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1 ABSTRACT
2 Background: Increasing childhood overweight and obesity rates are associated with
3 not only adverse physical, but also mental health outcomes, including depression.
4  These negative outcomes may be caused and/or exacerbated by the bullying and
5 shaming overweight individuals experience. As body mass index (BMI) can be highly
6 heritable, we hypothesized that a genetic risk toward higher BMI, will predict higher
7 early life stress (ELS), which in turn will predict higher depressive symptoms in
8 adulthood. Such a process will reflect an evocative gene-environment correlation
9 (rGE) wherein an individual's genetically influenced phenotype evokes a reaction
10 from the environment that subsequently shapes the individual’s health.
11 Methods: We modeled genetic risk using a polygenic score of BMI derived from a
12 recent large GWAS meta-analysis. Self-reports were used for the assessment of ELS
13 and depressive symptoms in adulthood. The discovery sample consisted of 524 non-
14  Hispanic Caucasian university students from the Duke Neurogenetics Study (DNS;
15 278 women, mean age 19.78 £1.23 years) and the independent replication sample
16  consisted of 5 930 white British individuals from the UK biobank (UKB; 3 128 women,
17  mean age 62.66+7.38 years).
18  Results: A significant mediation effect was found in the DNS (indirect effect=.207,
19  bootstrapped SE=.10, 95% Cl: .014 to .421), and then replicated in the UKB (indirect
20 effect=.04, bootstrapped SE=.01, 95% Cl: .018 to .066). Higher BMI polygenic scores
21 were associated with higher depressive symptoms through the experience of higher

22 ELS.
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23 Conclusions: Our findings suggest that evocative rGE may contribute to weight-
24  related mental health problems and stress the need for interventions that aim to

25 reduce weight bias, specifically during childhood.
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26 Overweight individuals suffer from stigmatization, bias, and bullying, from multiple
27  sources including peers, health care providers, educators, and, most surprisingly
28  perhaps, family members [1]. In a study of adolescents enrolled in weight loss
29  camps, 37% reported being teased or bullied by a parent [2]. Another study on 2 449
30 women recruited from a weight loss support group organization, found that 44%
31  experienced stigma from their mothers more than once, while 34% experienced it
32 from their fathers [3]. As weight-related teasing has been shown to predict
33  depression and lower self-esteem [4, 5], it may represent another form of early life
34  stress (ELS) that is associated with various negative physical and mental health
35  outcomes [6, 7].

36 Gene environment correlations [rGE; 8, 9] can represent passive, evocative,
37 and active processes that create associations between individuals' genes and the
38 environment. Evocative rGE, which refers to instances in which a genetically
39 influenced phenotype of an individual evokes a certain reaction from the
40 environment, may be relevant to weight-related teasing and bullying, so that
41  individuals with a genetic propensity toward a higher body mass index (BMI), will be
42  more likely to experience teasing, especially in the current Western cultural climate,
43  which is characterized by negative and prejudicial attitudes towards overweight and
44  obese individuals [10].

45 A recent meta-analysis of genome-wide association studies (GWAS; [11]),
46  consisting of 681 275 participants on average, explained 5% of the variance in BMI
47  with GWAS significant single nucleotide polymorphisms (SNPs). In the current study,
48  we hypothesized that a polygenic score based on the results from this meta-analysis,

49  will predict early life stress (ELS), consistent with evocative rGE, which in turn will
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50 predict depressive symptoms in adulthood. We tested our hypothesis in two
51 independent samples: a discovery sample of 524 non-Hispanic Caucasian university
52  students from the Duke Neurogenetics Study and a replication sample of 5 930 adult
53  white British volunteers from the UK Biobank (UKB). Although the GWAS meta-
54  analysis included data from the UKB, current BMI was not a phenotype of interest in
55  our study, and therefore the overlap should not bias our analyses. Nonetheless, to
56  validate our results in the analyses that included UKB data, we also used BMI
57  polygenic scores that were based on a GWAS that did not include the UKB as a

58 discovery sample [12].

59

60 MATERIALS AND METHODS

61  Participants

62 Our discovery sample consisted of 524 self-reported non-Hispanic Caucasian
63  participants (278 women, mean age 19.781+1.23 vyears) from the Duke
64  Neurogenetics Study (DNS) for whom there was complete data on genotypes, ELS,
65 depressive symptoms, and all covariates. All procedures were approved by the
66 Institutional Review Board of the Duke University Medical Center, and participants
67 provided informed consent before study initiation. All participants were free of the
68 following study exclusions: 1) medical diagnoses of cancer, stroke, diabetes requiring
69 insulin treatment, chronic kidney or liver disease, or lifetime history of psychotic
70  symptoms; 2) use of psychotropic, glucocorticoid, or hypolipidemic medication; and
71  3) conditions affecting cerebral blood flow and metabolism (e.g., hypertension).

