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ABSTRACT

Colletotrichum tanaceti is an emerging foliar fungal pathogen of pyrethrum (7anacetum
cinerariifolium), posing a threat to the global pyrethrum industry. Despite being reported
consistently from field surveys in Australia, the molecular basis of pathogenicity of C.
tanaceti on pyrethrum is unknown. Herein, the genome of C. fanaceti (isolate BRIP57314)
was assembled de novo and annotated using transcriptomic evidence. The inferred
pathogenicity gene suite of C. fanaceti comprised a large array of genes encoding secreted
effectors, proteases, CAZymes and secondary metabolites. Comparative analysis of its
CAZyme pathogenicity profiles with those of closely related species suggested that C.
tanaceti had additional hosts to pyrethrum. The genome of C. fanaceti had a high repeat
content and repetitive elements were located significantly closer to genes inferred to
influence pathogenicity than other genes. These repeats are likely to have accelerated
mutational and transposition rates in the genome, resulting in a rapid evolution of certain
CAZyme families in this species. The C. tanaceti genome consisted of a gene-sparse, A-T
rich region facilitating a “two-speed” genome. Pathogenicity genes within this region were
likely to have a higher evolutionary rate than the ‘core’ genome. This “two-speed” genome
phenomenon in certain Colletotrichum spp. was hypothesized to have caused the clustering of
species based on the pathogenicity genes, to deviate from taxonomy. With the large repertoire
of pathogenicity factors that can potentially evolve rapidly in response to control measures,
C. tanaceti may pose a high-risk to global pyrethrum production. Knowledge of the
pathogenicity genes will facilitate future research in disease management of C. tanaceti and

other Colletotrichum spp..

Key words: Colletotrichum, Genome, Pyrethrum, Pathogenicity gene suite, Repeats,

Evolution
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INTRODUCTION

Plant pathogens cause diseases world-wide that have devastating economic, social and
ecological consequences [1]. Fungi are among the dominant causal agents of plant diseases
[2] and the genus Colletotrichum has been ranked among the top-ten most important fungal
plant pathogens [3]. Many Colletotrichum species are known to cause major economic losses
globally, and have been extensively used in the study of the molecular and cellular bases of
fungal pathogenicity [4]. The publication of 25 whole genome sequences of Colletotrichum
species has significantly improved understanding of the biology, genetics and evolution of
this genus [5-11]. However, a large research gap still exists with this ever-expanding genus
consisting of more than 200 accepted species [12] and 14 major species complexes [13, 14].
The availability of only one genome of a member of the destructivum complex, C.
higginsianum, [5, 15] has constrained comparative studies within and among species
complexes. Insights into the genomic organization and the pathogenicity gene repertoire of
other Colletotrichum species in the destructivum complex therefore, will significantly expand

the knowledge base of this important genus.

Colletotrichum tanaceti, a member of the destructivum complex [16], is an emerging foliar
fungal pathogen [17] of Dalmatian pyrethrum (7anacetum cinerariifolium). Pyrethrum is
commercially cultivated as a source of the natural insecticide pyrethrin [18]. Colletotrichum
tanaceti has been consistently reported in Australian field surveys of the crop [19] since 2013
[17] and causes leaf anthracnose, with black, water-soaked, sunken lesions [17]. Due to its
hemibiotrophic lifestyle, characteristic symptoms of C. tanaceti are not evident on leaves
until around 120 hours after infection [17, 20], when it switches from biotrophy to
necrotrophy. A significant reduction in green leaf area occurs usually 10 days after infection
[17]. This suggests a rapid disease cycle for C. tanaceti in pyrethrum and, given its

aggressiveness, the potential for serious crop damage.
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The molecular basis of pathogenicity of C. tanaceti, which includes the pathogenicity genes
and their evolution, has not been studied. Colletotrichum tanaceti has only been reported
from pyrethrum in Australia, but may have crossed over from another plant host species.
However, cross-host pathogenicity has not yet been assessed and the pathogen’s origin and
the potential host range are currently unknown. Therefore, the threat posed by C. tanaceti to

the local and global pyrethrum industry remains largely unknown.

The genome sequence of an emerging plant pathogen such as C. fanaceti can provide a
foundation for identifying genes associated with the pathogen life cycle, pathogenicity and
virulence. Effectors [21], proteases [22], and carbohydrate active enzymes (CAZymes) that
[23] are important gene categories in fungal pathogenesis. Furthermore secondary
metabolites  and transporters, P450s and transcription factors [24] associated with
biosynthesis of secondary metabolites are also important pathogenicity factors. Fungal
mitogen activated protein (MAP) kinase pathways regulate the cascade of reactions that
respond to various environmental stresses and are also important factors determining
pathogenicity and virulence [25]. Draft genomes of many fungal pathogens have been used to
infer genes involved in pathogenicity with a high accuracy [26, 27] using homology searches
against curated databases [28, 29] and de novo inference using bioinformatics tools [21, 30].
Therefore, characterization of the genome of C. tanaceti, followed by inference and
quantification of these important pathogenicity gene categories will be beneficial for future

functional and pathogenicity studies of this and related pathogens.

Comparative genomics has enabled inference of patterns of speciation, pathogenesis and host
determination within Colletotrichum lineages [31]. These studies have indicated that the gain
and loss of putative pathogenicity gene families in Colletotrichum genomes are important

determinants of host specificity and pathogenic adaptation of these species [7, 11].
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96 Comparison of putative pathogenicity gene repertoires of Colletotrichum species from
97  different species complexes and species closely related to the genus Colletotrichum would
98 provide insights into the evolutionary rates of these genes. Comparative genomics will also
99  enable the quantification of pathogenicity at the molecular level and identification of the host
100 range of C. tanaceti with respect to other Colletotrichum species. Therefore, combined
101  genomics and comparative genomics analyses can provide sound means of assessing the

102  current and future risks posed by C. tanaceti.

103  In order to achieve the major goal of evaluating the potential threat to the pyrethrum industry
104  form C. tanaceti, the aims of this study were to: 1) infer the pathogenicity gene suite of C.
105  tanaceti; 2) quantify the molecular basis of pathogenicity; 3) infer the host range of C.

106  tanaceti; and 4) quantify the rate of evolution of pathogenicity genes in C. tanaceti.

107 MATERIALS AND METHODS

108 Sequencing and de novo-assembly of the genome of C. tanaceti

109  Fungal strain

110  The ex-holotype of C. tanaceti strain BRIP57314 (CBS 132693=UMO01) [17] was acquired
111 from the culture collection of BRIP (Plant Pathology Herbarium, Department of Primary
112  Industries, Queensland, Australia). This isolate was propagated on potato dextrose agar
113  (PDA; Sigma Aldrich, St. Louis, USA) and incubated at 24°C using a 12 h:12 h light:dark
114  photoperiod. Genomic DNA was isolated using a modified CTAB protocol [32]. The
115  integrity and quantity of DNA was confirmed by 1.5% agarose gel electrophoresis and a

116 nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham, USA)

117  Genome sequencing and assembly
118  Genomic DNA was fragmented using a Covaris ultrasonicator (Covaris Inc., Massachusetts,

119 USA) to achieve an average fragment length of 532 base pairs (bp). A genomic DNA library
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120  with an average insert size of 420 bp was constructed using the KAPA Hyper Prep Library
121  Preparation Kit [33] and was paired-end sequenced (2x300 bp reads) using the Illumina
122  Miseq platform (San Diego, USA). The raw reads were filtered for low quality nucleotides
123  and adapters using Trimmomatic [34] (Phred score-33, leading-3, trailing-6, slidingwindow-
124 4:15, minlen-36) to retain 22,871,341 sequences and were profiled using KAT [35]. Filtered
125 reads were then assembled using DISCOVAR de novo [36]. The completeness of the
126  assembly was assessed with the Sordaromyceta odb9 gene set [37] using the program
127  Benchmarking Universal Single-Copy Orthologs (BUSCO v2) [37] in the Genomics Virtual
128  Laboratory platform [38]. The GC-bias of the genome was detected using OcculterCut

129  version 1.1 with default settings [39].

