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Abstract 

Electrophysiological recordings show that any visual stimulus produces a response in a large 

population of differently tuned sensory neurons. However, it remains unclear how this 

population response is used to make perceptual decisions. Major theories, such as probabilistic 

population codes and neural sampling, assume that the population response can be flexibly 

used for decision making. However, another possibility is that decision-making circuits do not 

have access to the sensory population code but only to a summary of this code. These 

possibilities can be disentangled for choices among n>2 discrete stimulus categories. In two 

experiments, we asked subjects to choose between n=4 colors or n=6 symbols. We then used 

the n-alternative condition to predict the performance on a different, 2-alternative condition 

where only two colors or symbols were given as available alternatives on each trial. A 

population model assuming that decision-making circuits have access to the whole distribution 

of the sensory activation levels across all colors or symbols significantly overestimated the 

performance in the 2-alternative condition. Instead, a summary model assuming that decision-

making circuits only have access to the sensory activity associated with the dominant color 

predicted the 2-alternative condition very well and was preferred in Bayesian model 

comparison. Finally, a third experiment asked subjects to make two decisions in a row and also 

found the summary model to provide a better description of the data. These results show that 

the full population code in sensory cortex may not be available for deliberate decision making, 

at least within the context of decisions between discrete alternatives.  
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Introduction 

Perception has been conceptualized as a decision process for over a century and a half 

(Helmholtz, 1856). According to this view, the outside world is encoded in a pattern of neural 

firing and the brain needs to decide what these patterns signify. Although this view is widely 

accepted, it remains unclear what type of information perceptual decisions are actually based 

on. 

 

Electrophysiological studies starting with Hubel and Wiesel (1970) have revealed how individual 

neurons in various sensory areas of cortex respond to different stimuli. Such studies have 

demonstrated that a single stimulus gives a rise to activity in a whole population of differently-

tuned neurons in sensory cortex. This population response must therefore form the foundation 

of the information representations on which the brain makes decisions. 

 

In fact, two prominent theories – probabilistic population codes and neural sampling – 

postulate that deliberate decision making is performed directly on these sensory distributions. 

Probabilistic population codes (Zemel et al., 1998; Pouget et al., 2000, 2003) treat the 

population activity as representing uncertainty about stimuli in the form of probability 

distributions. These probability distributions can then be used to perform various computations 

such as cue combination (Ma et al., 2006). Neural sampling conceptualizes of neural activity in 

sensory cortex as samples from a posterior distribution over external variables (Fiser et al., 

2010; Berkes et al., 2011; Haefner et al., 2016; Orbán et al., 2016). The posterior distribution is 

then used directly to make perceptual decisions. 
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However, an alternative possibility is that only a summary of the population code in sensory 

cortex is available for deliberate decision making. According to this view, the whole population 

code may be used in certain circumstances such as mandatory cue combination (Hillis et al., 

2002) but not be available for novel, deliberate decisions. Such views are implicitly endorsed by 

traditional theories such as signal detection theory (Green and Swets, 1966) and the drift 

diffusion model (Ratcliff, 1978), which assume that, in 2-alternative tasks, the population code 

is summarized down to a single number that is subsequently used for decision making. 

 

These two views – decision making being based on the whole population code in sensory cortex 

vs. only on a summary of this population code – are difficult to disentangle experimentally. The 

challenge comes both because it is unclear what using the “whole” population code means in 

practice and because there are many ways to extract a “summary” of the population code. An 

even bigger challenge is that most research to date has focused on judging features 

represented on a continuous scale such as orientation or motion direction (Ma et al., 2006; 

Haefner et al., 2016), which are typically assumed to give rise to a Gaussian distribution of 

neural activity. Such Gaussian distribution can be represented with no loss of information with 

just two numbers – its mean and variability – thus blurring the distinction between making 

decisions based on the whole population code or a summary of it (Figure 1A). 
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Figure 1. Decision making about continuous vs. discrete stimuli. (A) Decision making for 

continuous-scale stimuli. Stimulus features represented on a continuous scale, such as 

orientation, are typically assumed to give rise to a Gaussian distribution of neural activity in 

sensory cortex. For such stimuli, the sensory population response (left) can be summarized 

without any loss of information by only considering the distribution’s mean, µ, and standard 

deviation, σ (right). These differing but equivalent in their informational content representations 

make it difficult to determine whether decision-making circuits have access to the full sensory 

population code vs. a summary of it. (B) Decision making for discrete alternatives. In cases 

where a stimulus can come from several discrete alternatives (e.g., options A, B, and C), a 

stimulus can be assumed to give rise to a different amount of sensory cortex activity associated 

with each alternative (left panel). A summary of this distribution will likely involve information 
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loss. One possible summary representation consists of passing only the highest activity onto 

decision-making circuits (right panel). This information loss will become apparent if subjects 

have to choose between the other alternatives (e.g., alternatives A and C). Therefore, it is 

possible to adjudicate between decision-making circuits having access to the whole sensory 

population code vs. a summary of that code. 

 

 

However, determining whether decisions are based on the whole sensory distribution or a 

summary of it becomes tractable in cases where subjects decide between discrete stimulus 

categories. In such cases, the underlying sensory response can be simplified to a distribution of 

the evidence available for each discrete stimulus category. At the same time, any summary of 

this distribution will involve significant information loss, thus making it possible in principle to 

adjudicate between the two possibilities (Figure 1B).  

