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Abstract

Essential tremor manifests predominantly as a tremor of the upper limbs. One
therapy option is high-frequency deep brain stimulation, which continuously
delivers electrical stimulation to the ventral intermediate nucleus of the thalamus
at about 130 Hz. Constant stimulation can lead to side effects, it is therefore
desirable to find ways to stimulate less while maintaining clinical efficacy. One
strategy, phase-locked deep brain stimulation, consists of stimulating according to
the phase of the tremor. In this study, we aim to reproduce the phase dependent
effects of stimulation seen in patient data with a biologically inspired
Wilson-Cowan model. To this end, we first analyse patient data, and consistently
identify in half of the datasets significant dependence of the effects of stimulation
on the phase at which stimulation is provided. We approximate response curves
of datasets identified as significant by providing analytical results for the
linearisation of a stable focus model, a simplification of the Wilson-Cowan model
in the stable focus regime. Additionally, we fitted the full non-linear
Wilson-Cowan model to these datasets, and we show that in each case the model
can fit to the dynamics of patient tremor as well as to the phase response curve.
The vast majority of top fits are stable foci. The model provides satisfactory
prediction of how patient tremor will react to phase-locked stimulation by
predicting patient amplitude response curves although they were not explicitly
fitted. We report that the non-linear Wilson-Cowan model is able to describe
response to stimulation more precisely than the linearisation.

Keywords: deep brain stimulation; essential tremor; phase-locked stimulation;
phase response curve; amplitude response curve; Wilson Cowan model; focus
model
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List of abbreviations
ARC amplitude response curve

DBS deep brain stimulation

DCN deep cerebellar nuclei

ET essential tremor

FDR false discovery rate

nRT reticular nucleus

PD Parkinson’s disease

PDF probability density function

PRC phase response curve

PSD power spectrum density

TEED total electrical energy delivered

VIM ventral intermediate nucleus

WC Wilson-Cowan

1 Introduction
Essential tremor (ET) is the most common movement disorder, affecting 0.9% of

the population [1]. It predominantly manifests as a tremor of the upper limbs, and

can severely affect daily-life. When medications are ineffective or not tolerated, tha-

lamic deep brain stimulation (DBS) is a well-established therapy option. Clinically

available DBS continuously delivers high-frequency (≈ 130 Hz) electrical stimu-

lation to deep structures within the brain via an electrode connected to a pulse

generator implanted in the chest. There is no agreement in the research community

on the mechanisms of action of high-frequency DBS [2], but it is believed there is

room for improvement in terms of efficacy, decrease in power usage, avoidance of

habituation, and most importantly reduction of side effects [3]. Reported side ef-

fects of high-frequency thalamic DBS include speech impairment (dysarthria), gait

disorders, and abnormal dermal sensations (paresthesia) [4].

Because side-effects are the main clinical bottleneck, improving high-frequency

DBS generally means stimulating less by closing the loop on a signal related to motor

symptoms, while maintaining clinical efficacy. One example of closed-loop DBS is

adaptive DBS, whereby stimulation is triggered in Parkinson’s disease (PD) patients

when pathological neural oscillation amplitude in the beta band is higher than a

threshold. Compared to high-frequency DBS, it has been shown to improve motor

performance, and reduce speech side-effects in humans [5, 6, 7]. Another example is

phase dependent stimulation, which has been investigated in a computational model

of PD [8], and in PD patients [9, 10]. Phase-locked DBS has recently been studied as

a new therapy for ET [11]. Hand tremor is recorded, and the reduction in stimulation

comes from stimulating with a burst of pulses according to the phase of tremor,

only once per period of the tremor rather than continuously. In some patients,

the strategy only requires half the energy delivered by high-frequency DBS for the

same effect. Optimising phase-locked DBS requires a detailed understanding of the

phase dependence of the response across patients, but so far data collection from

phase-locked stimulation experiments has been restricted to small datasets because

patients fatigue quickly. While direct analysis of the data has proven insightful

[11], modelling phase-locked stimulation would allow predictions to be made from
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analytic and computational studies regarding the phase dependence of the response

to stimulation, and would open the door to supplement scarcely available patient

data with synthetic data. The ability to easily generate large amounts of synthetic

data could come in handy to help devise and test control algorithms, or when trying

to predict an effect that, because of noise in recordings, can only be deciphered when

a large number of trials is available.

Tremulous hand movements are believed to be closely related to thalamic activ-

ity [12, 13], and it is believed that ET originates in the cerebellar-thalamic-cortical

pathway [14]. However detailed knowledge of how ET comes about is missing, which

makes simple, canonical models natural candidates to study ET. Recently, phase-

locked DBS was studied using Kuramoto phase oscillators which do not model

interacting neural populations with distinct properties [15]. In the present work, we

focus on a neural mass model, the Wilson-Cowan (WC) model, whose architecture

can be mapped onto neural populations thought to be involved in the generation

of ET, and allows for strong coupling between the populations. Additionally, stim-

ulation can be delivered in the model to the most common stimulation site for ET,

the ventral intermediate nucleus (VIM). The model describes the firing rates of

an excitatory and an inhibitory population, and only has a few parameters, which

makes it less prone to overfitting and significantly easier to constrain than more

detailed models. The WC model has been shown to be adept at describing beta

oscillations in PD [16, 17]. Moreover, the work presented in [18] provides evidence

that the effects of high-frequency DBS for ET in a WC model are similar to the de-

scription given by conductance-based models. While the WC model has been used

to design closed-loop strategies for PD [19, 20], whether a firing-rate model such

as the WC can model the effects of phase-locked DBS has not been approached in

the literature. Based on strong assumptions, Polina et al. reduced a WC model to

a one-dimensional ordinary differential equation and looked at periodic forcing, but

not in the context of DBS, and without attending to dependence on the phase of

stimulation [21]. The present work will focus on reproducing the phase-dependent

effects of phase-locked DBS measured in human data with a WC model.

Stimulation changes the phase and the amplitude of tremor and the dependence

of these changes on the phase of stimulation can be quantified by the phase response

curve (PRC, in this study change in tremor phase as a function of tremor phase) and

the amplitude response curve (ARC, in this study change in tremor amplitude as a

function of tremor phase). The ARC directly measures the change in tremor, hence

the change in patient handicap, but both the ARC and the PRC are important to

understand the effects of phase-locked DBS and potentially optimise the stimulation

pattern. Theoretically, PRCs and ARCs have been defined differently, mostly in the

context of limit cycle models concerned with asymptotic response to infinitesimal

perturbations, see for example [22, 23, 24, 25, 26]. In patients, DBS stimulation is not

infinitesimal, and tremor data is very variable so stimulation happens in transient

states. Therefore rather than considering an asymptotic description of the changes

in phase and amplitude, we will be focusing on a close variant of the experimental

response curve measurement methodology applied to blocks of stimulation in [11],

which we will hereafter refer to as the “block method”. It provides a finite time

response to a finite perturbation and relies on the changes in the Hilbert phase and
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amplitude following blocks of phase-locked stimulation (more details in 2.1). The

only exception to this will be in analytical derivations (section 4), where a first order

measurement of the response curves (i.e. measurement at the end of the stimulation

period) will be used for tractability, as a simplified first approach to the model.

For coherence with the experimental response curve measurement methodology,

the notion of phase and amplitude used throughout will be the Hilbert phase and

amplitude or equivalent. It should also be noted that we are considering population

response curves and not single neuron response curves. The vast majority of best

performing WC models in reproducing patient data are found in this work to be

stable foci, where tremor dynamics are being reproduced by adding noise to the

system, so we restrict our analytical considerations to stable foci.

The main contributions of this work are the following. We first analyse patient re-

sponse curves, identify a subset of datasets passing appropriate statistical tests, and

characterise the relationship between PRC and ARC in these patients (section 2).

Following the introduction of our biologically motivated WC model (section 3), we

derive approximate analytical expressions that delineate the response to stimula-

tion of a 2D dynamical system described by a linearised focus, with the goal of

better understanding the constraints built in the model (section 4). The derived

response curves are close to sinusoidal, and a relationship between them is found,

revealing similarities in shape and phase shift with patients who have significant

PRCs and ARCs. We then show that for these patients, the WC model can be

fitted to the data and can reproduce the dependence of the effects of stimulation

on the phase of stimulation. The model is fitted to the PRC and can reasonably

predict the ARC, and notably what is approximately the best phase to stimulate

(section 5). We then proceed to compare the relationship between response curves

in the linearised and the full model and conclude that non-linearity is important to

better reproduce the relationship found in patients (section 6). Finally a discussion

is provided (section 7).

2 Patient response curves and their relationship
In order to assess phase dependence of the effects of DBS in patients, we extract

PRCs and ARCs from patient’s tremor data, provide a statistical analysis of the

curves, and analyse their relationship when applicable.