130  Prediction of repetitive elements

131  Species-specific repeats were first inferred using the program RepeatModeler [40], in which
132  the programs RECON [41] and RepeatScout [42] were used. Long terminal repeats (LTRs)
133  were predicted using the program LTR Finder [43]. The program RepeatMasker v4.0.5 [44]
134  was employed to mask resulting species-specific repeats and LTRs; and applied the program
135  Tandem Repeat Finder (TRF) [45] and the database Repbase v.17.02 [46] to predict and mask
136 interspersed and simple repeats. All repeats predicted were combined using ProcessRepeats

137  command in RepeatMasker.

138 RNA sequencing

139  Inoculation of Pyrethrum leaves

140  Pyrethrum leaves were inoculated using the leaf-sandwich method [47, 48] by placing a
141  fungal ‘mat’ between two pyrethrum leaves in a petridish. Each petri dish was sealed with
142  parafilm and incubated at 24°C with a 12 h-photoperiod. Induced mycelia were harvested at

143 6, 24 and 48 h after inoculation, and total RNA was extracted using the RNeasy Plant Mini
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144 kit (Qiagen, Australia) following the manufacturer’s instructions. Total RNA was extracted
145 from the saprobic stage (l-week-old cultures growing on potato dextrose agar).
146  Contaminating genomic DNA was removed from RNA samples by Ambion™ DNase I
147  (Thermo Fisher Scientific, USA) treatment; the integrity and quantity of total RNA was
148  confirmed by 1% agarose gel electrophoresis and the Experion™ automated electrophoresis

149  system (Biorad Laboratories, Australia).

150 RNA libaries were prepared using both E7530L and E&335L NEBNext® Ultra™ RNA
151  Library Prep Kits (New England Biolabs, USA) to generate fragment sizes of 351-371 bp.
152  The transcriptome was paired-end sequenced (2 x 150 bp reads) on the Illumina Hiseq 2500
153 platform (San Diego, USA). Raw reads were trimmed for quality using Trimmomatic [34]
154  (leading-25, trailing-25, slidingwindow-4:25, minlen-40) to retain between 17,935,938 —

155 18,761,773 sequences for each library and profiled using FastQC [49].

156  Gene prediction

157  Genes were first predicted using the MAKER3 v3.0.0-beta [50], in which both the
158 transcriptomic data from C. tanaceti and the proteomic and ab initio gene predictions from C.
159  graminicola; [51] and C. higginsianum, [51] were combined into a consensus prediction. In
160  brief, transcriptomic RNAseq reads of C. tanaceti were assembled into transcripts in both de
161  novo and genome-guided modes of the program Trinity v2.2.0 [52]. In genome guided
162  assembly, reads were mapped onto the genome using the program TopHat2 v2.1.0 [53].
163  Genome guided and de novo transcriptomic assemblies were combined, redundancy (99%
164  similarity) was removed using the program cd-hit-est [54, 55] and resulting transcripts were
165 filtered for full-length open reading frames (ORFs) using the program Transdecoder [52].
166  Resulting full-length transcripts were further reduced to 80% similarity using the program cd-

167  hit-est and checked for splicing sites. These high quality transcripts were then used as a
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168  training set for ab initio gene prediction programs AUGUSTUS v3.1 [56] and SNAP v6.7
169 [57] and GENEMARK v4.2.9 [58]. Evidence data from assembled transcriptomes (with 99%
170  redundancy using cd-hit-est) and the proteomes were provided to Maker3. The predicted
171  genes (length of conceptually translated protein > 30 amino acids) were further clustered
172  using the k-means clustering algorithm [59] with following metrics: 1) Maker3 annotation edit
173  distance (AED); 2) number of exons in the mRNA; 3) length of translated protein sequence;
174  4) fraction of exons that overlap transcript alignment; 5) fraction of exons that overlap
175  transcript and protein alignment; 6) fraction of splice sites confirmed by a SNAP prediction
176  from Maker3; 7) percentage for repeat overlap with gene-, exon- and CDS-sequence; 8) size
177  of the inferred orthologous group the gene belongs to using OrthoMclv2.0.9 [60]; and 9)
178  presence of functional annotation (see Functional annotation of the C. fanaceti genome
179  section below). Resulting clusters with transposons and ab initio gene predictions with no

180 transcriptome or proteome support were removed.

181  Functional annotation of the C. tanaceti genome

182  Putative coding regions were subjected to protein homology searches against the NCBI (nr)
183  and Swiss-Prot database using BLAST v 2.7.1 (E-value of < 1e-8) [61]. Conserved protein
184  domains and gene ontology (GO) terms were assigned to predicted proteins using
185  InterProScan 5 [62]. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGQG)
186  Orthology (KO) terms were assigned to predicted proteins using the Blastkoala search engine
187  [63]. Assigned KO terms were used to generate C. tanaceti pathway maps using KEGG
188  mapper [64]. Putative genes of C. tanaceti with functional annotations were subjected to
189  species-specific gene enrichment analysis on the DAVID functional annotation database tool

190 [65, 66] and using C. graminicola as the reference species.

191  Comparison to related taxa
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192  The genome and proteome of C. fanaceti was compared to genomes of related taxa using
193  genome alignment, synteny and orthology analyses as following.

194  Genome alignment and synteny analysis

195  Colletotrichum tanaceti genome contigs were aligned to 13 other publicly available genomes
196  (Table 1) of Colletotrichum species using nucmer in Mummer v 3.9.4 [67]. Contig-alignments
197  were then filtered for a minimum 30% nucleotide identity and 200 bp in aligned length. The
198  global coverage of each of the genomes by contigs of C. tanaceti was computed. The program
199  ‘Synteny Mapping and Analysis Program’, SyMAP v 4.2 [68] was used to map C. tanaceti
200  contigs (>150 kb) to the genome with the highest coverage to identify the syntenic regions
201  which are the regions that are in preserved order in chromosomes of C. higginsianum
202  IMI349063 reference genome [5].

203 Table 1. Genomes used in the comparative genomic analyses

Organism Ident Taxonomy Genbank Bio Strain® Assembly! Referend

ifier* IDP accession project

number¢  ID¢

Colletotrichum CCh 708187 MPGHO000 PRJNA NTL11 ASMI193710vl [69]
chlorophyti 00000.1 350752
Colletotrichum CFi 1445577 JARHO00 PRJNA PJ7 GCA _000582985.1  [70]
fioriniae 00000.1 233987
Colletotrichum CFr 1213859 ANPB000 PRJNA Nara GCA_000319635.1  [6]
fructicola 00000.1 225509 gc5
Colletotrichum CGl 1237896 AMYDO00 PRINA Cg-14  GCA _00446055.1 [71]
gloeosporioides 000000.1 176412
Colletotrichum CGr 645133 ACODO000 PRJNA M1.001 M1 0001 vl [5]
graminicola 00000.1 37879
Colletotrichum CHi 759273 LTANOOO PRINA IMI GCA 001672515.1 [5]
higginsinum 00000.1 47061 349063
Colletotrichum Cln 1573173 LFIW0000 PRINA MAFF GCA 001189835.1 [9]
incanum 0000.1 286717 238704
Colletotrichum CNy 1460502 JEMNOOO PRIJNA IMI GCA_001563115.1  [7]
nymphaeae 00000.1 237763 504889
Colletotrichum COc 1209926 MIJBS000 PRIJNA IMI GCF _001831195.1 [72]
orchidophilum 00000.1 411788 309357
Colletotrichum COr 1213857 AMCV00 PRIJNA MAFF Corbiculare240422v  [6]
orbiculare 000000.1 171217 240422 01
Colletotrichum CSa 1209931 JFFI00000 PRJNA CBS GCA _001563125.1  [7]
salicis 000.1 238477 607.94
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Colletotrichum CSi 703756 JFBX0000 PRJNA CBS GCA 001563135 [7]

simmondsii 0000.1 239224 122122

Colletotrichum CSu 1173701 JMSE0000 PRINA TX430 GCA _000696135.1  [73]

sublineola 0000.1 246670 BB

Colletotrichum CT1 1306861 PJEX0000 PRJNA BRIP57

tanaceti 0000 421029 314

Verticillium VDh 498257 ABJE0000 PRINA VdLs.1 GCF_000150675.1 [74]

dahliae 0000.1 225532 7

Botrytis cinerea  BCi 332648 AAID0O00 PRIJNA BO05.10 GCF _000143535.2  [75]
00000.2 15632