 

Here we used such discrete stimulus categories in three different experiments. All experiments 

featured a condition where subjects picked the most frequently presented stimulus among all 

of the possible stimulus categories (four different colors in Experiment 1 and six different 

symbols in Experiments 2 and 3). Based on these responses, we estimated the parameters of a 

model describing subjects’ internal distribution of sensory responses. We then included 

conditions where subjects were told to pick between only two alternatives after the offset of 

the stimulus (Experiments 1 and 2) or to make a second choice if the first one was incorrect 

(Experiment 3). These conditions allowed us to compare different models of how the sensory 
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population code was actually used for decision making. To anticipate, we found robust 

evidence that decisions in our experiments were based on a summary of the population code 

rather than the whole distribution of activity for each stimulus category. These results indicate 

that perceptual decision-making circuits may not have access to the full population code and 

that significant amount of simplification is likely to occur before information is used for 

deliberate decisions. 
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Results 

In order to determine whether perceptual decision making uses the whole sensory population 

code or only a summary of it, we performed three experiments in which subjects made choices 

about discrete stimulus categories.  

 

Experiment 1 required subjects to pick which of four possible colors – blue, red, green, and 

white – was most frequently presented (Figure 2). The stimulus consisted of 49 colored circles 

arranged in a 7x7 square presented for 500 ms. On each trial, one color was randomly chosen 

to be “dominant” and 16 circles were painted in that color, whereas the remaining three colors 

were “non-dominant” and 11 circles were painted in each of those colors. The experiment 

featured two different condition. In the 4-alternative condition, subjects picked the dominant 

color among the four possible colors. In the 2-alternative condition, after the stimulus 

presentation, subjects were asked to choose between the dominant and one randomly-chosen 

non-dominant color. Note that in both conditions, the subjects’ task was always to correctly 

identify the dominant color. 
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Figure 2. Task for Experiment 1. Each trial consisted of a fixation period (500 ms), stimulus 

presentation (500 ms), and untimed response period. The stimulus comprised of four different 

colored circles (red, green, blue, and white). One of the colors (white in this example) was 

presented more frequently (16 circles; dominant color) than the other colors (11 circles each; 

non-dominant colors). Subjects’ task was to indicate the dominant color. Two conditions were 

presented in different blocks. In the 4-alternative condition, subjects chose between all four 

colors. In a separate 2-alternative condition, on each trial subjects were given a choice between 

the dominant and one randomly chosen non-dominant color. 

 

 

Using subjects’ responses in the 4-alternative condition, we estimated the parameters of the 

sensory distribution representing the activity level for each color. For these computations, we 

made only basic assumptions regarding the between-trial variability of the activity level, which 
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was drawn from a Gaussian distribution with a standard deviation of 1. The estimated 

parameters could then be used to simulate the single-trial activation levels for each color. 

 

Using the parameters estimated from the 4-alternative condition, we considered the 

predictions for the 2-alternative condition for two different models: (1) a “population model,” 

according to which perceptual decisions are based on the whole distribution of activities over 

the four colors, and (2) a “summary model,” according to which perceptual decisions are based 

on a summary of the whole distribution. There are a number of ways to create a summary of 

the distribution. However, in the context of this task, the only relevant information is the order 

of activation levels from highest to lowest (this order determines how a subject would pick 

different colors as the dominant color in the 2-alternative condition). Other information, such 

as average activity level, is irrelevant to the task here. We first considered an extreme summary 

model that consists of the activity level for the one color with highest level of activity. Other 

summary models in which decision-making circuits have access to the activity levels of the first 

n>1 largest activations are examined later. 

 

The population and summary models could be easily compared because they make different 

predictions about a subject’s performance in the 2-alternative task. To explain the reason 

behind the differing model predictions, it is helpful to first consider when the two models make 

the same predictions. First, the models make the same prediction when the dominant color 

gives rise to the highest activity level. In such cases, that color would be selected according to 

both the population and summary models resulting in a correct choice (Figure 3A). Second, the 
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models also make the same prediction when the alternative option given to the subject 

happens to have the highest activity. In such cases, the alternative option would be selected 

according to both the population and summary models resulting in an incorrect choice (Figure 

3B). 

 

 

Figure 3. Predictions of the population and summary models for subjects’ choices in the 2-

alternative condition. The population model (left panels) assumes that decision-making circuits 
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have access to the activity levels associated with each of the four colors (four gray bars), 

whereas the summary model (right panels) assumes that decision-making circuits only have 

access to the highest activity level (single gray bar). In all examples, the dominant circle is white 

and subjects are given a choice between white and green. (A) When the highest activity happens 

to be at the dominant color, both models predict that the subject would correctly choose the 

dominant color. (B) When the highest activity happens to be for the alternative color, both 

models predict that the subject would incorrectly choose the alternative color.  (C) The two 

models’ prediction diverge when the highest activity is associated with a color other than the 

two presented alternatives. In such cases, the activation for the dominant color is likely to be 

higher than for the alternative color, so according to the population model, subjects would 

ignore the color with the highest activity (red color in the example here) and correctly pick the 

dominant color in the majority of the trials. However, according to the summary model, subjects 

have no information about the activation levels for the dominant and alternative colors and 

would thus correctly pick the dominant color on only 50% of such trials. 