2.1 Analysis method

In the study reported in [11], ET patients are fitted with an accelerometer to record

their tremor, and DBS locked to the phase of tremor acceleration is provided in

blocks of 5 s to the VIM of the thalamus, with 1 s without stimulation between

blocks. Each block targets a stimulation phase randomly selected out of 12 tremor

phases (e.g. 120 degrees for the block shown in Figure 1). Stimulation is delivered

once per period at the target phase, in the form of a burst of 4 to 6 pulses at high

frequency (130 Hz or higher). There are about 10 trials available per phase (about

120 blocks per patient). The method described in [11] to obtain patient’s response

curves was specifically developed for this type of data, and we closely follow it. We

refer to our version of the method as the “block method” and denote the response

curves obtained by bPRC and bARC, “b” standing for block. More specifically,
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we define the bPRC and the bARC according to the following procedure. Tremor

frequency is around 5 Hz, and the dominant axis tremor recordings are bandpass-

filtered (4 Hz band encompassing the patient tremor frequency content) by means

of a backwards and forwards Butterworth second order filter (zero-phase filtering)

and z-scored.

Obtaining the change in phase (bPRC) For each block, a straight line is fitted to

the evolution of the Hilbert phase during the 1 s period without stimulation before

the block. The change in phase ∆ϕ due to the block is given by the difference

between the phase of the fitted reference line evaluated at the end of the block and

the actual Hilbert phase at the end of the block (see Figure 1). This phase response

is divided by the number of pulses in the block (on the basis of 4 pulses per burst

for patient 4R and 4L, and 6 pulses per burst for the rest), which gives an average

response for one pulse. The target phase at which stimulation is supposed to occur

is known for each block, but phase tracking not being perfect, the actual Hilbert

phase at which stimulation occurred is determined for each burst of stimulation as

the circular mean of the Hilbert phase during the burst. We take the circular mean

of these burst angles for a given block as the actual mean phase of stimulation for

the block. These values are then binned into 12 phases bins, and the change in phase

is averaged within bins to obtain the bPRC.

Obtaining the change in amplitude (bARC) For each block, the change in ampli-

tude is given by the difference between the mean of the Hilbert amplitude during

the last second of the block and the mean of the Hilbert amplitude during the 1

second without stimulation before the block (see Figure 1). As for the change in

phase, this amplitude response is divided by the number of pulses in the block, and

averaged across blocks in the same phase bin to obtain the bARC.

Measuring response curves significance and PRC-ARC shift In order to identify

significant patient’s response curves, we performed two statistical analysis. First,

bPRCs and bARCs were tested for a main effect of phase by means of a Kruskal-

Wallis ANOVA (12 phase bins) to differentiate patients’ response curves that may

be dominated by noise (lack of phase-dependent response or data collection and

analysis unable to measure it). Second, since we are expecting response curves to

have a dominant first harmonic, the cosine model y = c1 + |c2| cos(x + c3) was

fitted to patients’ phase response and amplitude response curves. We assessed via

F-tests whether the cosine model was better at describing the data than a straight

line at the mean. Including the less specific ANOVA test allows for more generality,

as we do not wish to exclude patients with significant, but non-sinusoidal response

curves. On the other hand, the cosine test is more likely to detect phase-dependent

effects of stimulation in patients which indeed have sinusoidal response curves. We

therefore define the following criterion for selection of a patient for further study in

the rest of the manuscript.

Significance criterion: having both bPRC and bARC deemend significant under

FDR control (see below) by at least one of the two tests – ANOVA test for a main

effect of phase or cosine model F-test.
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Figure 1: Example showing the block method applied to a block of stimulation with

a target stimulation phase of 120 degrees. Stimulation triggers are shown in black

in the lower panel while filtered tremor is shown in blue in the upper panel. The

change in phase due to stimulation ∆ϕ is obtained by comparing at the end of the

block the actual Hilbert phase to a linear phase obtained by a straight line fit to

the phase evolution 1 s before the block (middle panel). The change in amplitude is

given by the difference between the mean of envstim and envref (top panel). Both

the phase and amplitude responses are normalised by the number of pulses in the

block.

In both cases, the adaptive linear step-up procedure modified by Storey et al. in

[27] and reviewed in [28] was used to keep the false discovery rate (FDR) below

5%. It improves on the original Benjamini and Hochberg procedure [29] by using

an estimator m̂0 for the number of true null hypothesis m0 (total number of tests

m = 2 response curves × 6 patients = 12 for each analysis). Controlling the FDR

at 5% guarantees that the expectation of the number of false positives over the

number of positives is less than 5%.

Additionally, in datasets where both bPRC and bARC are significant according

to the cosine F-test, the relationship between bPRC and bARC is quantified by

the shift in phase between the cosine model fits to the bPRC and the bARC. In

these datasets, the PRC-ARC shift is calculated as φPRC − φARC ≡ cPRC
3 − cARC

3

(mod 2π), with φPRC−φARC ∈ [0, 2π). Calculating a PRC-ARC shift in other cases

is not meaningful.

2.2 Results of the analysis

We analysed six datasets from the five patients included in [30] (datasets 4R and

4L are for the right and left upper limbs of the same patient). bPRCs and bARCs
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obtained are shown in supplementary Figure 15 in Appendix H, and results of

the statistical tests are presented in Table 1. Based on the significance criterion

defined in the previous section, patients 1, 5 and 6 are selected for further study, as

both their bPRCs and bARCs are found significant by the cosine F-test under FDR

control. We note that patient 5 also has both his response curves deemed significant

by the ANOVA test under FDR control. Datasets 3, 4R and 4L do not satisfy our

selection criterion. In Figure 2, the shift φPRC − φARC is plotted for patients for

whom the cosine model was deemed significant in describing both their bPRC and

bARC (which happens to be the same subset as patients satisfying our significance

criterion). They have a shift in
[
π
2 , π

]
, patients 5 and 6 being quite close to π

2 .

Patient Type ANOVA p-value F-test p-value

1 **
bPRC 0.0113 0.00993
bARC 0.1733 0.0365

3
bPRC 0.1097 0.448
bARC 0.1591 0.500

4R
bPRC 0.3463 0.581
bARC 0.2064 0.057

4L
bPRC 0.2895 0.352
bARC 0.0077 0.200

5 **
bPRC 4.925e-04 0.00906
bARC 4.012e-06 0.00142

6 **
bPRC 4.815e-04 0.0122
bARC 0.0527 0.0341

Table 1: P-values of both statistical tests performed on patients’ response curves:

Kruskal-Wallis ANOVAs testing a main effect for phase in patients’ response curves

(third column), and cosine model F-tests (fourth column). P-values in bold are

deemed significant with FDR control at the 5% level (separate FDR analyses per

test type, m̂0 ≈ 8.42 for the ANOVAs and m̂0 ≈ 7.37 for the F-tests). Double stars

indicate datasets satisfying our significance criterion as defined in section 2.1.

Figure 2: PRC-ARC shift in patients. Only showing patients with significant cosine

model F-test for bPRC and bARC under FDR control. The calculated PRC-ARC

shifts are in
[
π
2 , π

]
.
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3 Implementation of the Wilson Cowan model for essential
tremor DBS

To model the experimental data described in the previous section, we use a WC

model that describes the interaction between an excitatory and an inhibitory pop-

ulation of neurons. Specifically, we map a 2 population WC model without delays

as described in [31] onto the anatomy of the thalamus (Figure 3). The circuit we

are about to describe is a good candidate, but not the only biologically plausible

mapping of an excitatory/inhibitory loop in the context of tremor. In our candi-

date mapping, the VIM is modelled as an excitatory population, connected to an

inhibitory population of the thalamus, the reticular nucleus (nRT). The high co-

herence between ventral thalamic activity and electromyographic recording of the

contralateral wrist flexors [12, 13] is our justification for modelling tremor by the

activity of the excitatory population. VIM and nRT are reciprocally connected (the

excitatory projections from VIM to nRT are via Cortex). The VIM receive a con-

stant input from the deep cerebellar nuclei (DCN) and is part of a self-excitatory

loop via Cortex. nRT receives a constant cortical input. We add Gaussian white

noise to this two-population WC, and the activity of the VIM, E, and the activity

of the nRT, I, are described by the stochastic differential equationsdE = F1(E, I)dt+ ζdWE ,

dI = F2(E, I)dt+ ζdWI ,
(1)

where dWE and dWI are Wiener processes, ζ the noise standard deviation. We

define

F1(E, I) =
1

τ
(−E + f(θE + wEEE − wIEI)) ,

F2(E, I) =
1

τ
(−I + f(θI + wEIE)) ,

with wPR the weight of the projection from population “P” to population “R”, θP

the constant input to population “P”, τ a time constant (assumed to be the same

for both populations). We use a sigmoid function

f(x) =
1

1 + e−β(x−1)

parametrized by a steepness parameter β (same choice as in [31]). The VIM is the

most common target of DBS for ET, which is why we model stimulation as a direct

increase in E. Analytical expressions for response curves are out of reach for the full

non-linear model, and we will study next a linearisation of a deterministic stable

focus model.
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Figure 3: The WC model can describe the populations thought to be involved in

the generation of ET. The excitatory population E and the inhibitory population I

model respectively the VIM and the nRT of the thalamus. Arrows denote excitatory

connections or inputs, whereas circles denote inhibitory connections. The VIM is

the target of DBS and also receives an input from the deep cerebellar nuclei (DCN).

The self-excitatory loop of the VIM, as well as the excitatory connection from VIM

to nRT are via cortex.