Sordaria SMa 771870 CABT000 PRJIJNA k-hell GCF _000182805.2  [76]

macrospora 00000.2 51569

Fusarium FOx 426428 AAXHO000 PRIJNA CBS GCF _00149955.1 [77]

OXySporum 00000.1 18813 123668

204  2Shortidentifier used in pace of the species name in supplementary information
205 P"Taxonomy ID of each species according to the NCBI taxonomy database

206 < Genbank accession number for the deposited nucleotide sequence

207  INCBI bioproject ID

208  cversion of the genome assembly

209  Orthology search and phylogenomics analysis

210  The proteomes of C. tanaceti and the publicly available 17 other species (Table 1) were
211 subjected to ortholog searching using OrthoMCL v2.0.9 [60] and MCL [78] with an inflation
212  value of 1.5. The orthoMCL output was used to determine the percent orthology among the
213  species and to determine the core gene set for Colletotrichum. The ortho-groups with
214  pathogenicity genes (inferred as below) of C. tanaceti were extracted and used to determine
215  the percent conservation of those gene categories within the genus. Furthermore the single
216  copy orthologs were extracted from the orthoMCL output and aligned using MAFFT v.7
217  [79]. These alignments were then trimmed using trimAl v.1.3 [80] to remove all positions in
218  the alignment with gaps in 20% or more of the sequences, unless this leaves less than 60% of
219  the sequence remaining. The trimmed reads were concatenated using FASconCAT-G [81].
220 The concatenated alignment was partitioned and amino acid substitution models were
221  predicted for each partition using ProtTest 3 [82] in FASconCAT-G. The partitioned,
222  concatenated alignment was subjected to maximum likelihood phylogenetic analysis using

223 RAxML v8.2.10 [83] to find the best tree from 20 maximum likelihood searches and using

10
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224 100 bootstrap replicates. Evolutionary distance in number of substitutions per site was
225 computed using the ape package [84] in the R statistical language framework v 3.5.1. [85]

226  from the maximum likelihood tree.

227  Estimation of divergence dates

228  The phylogram developed from above was utilized to estimate the divergence dates of the
229  species considered as following. The final RAXML phylogenetic tree was used to generate an
230  ultrametric tree in r8s v1.81 [86] applying the penalized likelihood method [87] and the
231  truncated Newton (TN) algorithm [88]. Divergence times were estimated using previously
232  derived estimates [8, 11, 89] of 267-430 million years (Myr) for the Leotiomycetes-
233  Sordaromycetes crown, 207-339 Myr for the Sordaromycete crown and 45-75 Myr for the
234  Colletotrichum crown as calibrations. An optimal smoothing factor which was deduced using
235  the cross validation process [86] among 50 values across 1 to 6.3e+09 was used in the

236  divergence time estimation.

237  Prediction of secretome and database searches for identifying other virulence factors

238  Predicted proteins of C. tanaceti were used in downstream prediction of the secretome [90]. A
239  combination of three software tools: SignalPv4.1 [91], Phobius [92] and WoLFPSORT [93]
240  was used to predict the signal peptides. Proteins with transmembrane domains were identified
241 using TMHMM v.2.0 [94] and were excluded as secreted proteins. Proteins with signals
242  targeting the endoplasmic reticulum and GPI anchors were identified and excluded using Ps-
243  SCAN [95] and Pred-GPI [96] respectively. NLStradamus [97] was used to identify proteins
244  with nuclear localization signals. Curated secretome was subjected to homology search
245  against the CDD database to identify the conserved domains (E-value < le-10). The candidate
246  secreted effector proteins were identified by passing the secretome through the program

247  EffectorP [21]. Predicted effector candidates were manually inspected and candidates with

11
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248  known plant cell wall degrading catalytic domains, such as cutinases (PF01083.21), short-
249 chain dehydrogenases (PF00106.24), glycosyl hydrolases (PF00457), peptidases
250 (PF04117.11) and lipases (PF13472.5) were excluded. The candidates with no detectable
251  conserved domains and no homology (E-value < le-3) to any other proteins in NCBI- non-
252 redundant protein sequence database were defined as species-specific. Putative secreted
253 peptidases and inhibitors were predicted by stand-alone blastp (E-value < le-10) homology
254  searches of the domain database of MEROPS release 12.0 [98]. Furthermore, potential
255  virulence factors of C. tanaceti were identified by blastp searches (E-value < 1e-10) against
256  PHI-base v 4.4 [28]. The online analysis tools, Antibiotics and Secondary Metabolite Analysis
257  Shell (antiSMASHV.4) [30] with default parameters and SMURF [99] were used to predict
258 potential secondary metabolite backbone genes and clusters using the default parameters.
259  Cytochrome P450s and transporters were described based on blastp (E-value < 1le-10)
260 homology searches against the Fungal Cytochrome P450 database [100] and the Transported
261  Classification Database [101]. The functional annotations for C. tanaceti were compared
262  across 17 other closely related taxa (Tablel). The family specific Hidden Markov Model
263 profiles of dbCan database v6 [102] were employed using the program HMMScan in
264 HMMER v31.b2 [103] in order to identify the carbohydrate active enzymes (CAZymes) and
265 the CAZyme families in the proteome of C. tanaceti. Fungi specific cut-off E-value of l1e-17
266 and a coverage cut-off of 0.45 [102] were used in the analysis which was repeated for
267  seventeen related species (Table 1). The identified CAZymes were run though InterProScan 5
268  [62] to check for false positives. The member counts of each CAZyme family for each taxon

269  were corrected accordingly.

270  Evolution of CAZyme gene families
271  CAFE v4.0 [104, 105] was used to estimate the number of CAZyme gene family expansions,

272  contractions and the number of rapidly evolving gene families upon divergence of different

12
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273  lineages. Error-models [105] were estimated to account for the genome assembly errors and
274  were incorporated into computations. A universal lambda value (maximum likelihood value
275  of the birth-death parameter) was assumed and gene families with significant size variance
276  were identified using a probability value cut-off of 0.01. The branches responsible for
277  significant evolution, were further identified using the Viterbi algorithm [104] with a
278  probability value cutoff of 0.05. Sizes of plant pathogenicity-related gene families from
279 CAZomes of each of the species; the ‘CAZyme pathogenicity profiles’ were retrieved and
280  compared using the online tool ClustVis [106]. The ‘CAZyme pathogenicity profile’ of a
281  particular species included the gene families that have activities in binding to or degradation

282  of plant cell wall components such as cellulose, hemicelluloses, lignin, pectin and cutin.

283 Relationship of pathogenicity related genes and repeat elements

284 The mean distances between repetitive elements and pathogenicity related genes were
285 analyzed using permutation tests implemented in the package regioneR [107] in the R.
286  Repetitive element categories incorporated in this analysis included: 1) tandem and
287  interspersed repeats combined; 2) tandem repeats; and 3) interspersed repeats. These were
288  compared to the pathogenicity related gene classes: 1) CAZymes; 2) peptidases; 3) secondary
289  metabolite biosynthetic gene clusters; and 4) effectors. The mean distance between each gene
290 in above categories and the nearest repetitive element was compared against a distribution of
291  distances of random samples from the whole genome. Ten thousand random iterations were
292  conducted, from which a Z-statistic estimate, and its associated probability, were computed

293 for each gene category.

