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SUMMARY

Advances in single cell RNA sequencing have allowed for the identification and
characterization of cellular subtypes based on quantification of the number of
transcripts in each cell. However, cells may differ not only in the number of mMRNA
transcripts that they exhibit, but also in their spatial and temporal distribution, intrinsic
to the definition of their cellular state. Here we describe DypFISH, an approach to
quantitatively investigate the spatial and temporal subcellular localization of RNA and
protein, by combining micropatterning of cells with fluorescence microscopy at high
resolution. We introduce a range of analytical techniques for quantitatively
interrogating single molecule RNA FISH data in combination with protein
immunolabeling over time. Strikingly, our results show that constraining cellular
architecture reduces variation in subcellular mRNA and protein distributions, allowing
the characterization of their localization and dynamics with high reproducibility. Many
tissues contain cells that exist in similar constrained architectures. Thus DypFISH
reveals reproducible patterns of clustering, strong correlative influences of
mRNA-protein localization on MTOC orientation when they are present and
interdependent dynamics globally and at specific subcellular locations which can be

extended to physiological systems.
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INTRODUCTION

The need to incorporate subcellular spatial information of central dogma molecules
into traditional omics approaches has led to the call for spatially resolved omics of
various kinds (Crosetto et al., 2015). This has become more urgent as projects such
as the Human Cell Atlas begin to use technologies such as single cell RNA
sequencing (scRNA seq) to characterize subtypes of cells based on their molecular
signatures by counting the number of RNA transcripts. Although much progress has
been made in spatially resolved transcriptomics (reviewed in Crosetto et al., 2015,
Medioni and Besse, 2018, Strell et al., 2018) incorporating spatial information into
omics approaches carries with it several difficulties, such as coping with biological
heterogeneity and noise in the spatial domain and developing analytical approaches,
which avoid the loss of spatial information. Many current models for the
measurement of gene expression neglect spatial information (Raj et al., 2006,
Tanaguchi et al., 2010) and are not directly applicable in contexts where expression
is highly localized. Moreover, such localization may be highly indicative of cell state
and not fully reflected in scRNA seq data. Indeed though scRNA seq has identified
several new cell types, spatial position of RNA, which is highly influential to cell state
remains unincorporated in such measurements. By revealing 3D positions of RNA,
for example, cells states as defined by scRNA seq may be altered or redefined

gaining higher resolution and information content.

The importance of subcellular localization of mMRNA transcripts as a means to
spatially and temporally restrict translation has been demonstrated in a wide variety
of cell types (Bashirullah et al., 1998, Besse and Ephrussi, 2008, Jansen, 2001, Kloc
et al., 2002, and Martin and Ephrussi, 2009, Zappulo et al., 2017). Localizing specific
mMRNA transcripts to distinct subcellular localizations therefore serves as an important
determinant of protein localization and is often highly influential to cell state (Moor et
al., 2017, Zappulo et al., 2017). Although the number of fully characterised localized
mRNAs is currently small, emerging studies have demonstrated that the mRNA
localization phenomenon is more widespread than previously assumed and may in

fact be relevant for the majority of mMRNA transcripts (Bouvrette et al., 2017, La
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Manno et al., 2018, Lecuyer et al., 2007, Moor et al., 2017, Sharp et al., 2011, Weis
et al., 2013,, Zappulo et al., 2017). Indeed such evidence has extended to distinct
subcellular localization patterns for cytoplasmic and nuclear localization of long

noncoding RNAs (IncRNAs) has recently emerged (Cabili et al., 2015).

Studies showing subcellular localization of numerous RNAs and proteins have
been generally qualitative lacking detailed quantitative approaches to systematically
describe the positions of RNAs and proteins. They have typically been constrained to
a limited number of systems, in which spatial heterogeneity is controlled and
subcellular partitions are easily defined. In developmental models, such as the
Drosophila embryo and Xenopus oocyte, numerous mRNAs have been shown to
localize to specific subcellular positions, which determine morphogen gradients and
specify cell fates (Macdonald and Struhl, 1988, Tautz and Pfeifle, 1989). Similarly, a
large number of MRNAs have been shown to be enriched in dendrites and synapses
in neuronal systems, contributing to neuronal growth and establishing synaptic
plasticity (Batish et.al., 2012, Buxbaum et al., 2014, Tzingounis and Nicoll, 2006).
mRNA localization has also been shown in polarized cells of various kinds, such as
budding yeast, and migrating fibroblasts (Martin and Ephrussi 2009, Mili et al., 2008),
although typically only to coarsely defined regions, such as the leading edge of the
cell. This is due to the diverse morphologies of such systems, as well as lack of

methods to measure accurately specific subcellular domains.

Many of these model systems in addition to heterogeneity at the
morphological level, lack quantitative approaches to spatially resolved omics and
confront the problem of pervasive stochasticity at the level of gene expression (Raj
et. al., 2006). A number of studies suggest that some of this stochasticity may be
functional, for instance through the importance of higher-order distribution in grouping
transcripts functionally (Battich et al., 2013), or as a compensating mechanism for
differences in cell size (Padovan-Merhar et. al., 2015). Such functional stochasticity
and noise thus add another level of complexity to developing quantitative analytical
approaches to spatially resolved omics, since they need to capture such stochasticity
explicitly. Although detailed mechanistic insights into RNA spatial and temporal
positioning are emerging (Bouvrette et al., 2017, Moor et al., 2017, Zappulo et al.,

2017, La Manno et al., 2018), a system that is able to capture and quantify dynamic
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RNA subcellular positioning, complementary to scRNA seq is required. Such a
system would allow for a deeper understanding of cell states and assist in further
identification and characterization of different cell types and sub populations. In sum,
to unravel the mechanisms of RNA spatial and temporal distribution, quantitative

tools that probe these relationships systematically need to be developed.

Here, we describe DypFISH, a spatially resolved omics approach overcoming
the limitations above by quantitatively measuring the spatial distribution of slow-scale
dynamics of mRNA and protein distributions at fine-grained spatial resolution in
single cells. DypFISH leverages micropatterning which has been shown to lead to
reproducible spatial organization of organelles (Schauer et al., 2010) and ensure that
the cell size is known a priori, allowing the averaging of high number of cells. Thus
this system deals with a number of significant sources of heterogeneity, which might
interfere with the identification of spatial patterning and quantification. By selecting
specific micropattern architectures, which mimic external constraints from a cellular
environment, distinct patterns of subcellular localization of molecules of interest as
well as spatial organization of organelles can be isolated and studied in detail (Théry
et al., 2005, Théry et al., 2006). DypFISH builds upon the reproducibility of
micropatterned cells to develop quantitative and testable models of RNA and

positioning that can be extended to physiological contexts.

DypFISH introduces analytical techniques that allow joint analysis of discrete
point-based single molecule Fluorescence In Situ Hybridization (FISH) mRNA data
and continuous intensity immunofluorescence (IF) protein data. The analytical
techniques include a generalized approach to identifying clustering dynamics, an
approach to identifying dependencies of mRNA and protein spatial distributions on
organelle positioning and an approach to identifying interdependent dynamics
between mRNA transcripts and their corresponding protein products globally and at
specific subcellular locations. Implementing DypFISH we uncovered fine-grained and
reproducible aspects of localization dynamics, pointing to novel biological
phenomena while revealing dynamic subcellular repositioning of RNA and proteins.
DypFISH probes the dependencies uncovered through perturbation studies, thus
allowing one to test for possible mechanisms underlying the localization dynamics

and by extension changes in cell state, which we demonstrate in this study. Although
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we focused here on mRNA-protein subcellular localization, our approach is broadly
applicable to spatially resolved omics of other molecular species, and scalable to
incorporate high bandwidth such as MerFISH (Moffitt and Zhuang, 2016) where
simultaneous assaying of subcellular localization of dozens of transcripts can be

interrogated in a single cell.

RESULTS

Micropatterning of cells enhances reproducibility of mRNA subcellular

distributions

We were particularly interested in the ability to interrogate subcellular positioning of
RNA and protein in the context of altered cellular states. Therefore, we selected an
established fibroblast system that allows the investigation of RNA positioning in
relation to its polarity state (Mili et al., 2008). As mRNA candidates we selected a
subset of mRNAs within a group of RNAs that had previously been identified as
enriched in lamellipodia of fibroblasts upon polarization and cell migration (Hengst et
al., 2009, Mili et al., 2008, Schmoranzer et al., 2009, Mili et al., 2008).

Micropatterning has been shown to lead to stereotypical localization of
organelles, such as the centrosome, early endosomes, lysosomes and the Golgi
apparatus (Schauer et al.,, 2010, Thery et al., 2005, Thery et al., 2006). We were
interested in establishing whether micropatterning can similarly reduce variation in
mRNA spatial distributions and enable us to construct a quantitative framework for
measuring reproducible subcellular spatial localization of RNA and protein. To this
end cells were induced to polarize on micropatterns and fixed at different time points
post induction. We grew mouse fibroblasts on crossbow shaped micropatterns, which
have been shown to be suitable for the study of polarizing cells (Schauer et al., 2010,
Théry et al., 2006). Each slide was custom microfabricated to contain multiple 12 by
12 grids of crossbow-shaped micropatterns to which the cells adhered (Figure S1A).
We developed an autonomous image acquisition and semi-automated image

analysis pipeline (Figure 1A) able to scan each microfabricated slide and
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autonomously acquire images of individual cells at high magnification. We used
either standard wide-field fluorescent microscopy or spinning disk confocal

microscopy at to acquire a three-dimensional stack of images for each cell.

Single molecule FISH (Raj et al., 2008) and IF were performed to label
mRNAs and corresponding proteins of interest respectively (Figure 1B). We also
labeled the microtubule (MT) cytoskeleton, the nucleus and micropattern base.
Representative images of the micropatterned base and single molecule FISH are
shown in Figure 1C. A complete list of the acquired images is shown in
Supplementary Table 1. To extract information of interest from the microscopy
images, we built a custom image analysis pipeline with (1) manual annotation of the
MTOC position, (2) 2D automated segmentation of the cell and nucleus areas, (3)
automated spot detection and (4) height-map construction across a stack of 2D
cellular regions to define a 3D segmentation of the cell volume (Figure 1A;

Experimental Procedures for computational details for steps 3, 4 and 5).

To investigate the localization dynamics of mRNAs and proteins translated
from these transcripts we followed specific mMRNAs and their respective proteins at
different time points (2, 3, 4 and 5 hours for mRNA, and 2, 3, 5 and 7 hours for
protein) post induction of polarization by serum. These time points were chosen as
fibroblasts polarize over this time scale on crossbow micropatterns. In order to
determine whether micropatterning leads to reduced heterogeneity in mRNA
transcript and protein distributions, we compared fibroblasts grown in standard
culture with those grown on micropatterns using the same experimental pipeline,
analyzing only cells lying fully in the field of view. Representative images of standard
cultured and micropatterned cells are shown for the Arhgdia mRNA, which was
previously found to be enriched at the leading edge of polarized fibroblasts (Mili et
al., 2008) (Figure 1C).