72  Importantly, neither current nor lifetime diagnosis were an exclusion criterion, as the
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73  DNS sought to establish broad variability in multiple behavioral phenotypes related
74  to psychopathology.

75 The replication sample consisted of 5 930 white British individuals (3 128
76  women, mean age 62.66+7.38 years), who participated in the UKB's imaging wave,
77  completed an online mental health questionnaire [13], and had complete genotype,
78  ELS, depressive symptoms and covariate data. The UKB [www.ukbiobank.ac.uk; 14]
79 includes over 500,000 participants, between the ages of 40 and 69 years, who were
80 recruited within the UK between 2006 and 2010. The UKB study has been approved
81 by the National Health Service Research Ethics Service (reference: 11/NW/0382), and
82  our analyses were conducted under UKB application 28174.

83

84  Race/Ethnicity

85  Because self-reported race and ethnicity are not always an accurate reflection of
86  genetic ancestry, an analysis of identity by state of whole-genome SNPs in the DNS
87  was performed in PLINK [15]. The first two multidimensional scaling components
88  within the non-Hispanic Caucasian subgroup were used as covariates in analyses of
89  data from the DNS. The decision to use only the first two components was based on
90 an examination of a scree plot of the variance explained by each component. For
91  analyses of data from the UKB, only those who were ‘white British’ based on both
92  self-identification and a principal components analysis of genetic ancestry were
93 included. Additionally, the first 10 multidimensional scaling components received
94  from the UKB's data repository (unique data identifiers: 22009-0.1-22009-0.10) were
95 included as covariates as previously done [e.g., 16].

96
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97  Body Mass Index (BMI)

98 In both DNS and UKB samples, BMI was calculated at the time of imaging based on

99 the height and weight of the participants. In the DNS, this calculation was based on
100 imperial system values (pounds/inches2*703), while in the UKB the metric system
101  was used (kg/m2). In the DNS 1.3% of the sample was obese, compared to 18.7% in
102 the UKB.
103
104  Depressive symptoms
105 In the DNS, the 20-item Center for Epidemiologic Studies Depression Scale (CES-D)
106  was used to asses depressive symptoms in the past week [17]. All items were
107 summed to create a total depressive symptoms score. In the UKB, the Patient Health
108  Questionnaire 9-question version (PHQ-9) was used to asses depressive symptoms in
109  the past 2 weeks [18]. All items were summed to create a total depressive symptoms
110  score.
111
112 Early life stress
113  In the DNS, ELS was estimated using the Childhood Trauma Questionnaire [CTQ; 19].
114 The CTQ has 28-items and it assesses the frequency of emotional, physical, and
115  sexual abuse as well as emotional and physical neglect. The scores on the 5
116  subscales (each ranging from 5 to 25) were summed to create a total score of ELS. In
117  the UKB, the Childhood Trauma Screener — 5 item (CTS-5) was used to assess adverse
118  events during childhood [20]. CTS-5 is a short version of the CTQ consisting of 5
119  items: "Felt hated by family member as a child", "Physically abused by family as a

120  child", "Felt loved as a child" (reverse coded), "Sexually molested as a child", and
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121 "Someone to take to doctor when needed as a child" (reverse coded). The 5 items,
122  each ranging from 0-4, were summed to create a total score of ELS.

123

124  Genotyping

125  In the DNS, DNA was isolated from saliva using Oragene DNA self-collection kits (DNA
126  Genotek) customized for 23andMe (www.23andme.com). DNA extraction and
127  genotyping were performed through 23andMe by the National Genetics Institute
128  (NGlI), a CLIA-certified clinical laboratory and subsidiary of Laboratory Corporation of
129  America. One of two different lllumina arrays with custom content was used to
130 provide genome-wide SNP data, the HumanOmniExpress (N=329) or
131  HumanOmniExpress-24 [N=195; 21, 22, 23]. In the UKB, samples were genotyped
132 using either the UK BIiLEVE (N=569) or the UKB axiom (N=5,361) array. Details
133  regarding the UKB's quality control can be found elsewhere[24].