294 RESULTS

295  Colletotrichum tanaceti genome and gene content
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296  The genome of isolate BRIP57314 was assembled into 5,242 contigs with an N50 value of
297 103,135 bp and assembly size of 57.91Mb. The average GC content was 49.3% (Table 2).
298 The genome size and GC content of C. tanaceti was within the range previously reported to
299  other Colletotrichum spp. (S1 Fig). Draft genome assembly and the raw unassembled
300 sequences are available under the accession no PJEX00000000 in Genbank. The genome
301  contained 12,172 coding genes with an average gene length of 2,575bp. Mean exon count per
302  gene was 3, and 54.1% of the genome sequence contained protein-encoding genes. In the
303 BUSCO analysis, out of the 3,725 benchmarking genes in the Sordaromyceta group, the
304  genome was reported to contain 3,656 complete BUSCOs (98.2%), of which two were
305  duplicated and the rest were single copy genes (98.1%). A total of 30 (0.8%) BUSCOs were
306 fragmented and 39 were missing (1.0%). The repeat content of C. tanaceti was 24.6% of the
307  total genome of which 85.2% was interspersed repeats (Table 3).

308 Table 1. Features of the Colletotrichum tanaceti BRIP57314 genome

Feature Statistics
GC _content (%) 49.3
N50 (bp) 103,135
Maximum sequence length (bp) 945,015
Mean length (bp) 11,047
Number of base pairs 57,912,474
Number of contigs 5,242
Number of genes 12,172
Number of exons 35,792
Number of introns 23,620
Number of CDS 12,172
Overlapping genes 3,983
Contained genes 1,586
Mean gene length (bp) 2,575
Mean exon length (bp) 787
Mean intron length (bp) 137
Mean CDS length (bp) 1,440
% of genome covered by genes 54.1

% of genome covered by CDS 30.3
Mean mRNAs per gene 1

Mean exons per mRNA 3

Mean introns per mRNA 2
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Table 3. Repetitive elements of the C. tanaceti genome
Repetitive element  Number of Length Percentage of
elements occupied (bp) sequence
SINEs: 49 4,123 0.01
ALUs 0 0 0
MIRs 11 869 0
LINEs: 612 251,619 0.43
LINE1 207 48,554 0.08
LINE2 35 2,588 0
L3/CR1 82 5,928 0.01
LTR elements: 7,299 4,825,086 8.33
ERVL 2 120 0
ERVL-MaLRs 1 39 0
ERV classl 3 209 0
ERV _classll 1 32 0
DNA elements: 1,436 905,846 1.56
hAT-Charlie 3 140 0
TcMar-Tigger 6 529 0
Unclassified: 8,863 6,153,241 10.62
Total interspersed 12,139,915 20.96
repeats
Small RNA: 754 210,370 0.36
Satellites: 0 0 0
Simple repeats: 9,941 1,757,918 3.04
Low complexity: 3,064 147,883 0.26
Total repeat 24 .62%
content

Of the 12,172 predicted proteins, 11,352 had an annotation edit distance (AED) value of less

than 1.0, and 2962 genes had an AED value of zero. The number of genes without putative

annotation from the public database searches was only 958. A total of 8,945 proteins (73.5%

of proteome) had InterProScan annotations of which 6,911 contained 9,647 Pfam domain

annotations and 5,452 had GO term ontology annotation. The most abundant (n=129) Pfam

domain was the cytochrome P450 family (PF00067) followed by the protein kinase domain

(n=127; PF00069). Gene enrichment analysis suggested enrichment of many GO terms

including those associated with translation and chromosome telomeric region (S1 Table).

Putative proteins of C. tanaceti were subjected to KEGG pathway analysis which returned
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320  assignment of 5,883 proteins to known pathways (S2 Table). The highest number of KO
321  identifiers was among the metabolic pathway assignments (n=693) of which the majority
322  (n=363) were for amino acid metabolism followed by carbohydrate metabolism (#=290) (S3
323 Table). Among the environmental information processing pathways, 81 C. tanaceti genes
324  were assigned into 47 KO identifiers belonging to MAPK pathway (S4 Table). Furthermore,
325 24 C. tanaceti proteins were annotated with 10 aflatoxin biosynthesis pathway KO

326  assignments (S5 Table) and 56 proteins were assigned KOs for ABC transporters (S6 Table).

327 Genome alignment and synteny

328  The global alignment coverage of 13 other Colletotrichum genomes from C. tanaceti contigs
329  was proportionate to the evolutionary proximity to C. tanaceti (Fig 1a). The highest coverage
330 was in C. higginsianum (63.8%) and the least was in C. orbiculare 4.26%. Among the C.
331  tanaceti contigs aligned to the chromosomes of C. higginsianum, the best alignment coverage
332 was to chromosome NC 030961.1 (chromosome 9) (S7 Table). Colletotrichum tanaceti
333  contigs (n=155 of size>10 kb) were mapped in SYMAP synteny analysis to form 142 synteny
334  blocks which covered 44.0% of the C. higginsianum and 80.0% of the C. tanaceti sequences
335  that were used (S2 Fig). Genes were present in 92.0% of the syntenic regions in C. tanaceti
336 and in 77.0% of C. higginsianum. No inverted synteny blocks were reported. Despite the
337  highest coverage in C. higginsianum chromosome 9, the largest synteny block was identified
338 Dbetween the complete C. tanaceti contig 4 (945.01 kb of length) and C. higginsianum
339 chromosome NC 030954 (Chromosome 1). A total of 38 effector candidates of C. tanaceti
340  were within these syntenic regions between C. fanaceti and C. higginsianum. No synteny
341  blocks were detected to the two mini chromosomes (NC 030963.1 and NC 030964.1) of C.

342  higginsianum.
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343  Fig 1. Comparison of the C. tanaceti genome to previously published Colletotrichum spp.
344  genomes. (a) Percentage global alignment (y axis) of 13 Colletotrichum draft genomes to
345  contigs representing the C. tanaceti draft genome, plotted against evolutionary distance with
346  reference to C. tanaceti (x axis), (b) Number of orthologs shared by 13 Colletotrichum draft
347  genomes and C. tanaceti (y axis) plotted against the evolutionary distance with reference to
348  C. tanaceti (x axis); evolutionary distance given in number of substitutions per site, computed

349  using the ape package [98] in R from a maximum likelihood tree.

350  Orthology search

351 Of 221,456 total genes from 18 genomes, the number of core genes reported for all
352  ascomycetes in the orthology analysis was 3,944. A total of 10,695 putative proteins from C.
353  tanaceti were assigned to 10,074 groups containing orthologs and/or recent paralogs and/or
354  co-orthologs across all species. A total of 6,002 genes were conserved in the genus
355  Colletotrichum. Colletotrichum tanaceti had 9,679 orthologs with C. higginsianum which
356  was the highest ortholog count among Colletotrichum spp. followed by 8,855 orthologs with
357  C. nymphaea (Fig 1b). Twenty of these groups, with 48 genes among them were exclusive to
358 C. tanaceti and were defined as recent paralogs (in-paralogs) of C. tanaceti with no

359  homology to the 16 other species tested.

360 Divergence time in Colletotrichum lineages

361 A total of 2,214 single copy ortholog (SCO) genes identified among the C. tanaceti and 17
362 closely related genomes (Table 1) were used to generate a maximum likelihood (ML)
363  evolutionary tree in which all branches achieved bootstrap support of 100%. Colletotrichum
364  tanaceti formed a clade with C. higginsianum, a member of the destructivum complex and
365 the two destructivum complex members formed a sister clade with the graminicola complex

366 members and C. incanum. A smoothing factor value of 1 was reported as the optimal value
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367  for divergence time predictions in 18s. Colletotrichum tanaceti and C. higginsianum were
368  reported to have diverged ~ 9.97 million years ago (mya). The most recent common ancestor
369 (MRCA) of gloeosporioides, graminicola, and acutatum clades were reported to be 6.12,

370 10.98 and 15.78 mya, respectively (Fig 2).