First, we compared the reproducibility of Arhgdia mRNA distributions in
standard cultured and micropatterned cells by spatially quantizing the transcript
distributions across a grid of regular voxels. The absolute deviation of the quantized
distribution of a randomly selected cell from a pooled average is reduced in

micropatterned cells for all pool sizes up to ~40 cells (Figure 1E). The error profiles of
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these distribution descriptors for this transcript are concordant with a previous study,
which estimated that ~20 micropatterned cells were necessary to establish
reproducible organelle positions using the AMISE metric (Schauer et al., 2010). We

further investigated the impact of micropatterning on the volume-corrected noise
measure Nm introduced in a previous study (Padovan-Merhar et al., 2015).

Consistent with that study, we observed linear relationships between transcript
number and cell size in both standard cultured and micropatterned cells, as

demonstrated for Arhgdia mRNA (Figure 1D). However, the linear relationship is less
stochastic in the micropatterned cells, leading to a lower Nm value (Figure 1D).

Further comparison revealed a tighter distribution of cell and nuclear sizes in the
micropatterned cells, consistent with a mechanism for cell size determination, which
relies on low variability of nuclear size, as proposed previously (Figure 1D)
(Padovan-Merhar et al., 2015).

We further investigated the profiles over time of the Nm for a series of mMRNA
transcripts including Pkp4 and Rab13, which are enriched at the leading edge in
polarized fibroblasts (Mili et al., 2008), Pard3, which translates into the Par3 protein
that controls different aspects of polarity in various cell types and is enriched in
developing axons (Hengst et al., 2009, Schmoranzer et al., 2009), B-Actin, a well
studied localized mRNA in various cell types and Gapdh, which to the best of our
knowledge is not known to localize to specific subcellular domains. We found for a
number of transcripts a reduction in Nm over time, up to the 4 h time point. (Figure
S1C). These data strongly indicated that micropatterns conveyed important
advantages amenable to quantitative analysis of RNA position over standard cell

culture.

A subset of mRNAs and corresponding proteins shows peripheral

enrichment and correlated clustering dynamics

We investigated the joint localization dynamics for mMRNA and corresponding protein
associated with four of the mRNA transcripts above (Arhgdia, Pard3, (B-Actin and
Gapdh) and the mRNA localization dynamics for the remaining two transcripts (Pkp4

and Rab13). We developed a cell quantization method for local enrichment statistics
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as well as a temporal interaction score to measure the interdependence between
mRNA and protein dynamics. Initially, we characterized whether the mRNA and
corresponding proteins are enriched in the periphery of the cells by calculating the
fraction of cytoplasmic transcripts, which lie within a band at the boundary of the cell,
whose width is a fixed proportion of the radial distance to the nucleus edge
(Experimental Procedures). A subset of the transcripts, including Arhgdia and Pkp4,
which were previously shown to be enriched at the leading edge (Figure 2A) (Mili et
al.,, 2008), as well as Pard3, whose localization in fibroblasts has not been
characterized previously, are peripherally enriched for up to 30% of the radial
distance (Figure 2B). Gapdh mRNA and protein characteristic distributions were used
as a control as neither the mRNA nor protein were expected to show patterns of
enrichment or strongly localized dynamics (Mili et al., 2008).

We next analyzed the clustering behaviour of mRNAs and proteins using a
generalization of the Ripley’s K analysis (Lee et al., 2013, Ripley, 1977) that we first
introduced in (Warrell et al., 2016). Ripley’s K is a commonly used algorithm to
describe the extent of clustering of points, such as mRNAs (Figure 2C). For each
mRNA spot and each distance d the number of transcripts lying within a sphere of
radius d is counted. Spatial clustering of mMRNAs can then be calculated by
estimating the probability distribution of this function under a null hypothesis of
complete spatial randomness (CSR) and comparing it with the function calculated
from observed (spatially clustered) transcripts. We adjusted (Experimental
Procedures) the algorithm based on the generalized Ripley’s K function for
evaluating the extent of clustering of both mRNA (discrete) and protein (continuous)
spatial distributions. This was done by computing the degree of clustering, a unitless
measure, that can be used to compare clustering between different molecules and
conditions. We summed the area where the normalized Ripley’s K function deviates
from the 95 % confidence interval of the random distribution (Figure 2D).

We evaluated the degree of clustering of all transcripts and proteins across all
time points, revealing high overall values for all proteins and various values for the
different mRNA transcripts (Figure 2E). We further calculated the degree of clustering
at each individual time-point for Arhgdia, Gapdh, B-Actin and Pard3 mRNAs and
corresponding proteins. By visualizing the mRNA and protein profiles, a relationship

is suggested for the Arhgdia, B-Actin and Pard3 mRNAs and proteins, which show a
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peak in the mRNA profile followed by a peak in the proteins, strongly suggesting
temporal causality (Figure 2F).

We then calculated additional basic mRNA/protein distribution descriptors
such as cytoplasmic total transcripts/intensity, peripheral fraction and cytoplasmic
spread (Figure S2A, and Experimental Procedures). We compared the mRNA and
protein profiles of these descriptors for all time points and found that many of these
show related values for the same gene (corresponding pairs) (Figure S2B). The
observed differences between the comparisons of corresponding and
non-corresponding MRNA-protein pairs across all descriptors are shown in Figure 2G
and are statistically significant. The analysis of basic distribution descriptors as well
as clustering dynamics, for several of the mRNA-protein pairs, suggests they exhibit
interdependent spatial positioning. Using the tools discussed above, we were thus
able to extract significant subcellular spatial information for different mRNA and

protein species.

Localization of a subset of mMRNAs and corresponding proteins shows strong

correlative influence of MTOC position

Several components of cellular architecture are known to change dynamically during
polarization, including the cytoskeleton and the microtubule organizing center
(MTOC). The MTOC marks the center of most eukaryotic cells and is associated with
the position of the nucleus. In the majority of polarized cell systems and developing
neurons, the MTOC is positioned between the nucleus and the leading edge prior to
migration or local cell growth (Gomes et al., 2005, Hale et al., 2011). We reasoned
that if cells were to reliably and reproducibly position RNA or protein within the
subcellular volume, then this process could be linked to an ability to sense the MTOC
position. Whether mRNA and its corresponding proteins are subject to such
reorientation is unknown. Having demonstrated that several mRNA transcripts and
proteins exhibit significant and reproducible clustering dynamics, we sought to relate
this behavior to key cellular structures and organelles. Initially we were interested in
probing the subcellular spatial position of RNA and protein relative to the position of
the MTOC. More specifically, we sought to determine whether the clustering

dynamics we observed were dependent on MTOC positioning. For our analysis, we


https://doi.org/10.1101/536383
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/536383; this version posted January 31, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

divided the cell into quadrants, which we used as regions over which we could
estimate mRNA and protein local densities (Figure 3A) and we also determined the
MTOC localization within these quadrants (Figure 3B). We observed higher
enrichment of all cytoplasmic mRNA transcripts in the MTOC-containing quadrant
(Figure 3C). Additionally, B-Actin, Pard3, Pkp4 and Rab13 transcripts were
specifically enriched in the MTOC-containing quadrant when located in the leading
edge of the cell. Similarly, all peripheral transcripts showed higher enrichment in the
MTOC-containing quadrant, with this enrichment being more distinct compared to the
cytoplasmic population. 8-Actin, Gapdh, Pkp4 and Rab13 showed clear enrichment

in the MTOC-containing quadrant when positioned in the leading edge of the cell.

Based on the above observations, we were able to introduce an MTOC
Polarity Index (MPI) to analyse MTOC dependent enrichment in both mRNA and
protein distributions. This indicator lying between -1 and +1 is derived by normalizing
the differences of signal concentration between the MTOC associated quadrant and
the other quadrants. Positive MPI values imply MTOC dependent enrichment of RNA
transcripts, negative values imply enrichment away from the MTOC, and a value of
zero implies no detectable correlative influence (Figure 3D). The MPI can be
calculated for both point based and continuous valued measurements, corresponding
to mRNA and protein distributions respectively, and significant enrichment can be

identified by a statistical test against CSR (Experimental Procedures).

We calculated the MPI as above for all transcripts (Figure 3D) and proteins
(Figure S3D), calculating values for both the whole cytoplasmic population, and the
peripheral population at 10 % radial distance, using all time points. Pard3, Rab13 and
Gapdh mRNAs show significant MPI scores in the cytoplasmic population, whereas
all mRNAs, excluding Gapdh show significant MPI scores in the peripheral
population, suggesting that the MTOC orientation affects the localization of these
mRNAs as it changes during polarization (Figure 3D). Finally, we calculated MPI
scores across time for all mRNA-protein pairs (Figure 3E and Figure S3E) and
observed profiles suggesting a temporal correlative influence between mRNA, protein
and MTOC orientation for Arhgdia and Pard3.
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Dynamics of mRNA-protein distributions are consistent with MTOC-dependent

patterns of localized translation

As previously described, several mRNA-protein pairs appeared to show
interdependent distributions for the basic descriptors, clustering indices and MPI. The
interdependency could reflect spatially and temporally restricted translation (local
translation) (Besse and Ephrussi, 2008) and/or separate localization pathways for
mRNAs and proteins to common subcellular locations. To explore these
interdependencies we derived a Temporal Interaction Score (TIS), which is a value
between 0 and 1, computed as the normalized rank-sum of the correlations between
mRNA and later protein distribution pairs in a ranking across all pairs of time-points
(See for details in Experimental Procedures 1.7 ). A large TIS value for a pair of
corresponding mRNAs and protein is consistent with interdependent dynamics, and
may suggest local translation, although it does not rule out alternative mechanisms
such as separate mRNA and protein localization pathways with delayed protein

transport.