134

135  Quality control and polygenic scoring

136  For genetic data from both the DNS and UK Bionbank, PLINK v1.90 [15] was used to
137  apply quality control cutoffs and exclude SNPs or individuals based on the following
138  criteria: missing genotype rate per individual >.10, missing rate per SNP >.10, minor
139  allele frequency <.01, and Hardy-Weinberg equilibrium p<le-6. Additionally, in the
140  UKB, quality control variables that were provided with the dataset were used to
141  exclude participants based on a sex mismatch (genetic sex different from reported
142  sex), a genetic relationship to another participant, outliers for heterozygosity or
143  missingness (unique Data ldentifier 22010-0.0), and UKBILEVE genotype quality

144  control for samples (unique Data Identifiers 22050-0.0-22052-0.0).
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145 Polygenic scores were calculated using PLINK's [15] "--score" command based
146 on published SNP-level summary statistics from a recent BMI GWAS meta-analysis
147  [11]. SNPs from the GWAS of BMI meta-analysis were matched with SNPs from the
148  DNS and the UKB. For each SNP the number of the alleles (0, 1, or 2) associated with
149  BMI was multiplied by the effect estimated in the GWAS. The polygenic score for
150 each individual was an average of weighted BMI-associated alleles. All SNPs matched
151  with SNPs from the DNS and UKB were used regardless of effect size and significance
152  in the original GWAS, as previously recommended and shown to be effective [25,
153  26]. A total of 442 040 SNPs from the DNS and 648 530 SNPs from the UKB were
154  included in the polygenic scores. The approach described here for the calculation of
155  the polygenic scores was successfully used in previous studies [e.g., 27, 28-30]. For
156  validation of the indirect effect in the UKB, BMI polygenic scores were also calculated

157  based on an older GWAS that did not include the UKB as a discovery sample [12].

158

159  Statistical analysis

160  Linear regression analyses in SPSS v25 were conducted to test for an association
161  between the BMI polygenic score and BMI in adulthood. The PROCESS SPSS macro,
162  version 3.1 [31], was used to conduct the mediation analyses. Participants' sex
163 (coded as O=males, 1l=females), age, and ethnicity genomic components were
164  entered as covariates in all analyses. In the mediation analyses, bias-corrected
165  bootstrapping (set to 5,000) was used to allow for non-symmetric 95% confidence
166  intervals (Cls). Specifically, indirect effects are likely to have a non-normal
167  distribution, and consequently the use of non-symmetric Cls for the determination of

168  significance is recommended [32]. However, bias-corrected bootstrapping also has
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169 its faults [33] and, consequently, as supportive evidence for the indirect effect, we
170  also present the test of joint significance, which examines whether the a path (BMI
171  polygenic score to ELS) and the b path (ELS to depressive symptoms, while
172 controlling for the BMI polygenic score) are significant. The BMI polygenic scores
173  were standardized to make interpretability easier. The mediation was first analyzed
174  in the DNS, and then a replication was tested in the UKB. As a validation of the
175 indirect effect in the UKB, it was also tested with an older BMI polygenic score that
176  was not based on a GWAS that included the UKB [12].

177

178

179 RESULTS

180  Descriptive statistics are presented in table 1.

181

182  Confirming an association between BMI polygenic scores and measured BM|

183  As a preliminary analysis we confirmed that higher BMI polygenic scores were
184  significantly associated with higher measured BMI in both the DNS (N=522, b=.837,
185  SE=.117, p<.001) and the UKB (N=5 925, b=1.41, SE=.054, p<.001). (notably, the UKB
186  was included in the BMI GWAS, and consequently the significant association is
187  expected and possibly somewhat inflated). These associations were robust to the
188  inclusion of sex, age, and ethnicity genomic components as covariates. The sample
189  sizes for these analyses were slightly different from the mediation analyses below
190 because measured BMI was missing for a few participants.

191

192  BMI polygenic scores predict ELS (a path) in the DNS
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193 The BMI polygenic scores were significantly associated with ELS (b=.65, SE=.31,
194 p=.038), so that higher scores predicted higher ELS. Of the covariates, age was
195  significantly and negatively associated with ELS (b=-.73, SE=.25, p<.01).

196

197  ELS predicts depressive symptoms (b path) in the DNS

198  With the BMI polygenic scores in the model, ELS significantly and positively predicted
199  depressive symptoms (b=.32, SE=.04, p<.001).

200

201  BMI polygenic scores predict depressive symptoms in the DNS

202  The BMI polygenic scores did not significantly predict depressive symptoms (b=-.34,
203  SE=.31, ns). Notably, however, the significance of a direct path from X (BMI
204  polygenic scores) to Y (depressive symptoms) or the 'total effect' (the 'c' path), is not
205 a prerequisite for the testing of a mediation/indirect effect [34-36].

206

207  Mediation model in the DNS

208 The indirect path (a*b), BMI polygenic scores to ELS to depressive symptoms was
209  significant as indicated by the bias corrected bootstrapped 95% CI not including zero
210  (Figure 1a; indirect effect=.207, bootstrapped SE=.10, 95% Cl: .014 to .421).