4 Response curves and their relationship in a focus model
The goal here is to derive approximate analytic expressions for the first order phase

and amplitude responses to one pulse of stimulation in a 2D dynamical system

that is described by a (stable) focus. Such a linearisation can be applied to the

deterministic WC model given by equation (1) with ζ = 0 in the focus regime. We

follow the previous section in modelling the tremor signal as the first coordinate of

the dynamical system, and in providing stimulation pulses along the first dimension.

The results will provide a basis for understanding how the effects of stimulation

on phase and amplitude are coupled in the WC model, and for comparison with

experimental data.

4.1 Linearisation of a focus

To distinguish scalars and vectors more easily, vectors will be denoted in bold. Let

Ż = F (Z) be a dynamical system, where Z ∈ R2 and F is differentiable. The

Jacobian of F is

J =

[
∂F1

∂Z1

∂F1

∂Z2
∂F2

∂Z1

∂F2

∂Z2

]
. (2)

Let Z∗ be a fixed point of F . The dynamics of X = Z − Z∗ are approximated in

the vicinity of the equilibrium X = 0 by the linear equation

Ẋ = J(Z∗)X (3)

where J(Z∗) is the Jacobian evaluated at the fixed point. We will treat the case

of Jacobians having complex conjugate eigenvalues λ± = σ ± iω. In particular, we

are interested in stable foci, which imply σ < 0. The WC model can operate in

that regime [31]. The case of centers (σ = 0, purely imaginary complex conjugate

eigenvalues) will also be described, although it is of little interest for patient fits.

If k = a + ib is the right eigenvector associated with λ+, K and K ′ coefficients
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determined according to initial conditions, the general real valued solution of (3)

reads

X(t) = {K (a cosωt− b sinωt) +K ′ (a sinωt+ b cosωt)} eσt. (4)

We will be using the following notations for the coordinates of the eigenvector:

k =

[
a1 + ib1

a2 + ib2

]
. (5)

Equation (4) and what follows are not valid in the case of multiple or repeated real

eigenvalues, which are of no interest for our purposes (no rotation).

4.2 Phase definition

The notion of phase is central to phase-locked stimulation, and in this section we

define phase in a way that is approximately equivalent to what is commonly used in

the analysis of experimental data. A typical signal only has one component, and the

Hilbert transform provides a convenient way of reconstructing a phase from a single

component. Despite being a protophase (see discussion section), the Hilbert phase

is widely used to analyse experimental data (see for instance [9, 11, 32, 33, 34]),

and this is the reason why we choose in our linearised system a phase definition

approximately equivalent to it. We define a phase variable as φ = ωt with a zero

phase point defined as the maximum of X1(t) (similarly to the Hilbert phase), which

is therefore on the nullcline of the first coordinate. This phase definition is different

from other common definitions such as the trajectory polar angle in the phase plane

of a 2D system, or isochronal (asymptotic) phase. We demonstrate next that it is

very close to the Hilbert phase of X1 for slow decay. It should be noted that this

is generally only true for the linearisation. As the Hilbert phase is also the phase

definition used in the other sections of this manuscript, the following proof ensures

consistency.

Let H denote the Hilbert transform. To establish equivalence of our phase defini-

tion with the Hilbert phase of X1 given by

φHilbert = arctan
H(X1(t))

X1(t)
, (6)

a first step is to calculate the Hilbert transform of the signal X1(t). The Hilbert

transform is a linear operator, and X1(t) is a linear combination of s(t)sc(t) and

s(t)sn(t) with s(t) = eσ|t|, sc(t) = cosωt, and sn(t) = sinωt (see equation (4)).

Inspired by the proof of the Bedrosian identity [35], we calculate error terms and

show in Appendix A that H(s(t)sj(t)) ≈ s(t)H(sj(t)) for j = c, n. The Hilbert

phase of X1 is therefore given by

φHilbert = arctan
H(X1(t))

X1(t)
≈ arctan

√
α2 + β2 sin

(
ωt− arctan α

β

)
√
α2 + β2 sin

(
ωt+ π

2 − arctan α
β

) , (7)

φHilbert ≈ ωt− arctan
α

β
, (8)
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where

α = K ′a1 −Kb1,

β = Ka1 +K ′b1.

In the case of ω � |σ|, it can be shown that α and β are such that φHilbert is

referenced to the maximum of X1.

4.3 Reference trajectory and stimulated trajectory

In order to calculate first order response curves, we will consider a reference trajec-

tory without stimulation, and a trajectory that underwent an instantaneous stim-

ulation pulse δX1 at a stimulation phase φ0. The effects of stimulation on phase

and amplitude will be measured at the next maximum of X1 for both trajectories.

We will denote these hPRC(1) and hARC(1) as they are first order responses based

on a phase definition equivalent to the Hilbert phase. A sketch of the method is

provided in Figure 4.

Expressions for the coefficients Kref and K ′ref of the reference trajectory are

derived in Appendix B. We want to study the effects of stimulating at phase φ0.

The point of stimulation X1−
at phase φ0 is expressed as

X1−
=
{
Kref (a cosφ0 − b sinφ0) +K ′ref (a sinφ0 + b cosφ0)

}
eσ

φ0
ω . (9)

An instantaneous stimulation δX1 is applied at X1−
as

X1+

= (X1+

1 , X1+

2 ) = (X1−

1 + δX1, X
1−

2 ). (10)

The trajectory after stimulation is still constrained by the dynamics given by equa-

tion (4), which allows for expressions for the coefficients on this new trajectory

Kstim and K ′stim to be found (see Appendix C). To measure the change in phase

and amplitude between the next peaks of the stimulated trajectory and the refer-

ence trajectory, the phase φmax of the next maximum of the first coordinate on the

stimulated trajectory Xstim
1 is needed (the phase of the next maximum of X1 on

the reference trajectory is 2π). A derivation for φmax is provided in Appendix D.

4.4 Phase response

The first order phase response curve can be calculated based on the reference tra-

jectory period T0 and the stimulated trajectory period Tstim, which is given by the

sum of the time spent on the reference trajectory before stimulation and the time

spent on the new trajectory after stimulation:

T0 =
2π

ω
,

Tstim =
(φ0 − 0) + (2π + φmax − φ0)

ω
=

2π + φmax
ω

.
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Figure 4: Illustration of the approach taken to derive expressions for the phase and

amplitude responses in the linearisation of a 2D focus model. Top: phase plane,

bottom: time-series of X1. The tremor is modelled by X1, and the stimulation δX1

is applied to X1. The system shown corresponds to the linearised fit of patient 1 as

described in section 6.1.
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For a phase response curve in radian, we obtain

hPRC(1)(φ0) = 2π
T0 − Tstim

T0
= −φmax. (11)

The phase φmax depends on δX1 through Kstim and K ′stim, and a Taylor expansion

around 0 yields, to lowest order in δX1,

hPRC(1)(φ0) =
δX1

X0
1

(A cosφ0 −B sinφ0)Ce−σ
φ0
ω (12)

with

A = (a1a2 + b1b2)ω − (a1b2 − a2b1)σ,

B = (a1b2 − a2b1)ω + (a1a2 + b1b2)σ,

C =
ω

(ω2 + σ2)(a1b2 − a2b1)
.

Although we are omitting the amplitude dependence in our notations for conve-

nience, the first order PRC is found to be proportional to the inverse of the peak

amplitude of the oscillations at the beginning of the stimulation period X0
1 . It is

also directly proportional to the stimulation amplitude δX1, and directly depends

on phase via sinusoidal functions and a factor related to the decay. The constants

A, B, and C only depend on the real and imaginary parts of the eigenvalue λ+ and

the associated eigenvector k.

4.5 Amplitude response

For our purposes we are interested in the amplitude of the first coordinate, and

the first order amplitude response curve (ARC) is obtained as the difference in

first coordinates between the stimulated and the reference trajectories evaluated at

their respective next peak after stimulation. It should be noted this is equivalent to

a first order change in Hilbert amplitude, at least for ω � |σ|. The first order ARC

is calculated as

hARC(1)(φ0) = Xstim
1

(
2π + φmax

ω

)
−Xref

1

(
2π

ω

)
. (13)

A Taylor expansion around 0 yields, to lowest order in δX1,

hARC(1)(φ0) = δX1 (cosφ0 +D sinφ0) e−σ
φ0−2π
ω (14)

with

D =
a1a2 + b1b2
a1b2 − a2b1

.

Interestingly, the first order ARC close to the fixed point does not depends on

the amplitude of the oscillations X0
1 . As expected, the first order ARC is directly

proportional to the stimulation amplitude δX1. Similarly to the first order PRC, it
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directly depends on phase via sinusoidal functions and a factor related to the decay,

and the constant D only depends on k. The obvious similarities between the first

order PRC and ARC suggest there may be a relationship between the two.

4.6 Relationship between first order PRC and ARC

We seek a relationship involving the derivative of the first order PRC, which, based

on equation (12), is given by

−dhPRC(1)(φ0)

dφ0
=

δX1

FX0
1

(cosφ0 +G sinφ0)e−σ
φ0−2π
ω (15)

with

F =
(a1b2 − a2b1)

(
ω2 + σ2

)
(a1b2 − a2b1) (ω2 − σ2) + 2 (a1a2 + b1b2)ωσ

e
2πσ
ω ,

G =
(a1a2 + b1b2)(ω2 − σ2)− 2(a1b2 − a2b1)ωσ

(a1b2 − a2b1)(ω2 − σ2) + 2(a1a2 + b1b2)ωσ
.