A TIS can be calculated for any measure of correlation between mRNA and
protein distributions, which allowed us to probe for interdependent dynamics with
respect to specifically defined subcellular regions. We spatially quantized the cells (i)
radially with the center at the nucleus centroid and (ii) circularly by computing isolines
at different distances from the cell’'s periphery (see Experimental Procedures section
[11.7 and Figure 4A(i)). We thus obtained a fine grained quantization of each cell into
segments, and were able to compute subcellular spatial distribution profiles of
mRNAs and proteins, corresponding to concentration statistics in each segment
(Figure 4A(ii)). The latter analysis was prompted by the observation that our
peripheral MPI scores are relatively stronger for proteins than mRNAs. While both
showed strong cytoplasmic MPI scores (Figure 3D), we may particularly expect
interdependencies between cytoplasmic mRNAs and peripheral and/or cytoplasmic
proteins in a common direction with respect to the MTOC. This could potentially
reflect radial mMRNA transport on the cytoskeleton in preferred directions leading to
protein enrichment in those directions at the periphery due to local translation. We

computed TIS values using (a) global correlations of all voxels/segments across the
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cytoplasmic area, and (b) local correlations across subsets of voxels/segments within
peripheral regions (Figure 4C). We then calculated global TIS values for four
corresponding mRNA-protein pairs (Arhgdia, Gapdh, B-Actin and Pard3) using for
comparisons the ‘forward-leading’ time point pairs shown in (Figure 4B). Using the
fine grained quantization scheme, we observed significant interdependent dynamics

for all cytoplasmic mRNA-protein pairs (Figure 4D).

Perturbation of various cytoskeletal components disrupts characteristic
mRNA-protein localization and interdependency patterns and hints at local

translation

We were generally interested in quantitatively measuring cell state by using mRNA
copy number and incorporating dynamic changes to subcellular positions over time.
In particular we wanted to include a measurement of mRNA-protein dynamics that

could reveal interdependencies influencing their subcellular positions.

Our analysis had already revealed interdependent mRNA-protein dynamics, which
suggested local translation. However, as we could not rule out independent
localization of MRNA and corresponding proteins, we introduced two perturbations to
inhibit potential transport pathways of the different molecular species. First, we
disrupted microtubule polymerization using nocodazole (Figure 5A), which we
reasoned would lead to disruption of the MTOC dependencies of selected mRNA and
proteins, as well as potentially loss of local translation. We selected Arhgdia and
Pard3 mRNA-protein pairs to test this hypothesis and collected mRNA FISH and
protein IF data at 3 hours and 5 hours post exposure to nocodazole and compared it

with untreated data as above from the equivalent time points.

We first calculated the effects of nocodazole treatment on the total mRNA count
(Supplementary Figure 3A), the cytoplasmic spread of the ftranscript and the
corresponding protein (Figure 5B) and the 10 % peripheral fraction (Figure 5C).
Arhgdia cytoplasmic spread was not significantly altered upon treatment with
nocodazole, whereas its peripheral fraction was decreased (Figure 5B and 5C).
RhoGDI’s (the protein translated from Arhgdia, to which, we refer as Arhgdia for

simplicity) cytoplasmic spread was slightly increased whereas the peripheral fraction
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of the protein was not significantly affected (Figure 5B and 5C), suggesting that
Arhgdia mRNA and protein do not make exclusive use of the microtubule network for
transport. The cytoplasmic spread and peripheral fraction of Pard3 were not
significantly changed upon treatment with nocodazole (Figure 5B and 5C). A slight
reduction was detected in the cytoplasmic spread of Pard3 protein in the presence of
nocodazole (Figure 5B) and no significant change in the peripheral fraction of the
protein (Figure 5C), suggesting that similarly to Arhgdia, Pard3 and its corresponding

protein do not make exclusive use of the microtubule network.

Next, we probed the effects of the nocodazole treatment on the correlative
influence of the polarization of the cell and the subcellular localization of the mRNA
transcripts and their corresponding proteins (Figure 5D and 5E). The MTOC
enrichment and MPI of Arhgdia in nocodazole-treated cells compared with control
cells were significantly reduced (Figure 5D and 5E), indicating that the orientation of
the mRNA subcellular localization was lost. This suggestested that though the prior
calculation of cytoplasmic spread showed only modest effects of the drug, the
influence of the MTOC had become decoupled from the subcellular positioning of
Arhgdia RNA. Strikingly, the opposite effect was observed for Pard3, where a
significantly higher MTOC enrichment and MPI were observed for the mRNA in the
nocodazole treated cells (Figure 5D and 5E), indicating that the perturbation to the
MTOC had the effect of tightening the influence of MTOC position on RNA

distribution.

We then probed the effects on mRNA-protein interdependency by calculating
local TIS maps for control and nocodazole treated cells on both mMRNA-protein pairs,
restricted to the 3-5 hours time points (Figure 5F). The interdependency for Arhgdia
mRNA-protein pair was disturbed, possibly stemming from the decoupling of the
MTOC influence on the subcellular distribution of the RNA and protein in
nocodazole-treated cells. In contrast, nocodazole did not have a significant effect on
the interdependency for the Pard3 mRNA-protein pair, which could correlate with a
higher correlative influence of the MTOC on Pard3 mRNA localization observed in

nocodazole-treated cells.
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Other cytoskeletal networks could influence RNA subcellular positioning. To
probe these, we next treated the cells with the actin polymerization inhibitor
cytochalasin D (cytoD) for 1 hour before fixation of cells and compared FISH and IF
data for the Arhgdia mRNA-protein pair. Similarly to the treatment with nocodazole,
Arhgdia mRNA’s cytoplasmic spread remained unaffected (Supplementary Figure
3B), whereas the concentration of the transcript was higher on the periphery of
cytoD-treated cells as compared to control cells (Supplementary Figure 3C). Similarly
to the mRNA, the cytoplasmic spread of Arhgdia was not significantly affected in the
presence of cytoD (Supplementary Figure 3B) however, the peripheral concentration
of the protein was decreased in the cytoD-treated cells (Supplementary Figure 3C).
These data suggest that either local translation at the periphery of Arhgdia was
affected by the drug, or that mechanisms anchoring Arhgdia to the periphery are lost

in the presence of the drug.
Sarcomeric mRNAs cluster in a striated pattern in differentiated myofibers

In order to further validate Dyp-FISH, we sought a cellular model where RNA
subcellular localization and potential local protein translation linked to dynamic
changes in cells state could be interrogated. We focused on the unusually large
multinucleated muscle cells termed myofibers. These large cells with tubular shape
are formed by fusion of mononucleated cells and their main function is to generate
mechanical force via contraction. Muscle contraction is achieved by the shortening of
sarcomeres that are organized along the length of the myofiber. Each sarcomere is
flanked by a Z-line, the site of anchoring of the actin filaments, thus resulting in the
striation of the myofiber (Franzini-Armstrong and Peachey, 1981). We used skeletal
muscle since the myofiber has an invariable tubular shape and a highly predictable
cytoplasmic organization. The myonuclei in these cells are spaced at regular
intervals, an important feature for muscle function (Bruusgaard et al., 2003,
Bruusgard et al., 2006; Manhar, 2018). In vitro differentiation of myofibers allows for
high resolution imaging throughout distinct developmental stages, including the
formation of patterned sarcomeres with well defined z-line striations (Falcone et al.,
2014; Pimentel et al., 2017; Vilmont et al., 2016) permitting the capture of dynamic
changes in cell state reflected in RNA-protein subcellular localization. Thus, the size

and regularity of myofiber architecture allied with a temporal component make them
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an excellent candidate to compute spatial distribution profiles of mRNAs and

proteins.

With this aim, we analyzed the distribution of an mRNA that encodes a protein
found at the z-lines, during muscle differentiation. We choose the actn2 mRNA, which
encodes for a-actinin, the main component of z-lines relative to the sarcomeric
Z-lines (Figure 6A). To our surprise, the majority of the actn2 mRNA was found in the
vicinity of the Z-line in mature myofibers (Figure 6B). In order to understand if this
clustering depends on the developmental stage of the myofiber we imaged immature
myofibers in which the Z-lines are less organized. Additionally, we also probed the
gapdh mRNA distribution as a non-sarcomeric control in both immature and mature
myofibers. The degree of mMRNA proximity was lower in both cases, suggesting that
possibly actn2 mRNA localization precedes protein organization (Figure 6B) of the
Z-line. To better address this question we quantized the images perpendicularly to
cell axis, similarly to how sarcomeres are organized (Figure 6C). The highest degree
of clustering was observed for actn2 mRNA in mature myofibers, when compared to
the immature counterpart or to the gapdh mRNA. These quantitative data strongly
suggest that the actn2 mRNA distribution specifically follows the respective protein
organization, instead of preceding it (Figure 6D). These data shed light on a long
standing question in the field and produce a basis of testable hypotheses for how
actn2 mRNA is directed to the Z-line.

DISCUSSION

A wide variety of methods have been proposed for studying RNA localization with
subcellular accuracy, including microscopy-based methods, such as those based on
FISH (Battich et al., 2013, Chen et al., 2015, Lecuyer et al., 2007) or padlock probes
(Larsson et al. 2010), as well as non-microscopy based methods such as
Transcriptome In Vivo Analysis (TIVA) (Lovatt et al. 2014) and RNA Tomography
(Junker et al. 2014). While there has been much interest in identifying patterns of
localization from such data, a number of factors limit the generality of the kinds of

analysis employed. Although developmental systems can be straightforwardly
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aligned in space and compared across time for comparison of expression patterns
(Junker et al. 2014, Lecuyer et al., 2007), this is not always the case in other
systems. In systems with greater heterogeneity, approaches to identify RNA spatial
patterning have not generally attempted to take polarization or organelle
arrangement into account (Battich et al., 2013, Chen et al 2015) and have not
considered temporal patterning. Further, some of the most comprehensive
approaches have relied on manual annotation of visual features to search for
correlations between RNA patterns and RNA-protein patterns (Lecuyer et al., 2007)
and hence lack a principled approach for the identification of correlations that may
not be visually apparent. We set out to develop a quantitative method for
investigating the spatial and temporal distribution of RNA and protein. To achieve
this, we hypothesized that the use of micropatterning would reduce cellular
heterogeneity and enhance the reproducibility of spatial distributions. We were able
to achieve this in combination with automated high content imaging based on RNA
FISH and IF labelling, and a range of specialized analytic techniques. We have used
our approach to interrogate mRNA and protein spatial and temporal distribution in
polarized fibroblasts and elucidate the methods by which particular mRNAs and
proteins are localized, revealing a general dependence of mMRNA-protein localization
and dynamics on MTOC orientation. Through perturbation studies, we have
demonstrated DypFISH’s ability to quantitatively detect changes in localization
behaviour, confirming both the robustness of the approach and its ability to test

mechanistic hypotheses.