 

 

The population and summary models diverge in their behavior when the highest activity is 

associated with a color that is not among the two options (Figure 3C). In such cases, the 

summary model postulates that subject have no activity-related information on which to base 

their decision and thus must randomly select between the two colors options. It is clear that 

such cases would result in the summary model having 50% accuracy rate (chance level). At the 

same time, the population model postulates that subjects would select the color with higher 
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activity between the two options. The accuracy rate of the population model would thus 

depend on the probability of having higher activity in the dominant color than in the alternative 

color. Given that the dominant color typically produces higher activity level than the alternative 

option, the accuracy rate in such trials would be significantly higher than 50%. Therefore, for 

these types of trials, the population and summary models make different predictions with the 

population model predicting a higher performance level. 

 

The intuition above was borne out in the actual model predictions produced by the population 

and summary models. Indeed, based on the performance in the 4-alternative condition 

(average accuracy = 69.2%), the population and summary models predicted an average 

accuracy of 84.2% and 79.7% in the 2-alternative condition, respectively. Compared to the 

actual subject performance (average accuracy = 78%), the population model overestimated the 

accuracy in the 2-alternative conditions for 29 of the 32 subjects (average difference = 6.21%, 

t(31) = 8.19, p = 3.02 x 10-9). Surprisingly, the summary model also overestimated the accuracy 

in the 2-alternative condition but the misprediction was much smaller (average difference = 

1.72%, t(31) = 2.35, p = .025) (Figure 4A). Indeed, the absolute error of the predictions of the 

population model (average = 6.24%) was significantly larger than for the summary model 

(average = 3.61%; t(31) = 5.65, p = 3.36x 10-6). Overall, the summary model predicted the 

accuracy in the 2-alternative condition better than the population model for 26 of the 32 

subjects (Figure 4B).  
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Figure 4. Comparisons between the population and summary models in Experiment 1. (A) Task 

accuracy in the 2-alternative condition observed in the actual data (white bar), and predicted by 

the population (light gray bar) and summary (dark gray bar) models. The predictions for both 

models were derived based on the data in the 4-alternative condition. (B) Individual subjects’ 

differences in the accuracy in the 2-alternative condition between the two models and the 

observed data. (C) Difference in Akaike Information Criterion (AIC) between the population and 

the summary models. Positive AIC values indicate that the summary model provides a better fit 

to the data. Each dot represents one subject. The gray horizontal lines at ±3 and ±10 indicate 

common thresholds for suggestive and strong evidence for one model over another. The red 

triangle indicates the average AIC difference. The summary model provided a better fit than the 

population model for 30 of the 32 subjects. 
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Beyond simply checking accuracy levels, we further compared the model fits to the whole 

distribution of responses. We found that the Akaike Information Criterion (AIC) favored the 

summary model by on average 24.30 points (Figure 4C), which corresponds to the summary 

model being 1.86 x 105 times more likely than the population model for the average subject. 

Across the whole group of 32 subjects, the total AIC difference was thus 777.63 points, 

corresponding to the summary model being 7.26 x 10168 times more likely in the group. Note 

that since the population and summary models had the same number of parameters, the same 

results would be obtained regardless of the exact metric employed (e.g., the BIC differences 

would be exactly the same).  

 

Finally, we constructed another summary model, according to which deliberate decisions had 

access to highest two activations of the sensory distribution (the 2-Highest model). We found 

that the 2-Highest model (average predicted accuracy = 83.5%) significantly overestimated the 

observed accuracy level for the 2-alternative condition (average difference = 5.46%, t(31) = 

7.49, p = 1.94 x 10-8) (Supplementary Figure 1A). Correspondingly, the absolute errors in the 

prediction of the 2-Highest model for the 2-alternative condition (average = 5.86%) is larger 

compared to the summary model (t(31) = 2.24, p = 4.07 x 10-5). Model comparison favored the 

summary model over the 2-Highest by an average 11.86 AIC points (corresponding to the 

summary model being 357.41 times more likely for the average subject) and by 379.39 AIC 

points in the group as a whole (corresponding to the summary model being 2.42 x 1082 times 

more likely in the group) (Supplementary Figure 1B and C). Note that within the context of this 

experiment, a model assuming that decision-making circuits have access to the three highest 
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sensory activation levels (3-Highest model) is functionally equivalent to the population model. 

Indeed, for such 3-Highest model, the activity level which is not represented is always the 

lowest; therefore, the 3-Highest model allows one to still order all four activity levels in 

descending order making it equivalent to the population model.  

 

These results strongly suggest that within the context of our experiment, decision-making 

circuits do not have access to the whole sensory population distribution. We sought to confirm 

and generalize these findings in two additional, pre-registered experiments. For Experiment 2, 

we made several modifications: (1) we changed the stimulus from color to symbols, (2) we 

raised the number of stimulus categories from four to six, and (3) we significantly increased the 

number of trials per subject in order to obtain stronger results on the individual subject level. 

