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Abstract

Essential tremor manifests predominantly as a tremor of the upper limbs. One
therapy option is high-frequency deep brain stimulation, which continuously
delivers electrical stimulation to the ventral intermediate nucleus of the thalamus
at about 130 Hz. Constant stimulation can lead to side effects, it is therefore
desirable to find ways to stimulate less while maintaining clinical efficacy. One
strategy, phase-locked deep brain stimulation, consists of stimulating according to
the phase of the tremor. In this study, we aim to reproduce the phase dependent
effects of stimulation seen in patient data with a biologically inspired
Wilson-Cowan model. To this end, we first analyse patient data, and consistently
identify in half of the datasets significant dependence of the effects of stimulation
on the phase at which stimulation is provided. We approximate response curves
of datasets identified as significant by providing analytical results for the
linearisation of a stable focus model, a simplification of the Wilson-Cowan model
in the stable focus regime. Additionally, we fitted the full non-linear
Wilson-Cowan model to these datasets, and we show that in each case the model
can fit to the dynamics of patient tremor as well as to the phase response curve.
The vast majority of top fits are stable foci. The model provides satisfactory
prediction of how patient tremor will react to phase-locked stimulation by
predicting patient amplitude response curves although they were not explicitly
fitted. We report that the non-linear Wilson-Cowan model is able to describe
response to stimulation more precisely than the linearisation.

Keywords: deep brain stimulation; essential tremor; phase-locked stimulation;
phase response curve; amplitude response curve; Wilson Cowan model; focus
model
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List of abbreviations

ARC amplitude response curve
DBS deep brain stimulation
DCN deep cerebellar nuclei

ET essential tremor

FDR false discovery rate

nRT reticular nucleus

PD Parkinson’s disease

PDF probability density function
PRC phase response curve

PSD power spectrum density
TEED total electrical energy delivered
VIM ventral intermediate nucleus
WC Wilson-Cowan

1 Introduction

Essential tremor (ET) is the most common movement disorder, affecting 0.9% of
the population [1]. It predominantly manifests as a tremor of the upper limbs, and
can severely affect daily-life. When medications are ineffective or not tolerated, tha-
lamic deep brain stimulation (DBS) is a well-established therapy option. Clinically
available DBS continuously delivers high-frequency (= 130 Hz) electrical stimu-
lation to deep structures within the brain via an electrode connected to a pulse
generator implanted in the chest. There is no agreement in the research community
on the mechanisms of action of high-frequency DBS [2], but it is believed there is
room for improvement in terms of efficacy, decrease in power usage, avoidance of
habituation, and most importantly reduction of side effects [3]. Reported side ef-
fects of high-frequency thalamic DBS include speech impairment (dysarthria), gait
disorders, and abnormal dermal sensations (paresthesia) [4].

Because side-effects are the main clinical bottleneck, improving high-frequency
DBS generally means stimulating less by closing the loop on a signal related to motor
symptoms, while maintaining clinical efficacy. One example of closed-loop DBS is
adaptive DBS, whereby stimulation is triggered in Parkinson’s disease (PD) patients
when pathological neural oscillation amplitude in the beta band is higher than a
threshold. Compared to high-frequency DBS, it has been shown to improve motor
performance, and reduce speech side-effects in humans [5, 6, 7]. Another example is
phase dependent stimulation, which has been investigated in a computational model
of PD [8], and in PD patients [9, 10]. Phase-locked DBS has recently been studied as
anew therapy for ET [11]. Hand tremor is recorded, and the reduction in stimulation
comes from stimulating with a burst of pulses according to the phase of tremor,
only once per period of the tremor rather than continuously. In some patients,
the strategy only requires half the energy delivered by high-frequency DBS for the
same effect. Optimising phase-locked DBS requires a detailed understanding of the
phase dependence of the response across patients, but so far data collection from
phase-locked stimulation experiments has been restricted to small datasets because
patients fatigue quickly. While direct analysis of the data has proven insightful
[11], modelling phase-locked stimulation would allow predictions to be made from
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analytic and computational studies regarding the phase dependence of the response
to stimulation, and would open the door to supplement scarcely available patient
data with synthetic data. The ability to easily generate large amounts of synthetic
data could come in handy to help devise and test control algorithms, or when trying
to predict an effect that, because of noise in recordings, can only be deciphered when
a large number of trials is available.

Tremulous hand movements are believed to be closely related to thalamic activ-
ity [12, 13], and it is believed that ET originates in the cerebellar-thalamic-cortical
pathway [14]. However detailed knowledge of how ET comes about is missing, which
makes simple, canonical models natural candidates to study ET. Recently, phase-
locked DBS was studied using Kuramoto phase oscillators which do not model
interacting neural populations with distinct properties [15]. In the present work, we
focus on a neural mass model, the Wilson-Cowan (WC) model, whose architecture
can be mapped onto neural populations thought to be involved in the generation
of ET, and allows for strong coupling between the populations. Additionally, stim-
ulation can be delivered in the model to the most common stimulation site for ET,
the ventral intermediate nucleus (VIM). The model describes the firing rates of
an excitatory and an inhibitory population, and only has a few parameters, which
makes it less prone to overfitting and significantly easier to constrain than more
detailed models. The WC model has been shown to be adept at describing beta
oscillations in PD [16, 17]. Moreover, the work presented in [18] provides evidence
that the effects of high-frequency DBS for ET in a WC model are similar to the de-
scription given by conductance-based models. While the WC model has been used
to design closed-loop strategies for PD [19, 20], whether a firing-rate model such
as the WC can model the effects of phase-locked DBS has not been approached in
the literature. Based on strong assumptions, Polina et al. reduced a WC model to
a one-dimensional ordinary differential equation and looked at periodic forcing, but
not in the context of DBS, and without attending to dependence on the phase of
stimulation [21]. The present work will focus on reproducing the phase-dependent
effects of phase-locked DBS measured in human data with a WC model.