371 Fig 2.Chronogram showing divergence time estimations (in million years) for

372  Colletotrichum spp. and related taxa.

373 Identification of pathogenicity related genes in C. tanaceti

374  Secretome of C. tanaceti

375  Of the 12,172 predicted proteins, 1,024 (8.41%) were predicted to be secreted. A total of
376 2,702 Conserved Domain Database (CDD) domains were found in the secretome. Of these,
377 287 were specific features with NCBI curated models, 124 were generic features with only
378 the superfamily annotations [108]. Only 433 queries had no known domain hits. The
379 secretome was rich in alpha beta hydrolase superfamily (cl21494) containing enzymes,
380  glycosyl hydrolases and proteolytic enzymes and cytochrome P450 monoxygenases (P450)

381 (S8 Table). A total of 100 secreted proteins had nuclear-localization signals (S8 Table).

382 A total of 233 effector candidates were predicted by EffectorP. Following manual inspection
383  and censoring for candidates with known plant cell wall degrading catalytic domains, a total
384  of 168 candidates were selected as C. tanaceti effector candidates for further analysis (S9
385 Table). The secreted candidate effector repertoire of C. tanaceti contained homologs of
386  known effectors, such as the Ecp6 of Cladosporium fulvum [109], MC69 of Magnoporthe
387  oryzae [110], ToxB of Pyrenophora tritici repentis [111] and Magnoporthe oryzae Bas3
388 [112]. Furthermore, among the effector candidates, there were proteins with conserved
389  domains of known virulence factors. Most effector candidates were small (average length of

390 155 amino acids) and rich in cysteine (average cysteine composition was 3.3%) which are the
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391  hallmarks of effectors. A total of 78 conserved motifs of fungal effectors [113] were present
392 in 62 effector candidates which had at least one motif each. Twenty-two effector candidates
393 that did not cluster in ortholog search among the 14 Colletotrichum and three related species,
394  and also did not show detectable homology to the NCBI-nr and swissprot databases were
395  defined as C. tanaceti-specific. Only 24% of the effectors of C. tanaceti were conserved

396 among all 14 Colletotrichum spp.

397 A total of 98 secreted peptidases were predicted with the majority (n=64) being serine
398  peptidases largely comprising the SO8 and S09 subfamilies. The second most abundant class
399 was the metallo peptidases (n=19) (S10 Table). All six aspartic peptidases belonged to
400 subfamily AO1. A total of 20 secreted peptidase inhibitors were reported in C. tanaceti
401  comprising two carboxypeptide-y inhibitors, five family-19 inhibitors and 13 family-14
402 inhibitors (S11 Table). Forty nine percent of the proteases of C. fanaceti were among the

403  “core” set of proteases of Colletotrichum.

404  Secondary metabolite-related genes and clusters

405 Forty-one secondary metabolite backbone genes were predicted in C. tanaceti using SMURF
406 and the majority were polyketide synthases (PKs, n=13) with four PKs-like proteins.
407  Furthermore, nine non-ribosomal peptide synthases (NRPS), eight NRPs—like proteins, two
408  hybrid PKs-NRPS enzymes and five dimethylallyltryptophans (DMATS) were also predicted
409  as backbone genes (S12 Table). A total of 52% of these backbone genes were within the core
410 set of genes in Colletotrichum. A total of 33 secondary metabolite gene-clusters were
411  predicted surrounding the backbone genes. However, the program antiSMASH predicted a
412  total of 50 clusters. Among the clusters, there were 12 typel-PKS, two type3- PKs, thirteen
413  terpenes, eleven NRPS, four indoles, three T1pks-nrps, one T1PKs-indole and four other

414  proteins. Cluster 10 of TIPKS showed 100% similarity to the genes in LL-Z1272 beta
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415  Dbiosynthetic gene cluster (BGC0001390 cl). Furthermore, a homolog to the melanin
416  Dbiosynthetic gene SCDI was also reported in C. tanaceti (CTA1_6632). When predictions
417  from the two tools were compared, putative SMB clusters on 31 contigs of C. tanaceti were
418  predicted by both tools and 19 of the backbone genes from SMURF were also predicted in
419  antiSMASH (Supplementary Table 12). A total of 37 SM clusters were within the syntenic
420  blocks of C. higginsianum. The conserved SM domains identified in each cluster were
421  reported (S13 Table). Predictions from antiSMASH were compared across taxa and majority
422  of the clusters were typel-PKs like followed by NRPS in all ascomycetes compared (Fig 3a).
423  The highest number of clusters were reported from C. fructicola (n=84) followed by C.
424  higginsianum (n=74) and C. gloeosporioides (n=73). The composition of the SMB gene
425  cluster composition of C. fanaceti was most similar to C. orchidophilum, the acutatum

426  complex members and C. orbiculare (S3 Fig).

427 Fig 3.Composition of different pathogenicity gene categories predicted for
428  Colletotrichum tanaceti and related species. The number of genes in each gene category (x
429  axis) plotted for each species (y axis). (a) secondary metabolite biosynthetic gene clusters-
430 (gene clusters producing polyketides, terpenes, non-ribosomal peptides (NRPs), indoles and
431  the hybrids of above); (b) number of homologs in the fungal cytochrome P450 database and
432  the transporter classification database (TCDB); (c) homologs in the pathogen-host interaction
433  database; homologs to entries in the “unaffected pathogenicity” database were excluded; (d)
434 CAZyme classes; glycoside hydrolases (GH), polysaccharide lyases (PL),
435  glycosyltransferases (GT), carbohydrate esterases (CE), molecules with auxiliary activities

436  (AA), and carbohydrate binding molecules (CBM).

437  Cytochrome P450 monoxygenases (P450s) and transporters
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438 Inthe C. tanaceti genome, 1,457genes had homologs in the fungal cytochrome P450 database
439  (S14 Table) and 911 out of that had >30% identity. There were 1,824 homologs (S15 Table)
440 in the transport classification database for C. tanaceti with 1,276 genes with >30% identity.
441  The majority (n=430) of the homologs were genes of the major facilitator superfamily (MFS,
442  2.A.1) followed by 129 genes of the ABC transporter family (3.A.1) and 123 of N.P.C 1.1.1.
443  Within Colletotrichum genus, members of the gloeosporioides complex had the highest

444  number of homologs for both P450s and transporters (Fig 3b).

445 Homologs in PHI-base

446 A total of 3,497 homologs were recorded in C. tanaceti from the pathogen-host interaction
447  database (PHI), of which 1,592 represented mutated phenotypes with reduced virulence (S16
448  Table). The second most common (n=1,514) were the unaffected pathogenicity category, 382
449  homologs were for loss of pathogenicity and 42 were in the effector category. Notably, the
450  mutant phenotype of 141 homologs was lethal to this particular pathogen, and 103 homologs
451  had increased virulence after mutation (Fig 3¢). The two gloeosporioides complex members
452  had the highest number of homologs in the database among the Colletotrichum spp., followed
453 by the acutatum complex species, C. simmondsii, C. fioriniae and C. nymphaea. Despite C.
454  higginsianum having a large number of homologs, C. fanaceti had a below average number
455 for all the categories among the Colletotrichum spp., with a profile similar to C.

456  orchidophilum, C. chlorophyti and C. graminicola (S4 Fig).

457 CAZymes

458 A total of 608 C. tanaceti proteins were assigned to 121 CAZyme families of which 43% was
459  glycosyl hydrolases followed by 18 % of redox enzymes (auxiliary activities) and 14%
460 carbohydrate esterases (S17 Table). Carbohydrate binding molecules and polysaccharide

461 lyases both formed 7% each of the C. tanaceti CAZome whereas 11% was
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462  glycosyltransferases. Members of the gloeosporioides and acutatum complexes had the
463 largest CAZomes among Colletotrichum spp. The CAZyme repertoires of the graminicola

464  complex members were relatively small (Fig 3d).