Specifically, we presented the six symbols ‘?’, ‘#’, ‘$’, ‘%’, ‘+’, and ‘>’ such that the dominant 

symbol was presented 14 times and each non-dominant symbol was presented 7 times (Figure 

5A). The 49 total symbols were again arranged in a 7x7 grid. Each subject completed a total of 

3,000 trials that included equal number of trials in 6-alternative and 2-alternative conditions.  
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Figure 5. Task and results for Experiment 2. (A) The task in Experiment 2 was similar to 

Experiment 1 with the exception of using six different symbols (‘?’, ‘#’, ‘$’, ‘%’, ‘+’, and ‘>’) 

instead of four different colors. One of the symbols was presented more frequently (14 times, 

dominant symbol) than the others (7 times each, non-dominant symbols) and subjects’ task was 

to indicate the dominant symbol. Two conditions were presented in different blocks: a 6-

alternative condition where subject chose between all six symbols and a 2-alternative condition 

where subjects were given a choice between the dominant and one randomly chosen non-

dominant symbol. (B) Task accuracy in the 2-alternative condition observed in the actual data 

(white bar), and predicted by the population (light gray bar) and summary (dark gray bar) 

models. The predictions for both models were derived based on the data in the 6-alternative 

condition. (C) Individual subjects’ differences in the accuracy of the 2-alternative condition 
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between the two models and the observed data. (D) Difference in Akaike Information Criterion 

(AIC) between the population and the summary models. Positive AIC values indicate that the 

summary model provides a better fit to the data. Each dot represents one subject. The red 

triangle indicated the average AIC difference. The summary model provided a better fit than the 

population model for nine out of 10 subjects.  

 

 

Just as in Experiment 1, we computed the parameters of the sensory population code using the 

trials from the 6-alternative condition (average accuracy = 50.5%, chance level = 16.7%) and 

used these parameters to compare the population and summary models’ predictions for the 2-

alternative condition. We found that the average accuracy in the 2-alternative condition 

(71.6%) was slightly underestimated by the summary model (predicted accuracy = 70.1%, t(9) = 

2.76, p = .022) but was again significantly overestimated by the population model (predicted 

accuracy = 77.5%, t(9) = 9.41, p = 5.92 x 10-6) (Figure 5B). Individually, the summary model 

provided better prediction of the accuracy in the 2-alternative condition for nine out of the 10 

subjects (Figure 5C).  

 

Further, we compared the population and summary models’ fits to the whole distribution of 

responses. We found that the summary model was preferred nine of our 10 subjects and the 

difference in AIC values in all these nine subjects were larger than 25 points. The AIC values of 

the one subject for whom the population model was favored over the summary model differed 

only by 7.8 points. On average, the summary model had an AIC value that was 57.79 points 
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lower than the population model corresponding to the summary model being 3.55 x 1012 times 

more likely for the average subject (Figure 5D). Across the whole group of 10 subjects, the total 

AIC difference was thus 577.94 points, corresponding to the summary model being 3.14 x 10125 

times more likely in the group. 

 

Finally, we again investigated the predictions of the additional 2-Highest and 3-Highest models, 

according to which the highest two or three (respectively) activations were available for 

deliberate decisions. We found that the 2-Highest model overestimated the observed accuracy 

in the 2-alternative condition (74.9%; t(9) = 5.65, p = 3.13 x 10-4) and provided worse fit to the 

data compared to the summary model (average AIC difference = 18.81 points, total AIC 

difference = 188.07 points) (Supplementary Figure 2). The 3-Highest model fared even worse. It 

overestimated the accuracy in the 2-alternative condition even more severely (76.6%; t(9) = 

8.27, p = 1.69 x 10-5) and provided much worse fit to the data compared to the summary model 

(average AIC difference = 39.87 points, total AIC difference = 398.65 points) (Supplementary 

Figure 2). 

 

Taken together, Experiments 1 and 2 suggest that the system for deliberate decision making 

may not have access to the whole population of sensory activations. This conclusion is based on 

experiments that differed in the nature of the stimulus, the number of stimulus categories, and 

the amount of trials that subjects performed. Nevertheless, both Experiments 1 and 2 relied on 

the same design of comparing 4- (or 6-) and 2-alternative conditions.  
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Therefore, in order to further establish the generality of our results, in Experiment 3 we 

employed a different experimental design. We used the same stimulus as in Experiment 2, 

presented all 6 alternatives on every trial, but additionally gave subjects the opportunity to 

provide a second answer on about 40% of error trials (Figure 6A). We only allowed a second 

answer on a fraction of the trials in order to discourage subjects from preparing two responses 

while still viewing the stimuli. Using the performance on the first answer, we could then 

compare the predictions of the population and summary models for the second answers. 
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Figure 6. Task and results for Experiment 3. (A) The same stimuli as in Experiment 2 were used in 

Experiment 3 but the task was slightly different. Subjects always reported the dominant symbol 

among all six alternatives. However, on 40% of the trials in which they gave a wrong answer, 

A

D

2nd answer
(Untimed)
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(500 ms) Stimulus

(500 ms) 1st answer
(Untimed)
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(100 ms)

Time
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C
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subjects were given the opportunity to make a second guess. (B) Task accuracy for the second 

answer observed in the actual data (white bar), predicted by the population model (light gray 

bar), predicted by the Summary & Random Choice model (dark gray bar), and predicted by the 

Summary & Strategic Choice model (black bar). The predictions of the three models were 

derived based on subjects’ first answers. (C) Individual subjects’ differences in the accuracy of 

the second answer between each model’s prediction and the observed data. (D) Difference in 

Akaike Information Criterion (AIC) between the population and the two summary models. 

Positive AIC values indicate that the summary model provides a better fit to the data. Each dot 

represents one subject. The red triangle indicates the average AIC difference.  