Let us study the case where ω � |σ|:

F =
(a1b2 − a2b1)

(
1 +

(
σ
ω

)2)
(a1b2 − a2b1)

(
1−

(
σ
ω

)2)
+ 2 (a1a2 + b1b2) σω

e
2πσ
ω ≈ 1− 2(D − π)

σ

ω
≈ 1,

G =
(a1a2 + b1b2)

(
1−

(
σ
ω

)2)− 2(a1b2 − a2b1)
(
σ
ω

)
(a1b2 − a2b1)

(
1−

(
σ
ω

)2)
+ 2(a1a2 + b1b2)

(
σ
ω

) ≈ D − 2(1 +D2)
σ

ω
≈ D.

Therefore in that case the first order ARC is approximately the opposite of the

derivative of the first order PRC scaled by the peak amplitude at the beginning of

the stimulation period (in general, the scaling factor is FX0
1 ):

−X0
1

dhPRC(1)(φ0)

dφ0
≈ hARC(1)(φ0). (16)

For a slow decay compared to the rotation, the PRC-ARC shift in the linearisation

of a focus will therefore be close to π
2 , which is the value observed for patient 5 (see

Figure 2). A detailed analysis of the PRC-ARC shift in the model is provided in

section 6.

4.7 Applications to simple systems

We turn to simple systems to illustrate the results of the previous sections. In what

follows, response curves are given for δX1 = 2 × 10−4 and X0
1 = 10−3, X0

1 being

a maximum of X1 as a function of time (these only act as scaling factors of the

response curves and will not change their shape).

Circular flow without decay As an introductory example, let us consider a simple

circular flow for which the J matrix is

Jcirc =

[
0 −1

1 0

]
.
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The eigenvalues of Jcirc are ±i so the results of the previous sections can be applied.

Equations (12) and (14) are plotted for this system with our choice of δX1 and X0
1 .

The result for the first order PRC is shown in Figure 5, panel A2, and for the first

order ARC in panel A3. For this system, hPRC(1) is simply the opposite of a sine,

hARC(1) simply a cosine. Moreover, σ = 0, hence G = D (see section 4.6) and

equation (16) is exact, as exemplified in Figure 5, panel A3. hARC(1) is obtained by

only scaling the derivative of hPRC(1) by −X0
1 as a2 = b1 = 0 and F = 1. Note that

WC parameters for which the system’s Jacobian at the fixed point is Jcirc cannot

be found as the second diagonal term cannot be 0, at least in the version of the WC

model used in this work (see (38) in Appendix E).

Figure 5: Analytical results in simple systems (initial conditions as in the main text).

First column: phase space. Second column: first order PRC as per equation (12).

Third column: first order ARC as per equation (14) and opposite of the derivative

of the first order PRC scaled by FX0
1 . Panel A corresponds to Jcirc (circular flow,

no decay), panel B to Jslowcirc (circular flow, slow decay), panel C to Jfastcirc (circular

flow, fast decay), and panel D to Jellip (tilted elliptic flow, no decay).
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Circular flow with decay We can introduce a slow decay (Figure 5, panel B) and

then a fast decay (Figure 5, panel C) in the circular flow. We choose the J matrices

Jslowcirc =

[
−5.10−3 −1

1 −5.10−3

]
, Jfastcirc =

[
−2.10−1 −1

1 −2.10−1

]
.

The slow decay leads to a scaling factor F ≈ 1, and the approximation of equa-

tion (16) is very good, as ω � |σ| (see Figure 5, panel B3). The case of the fast

decay corresponds to ω = 5|σ|. The first order PRC and ARC no longer look like

pure sinusoids and the approximation relating the response curves is less accurate

(ω = 200|σ|, see Figure 5, panel C3). It is possible to find WC parameters for which

the system’s Jacobian at the fixed point is Jslowcirc or Jfastcirc . How such parameters are

found is explained in Appendix E, and the results are presented in supplementary

Table (3) in Appendix I. In both cases, wIE = wIE , and wEE = 0.

Tilted elliptic flow without decay The tilted elliptic flow without decay of Figure 5,

panel D, corresponds to the J matrix

Jellip =

[
1 −1

2 −1

]
.

The first order PRC and ARC are sums of a sine and a cosine, which brings a hor-

izontal shift in phase compared to a circular flow without decay. The eigenvalues

are still purely imaginary, but F is no longer one. Because σ = 0, the relationship

of equation (16) is still exact (see Figure 5, panel D3). It is possible to find WC

parameters for which the system’s Jacobian at the fixed point is Jellip (see supple-

mentary Table (3) in Appendix I). Patient fits fall in the category of (potentially

tilted) elliptic flows with decay, and will be dealt with in section 6.1. The linearised

stable focus model exhibits close to sinusoidal response curves and a PRC-ARC shift

close to π
2 , which when contrasted with patient data (response curves passing the

cosine model F test and PRC-ARC shifts in
[
π
2 , π

]
as shown in Figure 2), provides

a strong motivation to fit the WC model to data.

5 Fitting the full Wilson Cowan model to patient data and
response to phase-locked stimulation

5.1 Fitting procedure

We now turn to fitting our stochastic neural mass model (equation (1)) to patient

data. The model is fitted to features (also known as summary statistics) extracted

from patient tremor recordings. The parameters we fit are shown in Table 2, and

include model parameters, stimulation magnitude and stimulation delay (time be-

tween the stimulation trigger is recorded and stimulation is actually provided to

the E population, more about its interpretation in section 7). Stimulation is imple-

mented directly in the Euler update of our integration scheme. We aim at repro-

ducing tremor dynamics and fit to three dynamical features: the power spectrum

density of the data (PSD), its Hilbert envelope probability density function (PDF),

and its Hilbert envelope PSD. While the envelope PDF captures the range of am-

plitudes present in the tremor, the envelope PSD describes how quickly tremor
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amplitude changes. But we also aim at reproducing response to stimulation, and

fit to the patient bPRC. The data dynamical features are obtained after filtering

and z-scoring the data as described in section 2.1. The data bPRC is obtained as

described in section 2.1.

Figure 6: The fitting procedure involves 2500 local optimisations for each patient.

The simulation of the model at each optimisation step requires to track the zero-

crossing phase in order to provide stimulation at the right phase. The phase-tracking

ability of the scheme is satisfactory when compared to the actual Hilbert phase (left,

detailed in Figure 16 in Appendix H). The optimiser minimises a cost function that

includes the comparison of three tremor dynamics features (tremor PSD, tremor

envelope PSD, tremor envelope PDF) plus the PRC against the data (middle).

Following a second optimisation of the 20 best results with a finer time step, a

best set of parameter comes out of the procedure, and the model ARC can be

compared against the data ARC. More details on the fitting procedure are given in

Appendix F.

The fitting procedure is summarized in Figure 6. Local optimisations are carried

out using gradient free optimisation, specifically a direct search algorithm called

the generalized pattern search algorithm (more details are given in Appendix F). In

order to measure response to stimulation as in the data, each local optimisation step

needs to simulate the model with phase-locked blocks of stimulation. This requires

integrating the differential equations of the model while tracking the phase and pro-

viding stimulation at the right time, which is done by monitoring the zero-crossing

phase alongside a Euler integration scheme. Appendix G details implementation

of the simulator. The four features are computed on the model output at each

optimisation step. The same method is used as for the data features, with three

differences. The first is that for increased stability of the optimisation, the model

bPRC is averaged over a much greater number of trials (600 trials), while the more

robust dynamical features are obtained from nine trials only to reduce computation

cost. The second is that the model output is not filtered to compute the dynamical

features (only z-scored), as we want the model output to primarily generate the

filtered tremor signal (a model generating mostly 1Hz oscillations but reproducing
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Parameter Symbol Best fit values
Patient 1 Patient 5 Patient 6

I to E weight wIE 9.4014 26.048 5.2064
E to I weight wEI 9.6306 25.3384 24.4813
E to E weight wEE 6.7541 1.548 2.7514

Sigmoid steepness parameter β 1.1853 2.4234 4.1933
Time constant (s) τ 0.0758 0.29984 0.2513

Constant input to E θE 1.4240 22.8621 2.9127
Constant input to I θI -3.2345 -9.9279 -3.4008

Noise standard deviation ζ 0.0457 0.013707 0.0263
Stimulation magnitude δE 0.001684 0.00598 0.001686
Stimulation delay (ms) ∆tstim 138.8366 444.1573 183.4711

Table 2: Best parameters for the 3 fitted patients.

patient tremor when filtered at 5Hz would not be desirable). Computing the bPRC

still requires filtering, as it relies on the Hilbert transform. The third difference is

that the filtering window for the bPRC cannot be adjusted manually in optimisa-

tion steps, so a 4Hz band centered on the model PSD peak is used. As for the data

bPRC and bARC, the actual Hilbert phase at which stimulation occurred is used to

compute response curves via the re-binning process described in section 2.1, and the

zero-crossing phase is only needed to enable phase-locked stimulation in the model.

Phase-tracking performance is illustrated in supplementary Figure 16 in Appendix.