465  Evolution of CAZyme families upon divergence of Colletotrichum lineages

466 A total of 152 CAZyme families, predicted at the node of MRCA for S. macrospora and B.
467  cinerea, were used in gene family evolution analyses in CAFE. A uniform birth-death
468  parameter (A) of 0.0023 was computed. Thirty gene families were reported to be significantly
469  evolving (family-wide p value > 0.05), of which 21 were rapidly evolving (family-wide p>

470  0.01 and Viterbi p > 0.01 in any lineage) (S18 Table).

471 At the divergence of Colletotrichum spp., 39 expansions and 12 contractions were predicted
472  with respect to its MRCA with Verticillium species (S19 Table). Expansions included the
473  lignin hydrolase family AA2, pectin degrading polysaccharide lyase families (PL1, 3, 4, 9
474  and GH78), lignocellulose degrading families (AA3, AA9, GH131, GHS5, GH6, GH7),
475  hemicelluloses degrading families (CE1, CE4, CE5, CE12, GH3, GH16, GH30, GH43,
476  GHSI1, GH67, and GH10), Lys M domain containing family CBM50 and cutinase family
477  CES. The cellulose degrading family GH131 was the only rapidly evolving CAZyme family
478  (family-wide p > 0.01 and Viterbi p > 0.01) which expanded upon the divergence of
479  Colletotrichum spp. Within the genus, the highest number of expansions (n=38) was reported
480 at the divergence of the gloeosporioides-complex clade with only 4 contractions. Notably, the
481 CBMI18 and GH10 families were contracted and many families with plant cell wall degrading
482  enzyme activity were expanded. The rapidly and significantly expanded families, (family-
483  wide p > 0.01 and Viterbi p> 0.01) upon the divergence of the gloeosporioides-complex clade
484  include GH43, GH106, CBM50 and AA7. At the divergence of the acutatum-complex clade,

485  there were 22 expansions, of which expansions in GH78, GH43 families were rapid and
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486  significant and there was only one contraction. The divergence event of the graminicola-
487  complex clade involved contractions in many CAZyme families with pectin degradation
488  activity showing significant, rapid contractions (family-wide p > 0.01 and Viterbi p > 0.01)in
489  families AA7, CBM50, CE8, GH28, GH78, PL1, and PL3. Divergence of the destructivum
490 complex-clade was associated with 11 expansions and 21 contractions, of which expansion in
491  AA7, GH74 and CE10 was significant and rapid.

492  Among the other species considered, Fusarium oxysporum had the highest number of genes
493  (n=344) that were gained, with 75 expanded CAZyme with respect to its MRCA (S20 Table).
494  Colletotrichum incanum had the second highest number of gene family expansions (n=35)
495  and genes gained (n=69) followed by C. higginsianum (31 and 68 respectively). The highest
496  number of contracted CAZyme families was identified in Sordaria macrospora (n=87) with a
497  loss of 219 genes compared to the ancestral node. Forty CAZyme families contracted and
498  only nine expanded in C. tanaceti with respect to the MRCA with C. higginsianum. The AA2
499  family with lignin peroxidase activity and the hemicellulose degrading GH12, GH74 families
500 were among the expanded families, but many families with pathogenicity and plant cell wall
501  degrading activity had contracted in C. tanaceti. However, the highest number of significant,
502 rapidly evolving gene families was reported from C. tanaceti (n=9) followed by F.
503  oxysporum and C. higginsianum, both which had seven rapidly evolving gene families each.
504 In C. tanaceti, rapidly evolving CAZyme families included AA9, GH131 with lignocellulose
505 degrading activity, chitin binding molecule families CBM18 and CBMS50, GH18 with
506 chitinase activity, GH3 and GH74 with hemicelluloses degrading activity, GH78 with
507  pectinase activity and GT1 with glucuronosyltransferase activity. However, CBM18 and
508 GH74 were the only families that expanded among those above with the rest contracting in C.
509 tanaceti with respective to their MRCA. Gloeosporioides complex species had the largest

510 ‘CAZyme pathogenicity profiles’ among all Colletotrichum species considered. The
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511  CAZyme pathogenicity profile of C. tanaceti was most similar to those of Colletotrichum
512 species known to have an intermediate host range, infecting many hosts within a single plant
513 family or few hosts across several plant families (Fig 4). When compared the overall
514  pathogenicity gene profiles of all Colletotrichum spp., which included the numbers of the
515 SMB clusters, transporters, P450s, CAZymes and the homologs to the PHI database, the
516  profile of C. tanaceti was most similar to C. orchidophilum and C. chlorophyti (Fig 5).

517

518 Fig 4. Comparison of CAZyme pathogenicity profiles predicted for Colletotrichum
519  species. Hierarchical clustering performed with Euclidean distance and Ward linkage.

520 Fig 5. Comparison of the overall pathogenicity profiles predicted for Colletotrichum
521  species. The numbers of CAZymes, secondary metabolite biosynthetic gene clusters (SMB),
522 homologs in the transporter classification database (transporters), homologs in the fungal
523 cytochrome P450 database (P450) and the number of homologs in the PHI database,
524  excluding the homologs to entries in the “unaffected pathogenicity” database were used in the
525  analysis. Hierarchical clustering was performed using Euclidean distance and Ward linkage

526  methods.

527  Relationship of pathogenicity-related gene categories and repeat elements

528 The permutation tests confirmed that genes in all the tested pathogenicity-related gene
529 categories are located significantly closer to tandem repeats than expected in a random
530 sample (Table 4). The negative Z-scores confirmed the mean distance between those genes
531 and the nearest repetitive element was less than mean of a random sample of the genome.
532  Furthermore, all gene categories except the CAZymes were located significantly closer to the
533 interspersed repeats. However, the expanded and the contacted subgroups of the total
534 CAZome were significantly associated with interspersed repeats (Table 4).

535
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536  Table 4. Permutation tests for association of repetitive elements with pathogenicity gene

537  categories
Gene All repeats ? Tandem repeats Interspersed repeats
categories of

: Zscore® Pvalue®© Number Zscore Pvalue® Zscore® Pvalue®
interest of b

overlaps
CAZymes -5.97 <0.001 554 -3.914 <0.001 -0.443 0.334
Expanded -3.514 <0.001 96 -4.553 <0.001 -3.050 <0.001
CAZymes
Contracted -4.413 <0.001 240 -3.237 <0.001 -5.883 <0.001
CAZymes
Effectors -5.631 <0.001 98 -4.725 <0.001 -3.861 <0.001
Peptidases -5.787 <0.001 82 -4.679 <0.001 -3.895 <0.001
SMB clusters -7.901 <0.001 171 -8.490 <0.001 -2.610 0.003

538 2tandem and interspersed repeats
539  bZ-statistic estimate and its ¢ associated probability computed based on 10,000 random
540  iterations.

541  Accumulation of Pathogenicity genes in the A-T rich regions of C. tanaceti genome

542  Distinct A-T rich regions and G-C equilibrated regions were identified in the genome of C.
543  tanaceti (Fig 6). A total of 24.3% of the genome which had an average length of 3.77 Kb was
544  rich in A-T and had a maximum G-C of 29%. A total of 85 genes were reported in these
545  regions which had a gene density of 6.04 genes per Mb but the majority (68.25%) of these
546  genes was hypothetical. Two secondary metabolite biosynthetic genes, 3 CAZymes, 2
547  cytochrome P450s, 2 lipases, 4 transporters, one transcription factor and one DNA
548 polymerase were also among the genes in the A-T rich regions (S21 Table). The G-C
549  equilibrated regions accounted for 75.7% of the genome and the average length was 14.6 Kb.
550 The maximum G-C percentage in these regions was 55.6 and 12,087 genes were reported
551  with a gene density of 276 genes per Mb.