 

 

The population model makes a clear prediction about the second answer – subjects should 

choose the stimulus category with the highest activation from among the remaining five 

options. The second answer will thus have relatively high accuracy because the presented 

stimulus category is likely to produce one of the highest activity levels (Supplementary Figure 

3A). Note that in the context of this experiment, the 2-Highest and 3-Highest models are 

functionally equivalent to the population model since they both represent the category with 

the second highest activity and both allow that this stimulus category be chosen with the 

second answer. 

 

On the other hand, the summary model is consistent with at least two response strategies for 

the second answer. The summary model only features information about the stimulus category 
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with highest activity, and thus once that stimulus category is chosen as the first answer, the 

model postulates that the subject does not have access to the activations associated with the 

other stimulus categories. One possible scenario, therefore, is for the subject to make their 

second answer at random. This model would result in chance level (20%) performance. We call 

this the “Summary & Random Choice” model (Supplementary Figure 3B). However, another 

possibility is for the subject to make the second answer strategically. One available strategy is 

for subjects to pick the stimulus category of a randomly recalled symbol from the 7x7 grid. 

Given that subjects inspected the stimuli for 500 ms, they could easily remember one location 

with a symbol other than the one they picked for their first answer. We call this the “Summary 

& Strategic Choice” model (Supplementary Figure 3C). According to this model, the second 

answer will be correct on !"	(#	&'()*+',-	'.	*/0	1'2+,),*	-324'&)
"6	(*'*)&	#	'.	702)+,+,8	&'()*+',-)

= !
:
 or 33.3% of the time. 

Conversely, each of the four remaining incorrect categories will be chosen on 

;	(#	&'()*+',-	'.	0)(/	,',-1'2+,),*	-324'&)
"6	(*'*)&	#	'.	702)+,+,8	&'()*+',-)

= !
=
 or 16.7% of the time (Supplementary Figure 4).  

 

To adjudicate between these three models, we first examined subjects’ accuracy on the first 

answer. Subjects responded correctly in their first answer on 50.7% of the trials (chance level = 

16.7%). Using this performance, we computed the parameters of the population code as in 

Experiments 1 and 2 in order to generate the models’ predictions for the second answer. We 

found that subjects’ accuracy for the second answers was 29.6%. This value was greatly 

overestimated by the population model, which predicted accuracy of 40.89% (t(9) = 7.04, p = 

6.09 x 10-5; Figure 6B). On the other hand, the Summary & Random Choice model greatly 

underestimated the observed accuracy (predicted accuracy = 20%, t(9) = 5.55, p = 3.55 x 10-4). 
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Finally, the Summary & Strategic Choice model produced the most accurate prediction 

(predicted accuracy = 33.3%, t(9) = 2.18, p = .057). On an individual subject level, the population 

model overestimated the accuracy of the second answer for all 10 subjects, the Summary & 

Random Choice model underestimated the accuracy of the second answer for all of the 10 

subjects, whereas the Summary & Strategic Choice model was best calibrated overestimating 

the accuracy of the second answer for 7 subjects and underestimating it for the remaining 3 

subjects (Figure 6C). 

 

Formal comparisons of the models’ ability to fit the full distribution of responses for the second 

answers demonstrated that the population model provided the worst overall fits (Figure 6D). 

Indeed, the population model resulted in AIC values that were higher than the Summary & 

Random Choice model by an average of 18.05 points (corresponding to 8.29 x 103-fold 

difference in likelihood in the average subject) and a total of 180.46 points (corresponding to 

1.53 x 1039-fold difference in likelihood in the group). The population model underperformed 

the Summary & Strategic Choice model even more severely (average AIC difference = 37.29 

points, corresponding to 1.25 x 108-fold difference in likelihood in the average subject; total AIC 

difference = 372.93 points, corresponding to 9.57 x 108-fold difference in likelihood in the 

group). Thus, just as Experiments 1 and 2, Experiment 3 provided strong evidence that decision-

making circuits do not have access to the whole distribution of sensory responses. 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537068doi: bioRxiv preprint 

https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Discussion 

We investigated whether decision-making brain circuits have access to the complete population 

codes in sensory cortex or only to a summary form of these codes. We designed three 

experiments with multiple (either four or six) discrete stimulus categories where the population 

and summary models made clearly different predictions. The results across all experiments 

showed that the population model did not provide a good fit to the data. Instead, the summary 

model, which assumes that decision-making circuits only have access to information about the 

highest-activity stimulus category, consistently provided better fit. These results strongly 

suggest that deliberate decision making, at least when performed on discrete stimulus 

categories, only has access to a summary form of the sensory population code. 

 

What do the current results imply for decision-making circuits’ access to the population codes 

produced by features represented on a continuous dimension such as stimulus orientation or 

motion direction? Theories like probabilistic population codes (Zemel et al., 1998; Pouget et al., 

2000, 2003; Ma et al., 2006) and neural sampling (Fiser et al., 2010; Berkes et al., 2011; Haefner 

et al., 2016; Orbán et al., 2016) have typically been applied to such continuous situations. 