Shared RNA subcellular distribution patterns and the deterministic role of the
MTOC

The general dependence of different mRNA species on MTOC orientation and the
similarities in localization and dynamics of those associated with the leading edge,
indicate specific subcellular distribution patterns in accordance with broader
processes, which are also responsible for controlling nucleus and MTOC relative
orientation during polarization (Kim et al., 2014, Razafsky et al., 2014). We posed the
question whether proteins translated from mRNAs that consistently localize to similar

subcellular locations are translated in these locations. By revealing the existence of
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mRNA-protein interdependencies, which are highly localized, many have a high
correlative influence with the MTOC orientation and can be impaired by applying
various perturbations, with our results pointing to local translation. In addition to the
above, our results have general implications for stochasticity of gene expression in
morphologically constrained biological contexts. The pronounced reduction in the
variability of distribution descriptors we were able to achieve using micropatterning
suggests that tissues such as gut epithelia, skin and others of constrained but similar

morphology, may have far less transcriptional heterogeneity than previously thought.

Arhgdia and Pard3 localization

We were able to reveal significant aspects of the spatial and temporal distribution of
specific mMRNA transcripts and proteins of interest, such as Arhgdia and its protein
product RhoGDI, a key factor in the Rho/Rac/Cdc42 (Rho GTPases) pathway. The
transcript and protein show MTOC-dependent interdependency patterns, possibly
indicating MTOC-dependent local translation. The RhoGDI protein is a negative
regulator of the Rho GTPases, which are involved in a range of important cellular
processes such as polarization, regulation of cytoskeletal organization, cell growth
control and many others (Machacek et al., 2009, Sadok and Marshall, 2014,
Schaefer et al., 2014, Zegers and Fried|, 2014). We showed here that the majority of
the Arhgdia mRNA population is both cytoplasmic and MTOC-dependent, mainly
located in the perinuclear area corresponding with the ER (data not shown), with a
small fraction being localized to the periphery. This latter fraction may reflect a
population that is transported to the periphery which can then be quickly translated
when needed in order to regulate the levels of active Rho GTPases locally and in a
rapid manner at the leading edge of the cell. The peripheral MTOC-dependent TIS
maps for Arhgdia, as well as a decrease in the concentration of RhoGDI (Arhgdia) at
the cell periphery despite minimal disruptions to the transport of both Arhgdia mRNA
and RhoGDI protein suggest MTOC-dependent peripheral local translation, that may

be required as part of the polarization process.

Our analyses also revealed important aspects of Pard3 spatial and temporal
distribution. The localization of both transcript and protein show significant

interdependent dynamics, implying that mRNA localization and localized translation
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may be factors which influence localization of the Pard3 protein during polarization. In
contrast to Arhgdia, there is an increase in the MPI of Pard3 mRNA upon disruption
with nocodazole, indicating MTOC-MT influence on Pard3 transport and peripheral
anchoring of Pard3. Localization of the Pard3 protein in peripheral clusters at cell-cell
adhesions was previously shown in fibroblasts when grown in culture (Schmoranzer
et al., 2009), which is concordant with the peripheral enrichment of Pard3 mRNA and
protein in our system. Further, localization of the Pard3 mRNA has been shown in
growing axons stimulated with NGF and netrin-1 (Hengst et al., 2009). However, to
our knowledge Pard3 mRNA localization and MTOC correlative influence has not
previously been demonstrated in fibroblasts as we do so here. Indeed our analytical
approach was instrumental in revealing the presence of such enriched peripheral

organization in polarized cells.

Resolving spatial and temporal distribution of RNA and protein in a

quantitative manner

We have shown our approach to be particularly suitable for the de novo identification
of patterns of RNA spatial and temporal distribution and RNA-protein interdependent
localization in a system, which has greater variability in terms of spatial localization
and dynamics than developmental systems (Junker et al. 2014, Lecuyer et al., 2007).
In particular, our analysis has demonstrated that micropatterning can be a valuable
tool in studying RNA distribution as it allows us to reduce heterogeneity and isolate
important modes of operation. The analytic tools we provide to identify sites of local
interdependency between RNAs and proteins based on their dynamic patterns are
readily applicable to other kinds of system, without requiring extensive manual
annotation of visual features (Lecuyer et al., 2007). While previous approaches have
identified broad classes of subcellular patterning in RNAs de novo via hierarchical
clustering (Battich et al., 2013), lack of alignment limited the possible types of pattern
identified and lack of integration with dynamic protein data limited the potential for
drawing mechanistic and functional hypotheses from the patterns observed. Similar
observations can be made in comparison to methods that have attempted to identify
RNA patterns at the intercellular level, for instance in the zebrafish embryo (Junker et

al. 2014), where hierarchical clustering based on spatial patterning alone is able to
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suggest similarity of function, but where integration of dynamic and other omics data

is not attempted.

This has deep implications for projects such as the Human Cell Atlas (HCA).
As noted above, several aspects of our approach are suitable as a basis for diverse
kinds of spatially resolved omics (Crosetto et al., 2015), a key aim of the HCA. The
quantitative nature of the analytic techniques introduced, autonomous image
acquisition and automated features of our data processing make such techniques
highly scalable to high-throughput studies and demonstrably in mammalian tissues.
Particularly, the sensitivity of the approach to changes in localization under
perturbation make the techniques suitable for inferring spatially organized regulatory
networks (Crosetto et al., 2015) and can be combined with multiplexing techniques
(Chen et al., 2015) to reveal dynamic changes in cell state. As well as interdependent
mRNA-protein localization, our generalized clustering algorithms can be used to
detect interdependent clustering dynamics between RBPs and different kinds of
RNAs (IncRNAs, mRNAs, miRNAs), or interdependent protein-protein clustering
patterns. Equally, our approach can be used to test various causal hypotheses for
interdependent dynamics, such as characterizing RBP localization patterns, which
act as determinants of IncRNA or mRNA localization (Lee et al., 2013), or building
networks containing both RNA to protein and protein to RNA localization
determinants. We believe that techniques such as those presented here will help to
make possible the future development of such integrated approaches and contribute

immensely to the HCA.
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EXPERIMENTAL PROCEDURES

Cell culture and treatments

NIH/3T3 cells were grown at 37 °C to 100% confluence in DMEM/F12 medium
supplemented with 10% FBS in a humidified atmosphere containing 5% CO,. Prior to
micropatterning cells were serum-starved for 16 hr in DMEM/F12. For disruption of
microtubule polymerization, nocodazole (Sigma) was added to a final concentration
of 50 ng/ml to the medium, post removal of unattached cells and incubated for 3 or 5
hours before fixation of cells. Cytochalasin D (Sigma) was added to a final
concentration of 1 mg/ml to the medium post removal of unattached cells and

incubated for 1 h before fixation of cells.

Cell micropatterning

Micropattern production was performed as previously described (Azioune et al.,
2009). Briefly, glass coverslips were exposed to deep UV light using a UVO Cleaner
(Jelight Company) for 5 mins. Cleaned coverslips were incubated with 0.1 mg/ml
PLL-g-PEG (Surface Solutions) in 10 mM HEPES, pH 7.4 at RT for 1 hr. They were
then rinsed once in PBS followed by one rinse in MilliQ water. The pegylated glass
coverslips were then placed on a custom designed chromium photomask (Delta
mask)(containing the desired micropatterns) and exposed to deep UV light for 5
mins. The patterned glass coverslips were then incubated with a
fibronectin/fibrinogen-Alexa Fluor488 mixture (Life Technologies) in 100 mM
NaHCO,, pH 8.5, at RT for 1 hr. The coverslips were then rinsed in PBS and used
immediately for cell seeding. Serum-starved NIH/3T3 cells were seeded on the
micropatterned surfaces at a density of 10,000 cells/cm?. After 30 mins, unattached
cells were removed by gentle aspiration and replacement of the medium. Attached

micropatterned cells were incubated at 37°C for 2 to 7 hours.
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RNA probes and reagents

Design and manufacture of RNA FISH probes for use in the single molecule FISH
method were performed according to the protocol by (Raj et al., 2008). Multiple
20-mer oligonucleotide probes targeting the following mRNAs: Gapdh, Arhgdia,
B-Actin, Rab13, Pkp4 and Pard3 were purchased (Biosearch Technologies). Each
20-mer contains a mdC(TEG-Amino) 3’ modification used to conjugate an NHS-ester
ATTO-565 fluorescent dye (ATTO-TEC) to the probe. In brief, concentrated
oligonucleotide probes were resuspended in 0.1 M Sodium tetraborate (Sigma) and
mixed with resuspended 0.25 mg of the NHS-ester dye and incubated overnight at
37°C. This was followed by ethanol precipitation of the probes and purification by
reverse phase HPLC on a XBRIDGETM OST C18 column to enrich for dye

conjugated probes.

Immuno-RNA FISH staining

For experiments utilizing the Gapdh, Arhgdia, B-Actin RNA probes: micropatterned
NIH/3T3 cells were fixed in 3.7% formaldehyde for 10 min at 37°C followed by
washes in PBS and overnight permeabilization in 70% ethanol at 4°C. For
experiments utilizing the Rab13, Pkp4, Pard3 RNA probes: micropatterned NIH/3T3
cells were fixed in pre-chilled methanol for 10 min, followed immediately by RNA
FISH. The single molecule FISH method was modified from (Raj et al., 2008) to
include immunofluorescence staining to detect the microtubule cytoskeleton. Cells
were rehydrated in wash buffer (10% formaldehyde, 2X SSC) for 5 min. Hybridization
was conducted overnight in a humidified chamber at 37°C in Hyb buffer (10% dextran
sulfate, 1ug/ul E.coli tRNA, 2mM Vanadyl ribonucleoside complex, 0.02%
RNAse-free BSA, 10% formamide, 2X SSC) combined with 50 ng of the desired RNA
probe along with primary antibody - rat monoclonal anti-tubulin antibody (Abcam).

Cells were then washed 2X (30 min at room temperature) with antibody wash buffer
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(10% formaldehyde, 2X SSC, anti-rat secondary antibody conjugated to Alexa Fluor
647 (Abcam)) followed by 1X wash with wash buffer. Cells were then incubated in
equilibration buffer (0.4% glucose, 2X SSC) for 5 mins and counter stained with 1
pug/ml DAPI (4’,6-diamidino-2-phenylindole; Life Technologies). Coverslips were
mounted in imaging buffer (3.7 ug/ul glucose oxidase and 1U catalase in equilibration

buffer) and imaged.