552

553 Fig 6. Plot of GC-content in the draft genome of Colletotrichum tanaceti against
554  proportion of the genome. Genome segments were classified into A-T rich (24.3%) and G-

555  C equilibrated (75.7%) using a GC content threshold of 40% (vertical blue line).

25


https://doi.org/10.1101/536516
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/536516; this version posted January 31, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

556  DISCUSSION

557  Genome and the repeat content of Colletotrichum tanaceti

558  This study reports the first draft genome sequence and annotations of the emerging plant
559  pathogen, C. tanaceti. The high N50 value and BUSCO completeness indicates the high
560 quality of the assembly and AED scores of less than one for the majority of predicted genes
561  (93.3%) suggested that these genes had at least partial congruence with the transcriptomic
562 evidence [114]. These good quality gene predictions and annotations will provide a solid

563 foundation for downstream genetic, population genomic and evolutionary studies.

564  The genome of C. tanaceti had a larger repeat content (25%) than the typical 3-10% in fungi
565 [115]. Simple sequence repeats comprised 3.03% of the genome of C. tanaceti which itself
566  was unusually high for fungi (generally 0.08-0.67%) [116]. However, the majority of repeats
567  were interspersed transposable elements (TE) (21%). TE content of C. fanaceti was higher
568 than in six previously studied Colletotrichum species, including C. higginsianum which is in
569  the same species complex, but lower than in C. orbiculare (44.8%). The majority of TE were
570  retro-transposons, similar to other Colletotrichum spp. [117]. Proliferation of repetitive
571 elements especially transposons, is known to be a major mechanism driving expansion of
572  eukaryote genomes [118, 119] and therefore, could be the reason the C. tanaceti genome is

573 larger than average for fungi in the phylum Ascomycota (36.91 Mb) [120].

574  Repeat-induced-point mutation (RIP) is a fungal-specific mechanism for limiting transposon
575  proliferation below destructive levels [39]. RIP is known to generate A-T rich regions with
576 lower gene densities and higher evolutionary rates than the core genome, thus generating
577  “two-speed” genomes in several fungi [117, 121-123]. The presence of A-T rich, gene sparse
578 regions in the C. tanaceti genome could therefore, be a byproduct of the RIP due to TE

579  proliferation. Accumulating repeats followed by expanding genome size with respect to the
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580  non-pathogenic strains is a trend observed in many plant pathogenic fungi and can provide an
581  evolutionary advantage in terms of pathogenesis [124]. The high repeat content of C. tanaceti

582  may have an important role in generating genome plasticity [125].

583  Pathogenicity genes of C. tanaceti

584 A large array of putative genes related to pathogenicity was inferred from the sequenced
585 genome of C. tanaceti. Apart from many plant cell wall-degrading enzymes, effectors, P450s
586 and the proteolytic enzymes, there were proteins with CFEM domain (pfam05730) [126] with
587  roles in conidial production and stress tolerance [127] among the secreted proteins. The
588 average cysteine composition, length and proportion of specificity of the candidate secreted
589 effectors of C. tanaceti were similar to those hemibiotrophic pathogens [128]. However, a
590 minority of effector candidates was neither small (<300bp) nor rich in cysteine (>3%),
591  similar to previous reports of atypical effectors [129]. Effector candidates with a nuclear
592  localization signal might translocate to the host nucleus and reprogram the transcription of
593  genes related to host immune responses. Homologs to known effectors, and effectors with
594  conserved domains of virulence factors may have similar functions in C. tanaceti, for
595 example, in penetration peg formation (cyclophllin) [130], phytotoxity induction (cerato-
596 platanin) [131] and adherence of the fungal structures to other organisms (hydrophobin)

597  [132].

598  Most secreted proteases of C. tanaceti were serine proteases predicted to evade plant immune
599  responses by degrading plant chitinases [22]. Subtilisins (S08) were the most abundant of
600 these in C. tanaceti, similar to reports in other fungi [22]. Subtilisins, with their alkaline
601  optima, and the proteases in other subfamilies with acidic optima, such as A01, C13, GO1,

602 M20 and S10 [133], might enable C. tanaceti to degrade plant proteins across a wide pH
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603  range. Also, the protease inhibitors of C. tanaceti might have effector-like roles via inhibition

604  of plant defense proteases [134].

605 The SMB gene clusters and the candidate proteins of MAPKs pathways identified in the
606 genome of C. tanaceti are also believed to play an important role in pathogenesis. The
607  majority of the secondary metabolite clusters of C. tanaceti were type 1 PKs-like which are
608 usually associated with synthesizing fungal toxins. Melanin, another important secondary
609  metabolite aids penetration via increasing turgor pressure [135]. Even though the gene cluster
610 associated with melanin biosynthesis was not identified, the homolog of the melanin
611  biosynthetic gene SCDI encoding Scytalone dehydratase [136] in C. ftanaceti is worth
612  investigating further since SCD/ has been successfully used as a target for fungicides to
613  control other pathogens [137]. Apart from their function in SM biosynthesis, the candidate
614  P450s of C. tanaceti could be involved in housekeeping roles and therefore, could be good
615 targets for fungicide development, as in the case of azoles targeting CYPS51 [138].
616  Furthermore, the candidate proteins of MAPKs pathway in C. fanaceti could play a crucial
617 role in appressorium formation [25, 139], penetration [140], conidiation [141] and

618  pathogenesis-related morphogenesis [142], as reported for C. higginsianum and C. lagenaria.

619  Of the CAZyme families identified to be expanded in C. fanaceti, the chitin binding family
620 CBMI18 could play a role in protecting the C. tanaceti cell wall from exogenous chitinases, as
621 s the case in Trichoderma reesei [143]. The expansion of the hemicellulose-degrading GH74
622  family could promote rapid degradation of host tissues by C. fanaceti during the necrotrophic
623  phase. The expansion of the lignin-degrading AA2 family in C. tanaceti has the potential to
624  assist infection of xylem vessels and thereby aid translocation of propagules to different parts

625  of the plant and establishing secondary infections.
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626 The conserved nature of certain pathogenicity genes, such as the secondary metabolite
627  clusters within the destructivum complex, was evident with their presence within the syntenic
628  blocks with C. higginsianum. However, only a minority of the effectors, proteases and SM
629  backbone genes of C. tanaceti were among the core gene set for Colletotrichum overall,
630 therefore emphasizing their role in adaptation to new hosts. The species-specific effectors,
631  singletons from the orthology analysis and the genes exclusive to C. tanaceti might have been
632  horizontally transferred or be related to the host affiliation and niche specialization of C.
633  tanaceti. Taken together, this inferred pathogenicity gene suite of C. fanaceti could be
634 targeted in future resistance breeding and other disease management strategies for C.

635  rtanaceti.

636  Host range of Colletotrichum tanaceti

637 The proposed pathogenicity gene repertoire of C. tanaceti was most similar to that of
638  pathogens with intermediate host ranges. The number of pathogenicity genes inferred from C.
639  tanaceti was either similar to or less than the average for all Colletotrichum spp. investigated
640  but the overall composition was similar to Colletotrichum spp. which either were able to
641 infect many species within a plant family or few species across families. The comparison of
642 CAZyme pathogenicity profiles among Colletotrichum spp., with both expansions and
643  contractions with respective to its MRCA clearly suggested an intermediate host range for C.

644  ranaceti.