Importantly, in many cases the population and summary models may actually be functionally 

equivalent for stimuli represented on a continuous dimension. Indeed, electrophysiological 

recordings suggest that the population code produced by a particular stimulus orientation or 

motion direction follows a roughly Gaussian distribution. If the population code is Gaussian, it 

can be summarized without loss of information with only its mean and variance. If 

normalization (Reynolds and Heeger, 2009; Carandini and Heeger, 2012) had been applied so 
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that the total firing can be expected to sum to a constant, then the population code can be 

summarized by the level of activity of the most active neuron. This is possible because the 

identity of this neuron signals the mean of the distribution, and the level of its activity is 

proportionate to the standard deviation of the distribution. This last representation is 

equivalent to the summary model used here. These considerations demonstrate that the 

population and summary models are functionally equivalent in the context of most existing 

experiments where Gaussian sensory distributions can be assumed. Nevertheless, the 

population and summary models may be distinguishable for non-Gaussian (e.g., multimodal) 

distributions even for stimuli represented on a continuous scale.  

 

If decision-making circuits indeed only have access to a summary form of the sensory 

population, does that mean that absolutely no computations can be based on the complete 

population codes? At present, we are agnostic about this issue. It is possible that some forms of 

automatic multisensory integration are accomplished by computing with the whole population 

codes in two different parts of sensory cortex (Hillis et al., 2002; Prsa et al., 2012; Saarela and 

Landy, 2015). Other automated computations may also use the whole sensory population 

codes. Nevertheless, it appears that non-automatic, flexible, and deliberate decision making 

only has access to a summary of the sensory population code. 

 

Our findings can be interpreted as suggesting that complex visual displays are represented as a 

point estimate: that is, the decision-level representation features only the best guess of the 

system (e.g., “60°” orientation, “red” color, or “+” symbol). The possibility of a decision-level 
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representation consisting of a single point estimate has been thoroughly debunked (Pouget et 

al., 2003; Knill and Pouget, 2004; Fiser et al., 2010; Ma, 2010; Ma and Jazayeri, 2014). For 

example, a point estimate does not allow us to rate how confident we are in our decision 

because we lack a sense of how uncertain our point estimate is. Given that humans and animals 

can use confidence ratings to judge the likely accuracy of their decisions (Metcalfe and 

Shimamura, 1994; Kiani and Shadlen, 2009; Mamassian, 2016), decision-making circuits must 

have access to more than a point estimate of the stimulus. 

 

It should therefore be clarified that our summary model does not imply that decision making 

operates on point estimates. Indeed, as conceptualized in Figure 1, the summary model 

assumes that subjects have access to both the identity of the most likely stimulus category 

(e.g., the color “white”) and the level of activity associated with that stimulus category. The 

level of activity can then be used as a measure of uncertainty, and confidence levels can be 

based on this level. Such confidence ratings will be less informative than the perceptual 

decision, which is exactly what has been observed in a number of studies (Maniscalco and Lau, 

2012; Rahnev et al., 2015; Rahnev and Denison, 2018). In addition, this type of confidence 

generation may explain findings that confidence tends to be biased towards the level of the 

evidence for the chosen stimulus category and tends to ignore the level of evidence against 

that stimulus category (Zylberberg et al., 2012; Koizumi et al., 2015; Maniscalco et al., 2016; 

Samaha et al., 2016; Peters et al., 2017; Talluri et al., 2018). Thus, a summary model, consisting 

of the identity of the most likely stimulus and the level of activity associated with this stimulus, 
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appears to be broadly consistent with findings related to how people compute uncertainty and 

is qualitatively different than a decision-level representation consisting of a point estimate. 

 

Another important question concerns whether any additional information is extracted from the 

sensory population code beyond what is assumed by the summary model. It is well known that 

humans can quickly and accurately extract a high-order “gist” of a scene (Potter, 1975, 1976; 

Greene and Oliva, 2009), as well as the statistical structure of an image (Fiser and Aslin, 2001). 

Therefore, it appears that rich information is extracted during the time when the stimulus is 

being viewed. For example, the subjects in our Experiment 1 were certainly aware that four 

different colors were presented in each display and would had noticed if we ever have 

presented additional colors. Nevertheless, within the context of our experiments, both the gist 

and the statistics of the scene remained unchanged between displays and therefore could not 

be used to improve performance on the task. In any case, we do not claim that rich information 

about the visual scene cannot be quickly and efficiently extracted (it can). What our results do 

suggest, however, is that decision-making circuits do not create a copy of the detailed sensory 

population code that can be used after the disappearance of the stimulus. 

 

A related question concerns whether the decision-making circuits could ever access the whole 

population code. We believe that they can as long as the stimulus remains on the screen. 

However, the representation within the decision-making circuit itself may be of severely limited 

bandwidth. This is why, once the stimulus disappears, the richness of the sensory population 
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code may be gone and only a limited-bandwidth summary representation within decision-

making circuits may remain. 

 

In conclusion, we found evidence from one exploratory (Experiment 1) and two preregistered 

(Experiments 2 and 3) studies that deliberate decision making for discrete stimulus categories is 

performed based on a summary of, rather than the whole, sensory population code. These 

results demonstrate that, at least within the context of discrete stimulus categories, flexible 

computations may not be performed using the sensory activity itself but only a summary form 

of that activity. 
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Methods 

Subjects 

A total of 52 subjects participated in the three experiments (32 in Experiment 1, 10 in 

Experiment 2, and 10 in Experiment 3). Each subject participated in only one experiment. All 

subjects provided informed consent and had normal or corrected-to-normal vision. The study 

was approved by the Georgia Tech Institutional Review Board.  