At each step, once the four features have been computed on the model output,

the optimiser returns the cost

c =
1

4

4∑
n=1

∑Nn
i=1

(
ydatan,i − ymodeln,i

)2
∑Nn
i=1

(
ydatan,i − ydatan,i

)2
 , (17)

with yn, n ∈ {1, 2, 3, 4} being the four features considered, and Nn the length of yn.

At the end of the procedure, the fit with the lowest R2 = 1 − c for each patient is

deemed the best fit. In case of a tie (difference in mean costs lower than standard

error of the mean), foci are preferred over limit cycles.

5.2 Results of the fits

Patients passing our significance criterion (section 2) are fitted to, namely patient

1, 5, and 6. For these patients, we find that the model successfully reproduces

tremor dynamics, including tremors with sudden bursts, and can fit to patient phase

response to stimulation. The best fits obtained upon completion of the optimisation

procedure are shown in Figures 7, 8, and 9. In addition to reproducing tremor

dynamics and being able to fit to patient bPRCs, the model seems to be able to

reasonably predict patient bARCs (obtained as in section 2.1, but not fitted to), and

in particular which phases are approximately the best phase to stimulate, i.e. the

phases at which the maximum decrease in tremor happens. Because of averaging

across 600 trials, the model bPRC and bARC error bars are small compared to the

data error bars (only about 10 trials).

Validating fitted stimulation magnitude Cagnan et al. [11] report what the device

settings are, and in particular the total electrical energy delivered (TEED) per

unit time. We can build a quantity based on the fitted stimulation that should
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Figure 7: Best fit to patient 1. The four features that were included in the cost

function are shown on the left, namely tremor PSD (A), tremor envelope PDF

(B), tremor envelope PSD (C) and bPRC (D). The R2 for the model fit to these

features is 0.795, and the model reasonably predicts the data bARC (E). The model

phase plane is shown in H, and the model tremor time-series (F) is shown next to

the patient tremor time series (G). The framed black bar in H indicates the fitted

stimulation magnitude to scale.

Figure 8: Best fit to patient 5. The four features that were included in the cost

function are shown on the left, namely tremor PSD (A), tremor envelope PDF (B),

tremor envelope PSD (C) and bPRC (D). The R2 for the model fit to these features

is 0.823, and the model predicts the data bARC (E). The model phase plane is

shown in H, and the model tremor time-series (F) is shown next to the patient

tremor time series (G). The framed black bar in H indicates the fitted stimulation

magnitude to scale.
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Figure 9: Best fit to patient 6. The four features that were included in the cost

function are shown on the left, namely tremor PSD (A), tremor envelope PDF

(B), tremor envelope PSD (C) and bPRC (D). The R2 for the model fit to these

features is 0.830, and the model reasonably predicts the data bARC (E). The model

phase plane is shown in H, and the model tremor time-series (F) is shown next to

the patient tremor time series (G). The framed black bar in H indicates the fitted

stimulation magnitude to scale.

scale with the TEED per unit time. Because of z-scoring along the E dimension,

we have to divide the fitted stimulation which is measured along the E dimension

by the standard deviation of E (before z-scoring), and turn the fitted stimulation

into an effective stimulation. As bursts are delivered once per period, this effective

stimulation should be multiplied by the mean frequency of E to obtain a quantity

proportional to energy per unit time (the number of pulses per burst is the same

for the three patients). Figure 10 shows the effective stimulation times the mean

frequency for the 15 best performing fits against the TEED per unit time for each

patient (correlation coefficient for fit averages r = 0.98). Under the assumption that

patient intrinsic sensitivities to stimulation are somewhat similar, we can conclude

from the correlation that the fitting procedure successfully captures the scale of

stimulation across patients.

PRC-ARC shift in WC synthetic data The PRC-ARC shift is computed on WC

synthetic data with phased-locked blocks of stimulation generated by the full model

fitted to each patient. This time we can take full advantage of the model and

compute bPRCs and bARCs from more trials than for patient data or model data

in optimisation steps, and perform 10 repeats of 600 trials for the top 15 fits for

each patient. The PRC-ARC shift is then measured as in section 2.1 for each of the

10 repeats, and shown in Figure 11. The large filled circles represent the mean of

the 10 repeats for each patient fit. It appears that the PRC-ARC shift obtained for

synthetic data of top patient fits mostly lie in the upper-left quadrant of the unit

circle for all three patients
([
π
2 , π

])
, similarly to patient data. One fit to patient 6
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Figure 10: Fitted effective stimulation times mean frequency of E versus total elec-

trical energy delivered per unit time by the device, for the three fitted patients.

Showing the 15 best performing models for each patients, along with the mean and

standard error of the mean error bars for each patient in black.

is an outlier in terms of its shift, due to high effective stimulation (defined in the

previous section). While the model can allow for a larger shift than π
2 , this is not

the case for the linearised model, and the difference is the focus of the next section.

Figure 11: PRC-ARC shift in synthetic data (full WC model fitted to patients). For

each patient, the shift for all 10 repeats of the top 15 fits is shown (smaller circles),

as well as the repeat mean for each fit (larger circles). One repeat corresponds to

600 trials.

6 PRC-ARC shift in the model
The linearised model makes different predictions for patient fits than the full model,

in particular in terms of PRC-ARC shift. The present section will look at the deter-

ministic linearisation of patient fits, and then contrast it with the full model with

noise.

6.1 Relationship between analytic response curves in the linearised fitted WC models

The first order PRC and ARC expressions derived in section 4 can be applied to the

linearisation of the best WC models fitted to data from the three selected patients,
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and the Jacobians at the fixed points are

J1 =

[
11.9723 −35.0323

34.9513 −13.1953

]
, J5 =

[
−0.2252 −52.3293

23.2880 −3.3351

]
,

J6 =

[
2.8269 −12.8784

101.6943 −3.9789

]
.

In the fits b1 = 0 or b2 = 0, which marginally simplifies equations (12) and (14).

The curves obtained are shown in Figure 12. The same values as in section 4.7

are used for X0
1 and δX1. Note that the stimulation delay ∆tstim is not shown –

it affects both the PRC and the ARC and does not play a role in the PRC-ARC

shift. More interestingly, we observe that ω � |σ| in the 3 fits (see supplementary

Table 4 in Appendix I), suggesting that the response curves’ relationship described

by equation (16) should approximately hold. This is indeed the case as shown in

the third column of Figure 12. The decay is higher for patient 5 and as expected,

the approximation is slightly worse for this patient (panel B3 in Figure 12). For

Figure 12: Analytical results for linearised patient fits (initial conditions as in the

main text). First column: phase space. Second column: first order PRC as per

equation (12). Third column: first order ARC as per equation (14) and opposite of

the derivative of the first order PRC scaled by FX0
1 . Panel A, B, and C correspond

to patient 1, 5, and 6, respectively.

small stimulation, the deterministic picture with patient parameters close to the
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fixed-point is that the PRC-ARC shift should be very close to π
2 . In what follows,

we investigate the difference between this idealised picture and what is observed in

synthetic data.

6.2 Accounting for the difference in shift between focus model analytic expressions

and WC synthetic data

Four factors could account for the difference in PRC-ARC shift between the idealised

picture given by analytic response curves with patient parameters (previous section)

and what is observed in WC synthetic data (section 5.2). First, stimulation may

be large enough that the Taylor expansions used to derive the analytic PRC and

ARC expressions are no longer approximately valid. Second, tremor in patient fits

may correspond to a regime not so close to the fixed point, compromising the

linearisation validity. Third, the introduction of noise in the model may result in

effects on the PRC-ARC shift that do not average out to zero. Fourth, in synthetic

data, the response to stimulation is measured by the block method, which differs

from the first order approach taken in our derivations. We next show that for the

three best fits considered non-linearity is the main driver.

Ten repeats of 600 trials of synthetic data are generated for the linearisation of

the best fits to each patient. The integration scheme with live phase tracking and

stimulation is the same as described in section 5.1, only the stochastic differential

equations are now[
dE

dI

]
= J

[
E − E∗

I − I∗

]
dt+ ζ

[
dWE

dWI

]
, (18)

where dWE and dWI are Wiener processes, ζ the noise standard deviation (same

values as in the non-linear case), E∗ and I∗ are the coordinates of the fixed point,

and J is the Jacobian at the fixed point of the patient fit. The same values as

in the non-linear case are used for the stimulation magnitude and delay, with the

exception of patient 5, for whom the stimulation magnitude is set to a fifth of its

value in the non-linear case, as higher values were seen to cause a breakdown of

phase tracking, and result in unreliable response curves.

For each patient and for each of the 10 repeats, bPRCs and bARCs are obtained,

and the PRC-ARC shift is then measured as in section 2.1. The results are shown

in Figure 13 (middle), alongside the shifts measured from the response curves pre-

sented in section 6.1 (left), and the shifts measured in the full WC model (right).

It can be seen that going from the analytic response curves to the linearised model

(i.e. adding noise, measuring the response to stimulation via the block method and

not a first order method, and using a finite stimulation magnitude rather than a

infinitesimal stimulation), doesn’t affect the shift much. However, a substantial in-

crease in the shift is obtained by introducing the non-linearity, which brings the

shift in the upper-left quadrant, where patient data lie.
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Figure 13: Non-linearity accounts for most of the difference in PRC-ARC shift seen

in synthetic data (middle and right), when compared to the PRC-ARC shift derived

in the focus model (left). When computed from synthetic data, the PRC-ARC shift

of all 10 repeats is shown (smaller circles), as well as the repeat mean (larger circles).