Immunofluorescence staining

Micropatterned cells were fixed in 3.7% formaldehyde for 10 min at 37°C, then
washed with PBS followed by overnight incubation in 70% ethanol at 4°C. The cells
were then washed with FBS followed by permeabilization for 10 min in 0.25%
Triton-X at room temperature. Following this, the cells were washed thrice with PBS
for 5 min each and incubated in blocking buffer (0.2 % BSA/PBS) for 30 min at room
temperature. The cells were then incubated in the desired primary antibody solution
(diluted in PBS) along with rat monoclonal anti-tubulin antibody (Abcam) to detect the
microtubule cytoskeleton for 1 hr at room temperature. RhoGDI, Par3, B-Actin and
Gapdh proteins were detected using rabbit polyclonal anti-Arhgdia (Santa Cruz),
rabbit polyclonal anti-Pard3 (Abcam), rabbit polyclonal B-Actin (Santa Cruz) and
rabbit polyclonal anti-Gapdh (Santa Cruz) respectively. Cells were then washed 3X
with PBS following incubation with corresponding anti-rabbit secondary antibody
conjugated to ATTO 550 (Rockland) together with anti-rat secondary antibody
conjugated to Alexa Fluor 647 (Abcam) for 1 hr at room temperature. A further 3X
wash with PBS was conducted followed by incubation in equilibration buffer (0.4%
glucose, 2X SSC) for 5 mins and counter stained with 1 pg/ml DAPI
(4’,6-diamidino-2-phenylindole; Life Technologies). Coverslips were mounted in
imaging buffer (3.7 pg/ul glucose oxidase and 1U catalase in equilibration buffer) and

imaged.
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Image acquisition

Most samples were imaged on a custom built spinning disk confocal Revolution XD
system (Andor) comprising of a Zeiss Axio Observer.Z1 microscope with a 63X
Plan-Apochromat objective (numerical aperture 1.4) and a cooled EMCCD camera
(Andor iXon 897). Z-dimension positioning and control was accomplished by a
piezoelectric motor (NanoScanZ, Prior Scientific). Images were captured using a
custom developed algorithm based on ICY and pManager that allowed autonomous
image acquisition (Figure S1A). In brief, the position of the micropatterns on the
micropatterned surface were determined autonomously using the grid detection,
alignment and calibration algorithm. This was then followed by sequential
autonomous stepping through the micropatterned grid to determine the presence of a
cell on the micropattern. If a single cell was detected on the micropattern surface by
the algorithm then a z-dimension series of images was captured every 0.3 pm in four
different fluorescence channels using emission filters for DAPI (DNA), Alexa Fluor
488 (micropatterns), ATTO 565 (mRNA/protein) and Alexa Fluor 647 (tubulin) and
exposure times of 10 ms, 350 ms, 1 s (MRNA) or 500 ms (protein) and 350 ms
respectively. A few samples being imaged on a custom built Nikon Ti Eclipse
widefield TIRF microscope using a 100X N.A. 1.49 Nikon Apochromat TIRF oil
immersion objective and equivalent fluorescent channels as above. After imaging, the
data was processed using an automated background noise subtraction algorithm

using ImagedJ (Abramoff et al., 2004).

Materials

Images were acquired for Arhgdia, Gapdh, B-Actin, Pard3, Pkp4, and Rab13 genes.
Tables 1, 2 and 3 below recapitulates acquisition conditions, techniques and number

of acquired images in each series of FISH and IF data.

Gene Molecular Technique Stain Time point

species (number of
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images)
Arhgdia* mRNA FISH ATTO 565 3h (28)
mRNA FISH ATTO 565 2h (41) ; 3h (42)
B-Actin 4h (28) ; 5h (30)
protein IF ATTO 565 2h (9) ; 3h (21)
5h (19) ; 7h (24)
mRNA FISH ATTO 565 2h (58) ; 3h (64)
Gapdh 4h (51); 5h (47)
protein IF ATTO 565 2h (27) ; 3h (33)
5h (21); 7h (24)
mRNA FISH ATTO 565 2h (17) ; 3h (35)
Pkp4 4h (14) ; 5h (29)
Rab13 mRNA FISH ATTO 565 2h (18) ; 3h (14)
4h (22) ; 5h (9)

Table 1. Image acquisition series characteristics and numbers for mouse fibroblast

cells grown in micropatterned and standard cultures (indicated by *).

Gene Molecular Technique Stain Time point
(condition) species (number of
images)
mRNA FISH ATTO 565 2h (61) ; 3h (47)
Arhgdia 4h (52) ; 5h (50)
(control)
protein IF ATTO 565 2h (31) ; 3h (18)
5h (75) ; 7h (22)
Arhgdia mRNA FISH ATTO 565 3h (41) ; 5h (32)
(nocodazole)
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protein IF ATTO 565 3h (20) ; 5h (20)

mRNA FISH ATTO 565 2h (29) ; 3h (14)
Pard3 (control) 4h (16) ; 5h (14)

protein IF ATTO 565 2h (25) ; 3h (20)

5h (9) ; 7h (26)

Pard3 mRNA FISH ATTO 565 3h (25) ; 5h (21)
(nocodazole)

protein IF ATTO 565 3h (14) ; 5h (22)
Arhgdia mRNA FISH ATTO 565 1h15 (8)
(Control)

protein IF ATTO 565 1h15 (18)
Arhgdia (CytoD) | mRNA FISH ATTO 565 1h15 (7)

protein IF ATTO 565 1h15 (25)
Pard3 (Control) | protein IF ATTO 565 1h15 (22)
Pard3 (CytoD) protein IF ATTO 565 1h15 (16)

Table 2. Image acquisition series characteristics and numbers for mouse fibroblast

cells grown in micropatterned cultures in control and drug-disrupted conditions.

Myofibers were differentiated and fixed as previously described (pimentel et al +
Roman et al NCB 2017).

Images were acquired for Actn2 and Gapdh genes. Acquisition conditions,

techniques and number of acquired images in each series are recapitulated in Table

3.
Gene Element Technique Stain Number of
images
Phalloidin FISH/IF ATTO 565 12
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Actn2 mature fibers

Phalloidin FISH/IF ATTO 565 8

immature fibers

Gapdh Phalloidin FISH / IF ATTO 565 14

mature fibers

Table 3. Image acquisition series characteristics and numbers for muscle cells.

For the purpose of image analysis we stained different cellular elements acquired at

the same time as the FISH and IF signal, with differents staining as detailed in Table

4.
Feature Staining
DNA DAPI
Micropatterns (only for Fibrinogen - Alexa Fluor 488

micropatterned cells)

Tubulin Alexa Fluor 647

Table 4. Summary of cellular features features stained in parallel to the FISH and IF

signals.

Images were acquired in the TIFF format. Our image processing pipeline transformed

images into an HDF5 file (downloadable from the website www.dypfish.org).

Image processing and statistical analysis

All computational analysis performed in the DypFISH project and described below
were implemented in Python. Parameters for each of the algorithms that were used
for each image acquisition series are available on the accompanying website

(www.dypfish.org).
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I. Primary image descriptors

Given the TIFF files, we first computed primary image descriptors for each image and

stored them in an HDF5 file for each acquisition series.

(1). MTOC and nucleus centroid

FISH and IF images were manually annotated using the y-Tubulin signal in order to
obtain the coordinates (x,y) of the microtubule organizing center (MTOC). For the
microtubule images the MTOCs were further annotated as being in the direction of
the leading edge of the cell or not (Figure 1 Panel B). The nucleus centroid was

computed as the geometric center of the nucleus mask (see below).

(2). Cell, nucleus and cytoplasm masks

Cell and nucleus masks were computed for all images (FISH and IF) using y-Tubulin

and DAPI signals, respectively.

For each image we obtained the maximum projection of the y-Tubulin stained
z-stack. A vignetting correction (Piccinini, 2013) is further applied to each resulting
image individually by simply performing a pixel wise multiplication between each pixel
value and the vignetting function. The detected cells being in the microscope’s focus,
we assumed the optical center to be the center of the image and the intensity fall-off

to be radially symmetric and the vignetting function is defined for each pixel x,yas

¢ [0 ] where d = (x—w/3)>+(y—h/2)>and wand hare the image’s width
and height, respectively. In a second time we perform contrast enhancement.
Specifically, we apply histogram stretching by applying a linear normalization in order
to stretch the interval of the intensities of a given image by fitting it to an another the
[0, 255] interval.

First, we describe the procedure used for the detection of cell contours from the

y-Tubulin channel. We started by applying a local entropy filter to each pixel i as

follows: e(i)) = — ¥ p;log,p;, where p;is the proportion of pixels in the
=9 : :
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neighborhood N, having the same intensity as pixel j. The neighborhood size was
chosen to be 30 x 30. For certain noisy image series we further applied a percentile
thresholding tailored to each series of images on the resulting entropy histogram. As
a last step, for all images we performed Canny edge detection, which detected edges
by applying Sobel operators to the smoothed image, followed by hysteresis.
However, the resulting edges were usually non-contiguous due to a weak y-Tubulin
signal or a high rate of noise. Consequently, we successively applied some
mathematical morphological operators, such as dilation and closing, followed by

erosion conventionally used to fill small gaps.

As the result of these steps we obtained a contiguous contour; small artificial white
spots (artefact of the Canny filter) were eliminated by the previously used
morphological operators. To this resulting image we applied the marching squares

cell

algorithm in order to obtain a 2D cellular segmentation mask, M“"(x,y), which is 1

for the cellular region and 0 otherwise.

nucleus (

For detecting nucleus masks M x,y), the procedure was very similar using the
DAPI signal, except that the local entropy filter was in most instances replaced by an
Otsu filter, depending on the quality of the DAPI signal. Mathematical morphology
algorithms were applied to neighborhoods ranging from 16 x 16 to 20 x 20 depending

on the image acquisition characteristics (see for details on the www.dypfish.org).

Binary cellular and nucleus masks above were used to define a binary cytoplasm
mask of the cell, M¥P"“™(x,y) = M (x,y) A=M™""(x, )

(3). Zero level

An acquired image stack might contain irrelevant slices because the focal field of the
microscope is outside the cell (above or below). To determine which slice contains
the bottom of the cell and should be considered as the first relevant slice of the stack,
we defined the zero level descriptor corresponding to the index of the slice having the

maximum summed y-Tubulin intensity. This zero level reference z-slice was used in

further analysis such as e.g. the height-map computation or the degree of clustering.
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(4). Height-map and cell volume

The height-map was built by segmenting each z-slice of a stacked image, which

generated the 3D segmentation of the cell. It was performed for all FISH and IF

images using the y-Tubulin signal. Given a z-slice above the zero level we applied
the cell mask detection procedure previously described, which defined a z-slice
mask M.(x,y) with values corresponding to the height of the slice (z) within the
mask and 0 outside. This set of slice masks defined the 3D representation, called
height-map and denoted #A4(x,y)where the value at each coordinate (x,y) is the

maximum over all slice masks, max,(M.(x,y)).

Based on the height-map we defined the cell volume V = 3 M.(x,y) as the sum of

z=1
volumes of all pixels within the height-map, where for each pixel p € M.(x,y), its
volume isv(p) = (1 +9.75um)*> x 0.3um, where 9.75 um is a size coefficient between

pixel in um, and 0.3 umis the height of the slice .