 

Apparatus and experiment environment 

The experiments stimuli were presented on a 21.5-inch iMac monitor in a dark room. The 

distance between the monitor and the subjects was 60 cm. The stimuli were created in 

MATLAB, using Psychtoolbox 3 (Pelli, 1997). 

 

Experiment 1 

The stimulus consisted of 49 circles colored in four different colors – red, blue, green, and white 

– presented in a 7x7 grid on black background. The diameter of each colored circle was .24 

degrees and the distance between the centers of two adjacent circles was .6 degrees. The grid 

was located at the center of the screen. On each trial, one of the four colors was “dominant” – 

it was featured in 16 different locations – whereas the other three colors were non-dominant 

and were featured in 11 locations each. The exact locations of each color were pseudo-

randomly chosen so that each color was presented the desired number of times. 
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A trial began with a 500-ms fixation followed by 500-ms stimulus presentation. Subjects then 

indicated the dominant color in the display and provided a confidence rating without time 

pressure. There were three different conditions in the experiment. In the first condition, 

subjects could choose any of the four colors (4-alternative condition). In the second condition, 

after the stimulus offset subjects were asked to choose between only two options that were 

not announced in advance – one was always the correct dominant color and the other was a 

randomly selected non-dominant color (2-alternative condition). Finally, in the third condition, 

subjects were told in advance which two colors will be queried at the end of the trial (advance 

warning condition). 

 

Subjects completed six runs, each consisting of three 35-trial blocks (for a total of 630 trials). 

The three conditions used in the experiment were blocked such that one block in each run 

consisted entirely of trials from one condition and each run included one block from each 

condition. Subjects were given 15-second breaks between blocks and untimed breaks between 

runs. Before the start of the main experiment, subjects completed a training session where they 

completed 15 trials per condition with trial-to-trial feedback, and another 15 trials per 

condition without trial-to-trial feedback. No feedback was provided during the main 

experiment. 

 

For the purposes of the current analyses, we focused on subjects’ choices in the 4-alternative 

and 2-alternative conditions. The advanced warning condition and the confidence ratings were 

not analyzed. 
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Experiment 2 

Following our exploratory analyses on the data from Experiment 1, we preregistered two 

additional experiments (Experiment 2 and 3) (https://osf.io/dr89k/). These experiments were 

designed to generalize the results from Experiment 1 and to obtain stronger evidence for our 

model comparison results on the individual subject level. Consequently, we had fewer number 

of subjects in Experiments 2 and 3 but each subject completed many more trials. 

 

The stimulus in Experiments 2 and 3 consisted of 49 characters from among 6 possible symbols 

– ‘?’, ‘#’, ‘$’, ‘%’, ‘+’, and ‘>’ – presented in a 7x7 grid. The symbols were chosen to be maximally 

different from each other. The symbols’ width was .382 degrees on average and height was .66 

degrees on average. The distance between two centers of adjacent symbols was 1.1 degrees. 

The symbols were presented in white on black background. On each trial, one of the six 

symbols was “dominant” – it was featured in 14 different locations – whereas the other five 

were non-dominant and were featured in 7 locations each. The exact locations in the 7x7 grid 

where each symbol was displayed were pseudo-randomly chosen so that each symbol was 

presented the desired number of times.  

 

Each trial began with a 500-ms fixation, followed by a 500-ms stimulus presentation. The stimuli 

were then masked for 100 ms with a 7x7 grid of ellipsoid-shaped images consisting of uniformly 

distributed noise pixels. Each ellipsoid had width of .54 degrees and height of .95 degrees, 

ensuring that it entirely covered each symbol. After the offset of the mask, subjects indicated 
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the dominant symbol in the display without time pressure. No confidence ratings were 

obtained. The experiment had two conditions equivalent to the first two conditions in 

Experiment 1. In the first condition, subjects had to choose the dominant symbol among all six 

alternatives (6-alternative condition). In the second condition, subjects had to choose between 

two alternatives that were not announced in advance: the correct dominant symbol and a 

randomly selected non-dominant symbol (2-alternative condition). No feedback was provided. 

 

To obtain clear individual-level results, we collected data from each subject over the course of 

three different days. On each day, subjects completed 5 runs, each consisting of 4 blocks of 50 

trials (for a total of 3,000 trials per subject). The 6- and 2-alternative condition blocks were 

presented alternately, so that there were two blocks of each condition in a run. Subjects were 

given 15-second breaks between blocks and untimed breaks between runs. Before the start of 

the main experiment, subjects were given a short training on each day of the experiment.  

 

Experiment 3 

Experiment 3 used the same stimuli as in Experiment 2. Similar to Experiment 2, we presented a 

500-ms fixation, a 500-ms stimulus, a 100-ms mask, and finally a response screen. Experiment 3 

consisted of a single condition – subjects always chose the dominant symbol among all six 

alternatives. However, on 40% of trials in which subjects gave a wrong answer, they were asked 

to provide a second answer by choosing among the remaining five symbols. The second 

response prompt was presented infrequently in order to discourage subjects from preparing 

two responses from the very beginning. Subjects could take as much time as they wanted for 
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both responses. Subjects again completed 3,000 trials over the course of three different days in 

a manner equivalent to Experiment 2. 