One repeat corresponds to 600 trials, only showing best fits for each patient.

7 Discussion
We showed that in a 2D linearised stable focus model, the first order PRC and the

ARC are close to sinusoidal, in particular for small decay. Moreover, the PRC-ARC

shift is close to π
2 . Half of the patients in our dataset had significant sinusoidal

bPRCs and bARCs (an effect of stimulation phase could not be found in other

patients in at least one of their response curves), and the significant patients have

a PRC-ARC shift in the interval
[
π
2 , π

]
. A full WC model can be fitted to tremor

dynamics features and to the bPRC for these patients, and as hinted at by the simi-

larities seen in the linearised focus model and the data, the best fits – a vast majority

of stable foci – can reproduce the dependence of the effects of stimulation on the

phase of stimulation. The best fits also reasonably predict the bARC, and notably

what is approximately the best phase to stimulate. Compared to the 2D linearised

focus, the non-linearities of the full WC model allow for a better reproduction of

the phase dependence found in patient data, in particular as far as the PRC-ARC

shift is concerned. Our full model can capture the behaviour of neural populations

plausibly involved in the generation of tremor, which, together with its success in

reproducing phase response and predicting amplitude response in patients, makes

it a strong candidate for further study of phase-locked DBS.

Phase definition While asymptotic phase definitions are common in theoretical

studies, experimental studies tend to favour instantaneous phase definitions such as

the Hilbert phase. To reproduce the data, an instantaneous phase seems more appro-

priate than an asymptotic phase, as there is no indication of stimulation happening

on or close to an attractor. It has been shown recently in [36] how an operational

definition of the phase can describe transient spiking, when an asymptotic phase
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does not capture the phase dependence of transients. In this study, our phase def-

inition is the Hilbert phase of the tremor data. It is therefore referenced to the

maximum of the tremor oscillations (represented by the first coordinate of the dy-

namical system), and does not require a limit cycle. The Hilbert phase is an angle

in the analytic signal space, it does not generally grow linearly with time, and is

a protophase [37]. This is not a concern from the perspective of describing patient

data, as this is the observable choice we are making for both the data and the model.

Commonly used with data, the Hilbert transform has also been proposed as a ro-

bust method to measure steady state PRCs in single neuron models [38]. Moreover,

stimulation is assumed to be small in our analytical expressions (section 4), but not

in the full model, contrary to standard asymptotic phase reduction strategies.

Linearisation The response curves derived for the linearisation of a 2D focus in

section 4 can be related to previously published expressions. In particular, the in-

finitesimal PRC for radial isochron clocks has been derived in [39], and has been

recently included in [40] under the larger umbrella of general radial isochron clocks.

The radial clock case (K(φ) = ω in [40]) perturbed along the first dimension agrees

with our equation (12) for the case of a circular flow (see section 4.7). For this

simple system, the asymptotic phase response is the same as the first order Hilbert

phase response.

Moreover, for small decay, the best phase to stimulate corresponds to the maxi-

mum positive slope of the first order PRC in the response curves derived. In fact,

the first order ARC is simply a scaled version of the opposite of the first order PRC

derivative. A similar relationship has been first reported in a theoretical study in

the context of an individual oscillator [41], and more recently in [15] in the context

of population response curves of a Kuramoto model. It is noteworthy that we found

a similar result for the linearisation of any 2D focus (i.e. any model whose dynamics

obey equation (4)) with slow decay, and in particular for the linearisation of the WC

model, another popular neuroscience model very different in essence from coupled

oscillator models. In the thermodynamic limit and under certain assumptions about

the distribution of oscillator frequencies, the Kuramoto model can be reduced to

a two-dimensional system [42]. Our results are applicable to the linearisation of a

fully desynchronised reduced Kuramoto model observed through X1 = ρ cos θ where

r = ρeiθ is the order parameter (ρ is the modulus and θ the angle in the complex

plane). Such a system therefore satisfies equation (16) as well (for small decay).

Our derivations do not assume proximity to a limit cycle, and this allows the

study of the dependence of the response to stimulation on the amplitude of the

oscillations for a given model (limit cycles do not have an amplitude variable in the

case of infinitesimal perturbations). In the linearisation, the PRC is found to be

inversely proportional to the amplitude of the oscillations before stimulation (see

equation (12)), while the ARC does not dependent on it.

Because the block method phase and amplitude response used in the rest of paper

are normalised by the number of pulses and blocks are only about 25 period long,

it seems legitimate to think that, although they are different objects, the first order

response to a single pulse (hPRC(1) and hARC(1)) and the block method response

(bPRC and bARC) could be related, and in particular that they might share similar
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PRC-ARC relationships. Part of the connection hinges on our proof that the phase

definition in the linearisation of the focus model overlaps with the Hilbert phase

when the decay is small compared to the rotation (section 4.2). And indeed, the

PRC-ARC shift predicted by our expressions derived for the first order response to

one pulse of stimulation in a linearised focus is very close to the shift obtained by

the block method on linearised WC synthetic data (see Figure 13). Our analytical

derivations provide a rationale to fit the full WC model to data and an intuition

for why the model can predict patient ARC, but do not offer an exact analytic

treatment of the block method. Specifically, individual pulses in a block may have

different effects depending on where they are located in the block and depending

on stimulation history within the block [11].

Fitting procedure Fits were performed using the generalized pattern search algo-

rithm on many sets of random initial parameters. This approach was chosen for

its robustness and computational efficiency in a non-smooth, non-convex landscape

with four non-linear features and 10 parameters, despite requiring the use of a su-

percomputer. In particular it has been deemed superior in finding better fits to the

simplex algorithm. The implementation used also has the additional benefit of be-

ing able to handle failed simulations (which occasionally happen as response curves

with 12 phase bins can not be obtained for some parameters). However the fitting

procedure results in many “good” local optima. What these “good” sets of parame-

ters have in common and what they can tell us about the patients we are fitting to is

not easily addressed with our current fitting strategy. Even real biological networks

may have redundancies, and may exhibit the same behavior under different network

configurations. Approximate Bayesian computation [43, 44] allow to approximate

the posterior distribution over parameters for intractable likelihoods, hence to an-

swer the question what is the space of parameters consistent with the data. Whether

approximate Bayesian computation methods could successfully tackle a complicated

landscape and provide more meaningful insight on fitted model parameters in the

setting of the present work is a promising avenue for further research. A limitation

of our fitting method is related to the integration scheme: to reduce computation

cost, the Euler step used in the first optimisation process is 1 ms. The top 20 best

fits are then re-optimised based a Euler step of 0.1 ms, and results are produced

with this finer time step, as dynamics can be qualitatively different (further re-

duction in the Euler step has not been seen to change the dynamics). While the

necessities of phase-locked stimulation precludes the use of built-in, powerful inte-

gration schemes, a more advanced event-based stochastic integration scheme could

remove the need for a second optimisation while keeping the computation cost down.

The performance of our simple phase-tracking strategy is good for patient 1 and

6 and satisfactory for patient 5 (see Figure 16 in Appendix). Response curves are

obtained based on the actual Hilbert phase of stimulation in a post-hoc manner,

which makes up for the reduced performance observed for patient 5. Still, more ac-

curate algorithms could be explored. Our zero-crossing strategy would benefit from

a better frequency estimate for the current period (currently simply the period of

the previous period) and more robustness to noise. The proposition of [45] involving

autoregressive forward prediction and the Hilbert transform is attractive, although
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its computational cost may be high, and some parameters need to be adjusted for

each time series.

Non-linear WC model The full WC model is fitted to data with Gaussian white

noise (equation (1)). The best performing fits are stable foci for all three patients,

and very few limit cycles are found in the top 15 fits for all three patients. One

is found for patient 1 (shares the 1st place with a stable focus - distance between

mean costs only 30% of the standard error of the mean), one for patient 5, and

none for patient 6. In the stable focus regime, noise brings the system away from

the stable fixed point, and the interaction of the noise with the dynamics of the

system makes the reproduction of patient tremor possible. In the absence of noise,

the system would converge to the stable fixed point and no tremor would be gen-

erated, so symptoms are related to the noise level in this model. Instead of noise,

tremor-like activity may be obtained by exploiting chaotic dynamics arising from

coupling several WC models together [46], but this would significantly increase the

complexity of the model (more on increasing complexity in the last part of this

section).

In fitting our thalamic model to tremor acceleration, we are assuming thalamic ac-

tivity and tremor are directly related as mentioned before (see section 5.1). Tremor

activity is however expected to lag thalamic activity due to conduction delays. The

accelerometer used to measure tremor is also expected to introduce an electrome-

chanical coupling delay. In the model, we allow for a stimulation delay ∆tstim be-

tween the stimulation trigger and the time when stimulation is actually delivered to

the excitatory population. This parameter is fitted to the data, and gives the model

the ability to shift its bPRC in phase. Fitted stimulation delays are hundreds of

milliseconds, and conduction and accelerometer delays (tens of milliseconds) only

account for a small part. The higher fitted values are required by the model to

match data bPRCs. With our candidate VIM/nRT mapping in mind, the higher

fitted values remain unexplained on the biology side, although as mentioned before

tremor generation and ET DBS are not fully understood. It is interesting to note

that the stimulation delay of the best performing model for patient 5 is longer than

one period (see Table 2). This is found consistently in the top three best fits, and

reducing the delay to its value modulo the average period substantially reduces the

quality of the bPRC fit. Besides this short term delay, our model does not include

medium or long term plasticity effects, which are not expected to be strongly present

in the recordings as stimulation is only delivered for periods of 5 seconds in a row.