(5). Protein intensities

Protein signal was computed for each immunofluorescence (IF) image as the sum of

intensities across all z-slices and denoted as I(x,y).

(6). mRNA spot detection

To detect transcript positions from FISH data we used the ICY spot detector
(Olivo-Marin et al., 2002). The detection was scripted so that for the images having
max(z) < 12 we used the following parameters: 2D wavelets and sensitivity 70 at
pixel-scale 2; otherwise the parameters were set to: 1 pixel and 2 pixel length-scales
with sensitivity 80. For cultured cells, as well as for CytoD micropatterned cell series,
we have applied a custom-developed spot detection script (these images present a
very high noise content preventing efficient use of ICY). First, we apply a background
noise subtraction by using Sobel and Gaussian filters, successively. Second, we

apply the white top-hat filter in order to enhance bright objects of interest (potential

' Specific constants are dependent on the microscope and camera settings.
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mRNA spots) on a dark background. Finally, we use the Laplacian of Gaussians filter

for mRNA spot detection.

Il. Secondary image descriptors

Based on the primary image descriptors we computed secondary descriptors that

corresponded to per image statistics.

(1). Cytoplasmic total counts

Let us denote M the set of all mMRNA spots for a given FISH image, |M|=N. The

cytoplasmic total mRNA descriptor was calculated as the number of transcripts within

MPPEM that is T,y = {m € M | MPPEM(x, y) = 1} . The cytoplasmic total IF

cytoplasm

intensity is the summed IF intensity across the M region for protein images:

Tip =3 {100y) | M7 () =11

(2). Peripheral distance map

For a given image, the peripheral distance map corresponds to a collection of

cytoplasm

peripheral masks based on M (x,y), where the width of the periphery varies as

cytoplasm

a proportion of the cytoplasmic radial distance. We segmented M (x,») into

100 isolines from the nucleus contour to the periphery by projecting a ray from the
nucleus centroid to the cell border, which was then segmented in 100 equidistant
points. The 100 isolines were then built by constructing polygons that connect 360

points (one ray per degree). These isolines define a symbolic distance map D,
where D(x,y) is the isobar value for (x,y) corresponding to the “distance” from the
nucleus, with 100 at the nucleus and 0 at the cell edge. Given a fixed percent p
between 0 and 100, the mask MP“""¥(x,y,p) is 1 for D(x,y) <p and 0 otherwise.
Hence, the periphery mask for a given p contains a strip at the cell edge whose

width is a fixed proportion of the radial distance.
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lll. Statistical analysis

Primary and secondary image descriptors were used to compute statistics for image

acquisition series and to compare them.
(1). Peripheral fraction and enrichment

Based on the cell masks, we calculated the peripheral fraction of mRNA and proteins
at a given percent p of the radial distance. This fraction is defined as the ratio of the
transcript counts (respectively, summed IF intensities) across the MP""7(x,y, p)
and M regions.

Each mRNA spot located at (x,y) has its corresponding peripheral distance, defined
by the value of the distance map D(x,y)at the same coordinate, which provides a
mapping d: M — D. This defines a vector C = (n,,... n;y,) containing the counts of
mRNAs at distances i € [0,...,100] from the cell edge normalized by the total
number of mRNAs, that is n,=|{m € M |d(m) = i}|/ N. The mRNA fractions for

each gene and for each isobar were defined as vector C = (7, ... 7,9 ) Of means

over all FISH images for this gene over all time points. The peripheral fraction of

mRNA for a given gene and given p was then computed as Y n, .
i=p

(2). Volume corrected noise measure

In order to measure gene expression noise while accounting for cell volume, we
computed the volume corrected noise measure Nm for micropatterned and
standardly cultured cells. It was calculated following the approach of a previous study
(Padovan-Merhar et. al. 2015):

. bxE(V) Cov(m,V)
Nm = E(N) (MXE(V)) (E(m) E0)

where N is the total mMRNA count, V' is the cell volume, a, b are the offset and slope
of the least-squares best-fit linear regression of E(N) on 7, and o, E and Cov are

the notations for standard deviation, expectation and covariance, respectively.
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(3). Cytoplasmic spread

Cytoplasmic spread is a statistics that measures how evenly a molecule is spread
across the cell. For the mRNAs it corresponds to the average distance from the
nucleus centroid of cytoplasmic mRNAs normalized by the total cytoplasmic cell
spread. For the protein intensities it is the expected distance from the nucleus
centroid according to the protein cytoplasmic intensity distribution, normalized by the

cell spread. In both cases the statistics takes value 1 when the molecules are evenly

distributed across the cytoplasm.

First we defined the cytoplasmic cellular spread S as the average distance of a

cytoplasmic voxel from the nucleus centroid in the x —y plane:

Y h(xy)d(xy)
S — xy)yecC

Vv

where C is the set of all coordinates (x,y) for which M7 “™(x,y) is 1, h is the
previously defined height map, d(x,y) the 2D euclidean distance of pixel (x,y) from
the nucleus centroid, and V' is the cell volume.

The mRNA cytoplasmic spread is then defined as M =m /S, where m is the mean
3D distance of all cytoplasmic transcripts, that is those where M®“P"™"(x,y) =1,
from the nucleus centroid.

The protein cytoplasmic spread is defined as:

2 I(xy)dxy)

(xy) € C
P = —
TS

where I(x,y) is the summed IF signal intensity at a given coordinate (x,y) and T, is

the cytoplasmic total count of the IF signal intensities.

(4). Cell quantization

In order to compute localisation statistics over multiple micropatterned images
compatibility of these images is required. We have chosen the MTOC position to be

the reference point for the 2D cell geometry.
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(A) 2D quantization: quadrants and per quadrant statistics

cell

As shown on the schematic in Figure 3, panels A and B, given a cell mask M“(x,y),

we generate the tessellation of the image by centering two orthogonal axes at the
nucleus centroid and rotating them over 360 degrees, each position of these axes
defining a partition of the cell mask into four quadrants, one of them containing the
MTOC, ©,,. We retained the orientation that yields the maximum mRNA count

within a quadrant containing the MTOC, that is
maxd(TmRNA =‘{m € M| MPPSM(x y)y = 1 A Q,(xy) = 1}’) d €[0,359]. The

resulting fours quadrants Q,, 0,, O;, O, are numbered so that (, always
corresponds to Q,,and the the remaining three quadrants are numbered in the

clockwise fashion.

For protein intensities, quadrants are defined in the similar fashion using 7.
Definition of cell mask partitioning in quadrants ¢, ¢,, g5, g, enables cell’s
quantization in 2D in terms of per quadrant statistics of mRNA and protein signal.
Quadrants’ respective areas are denoted by «a,,a,,a;,a,. We denoted by ¢, the total
number of mRNA spots falling in ¢, in the case of FISH data, or the summed
intensity across ¢, in the case of IF data.

Then the local MRNA density was computed as the relative concentration ¢; of

t/a;
TmRNA 147

where 4 is the cell mask area.

mRNA in quadrant i and is defined to be ¢, =

In the case of protein signal we replaced T, .y, by T;r .

(B) Fine-grained quantization
In the same fashion as for the peripheral distance map we defined an additional
subdivision of the cellular mask in isolines, their number being defined by the percent

p . Given the previously defined quadrants, we further subdivided each of them in 2,

yielding the tessellation in 8 parts that divide the circle in 45 degree sectors. Using

the isolines and the 8 sectors we quantized the cell masks into 8 xp segments

organized in a concentric fashion starting from the nucleus towards the cell periphery
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(see the schematic in Figure 4, panel A). Quantization for thus obtained segments

was computed in the same fashion as for quadrants, resulting in a 8 xp vector of

per segment signal concentration statistics for each cell, that we denoted C =(c,).

(C) 3D quantization
Cell mask’s tessellation into quadrants as defined in Ill.4.A (axes position) is
projected onto each z-slice, thus yielding the cell’s partition into four 3D quadrants
0,, 05, 05, O,, their respective volumes being denoted by v,,v,,v;,v,. The volume
of each quadrant is calculated as the sum of volumes of pixels within it using the
same coefficients as for the cell volume.
We denoted by ¢, the total number of mMRNA spots falling in Q, in the case of FISH
data, or the summed intensity across Q, in the case of IF data.
Then the relative concentration ¢, of mMRNA in quadrant Q, is defined to be

tlv,

¢; = 7. In the case of protein signal we replaced Ty, by T .

! mrnAlV

(5). MTOC polarity index

We defined a polarity index PI,, € [-1,1], called the MTOC polarity index, that
measures the enrichment of mMRNA or protein signal for a given image acquisition
series in the vicinity of the MTOC location.

For the set S of images from an acquisition series under study, we denoted by
Sy=1{S} and S, = {Sj} the sets of all MTOC containing quadrants and

quadrants that do not contain the MTOC, respectively. Intuitively, the MTOC polarity
index measures how frequently the concentration within the MTOC quadrants is

higher than in the non-MTOC quadrants. Formally it is defined as follows:

PIM: 21{S;le;>m} _1’

|S]

where m is the median of signal concentrations ¢; for all quadrantsin S, .
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Positive values of P17,, imply MTOC correlated enrichment of RNA transcripts or

proteins, negative values imply enrichment away from the MTOC and a value of zero

implies no detectable correlation.

Statistical relevance of PI,,is measured using the null hypothesis that Vi, ¢, =m,
which corresponds to the complete spatial randomness. Under this hypothesis the
population value of PI,,is 0. However, we have shown in (Warrell et al., 2016) that
the empirical distribution of PI,, follows the binomial distribution asymptotically.
Thus, the binomial test was used to evaluate the statistical relevance of P/,, for a

given set of images.

(6). mRNA / protein distribution profile

In order to define a spatial distribution profile of mMRNAs and proteins for images
acquired at a given time point, we used the fine-grained quantization of the cells (see
paragraph 1V.4.B). A single vector was computed at each time point by averaging
across the pool of acquired images, hence estimating its expected value at that time
point. Recall, that for each cell we computed a vector C = (c,) of per segment signal
(mRNA or protein) concentration statistics. Then for a given time point we computed
a mean spatial profile C representative of this time point by averaging all C, for this

acquisition series.
(7). Temporal interaction score

The goal of this analysis is to measure the interdependence between the mRNA and
protein dynamics. To do this, we defined the Temporal Interaction Score (TIS) as a
correlation between mRNA and protein spatial distributions for image acquisitions at
several time points. TIS for a given mRNA-protein pair is calculated based on mRNA

and protein distribution descriptor vectors C, ,,an Cp .