 

Model development  

To investigate how the sensory population code is represented and used for decision making, 

we developed and compared two main models. According to the “population” model, decision-

making circuits have access to the whole sensory population code. On the other hand, 

according to the “summary” model, decision-making circuits only have the access to a summary 

of the sensory population code but not to the whole sensory distribution.  

 

Although there are many ways to summarize a distribution, we considered an extreme case 

where the summary only contains the activity level of the stimulus category with the highest 

activity. In the case of making judgments on a continuous quantity (e.g., motion direction or 

Gabor orientation), the sensory population code can be assumed to follow a continuous 

distribution. Such distributions (e.g., a Gaussian) can often be represented without loss of 

information with just a few parameters (e.g., mean and variance for a Gaussian). However, in 

the context of deciding between discrete options, the activity levels in the sensory cortex 

corresponding to each stimulus category does not follow a distribution that can be easily 

summarized. In particular, our summary model, which only contains information about the 

highest activity level, loses significant amount of information compared to the population 

model. This feature of decisions about discrete stimuli enables us to distinguish the two models 

(Figure 3).   
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In order to compare the population and summary models, we first had to develop a model of 

the sensory population responses. We created this model using the 4- and 6-alternative 

conditions in Experiments 1 and 2, and the first answer in Experiment 3. The population and 

summary models were then used to make predictions about the 2-alternative condition in 

Experiments 1 and 2, and the second answer in Experiment 3. These predictions were made 

without the use of any extra parameters. 

 

We created a model of the sensory population response for Experiment 1 as follows. We 

assumed that each of the four types of stimuli (red, blue, green, or white being the dominant 

color) produced variable across-trial activity corresponding to each of the four colors. We 

modeled this activities as Gaussian distributions whose mean (𝜇) is a free parameter and 

variance is set to one. However, perceptual decisions about the presented color only depend on 

the relative values of the activity levels, and therefore adding a constant to all 𝜇’s for a given 

stimulus results in equivalent decisions. Therefore, without loss of generality, we set the mean 

for the activity corresponding to each dominant color as 0. This procedure resulted in 12 

different free parameters (4 types of stimuli × 3 𝜇’s modeled for each stimulus type). Finally, 

we included an additional parameter modeling subjects’ lapse rate. Note that the inclusion of 

lapse rate decreases performance more in the 2-alternative compared to the 4-alternative 

condition (because the overall performance is higher in the 2-alternative condition), and 

therefore favors the population model, which tends to overestimate the performance in the 2-

alternative condition. 
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The sensory population response was modeled in a similar fashion in Experiments 2 and 3. In 

both cases, the model was created based on subjects choosing between all available options 

(i.e., the 6-alternative condition in Experiment 2 and the first answer in Experiment 3). The 

model of the sensory population response in Experiments 2 and 3 thus had 30 free parameters 

related to the sensory activations (6 types of stimuli × 5 𝜇’s modeled for each stimulus type) 

and an additional free parameter for the lapse rate. 

 

We modeled the activations produced by each stimulus type separately to capture potential 

relationships between different colors or symbols (e.g., some color pairs may be perceptually 

more similar than others). However, we re-did all analyses using the simplifying assumption of 

independence, which allowed us to significantly reduce the number of parameters in our model 

of the sensory population response. In this alternative version of the sensory population 

response model, the mean activity for each color/symbol was determined only based on 

whether that color/symbol was dominant or not. This modeling approach reduced the total 

number of free parameters to eight in Experiment 1 and 12 in Experiments 2 and 3. This 

modeling approach produced virtually the same results (Supplementary Figure 5).  

 

We fit the models to the data as previously (Bang et al., (in press).; Rahnev et al., 2011, 2012, 

2013) using a maximum likelihood estimation approach. The models were fit to the full 

distribution of probabilities of each response type contingent on each stimulus type. Model 

fitting was done by finding the maximum-likelihood parameter values using a simulated 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537068doi: bioRxiv preprint 

https://doi.org/10.1101/537068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

annealing (Kirkpatrick et al., 1983) by simulating the results of each parameter set 100,000 

times. Fitting was conducted separately for each subject’s data.  

 

Based on the parameters of the sensory population response model, we generated predictions 

for the population and summary models for the 2-alternative condition in Experiments 1 and 2 

and the second answer in Experiment 3. These predictions contained no free parameters. To 

compare the models, we calculated the log-likelihood ratio (log	(ℒ)) of each model. However, 

for ease of comparison, we additionally computed Akaike Information Criterion (AIC). The value 

is computed by −2 × log	(ℒ) + 2 × 𝑘, where 𝑘 is the number of parameters of a model. 

Because of the lack of free parameters, other measures, such as the AIC corrected for small 

sample sizes (AICc) or the Bayesian Information Criterion (BIC), would result in the exact same 

pattern of results. Note that lower AIC values correspond to better model fits.  

 

In addition to the population and summary models, we considered two additional models that 

contained information about the sensory population that was more detailed than the summary 

model but less detailed than the population model. Specifically, we created models according 

to which decision-making circuits have access to the highest two or three levels of activation (2-

Highest and 3-Highest models, respectively). Note that the 3-Highest model is functionally 

equivalent to the population model in the context of Experiment 1 and both the 2- and 3-

Highest models are functionally equivalent to the population model in the context of 

Experiment 3.  
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Data and code 

The data from the three experiments, together with all of the analysis codes are freely available 

online at https://github.com/wiseriver531/Discrete-representation. 
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