In our model, stimulation is provided to the E population via a direct increase in

the population activity. While stimulation is provided via the sigmoid function of

the excitatory population in other studies [18], we found this approach too restric-

tive due to sigmoid saturation, and inadequate to reproduce the full extent of the

response to phase-locked DBS in some patients. As a reminder, the choice of stim-

ulating the excitatory population rather than the inhibitory population is made for

biological consistency, as the VIM is the most common stimulation target in ET

DBS.

The success of the WC model in predicting patient ARCs when fitted to their

PRCs is partially explained by its ability to modulate the PRC-ARC shift. The
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PRC-ARC shift in the full model can reach the range found in patients while the

linearised version of the WC is limited to the close vicinity of π2 . The response curves

of the full WC model are also better at reproducing the data and can vary from

pure sinusoids. However there is still some room for improvement in reproducing

the shift, in particular as far as patient 1 is concerned (patient shift quite a bit

larger than the model). The model can allow for a larger shift as shown by a fit

hand-picked in the top 15 shown in Figure 17 in Appendix H. The PRC-ARC shift

could be selected as an additional feature to fit to to improve ARC reproduction.

In its 2 population version, the suggested mapping of the excitatory and inhibitory

populations (VIM and nRT) is not the only possibility. Other candidates include

antidromically stimulated structures at the cerebellar level or below, such as DCN

as the inhibitory population, and the inferior olive as the excitatory population.

The model could also be extended by including more populations. With our current

mapping in mind, the cortex and the DCN could be turned into populations of

their own, which would make the model four dimensional. As suggested in [18], the

inferior olive which provides input to the DCN could also be modelled, and the spa-

tial extent of the VIM could be accounted for by splitting it in two populations or

more. Increasing the number of populations would however increase the number of

parameters of the model, and make the optimisation process more computationally

intensive, and the model more prone to over-fitting. In contrast, the incorpora-

tion of additional loops in the model architecture may help explain the inertia in

stimulation effects discussed above. Nevertheless, the model seems to be able to

reproduce the data in its current state, which suggests an increase in complexity

is not warranted. It is remarkable that one excitatory/inhibitory loop seems to be

enough to model the phase-dependent effects of ET DBS. It gives some support

to the hypothesis that sub-circuits of the central tremor network may behave as

individual oscillators entraining each other [47].

8 Conclusion
The focus WC model with noise can be fitted to ET patients with both response

curves showing significant phase dependence. The model reproduces the phase de-

pendence of the response to stimulation as well as predicts the amplitude response

to stimulation, which directly relates to tremor reduction. Phase-locked stimula-

tion promises less stimulation, hence less side effects for the same clinical benefits,

which would be highly desirable for patients. Our study positions the WC as a

strong candidate to model the effects of phase-locked DBS. Its ability to describe

all patients with both response curves significant in at least one of our tests should

be re-assessed as more data becomes available, both in terms of number of patients

and recording length. Phase dependent activity is thought to play a central role

in physiological information processing [48, 49], and in our analytical derivations,

the phase of the linearised model was defined in a way that does not depend on

modelling oscillations by a limit cycle, and that for small decay overlaps with the

Hilbert phase, which is widely used in experiments. Finally, as far as ET gener-

ation is concerned, we showed that a single excitatory/inhibitory loop is enough

to reproduce both the dynamics of the tremor and the phase dependent effects of

stimulation, however it should be non-linear.
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Appendices

We include here technicalities on approximating the Hilbert phase in the linearisa-

tion (Appendix A), details of the derivations leading to response curves analytical

expressions in the linearised system (Appendices B to D), and the procedure used

to obtain WC parameters from a given Jacobian (Appendix E). We also present

details of the two-step optimisation used for fitting to patient data (Appendix F),

the implementation of live-phase tracking and stimulation (Appendix G), as well as

supplementary figures (Appendix H) and supplementary tables (Appendix I).

A Hilbert transforms of sine and cosine exponential decays with error terms

The goal here is to show that H(s(t)sj(t)) ≈ s(t)H(sj(t)) for j = c, n, with s(t) =

eσ|t|, sc(t) = cosωt, and sn(t) = sinωt. The Bedrosian identity [35] states that the

Hilbert transform of the product of a low-pass and a high-pass signal with non-

overlapping spectra is the product of the low-pass signal and the Hilbert transform

of the high-pass signal. The spectrum support of s is R, but for low decay compared

to the rotation, the spectrum of s is very small where it overlaps with the spectra of

sc or sn. The equality given by the Bedrosian identity turns into an approximation,

and inspired by the proof in [35], we can calculate error terms. Let S and Sc be the

Fourier transforms of s and sc respectively:

s(t)sc(t) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

S(u)Sc(v)ei(u+v)tdudv, (19)

H(s(t)sc(t)) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

S(u)Sc(v)isgn(u+ v)ei(u+v)tdudv. (20)

The Fourier transform of sc is given by Sc(v) = π [δ(v − ω) + δ(v + ω)], so

H(s(t)sc(t)) =
1

(2π)2

∫ ∞
−∞

S(u)eiutΓ(u)du (21)

where Γ(u) = π
i

[
sgn(u+ ω)eiωt + sgn(u− ω)e−iωt

]
. This can be simplified as

Γ(u) = 2π sinωt+


0 |u| < ω

− 2π
i e

iωt u < −ω
2π
i e
−iωt u > ω

.

The Fourier transform S(u) = 2σ
σ2+u2 is even, therefore

H(s(t)sc(t)) =
sin(ωt)

(2π)2

∫ ∞
−∞

S(u)eiutdu+
1

2πi

∫ ∞
ω

S(u)
(
ei(u−ω)t − e−i(u−ω)t

)
du,

(22)

H(s(t)sc(t)) = s(t)H(sc(t)) + Isc , (23)
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with

H(sc(t)) = sinωt,

Isc =
2

π

∫ ∞
ω

σ

σ2 + u2
sin (u− ω)tdu.

A similar derivation provides

H(s(t)sn(t)) = s(t)H(sn(t)) + Isn (24)

with

H(sn(t)) = − cosωt,

Isn =
2

π

∫ ∞
ω

σ

σ2 + u2
cos (u− ω)tdu.

Numerical integration proves that for ω � |σ|, and in particular in the case of the

patients we are interested in, Isc and Isn are under 5% of the signal scale for about

12 periods (see Figure 14). This is more than enough for our purposes as only one

period is needed to derive response curves. It is therefore reasonable to ignore Isc
and Isn .

Figure 14: Relative error made across patients in estimating H(s(t)sc(t)) by

s(t)H(sc(t)) (solid lines) and H(s(t)sn(t)) by s(t)H(sn(t)) (dashed lines). The error

is calculated as the ratio of Isc (respectively Isn) over the modulus of the numeri-

cal Hilbert transform of the signal, which is the envelope of the signal. The relative

error is under 5% in all cases for at least 12 periods.
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B Reference trajectory without stimulation

Let us find the coefficients Kref and K ′ref of the trajectory starting at t = 0 at a

maximum of the first coordinate X1 = X0
1 > 0. With the choice φ = ωt, this will

ensure we are referencing the phase to the maximum of X1. It should be noted at

this point that we are not using the nullcline equations in what follows as we are

interested in the dependence of the response on the rotation ω and the decay σ.

From the initial condition at t = 0,

Krefa1 +K ′refb1 = X0
1 . (25)

Additionally, X0
1 being a maximum requires that dX1

dt = 0 at t = 0, therefore

dX1

dt
= eσt

[
−ω(Krefa1 +K ′refb1) sinωt+ ω(−Krefb1 +K ′refa1) cosωt+

σ
{

(Krefa1 +K ′refb1) cosωt+ (−Krefb1 +K ′refa1) sinωt
}]
. (26)

Using the condition at t = 0,

Kref (σa1 − ωb1) +K ′ref (σb1 + ωa1) = 0, (27)

(25) + (27) =⇒
Kref = σb1+ωa1

ω(a21+b
2
1)
X0

1 ,

K ′ref = −σa1+ωb1
ω(a21+b

2
1)
X0

1 .
(28)

We are excluding the case where the denominator in (28) is equal to zero, which

corresponds to both a1 and b1 being zero, which would imply X1(t) = 0. Also note

that by picking a positive X0
1 , we are ensuring that the null derivative corresponds

to a maximum of X1 rather than a minimum.

C Trajectory with stimulation

Let us determine what the coefficients Kstim and K ′stim are for the stimulated

trajectory (still constrained by the dynamics of equation (4)). We have

X1+

= {Kstim (a cosφ0 − b sinφ0) +K ′stim (a sinφ0 + b cosφ0)} eσ
φ0
ω . (29)

Solving for Kstim gives

Kstim =
X1−

2 (a1 sinφ0 + b1 cosφ0)− (X1−

1 + δX1)(aY sinφ0 + b2 cosφ0)

a2b1 − a1b2
e−σ

φ0
ω .