645  The pathogenicity profile of C. tanaceti was very distinct from that of the other destructivum
646 complex member, C. higginsianum, despite the two species sharing the highest number of
647  orthologs and having the shortest evolutionary distance. Contractions in many pathogenicity
648 gene families in C. tanaceti compared to C. higgginsianum indicated more restricted

649  pathogenicity in C. tanaceti. The most similar CAZyme pathogenicity profile to that of C.
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650  tanaceti was from C. chlorophyti which has been reported to infect herbaceous hosts such as
651 tomato (plant family Solanaceae) and soybean (plant family Fabaceae) [69]. The similarity to
652  C. chlorophyti was consistent for other gene categories such as the P450s, transporters and
653 the overall pathogenicity profile. A homolog to the demethylase (PDA), which provides
654  tolerance to the phytoalexin pisatin synthesised by Pisum sativum [144], was inferred in C.
655 tanaceti (CTA1 6324s) which could be an indicator of the ability of C. tanaceti to infect
656 Fabaceae. The composition of the SMB cluster was however, more similar to C.
657  orchidophilum, another pathogen reported to infect the herbaceous, monocot plant family of
658  Orchidaceae [145]. The similarity of the pathogenicity profile of C. tanaceti to two pathogens
659 infecting multiple herbaceous plant species was notable as the only known host of C. tanaceti
660 is also herbaceous. Both C. chlorophyti and C. orchidophilum have been reported from
661  multiple host species. Therefore, the pathogenicity gene suite of C. tanaceti suggests that C.
662  tanaceti has the genetic ability to infect more hosts than currently recognized. If C. tanaceti
663 can infect other hosts, such crops could also provide an external gene pool of inoculum for
664 infection of pyrethrum crops increasing the evolutionary potential of the pathogen
665 populations. Based on results of comparative analysis of pathogenicity profiles, a further
666  hypothesis is that these alternative hosts are likely to be herbaceous plants. Future studies

667  investigating the cross-host infectivity and pathogenicity of C. tanaceti are recommended.

668  Evolution of pathogenicity genes

669  Pathogenicity genes of C. tanaceti appear to be capable of evolving relatively rapidly.
670 Tandem repeats such as simple sequence repeats have high mutation rates [146] and could
671 promote frameshift mutations in adjacent genes by slipped misalignment during replication.
672  Therefore, the significant overlap between the tandem repeats and the pathogenicity genes
673 suggested high potential to mutate and create different pathotypes. Transposons promote

674  insertional mutations that can either cause disruption or modification of gene expression or
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675  generate new proteins and also are major drivers of gene duplication [147]. Transposons were
676 in close proximity to gene categories of pathogenicity in C. tanaceti such as the SMB
677  clusters, peptidases and effectors. The significant association of TE with pathogenicity genes

678  were previously reported in C. truncatum [117] and C. higginsianum [15].

679  Colletotrichum tanaceti had the highest number of rapidly evolving CAZyme families among
680 the 17 species studied which also was indicative of the rapid evolutionary rate in these
681  pathogenicity genes. Interspersed repeats were not in close proximity to the total CAZome.
682 They were however, located significantly closer to the expanded or contacted families
683 indicating that interspersed repeats were a major contributor to CAZyme family
684  expansions/contractions in C. tanaceti by causing gene duplication (in expansions) or gene
685  disruptions (in contractions) [118, 148]. Although gene sparse, the A-T rich regions of the
686 genome contained several (n=18) known pathogenicity and virulence factors and many
687  hypothetical proteins which could be facilitating adaptive evolution. According to the two-
688  gene hypothesis the genes in the A-T rich regions can evolve faster than the ‘core‘ genome
689  [124]. Duplication of pathogenicity and virulence genes and a higher mutation rate may allow
690 more rapid pathogen responses to evolution of resistance in existing hosts or adaptation to

691  new host species.

692  Genus Colletotrichum

693  Phylogenetic relationship throughout the genus was consistent with previous observations,
694  with gloeosporioides complex members and C. orbiculare forming a clade separately from
695 the destructivum, graminicola and acutatum clades [9-11]. One notable difference was in the
696  divergence time estimates for the divergence of Colletotrichum species complexes which
697  were more ancient than reported by Liang et al [11], despite using the same calibration times.

698  This could have been due to this study using cross-validation across 50 smoothing factors in
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699 CAFE as opposed to using 12 different constraints and smoothing factor combinations

700  differences, as the use of the different data sets.

701  Comparative genomic analyses emphasized the rapid evolutionary rate and the high diversity
702  within the genus. The short time for speciation within the acutatum complex, and the fourteen
703  Colletotrichum species in general, was suggestive of the high evolutionary rate within the
704  genus with respective to the typical evolutionary rate of the fungal kingdom (0.0085 species
705  units per Myr) [149]. The sequence similarity between C. fanaceti and other species of
706  Colletotrichum varied widely and dropped drastically with evolutionary distance, suggesting
707  high diversity within the genus. However, the drop in orthology was less dramatic,
708  emphasizing the contribution of non-coding regions in generating diversity within the genus.
709  The extent of synteny between C. tanaceti and C. higginsianum was high and very similar to
710  the percentage synteny previously reported for the two graminicola complex species, C.
711 sublineola and C. graminicola [150]. This suggested that even though there was high
712  diversity within the genus, the species in the same species complex tend to share more

713  synteny than the between species complexes.

714 Evolutionary analysis of CAZyme families of different Colletotrichum lineages revealed an
715  association between CAZyme families and host range. The GH131 with cellulose degrading
716  activity was the only rapidly evolving gene family at the MRCA of Colletotrichum spp.
717  suggesting a possible association of this family with speciation and host determination within
718  the genus. Families GH43, with hemicellulose degrading activity and AA7, with gluco-
719  oligosaccharide activity significantly expanded upon divergence of both the gloeosporioides
720  and acutatum-complex clades, which could have broadened the host ranges of members of

721  these two complexes. The significant expansions in pectin degrading enzyme families GH106
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722  in gloeosporioides and GH78 in the acutatum clades could also have enabled degradation of

723  pectin rich cell walls of young fruits [151] of these fruit-rotting species.

724  The most significant contractions were reported in pectin degrading families upon the
725  divergence of the graminicola complex clade. This could have been the reason for species in
726  this complex exclusively infecting monocot plant species considering that the pectin content
727  of monocot cell walls is generally less than in dicots [152]. Even though this was a similar
728  result to previous studies [7], C. orchidophilum which is known to infect plants from
729  monocot family Orchidaceae [153], deviated from this pattern. Gene family AA7 was rapidly
730  evolving in many Colletotrichum species and could have been involved in biotransformation

731  or detoxification of the lignocellulosic compounds [154].

732 In general, the overall CAZyme pathogenicity profiles of Colletotrichum spp. followed host
733  range of those species rather than the taxonomy. The gloeoporioides and acutaum complex
734  members which have broad host ranges, but are evolutionary distant, were clustered together.
735  This could be a byproduct of the “two-speed” genome scenario in certain Colletotrichum spp.
736  such as C. orbiculare, C. chlorophyti, C. graminicola [117] and as suggested, also in C.
737  tanaceti. In this scenario, the pathogenicity genes are located in repeat-rich regions, allowing
738 them to evolve at a higher rate than the rest of the genome. This was also evident by the
739  significant association of TE with pathogenicity genes in C. tanaceti and in C. truncatum
740 [117] and C. higginsianum [15]. This scenario would cause the species with similar

741  pathogenicity gene profiles to cluster together, despite their evolutionary distance.

742  CONCLUSION
743 In conclusion, a draft genome of C. fanaceti was used to quantify the molecular basis of
744  pathogenicity of the species and to improve the knowledge of the evolution of the fungal

745  genus Colletotrichum. Colletotrichum tanaceti is likely to have alternative hosts and is a
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746  potential threat to the crops grown in rotation with pyrethrum. The genome of Colletotrichum
747  tanaceti contains a large component of repetitive elements that may result in genome
748  expansion and rapid generation of novel genotypes. The tendency of the pathogenicity genes
749  to evolve rapidly was evident in genomic signals of the RIP and association of repeats with
750  the pathogenicity genes. Therefore, with a large array of pathogenicity genes that potentially
751  can evolve rapidly, C. tanaceti is likely to become a high-risk pathogen to global pyrethrum
752  production. Complexity of the Colletotrichum genus was evident with its high diversity and
753  evolutionary rate. The significant expansions and contractions of gene families upon
754  divergence of different lineages within the genus could be important determinants in species
755  complex diversification in Colletotrichum. The reason for pathogenicity genes to have
756  different clustering than the phylogeny in Colletotrichum could be the occurrence of “two-
757  speed” genomes in certain species. These findings will facilitate future research in genomics

758  and disease management of Colletotrichum.
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