211

212 Mediation Model in the UBK

213  The a path, from the BMI polygenic scores to ELS, and the b path, from ELS to
214  depressive symptoms while controlling for BMI polygenic scores, were significant (a
215  path: b=.10, SE=.03, p<.01; b path: b=.40, SE=.02, p<.001). The indirect path also

216  replicated (Figure 1b; indirect effect=.04, bootstrapped SE=.01, 95% Cl: .018 to .066),
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217  supporting a mediation in which BMI polygenic scores are associated with depressive
218  symptoms indirectly through ELS. Similar results were obtained with the BMI
219  polygenic scores that were based on a GWAS that did not include the UKB as a
220  discovery sample (indirect effect=.026, bootstrapped SE=.01, 95% Cl: .004 to .05).
221

222  DISCUSSION

223 Here, in two independent samples, we provide novel evidence supporting evocative
224  rGE as a possible mechanism in weight-related depression. We demonstrate a
225  significant mediation in which higher GWAS-derived BMI polygenic scores are
226  associated with higher levels of depressive symptoms in adulthood through elevated
227  levels of ELS. These results suggest that in the current Western cultural climate,
228 having a genetic makeup that increases the risk of a high BMI, may lead to a
229  phenotype that evokes increased stress, which increases the experience of
230  depressive symptoms in adulthood.

231 Various studies have reported links between being overweight and
232 experiencing stigmatization, teasing, and bullying from peers, educators, co-workers,
233 health care providers, and family members [1]. This negativity can lead to adverse
234  mental health outcomes, including depression [5], but is not limited to mental
235  health. Obesity, childhood trauma, and depression have all been linked to physical
236 illness including cardiovascular disease, type 2 diabetes, and autoimmune disorders
237  [6, 37-40].

238 While several strategies have been proposed to battle the growing prevalence
239  of childhood obesity, including nutrition standards for school meals; improved early

240 care and education; and increased access to adolescent bariatric surgery [41], our
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241  findings further encourage weight stigma reduction efforts, specifically among family
242  members and parents. In addition to the myriad of mental and physical health
243  disorders that are associated with ELS and childhood trauma, one of the most
244  prevalent coping responses to weight stigma is eating [3]. Consequently, ELS may
245 lead to additional weight gain and is itself a risk factor for obesity [42]. Thus,
246  interventions that aim to reduce weight stigma may have a broad positive effect on
247  health.

248 Although our study has several strengths, including the use of two independent
249  samples with markedly different characteristics (e.g., young university students
250  versus older community volunteers) and a GWAS-derived polygenic score, it is not
251  without limitations. First, retrospective reports were used for the estimation of ELS
252  and childhood trauma. lIdeally, prospective data should be used to model ELS in the
253  absence of reporting bias. Second, we did not have measures of childhood BMI in
254  either sample. Although previous research does support a link between childhood
255  BMII, teasing, and depression, and genetic influences on BMI have been shown to be
256  relatively stable throughout development [43, 44], genetically informed longitudinal
257  studies across development are needed to further validate our findings. Third, the
258  non-Hispanic Caucasian DNS sample is relatively homogeneous in terms of social
259  background, which may have led to an underestimation of the effect in this sample.
260  Fourth, our findings are limited to populations of European descent and to the
261  Western culture. Additional research in diverse populations is needed to determine
262  the extent to which the observed evocative rGE mechanism shapes weight-related
263  mental health. Further replication is also needed to evaluate the potential of the BMI

264  polygenic score as a risk biomarker of depression associated with ELS.
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Table 1. Descriptive statistics of study variables.

DNS UK Biobank
Min Max  Mean SD Min Max Mean SD
Age 18 22 19.78 1.24 45 78 62.66 7.38
BMI 16.30 39.15 22.29 2.83 14.94 58.04 26.60 4.419
Early life stress 25 74 31.29 7.16 0 20 1.68 2.32
Depressive symptoms 0 43 8.99 7.18 0 27 2.45 3.39
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Figure 1. Mediation model linking genetic risk for higher BMI to higher depressive symptoms, via elevated levels of early life stress

1a. Duke Neurogenetics Study: Discovery sample
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1b. UK Biobank: Replication sample

Early life

stress

a=.10*** SE=.03 b=.40***, SE=.02
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Note. *p<.05, **p<.01, ***p<.001. c- the total effect of the BMI polygenic scores on depressive symptoms; c'-the effect of BMI polygenic scores on
depressive symptoms, while controlling for ELS.
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