed 15 trials per condition with trial-to-trial feedback, and another 15 trials per
condition without trial-to-trial feedback. No feedback was provided during the main

experiment.

For the purposes of the current analyses, we focused on subjects’ choices in the 4-alternative
and 2-alternative conditions. The advanced warning condition and the confidence ratings were

not analyzed.
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Experiment 2

Following our exploratory analyses on the data from Experiment 1, we preregistered two
additional experiments (Experiment 2 and 3) (https://osf.io/dr89k/). These experiments were
designed to generalize the results from Experiment 1 and to obtain stronger evidence for our
model comparison results on the individual subject level. Consequently, we had fewer number

of subjects in Experiments 2 and 3 but each subject completed many more trials.

The stimulus in Experiments 2 and 3 consisted of 49 characters from among 6 possible symbols
=, W,'S, ‘%, '+, and ‘>’ — presented in a 7x7 grid. The symbols were chosen to be maximally
different from each other. The symbols” width was .382 degrees on average and height was .66
degrees on average. The distance between two centers of adjacent symbols was 1.1 degrees.
The symbols were presented in white on black background. On each trial, one of the six
symbols was “dominant” — it was featured in 14 different locations — whereas the other five
were non-dominant and were featured in 7 locations each. The exact locations in the 7x7 grid
where each symbol was displayed were pseudo-randomly chosen so that each symbol was

presented the desired number of times.

Each trial began with a 500-ms fixation, followed by a 500-ms stimulus presentation. The stimuli
were then masked for 100 ms with a 7x7 grid of ellipsoid-shaped images consisting of uniformly
distributed noise pixels. Each ellipsoid had width of .54 degrees and height of .95 degrees,

ensuring that it entirely covered each symbol. After the offset of the mask, subjects indicated
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the dominant symbol in the display without time pressure. No confidence ratings were
obtained. The experiment had two conditions equivalent to the first two conditions in
Experiment 1. In the first condition, subjects had to choose the dominant symbol among all six
alternatives (6-alternative condition). In the second condition, subjects had to choose between
two alternatives that were not announced in advance: the correct dominant symbol and a

randomly selected non-dominant symbol (2-alternative condition). No feedback was provided.

To obtain clear individual-level results, we collected data from each subject over the course of
three different days. On each day, subjects completed 5 runs, each consisting of 4 blocks of 50
trials (for a total of 3,000 trials per subject). The 6- and 2-alternative condition blocks were

presented alternately, so that there were two blocks of each condition in a run. Subjects were
given 15-second breaks between blocks and untimed breaks between runs. Before the start of

the main experiment, subjects were given a short training on each day of the experiment.

Experiment 3

Experiment 3 used the same stimuli as in Experiment 2. Similar to Experiment 2, we presented a
500-ms fixation, a 500-ms stimulus, a 100-ms mask, and finally a response screen. Experiment 3
consisted of a single condition — subjects always chose the dominant symbol among all six
alternatives. However, on 40% of trials in which subjects gave a wrong answer, they were asked
to provide a second answer by choosing among the remaining five symbols. The second
response prompt was presented infrequently in order to discourage subjects from preparing

two responses from the very beginning. Subjects could take as much time as they wanted for
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both responses. Subjects again completed 3,000 trials over the course of three different days in

a manner equivalent to Experiment 2.

Model development

To investigate how the sensory population code is represented and used for decision making,
we developed and compared two main models. According to the “population” model, decision-
making circuits have access to the whole sensory population code. On the other hand,
according to the “summary” model, decision-making circuits only have the access to a summary

of the sensory population code but not to the whole sensory distribution.

Although there are many ways to summarize a distribution, we considered an extreme case
where the summary only contains the activity level of the stimulus category with the highest
activity. In the case of making judgments on a continuous quantity (e.g., motion direction or
Gabor orientation), the sensory population code can be assumed to follow a continuous
distribution. Such distributions (e.g., a Gaussian) can often be represented without loss of
information with just a few parameters (e.g., mean and variance for a Gaussian). However, in
the context of deciding between discrete options, the activity levels in the sensory cortex
corresponding to each stimulus category does not follow a distribution that can be easily
summarized. In particular, our summary model, which only contains information about the
highest activity level, loses significant amount of information compared to the population
model. This feature of decisions about discrete stimuli enables us to distinguish the two models

(Figure 3).
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In order to compare the population and summary models, we first had to develop a model of
the sensory population responses. We created this model using the 4- and 6-alternative
conditions in Experiments 1 and 2, and the first answer in Experiment 3. The population and
summary models were then used to make predictions about the 2-alternative condition in
Experiments 1 and 2, and the second answer in Experiment 3. These predictions were made

without the use of any extra parameters.