(30)

Plugging in X1−

1 , X1−

2 , and the expressions for Kref and K ′ref yields

Kstim =
ωa1 + σb1
ω(a21 + b21)

X0
1 −

a2 sinφ0 + b2 cosφ0
a2b1 − a1b2

δX1e
−σ φ0ω . (31)
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Similarly for K ′stim, using the previous result:

K ′stim =
X1−

2 e−σ
φ0
ω −Kstim(a1 cosφ0 − b1 sinφ0)

a1 sinφ0 + b1 cosφ0
, (32)

K ′stim =
−σa1 + ωb1
ω(a21 + b21)

X0
1 +

a2 cosφ0 − b2 sinφ0
a2b1 − a1b2

δX1e
−σ φ0ω . (33)

D Phase at the next maximum of X1 on the stimulated trajectory

We are looking for φmax such that
dXstim1

dt = 0 at ωt = φmax. This give us

eσ
φmax
ω [−ω(Kstima1 +K ′stimb1) sinφmax + ω(−Kstimb1 +K ′stima1) cosφmax+

σ {(Kstima1 +K ′stimb1) cosφmax + (−Kstimb1 +K ′stima1) sinφmax}] = 0,

(34)

tanφmax =
Kstim(σa1 − ωb1) +K ′stim(σb1 + ωa1)

Kstim(σb1 + ωa1) +K ′stim(−σa1 + ωb1)
. (35)

The phase φmax is returned by the arctan function in
(
−π2 ,

π
2

)
, and corresponds to

the previous peak on the stimulated trajectory extended backwards. The next peak

has the same phase (mod 2π) as the expression in square brackets in equation (34)

is 2π-periodic.

E Finding WC parameters corresponding to a given Jacobian

The Jacobian of (1) evaluated at (E∗, I∗) can be simplified by making use of f ′(x) =

βf(x)(1− f(x)). We also have

f(Θ1) = E∗, (36)

f(Θ2) = I∗, (37)

with

Θ1 = wEEE
∗ − wIEI∗ + θE ,

Θ2 = wEIE
∗ + θI .

The Jacobian of (1) evaluated at (E∗, I∗) is therefore given by

JWC =
1

τ

[
wEEf

′(Θ1)− 1 −wIEf ′(Θ1)

wEIf
′(Θ2) −1

]
=

[
wEEβE

∗(1− E∗)− 1 −wIEβI∗(1− I∗)
wEIβE

∗(1− E∗) −1

]
.

(38)

We are interested in finding WC parameters so that the linearisation of the WC

model at the fixed point will be characterised by a given Jacobian matrix

J =

[
J11 J12

J21 J22

]
. (39)
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If we pick values for β, E∗ and I∗, the remaining parameters can be obtained by

equating (38) and (39), and by re-arranging equations (36) and (37). Parameters in

supplementary Table 3 were obtained using this method, which yields

τ = − 1

J22
,

wEE =
τJ11 + 1

βE∗(1− E∗),

wIE = − τJ12
βE∗(1− E∗)

,

wEI =
τJ21

βI∗(1− I∗)
,

θE = 1− 1

β
ln

(
1

E∗
− 1

)
− wEEE∗ + wIEI

∗,

θI = 1− 1

β
ln

(
1

I∗
− 1

)
− wEIE∗.

F Two-step optimisation

The optimisation procedure is as follows. For each patient, random sets of param-

eters are picked from uniform distributions (bounds in supplementary Table 5). To

improve the efficiency of the optimisation, we accept parameters only if the PSD

peak of the corresponding model (without stimulation) is within 1 Hz and 25% in

magnitude of the data PSD peak. Once 2500 parameters have been accepted, we

put them through local optimisations. Local optimisations are carried out using a

direct search algorithm called the generalized pattern search algorithm. Parameters

are put on a similar scale to improve search robustness, and hard limits are given

to the optimiser (see supplementary Table 5 in Appendix I). Optimisations are per-

formed in parallel on a supercomputer. A time step of 1 ms is used for the fits (a

period is about 200 ms). At the end of this process, the 20 best performing sets of

parameters were put through more local optimisations with a finer time step of 0.1

ms and stop criteria leaving room for more steps. The finer time step is also used

to produce the results shown in section 5.2).

The implementation of the generalized pattern search algorithm used is Matlab’s

patternsearch optimiser with the poll method ”positive basis 2N” and the following

stop criteria:

• main optimisation (time step of 1 ms): mesh size of 10−4, function call budget

of 800,

• second optimisation (time step of 0.1 ms): mesh size of 10−5, function call

budget of 1000.

G Live phase tracking and stimulation

One simulation consists of 600 trials with 12 blocks of phase-locked stimulation

each. As in the experimental paradigm, blocks last 25s, and inter-block intervals

are 1s. Inter-trial intervals are 5s, and the first trial starts after about 200 periods.

During this initial time, the mean of E and the standard deviation of E, σsim,

are obtained from about 20 periods after a ramp-up of about 40 periods. Phase-

tracking subsequently starts: E is centered and a threshold T = 0.2σsim is used to
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track positive zero-crossings. The use of hysteresis via a threshold was found critical

to handle the noise included in the model. We define a positive zero-crossing as

happening when
E(n) < −T,
E(p) > T,

p > n,

∀i ∈ {n+ 1, ..., p− 1} , E(i) ∈ [−T, T ].

(40)

These conditions are constantly monitored, and if found true, a positive zero-

crossing is declared to have happened at time step χ = n+p
2 . We evolve the zero-

crossing phase according to a frequency based on the previous period, and if χk is

the last positive zero-crossing to have occurred, the current value of the zero-crossing

phase is given by

ϕ =
2π

tχk − tχk−1

(t− tχk). (41)

If the value of 2π is reached, the phase value is set to 0 until the next positive zero-

crossing is detected. Stimulation is provided after ϕ reaches the target phase for

the block, and the stimulation trigger is recorded ∆tstim before stimulation occurs.

If the zero-crossing phase hasn’t reached the target stimulation phase yet when the

next positive zero-crossing is detected, stimulation is provided right then. As in [11],

a pulse of stimulation consists of six quick bursts at 130 Hz.
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H Supplementary figures

Figure 15: Patients’ PRCs (first column) and ARCs (second column) obtained as

described in section 2.1. Datasets with both response curves significant according

to at least one of our statistical tests under FDR control are highlighted with green

rectangles.
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Figure 16: Phase tracking illustrated in the three fitted patients by histograms

of the pair (target stimulation phase for the stimulation block, average of actual

Hilbert phase at stimulation for the stimulation block). The actual Hilbert phase is

obtained post-hoc after filtering. A block average includes averaging across bursts

and within the block. Averages are obtained using circular means. The effect of the

stimulation delay was removed, and phases are reference to positive zero-crossings.

Phase tracking is satisfactory for all patients, although tracking is less precise for

later phases in patient 5.

Figure 17: Fit to patient 1 showing the best PRC-ARC shift. The four features

that were included in the cost function are shown on the left, namely tremor PSD

(A), tremor envelope PDF (B), tremor envelope PSD (C) and PRC (D). The model

better predicts the data ARC (E) thanks to a PRC-ARC shift closer to that of the

data. The model phase plane is shown in H, and the model tremor time-series (F)

is shown next to the patient tremor time series (G). The framed black bar in H

indicates the fitted stimulation magnitude to scale.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2019. ; https://doi.org/10.1101/535880doi: bioRxiv preprint 

https://doi.org/10.1101/535880
http://creativecommons.org/licenses/by-nc-nd/4.0/


Duchet et al. Page 37 of 39

I Supplementary tables

Parameter Symbol Jslowcirc Jfastcirc
Jellip

I to E weight wIE 200 5 1
E to I weight wEI 200 5 2
E to E weight wEE 0 0 2

Sigmoid steepness parameter β 4 4 4
Time constant (s) τ 200 5 1

Constant input to E θE 101 3.5 0.5
Constant input to I θI -99 -1.5 0

Table 3: WC parameters corresponding to the Jacobians presented in section 4.7.

The steepness parameter β was set to 4, E∗ and I∗ to 0.5, and parameters were

determined according the method presented in Appendix E.

patient 1 patient 5 patient 6
|σ|
ω

1.9% 5.1% 1.6%

Table 4: |σ|/ω ratios in the linearisation of patient fits.

Parameter Symbol
Initial parameter distribution Hard limits enforced by optimizer
Lower bound Upper bound Lower bound Upper bound

I to E weight wIE 0 10 0 30
E to I weight wEI 0 10 0 30
E to E weight wEE 0 10 0 30

Sigmoid steepness parameter β 0 10 0 30
Time constant (s) τ 0 0.3 0 0.5

Constant input to E θE -2 10 -30 30
Constant input to I θI -10 2 -30 30

Noise standard deviation ζ 0 0.1 0 0.3
Stimulation magnitude δE 0 0.02 0 0.1
Stimulation delay (ms) ∆tstim 0 250 0 500

Table 5: Lower and upper bounds of parameters uniform distributions used to gen-

erate initial parameters for fitting, and hard limits enforced by patternsearch during

the optimization process.
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