TIS can be calculated for any measure of correlation between mRNA and protein
distributions, which allowed us to examine the interdependence of molecule’s

dynamics within specifically defined subcellular regions.
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More formally, we supposed a 2-measure discrete time process @, containing
observations (¢,) and (y,)at time points 7, ={s} and T,={;}, respectively.

Then, the (empirical) temporal interaction score, fIY(S) is defined for pairs of data
S={(¢,)*(y,)}at time points 7, and T, using a similarity function y in the

following way:

j*/(S) = H )

where o is the rank-suma= ) ry,((q),l,\ytz)), t, <t,, ry is the rank of the tuple
1,

where the order is given by the y function, y function is the similarity between pairs
of observations is computed as y/((t, 1,)) — ¥ (E [cs(q>t])] E [G(‘Vrz)])- Constants A4

and B ensure that J lies between 0 and 1 and are defined using the notion of
‘forward-leading’ time point pairs.

The ‘forward-leading’ set S, is defined as S, ={(t,,t,) € T, xT,|t, <t,}, and its
complement S, contains all pairs of time such that 7, >¢,. We define constants 4
and B as A =(S,/2)(S,|+1)and B =(IS,[S,/2) (S, [IS5] + D)(S,1/2)(S,| + 1). Thus,
Jcan be understood as the rank-sum of the similarities 7'z ¢,)across all
‘forward-leading’ time point pairs normalized by 4 and B to lie between 0 and 1.

Consequently, observations from @ are ranked in the ascending order according to
the value of the similarity of some statistics ¢ between ¢ and v .

In practice, for the analysis of mMRNA / protein interactions, we considered computing

the TIS for a 2-measure discrete time processes ® in which ¢ is a point process
and y a general random measure (representing mRNA locations and protein
concentrations respectively), 7, ={2,3,4,5} and T, ={2,3,5,7} (the discrete time
points representing time in hours), o(.) is the normalized histogram over a fixed finite
set of voxels as described in the section Ill.6, and y is the Pearson Correlation
Coefficient between two histograms. We note that () can represent a histogram

based on a particular quantization of cells and the histogram can cover the whole cell

(forming a global TIS).

Moreover, we evaluated whether there is a deterministic influence of the mRNA

distributions on the protein distributions of late time points against a null hypothesis
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of dynamic equilibrium. We used the empirical temporal interaction score J to
identify non-stationary dynamics given pairs of mMRNA and protein data S, and we
tested whether the null hypothesis (that ® is in a dynamic equilibrium) can be

rejected.

In (Warrell et al., 2016) we have shown that E []] = 0.5 under the null hypothesis

that the process @ is at steady-state, and further that its distribution can be
characterized up to a dependence on the ranking function. From the rank-sum of the
similarities y'((¢,,¢,)) across S, defined previously, an exact permutation test can be
derived to calculate significance levels for a given value of J and a steady-state null

hypothesis.

(8). Degree of clustering (Ripley-K)

The degree of clustering statistic has been previously introduced based on the
framework of point processes by (Lee et al., 2013). It is a unitless measure that can
be used to compare clustering between different molecules and conditions. In
(Warrell et al., 2016) we generalized this definition to the framework of continuous
random measures, which allows us to calculate the degree of clustering for both
FISH and IF data, the former being modelled as point processes, and the latter
modelled as a continuous-valued random measure. Our generalized algorithm for
calculating the degree of clustering is summarized below. For theoretical

considerations please see (Warrell et al., 2016).

A classical tool for the point process analysis is the Ripley’s K function defined as the

mean number of events that occurred inside a ball of radius » around a randomly
selected event normalized by i, the number of events per unit area (Ripley, B. D.

1977). A classical estimator of the Ripley’s K function can be defined as in (Chui et
al., 2013, Ripley 1977):

n
K0) = i N0
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where N, is the number of event points (MRNA transcripts) in a ball of radius r
centered on i, A is the density, v is the volume or area (in 3D and in 2D,

respectively) of the observed region w, and » is the number of points.

We normalized K under a homogeneous Poisson process, which is commonly

known as Ripley's H function /(r)= /(3 K()/(4m)—r, d € {2,3} where d is equal

to 3 in the case of volume-based computation and 2 in the case of 2D.

This in turn makes it possible to define the clustering index H* as an estimator of
I:[(r) by comparing the Ripley’s H function calculated empirically to its distribution

under complete spatial randomness (CSR):

H()H o5 if H(r)20

H*(ry= """
( ) —H(r)/H s(r) otherwise

where Hgs(r) and I:IS(r) are the 95th and 5th percentiles respectively of [A{(r).

CSR is modeled using random permutations of actual data points (100 times in our
study), which enabled us to compute the 95% and 5% confidence bounds of CSR.
Spatial clustering is considered to be significant at radius » if the computed K(r) is

over the upper (95%) or lower (5%) bounds of the random distribution.

In (Warrell et al., 2016) we have introduced a convolution-based H* estimator based
on the exact permutation-test. This estimator normalizes ﬁl(r) so that ’I-}*(r)‘ >1 only

when H(r) falls outside the 95% confidence interval for a homogeneous Poisson
Process. Moreover, we have shown that our permutation test using the
convolution-based estimator reduced to the clustering index estimator used by (Lee
et. al. 2013) for the point process case. This enabled the implementation of a
common consistent computational framework for both point and continuous
processes. The degree of clustering 5(r) is then defined as the area of /' above 1,

thatis §() = |  max(F(x)—1,0)dx.

x€(0,r)
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Within this unified framework we can use the same computational approach for
mRNA data as in (Lee et al., 2013) to compute the degree of clustering. Below we

define the specific procedure for its computation in the case of protein data.

Cells are quantized into voxels V,,..., V, where each voxel t the value of the
observed quantity ¢(V,),..., ¢(V,) in the case of 3D analysis (or into pixels in the
case of 2D). We denoted by 7 an array in which each element corresponded to the

intensity value for each voxel.

The convolution-based estimator K. can be computed using the following formula:

Re(r)= 2=J < r 10« Dwydx — £

where A is an estimate of average intensity per unit volume, [.] is the indicator
function that is 1 for a true statement and 0 otherwise, I'(x)=1I(—x), * is the
convolution operator, and ¥V is the volume of the window over which the cell is
observed. In practice, given the fact that the cell thickness is quite low, we can
approximate the 3D convolution by a 2D convolution.

Thus we have a common computational framework to evaluate the presence or

absence of clustering for both mRNA and protein data.

IV. Additional methods for muscle data analysis

In this section we report adaptations of the methods presented in sections I, Il and IV

to the case of muscle cells (see Table 3).

(1). Cell and nucleus masks, nucleus centroid

Cell and nucleus masks were computed for all muscle images, using y-Tubulin and
DAPI signals, respectively, using the same general principles as in section 11.2. As
these acquisition series benefit from a better segmentation, only Otsu threshold

method was necessary to obtain the binarized images.
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After these steps, we obtained a contiguous contour with small white spots due to the

noise in the images. We applied mathematical morphological operators such as

cell

dilatation and closing to get a full mask of the muscle cell M“"(x,y). The nucleus
mask M™(x,y) detection followed the exact same steps and parameters as for
the micropatterned images - the nucleus centroid was computed as the geometric

center of the nucleus mask.

(2). mRNA and protein signal detection

mRNA spots detection was done using ICY spot detector (Olivo-Marin 2002) to find
transcript positions, the parameters were set to: 1 pixel and 2 pixel length-scales with

a fixed sensitivity of 80.

(3). z-lines’ masks

The main component of z-lines is the Alpha actinin protein. To facilitate the analysis,
we have defined an additional secondary descriptor computed from the Phalloidin

signal, called z-lines mask M= ™*(x,y).

For each z-slice of each image we performed the contour detection for the z-lines.

First, we applied a vertical Sobel operator, which detected the vertical edges of an
image, followed by a Gaussian kernel to smooth artifacts of the Sobel filtering and

reinforce the z-line signal. An Otsu binarization was then processed. As a result we

obtained a set of z-lines masks M= " = {Mj_“”“(x,y)} (Figure 6).

For further analysis we restricted the cell to z -slices containing more than 25 mRNA

spots (to avoid false positives due to high noise). Notice that the spots falling in the

eliminated slices were also excluded from the analysis.

We defined an additional descriptor called z-line spacing Z that represented the
median spacing between 2 lines. For each :z-slice at each y coordinate we

computed all the distances d((x;,»), (x;,»)) where x; and x; were 2 consecutive
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z-lines contours. Z was defined as the median of all d for all acquired cells. For our

data Z =15 pixels.

(4). z-line mRNA distance profile

In order to evaluate the mRNA clustering in the vicinity of z-lines, we computed the
average 2D euclidean distance of mMRNA spots to their nearest z-line for mature and
immature cells.

Using the M* "™ (x,y) masks, we computed for each mRNA spot m € M positioned
at (x,y,z,) the minimal 2D Euclidean distance to a z-line falling within a disk of
radius Z. This computation was performed within the A% '"“(x,y) z-mask such that
z=z,. If m fall within MZ""*(x,y), then the minimal distance was set to 0. Thus for
each image we obtained a D = {d}, |D|=N the set of all minimal distances between
mMRNA and z-lines. In turn this allowed us to define for each image a count vector
80=(3,) of size Z where 3§, is the number of mRNA spots at each distance
d=1i, d<Z normalized by N .

For a given image acquisition we defined its z-line mRNA distance profile to be

5= (S_i), where 6_1 is the median of all §; (Figure 6, panel B).

(5). Cell quantization

Given that muscle cells contained more than one nucleus, each cell mask was
restricted to be between two consecutive nuclei centroids as shown on the schematic

cell

in Figure 6 (panel C). Given a cell mask M““(x,y), definition of cell mask tessellation
in n vertical segments g¢,... g, enables cells quantization in 2D in terms of per

segment statistics of mMRNA concentrations. Quantization was performed with

n = 20 and n = 80, see results in Figure 6 (panel C).

(6). mRNA spatial distribution

To estimate mRNA clustering along muscle cells, we computed local mMRNA density

for each cell using the cell quantization introduced in section V.5. We denote by ¢,

the total number of MRNA spots falling in a given ¢, . Then the local mMRNA density is
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computed in the same way as for fibroblast cells (see section Ill.1) as the relative

tla;

T rnat4?

concentration ¢; of MRNA in ¢, and is defined to be ¢, = where 4 is the cell

mask area. We produced distribution plot and heatmap representing mRNA local

density between two nuclei (Figure 6 panel C).
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FIGURE LEGENDS

Figure 1 | Reproducibility of mRNA and protein distributions in micropatterned cells.
(A) Mouse fibroblasts were plated on fibronectin-coated micropatterns and induced to
polarize by addition of serum. Cells were fixed and single molecule FISH was
performed to target mMRNAs of interest. (B) Outline of the image processing pipeline.
(C) Arhgdia mRNA was visualized using single molecule FISH (grey) in standard and
crossbow-shaped micropatterned mouse fibroblasts, micropatterns were visualized
by coating with labeled fibrinogen (cyan) and DNA was stained with Hoechst (blue),
scale bar 10 uyM. (D) Comparison of the relationship between cell size and Arhgdia
transcript copy number in standard cultured and micropatterned cells. Solid lines in
(D) upper graphs show the least squares fit. Lower graphs compare cell and nucleus
size in the two conditions. (E) Absolute deviation of Arhgdia mRNA distribution of a
randomly selected cell from a pooled average of up to ~40 cells for cultured and

micropatterned cells.