We created a model of the sensory population response for Experiment 1 as follows. We
assumed that each of the four types of stimuli (red, blue, green, or white being the dominant
color) produced variable across-trial activity corresponding to each of the four colors. We
modeled this activities as Gaussian distributions whose mean (u) is a free parameter and
variance is set to one. However, perceptual decisions about the presented color only depend on
the relative values of the activity levels, and therefore adding a constant to all u’s for a given
stimulus results in equivalent decisions. Therefore, without loss of generality, we set the mean
for the activity corresponding to each dominant color as 0. This procedure resulted in 12
different free parameters (4 types of stimuli X 3 u’s modeled for each stimulus type). Finally,
we included an additional parameter modeling subjects’ lapse rate. Note that the inclusion of
lapse rate decreases performance more in the 2-alternative compared to the 4-alternative
condition (because the overall performance is higher in the 2-alternative condition), and
therefore favors the population model, which tends to overestimate the performance in the 2-

alternative condition.
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The sensory population response was modeled in a similar fashion in Experiments 2 and 3. In
both cases, the model was created based on subjects choosing between all available options
(i.e., the 6-alternative condition in Experiment 2 and the first answer in Experiment 3). The
model of the sensory population response in Experiments 2 and 3 thus had 30 free parameters
related to the sensory activations (6 types of stimuli X 5 u’s modeled for each stimulus type)

and an additional free parameter for the lapse rate.

We modeled the activations produced by each stimulus type separately to capture potential
relationships between different colors or symbols (e.g., some color pairs may be perceptually
more similar than others). However, we re-did all analyses using the simplifying assumption of
independence, which allowed us to significantly reduce the number of parameters in our model
of the sensory population response. In this alternative version of the sensory population
response model, the mean activity for each color/symbol was determined only based on
whether that color/symbol was dominant or not. This modeling approach reduced the total
number of free parameters to eight in Experiment 1 and 12 in Experiments 2 and 3. This

modeling approach produced virtually the same results (Supplementary Figure 5).

We fit the models to the data as previously (Bang et al., (in press).; Rahnev et al., 2011, 2012,
2013) using a maximum likelihood estimation approach. The models were fit to the full
distribution of probabilities of each response type contingent on each stimulus type. Model

fitting was done by finding the maximume-likelihood parameter values using a simulated
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annealing (Kirkpatrick et al., 1983) by simulating the results of each parameter set 100,000

times. Fitting was conducted separately for each subject’s data.

Based on the parameters of the sensory population response model, we generated predictions
for the population and summary models for the 2-alternative condition in Experiments 1 and 2
and the second answer in Experiment 3. These predictions contained no free parameters. To
compare the models, we calculated the log-likelihood ratio (log (£)) of each model. However,
for ease of comparison, we additionally computed Akaike Information Criterion (AIC). The value
is computed by —2 X log (£) + 2 X k, where k is the number of parameters of a model.
Because of the lack of free parameters, other measures, such as the AIC corrected for small
sample sizes (AlCc) or the Bayesian Information Criterion (BIC), would result in the exact same

pattern of results. Note that lower AIC values correspond to better model fits.

In addition to the population and summary models, we considered two additional models that
contained information about the sensory population that was more detailed than the summary
model but less detailed than the population model. Specifically, we created models according
to which decision-making circuits have access to the highest two or three levels of activation (2-
Highest and 3-Highest models, respectively). Note that the 3-Highest model is functionally
equivalent to the population model in the context of Experiment 1 and both the 2- and 3-
Highest models are functionally equivalent to the population model in the context of

Experiment 3.
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Data and code
The data from the three experiments, together with all of the analysis codes are freely available

online at https://github.com/wiseriver531/Discrete-representation.
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