Figure 2 | Peripheral enrichment and clustering dynamics of mRNA-protein pairs. (A)
A subset of transcripts were previously shown to be enriched in the leading edge of
mouse fibroblasts upon treatment with LPA/serum (Mili et al., 2008). (B) Comparison
of the enrichment of 5 mRNAs with respect to the Gapdh mRNA in a peripheral
cellular region whose width varies from 0-100% of the radial distance from the
plasma membrane to the nucleus (left), and the distributions of absolute fractional
values at 10% and 30% (right). (C) Clustering is characterized by comparing
observed transcript and protein distributions to complete spatial randomness. For
mRNAs, the Ripley’s K function is estimated for an observed distribution and samples
from a homogeneous Poisson process by counting the number of pairs of points lying

within a radius r of each event. (D) To compute the degree of clustering, we first
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defined an estimator of the Ripley's K function, called clustering index, by normalizing
the observed Ripley’s K function to the 95th and 5th percentiles under the Poisson
process. Statistically significant clustering of mRNAs or proteins is found at radius r
where the estimator function is over the 95th percent confidence interval calculated
based on the CSR assumption. Values below the 95th percent confidence interval
indicate the dispersion of the molecules. The degree of clustering is the area under
the estimator's curve that is above the 95th percentile of the random distribution. (E)
Comparison of degree of clustering for mRNAs and proteins (all time-points, log
values shown after scaling by log(0.5) and log(0.01) for mRNAs and proteins
respectively). (F) Comparison of clustering dynamics for four mRNA-protein pairs
using degree of clustering. Zero values indicate distribution at a given time-point is
not distinguishable from randomness. (G) Correlations between temporal profiles for
corresponding and non-corresponding mRNA-protein pairs (Pearson Correlation
Coefficient used). Correlations are between median values at 2, 3 and 5 h time points
for degree of clustering, peripheral fraction, cytoplasmic total and spread descriptors.
Bar graphs in (B) and (E) show median with .25 and .75 quantile error bars, and
graphs in (F) show median surrounded by envelope indicating .25 and .75 quantiles

fitted to cubic splines. See also Figure S2.

Figure 3 | Correlative influence of cytoplasmic mRNA and protein distributions and
MTOC position. (A) Schematic of the MTOC correlative influence analysis. MTOC
position is annotated in projected 3D Tubulin IF images (iii). (B) Schematic of the
analysis to determine the MPI value. The MTOC polarity index (MPI) is defined by
normalizing the differences of signal concentration between the MTOC associated
quadrant and the other quadrants. It takes values between -1 and +1, with positive
values indicating enriched mRNA or protein concentration in the MTOC quadrant,
negative values indicating enrichment away from the MTOC quadrant, and values
close to 0 indicating no correlative enrichment. (C) The cytoplasmic mRNA
enrichment in non-MTOC containing quadrants, MTOC-containing quadrants and
MTOC-containing quadrants when this quadrant coincides with the leading edge. The
concentration of cytoplasmic 3-Actin, Pad3, Pkp4 and Rab13 transcripts and Arhgdia
and B-Actin proteins is enriched in the MTOC-containing quadrant when it is in the

leading edge. (D) Comparison of MPI values for mMRNAs and proteins in cytoplasmic
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populations (all time points). (E) Comparison of MPI dynamics for Arhgdia and Pard3
mRNA-protein pairs. Bar graphs in (D) show median and .25 and .75 quantile error
bars for 11 bootstrapped MPI estimates. Graphs in (E) show median surrounded by
envelope indicating .25 and .75 quantiles of 11 bootstrapped estimates fitted to cubic

splines.

Figure 4 | Interdependency of localization dynamics for corresponding mRNAs and
proteins. (A) The Temporal Interaction Score (TIS) as a correlation between mRNA
and protein spatial distributions for image acquisitions at several time points.
Distributions were spatially quantized radially with the center at the nucleus centroid
and circularly by computing isolines at different distances from the cell’s periphery.
The subcellular distribution profiles of mRNA and proteins corresponding to
concentration statistics in each segment was computed. (B) Forward leading time
point pairs, defined as ¢, <t,, were used for calculating TIS values. (C) TIS values
were computed using global correlations of all voxels/segments across the
cytoplasmic area, and local correlations across subsets of voxels/segments within
peripheral regions. (D) Significant interdependent dynamics for all cytoplasmic

mRNA-protein pairs was observed using the fine grained quantization scheme.

Figure 5 | Effects of cytoskeleton disturbance on mRNA-protein localization and
interdependent dynamics. (A) Nocodazole was added to cells seeded on
micropatterns, inducing inhibition of microtubules polymerization (Tubulin IF image
shown), scale bar 10 uM. (B) Cytoplasmic spread of Arhgdia and Pard3 transcripts
and proteins (at 3 and 5 h combined) is defined as a statistics measuring the
evenness of a molecule spread across the cell, with the value 1 for even distribution.
No significant effects in cytoplasmic spread are observed for these two genes in the
presence of nocodazole; (C) The peripheral fraction of Arhgdia and Pard3 transcripts
and proteins (at 3 and 5 h combined) were calculated similarly to Figure 2B. Arhgdia
peripheral fraction was increased in the presence of nocodazole. (D) mRNA MTOC
enrichment profiles for Arhgdia and Pard3 shown for nocodazole-treated and control
cells at 3 and 5 h combined. A reduction in MTOC enrichment for Arhgdia and an
increase in MTOC enrichment for Pard3 are observed in the presence of nocodazole.

(E) MPI scores shown for control and nocodazole treated cells for Arhgdia and Pard3
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transcripts at 3 and 5 h combined. Nocodazole treatment disrupts characteristic
dependency between MTOC orientation and localization, resulting in lower MPI
values than in the untreated conditions for Arhgdia and higher MPI values compared
to untreated conditions for Pard3. (F) The interdependent dynamics for Arhgdia and

Par3 were disrupted in the presence of nocodazole.

Figure 6 | Sarcomeric mMRNAs cluster in a striated pattern in differentiated myofibers.
(A) Typical epifluorescent images of immature and mature muscle fibers. The DNA
was stained with DAPI (blue), F-actin was visualized using immunofluorescence
(green) and Actn2/Gapdh were visualized using single molecule FISH (red). Z-line
and RNA spot detection masks were extracted using immunofluorescence and single
molecule data respectively. (B) mRNA distance profiles. For each mRNA we
computed its distance to the closest Z-lines, which allowed us to count the number of
mRNAs having a certain distance to Z-lines. Normalized median counts are
represented on the y axis. A higher number of actn2 immature mRNA falls inside or
close to Z-lines compared to mature fibers, suggesting greater clustering of mMRNA
between Z-lines for mature actn2. (C) The mRNA local density was computed
between two nuclei. Each cell was quantized in vertical quadrants and relative
concentration of mMRNA in each quadrant was computed by normalizing the counts by
the relevant surface. A wave-like clustering is observed for actn2 in mature compared
to immature fibers. No clustering is observed for Gapdh. (D) Model describing actn2

MRNA distribution in immature and mature fibers.
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SUPPLEMENTARY FIGURE LEGENDS

Figure S1, related to Figure 1 | Automated image acquisition and effects of
micropatterning on noise. (A) Each coverslip was micro-fabricated to contain multiple
12 by 12 grids of micropatterns to which the cells adhered facilitating the
development of an algorithm to automate the process of image acquisition. The
algorithm initially performed grid calibration in which the location of the upper-left
micropattern was automatically detected, followed by grid orientation and grid step
size determination (left). Images were then collected at each grid position across the
full 12 by 12 grid. A 2-class support vector machine was trained to classify cells
which have grown normally on the micropatterns versus micropatterns containing no
cells, multiple cells, or cells which have failed to fill the micropattern, allowing the
automatic rejection of grid positions which cannot be used (right). (B) Comparing the
volume-corrected noise measure (Padovan-Merhar et al., 2015) across time for 6
mMRNAs. Cubic splines are fitted to the values measured at 2, 3, 4 and 5h time-points.
© The stochasticity which remains after correcting for the linear relationship between
cell-size and transcript number using the volume-corrected noise measure
(Padovan-Merhar et. al. 2015).

Figure S2, related to Figure 3 | Correlative influence of peripheral mRNA and
protein distributions and MTOC position. (A) The peripheral mMRNA enrichment in
non-MTOC containing quadrants, MTOC-containing quadrants and MTOC-containing
quadrants when this quadrant coincides with the leading edge. The concentration of
cytoplasmic B-Actin, GAPDH and Rab13 transcripts and Arhgdia protein is enriched
in the MTOC-containing quadrant when it is in the leading edge. (B) Comparison of
MPI values for mMRNAs and proteins in peripheral populations (all time points). (E)
Comparison of MPI dynamics for B-Actin and GAPDH mRNA-protein pairs. Bar
graphs in (B) show median and .25 and .75 quantile error bars for 11 bootstrapped

MPI estimates.
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Figure S3, related to Figure 5 | Effects of cytoskeleton disturbance on
mRNA-protein cytoplasmic spread, counts and peripheral fraction. (A) + (B) Effects
of Nocodazole and CytoD treatment on cytoplasmic total and cytoplasmic spread
descriptors for Arhgdia and Pard3 mRNAs and proteins at 3-5 h time-points. Bar
graphs show median with .25 and .75 quantile error bars. (C) The peripheral fraction
of Arhgdia transcript and protein (at 3 and 5 h combined) were calculated similarly to
Figure 5C.

Figure S4, related to Figure 6 | Sarcomeric mRNAs cluster in a striated pattern in
differentiated myofibers. (A) + (B) The mRNA local density was computed between
two nuclei. Each cell was quantized in vertical quadrants and relative concentration of
mRNA in each quadrant was computed by normalizing the counts by the relevant
surface. A wave-like clustering is observed for actn2 in mature compared to immature

fibers. No clustering is observed for Gapdh.
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Figure S1, related to Figure 1
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Figure S2, related to Figure 3
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Figure S3, related to Figure 5
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Figure S4, related to Figure 6
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