Stimulation changes the phase and the amplitude of tremor and the dependence
of these changes on the phase of stimulation can be quantified by the phase response
curve (PRC, in this study change in tremor phase as a function of tremor phase) and
the amplitude response curve (ARC, in this study change in tremor amplitude as a
function of tremor phase). The ARC directly measures the change in tremor, hence
the change in patient handicap, but both the ARC and the PRC are important to
understand the effects of phase-locked DBS and potentially optimise the stimulation
pattern. Theoretically, PRCs and ARCs have been defined differently, mostly in the
context of limit cycle models concerned with asymptotic response to infinitesimal
perturbations, see for example [22, 23, 24, 25, 26]. In patients, DBS stimulation is not
infinitesimal, and tremor data is very variable so stimulation happens in transient
states. Therefore rather than considering an asymptotic description of the changes
in phase and amplitude, we will be focusing on a close variant of the experimental
response curve measurement methodology applied to blocks of stimulation in [11],
which we will hereafter refer to as the “block method”. It provides a finite time
response to a finite perturbation and relies on the changes in the Hilbert phase and
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amplitude following blocks of phase-locked stimulation (more details in 2.1). The
only exception to this will be in analytical derivations (section 4), where a first order
measurement of the response curves (i.e. measurement at the end of the stimulation
period) will be used for tractability, as a simplified first approach to the model.
For coherence with the experimental response curve measurement methodology,
the notion of phase and amplitude used throughout will be the Hilbert phase and
amplitude or equivalent. It should also be noted that we are considering population
response curves and not single neuron response curves. The vast majority of best
performing WC models in reproducing patient data are found in this work to be
stable foci, where tremor dynamics are being reproduced by adding noise to the
system, so we restrict our analytical considerations to stable foci.

The main contributions of this work are the following. We first analyse patient re-
sponse curves, identify a subset of datasets passing appropriate statistical tests, and
characterise the relationship between PRC and ARC in these patients (section 2).
Following the introduction of our biologically motivated WC model (section 3), we
derive approximate analytical expressions that delineate the response to stimula-
tion of a 2D dynamical system described by a linearised focus, with the goal of
better understanding the constraints built in the model (section 4). The derived
response curves are close to sinusoidal, and a relationship between them is found,
revealing similarities in shape and phase shift with patients who have significant
PRCs and ARCs. We then show that for these patients, the WC model can be
fitted to the data and can reproduce the dependence of the effects of stimulation
on the phase of stimulation. The model is fitted to the PRC and can reasonably
predict the ARC, and notably what is approximately the best phase to stimulate
(section 5). We then proceed to compare the relationship between response curves
in the linearised and the full model and conclude that non-linearity is important to
better reproduce the relationship found in patients (section 6). Finally a discussion
is provided (section 7).

2 Patient response curves and their relationship

In order to assess phase dependence of the effects of DBS in patients, we extract
PRCs and ARCs from patient’s tremor data, provide a statistical analysis of the
curves, and analyse their relationship when applicable.

2.1 Analysis method

In the study reported in [11], ET patients are fitted with an accelerometer to record
their tremor, and DBS locked to the phase of tremor acceleration is provided in
blocks of 5 s to the VIM of the thalamus, with 1 s without stimulation between
blocks. Each block targets a stimulation phase randomly selected out of 12 tremor
phases (e.g. 120 degrees for the block shown in Figure 1). Stimulation is delivered
once per period at the target phase, in the form of a burst of 4 to 6 pulses at high
frequency (130 Hz or higher). There are about 10 trials available per phase (about
120 blocks per patient). The method described in [11] to obtain patient’s response
curves was specifically developed for this type of data, and we closely follow it. We
refer to our version of the method as the “block method” and denote the response
curves obtained by bPRC and bARC, “b” standing for block. More specifically,
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we define the bPRC and the bARC according to the following procedure. Tremor
frequency is around 5 Hz, and the dominant axis tremor recordings are bandpass-
filtered (4 Hz band encompassing the patient tremor frequency content) by means
of a backwards and forwards Butterworth second order filter (zero-phase filtering)
and z-scored.

Obtaining the change in phase (bPRC) For each block, a straight line is fitted to
the evolution of the Hilbert phase during the 1 s period without stimulation before
the block. The change in phase Ay due to the block is given by the difference
between the phase of the fitted reference line evaluated at the end of the block and
the actual Hilbert phase at the end of the block (see Figure 1). This phase response
is divided by the number of pulses in the block (on the basis of 4 pulses per burst
for patient 4R and 4L, and 6 pulses per burst for the rest), which gives an average
response for one pulse. The target phase at which stimulation is supposed to occur
is known for each block, but phase tracking not being perfect, the actual Hilbert
phase at which stimulation occurred is determined for each burst of stimulation as
the circular mean of the Hilbert phase during the burst. We take the circular mean
of these burst angles for a given block as the actual mean phase of stimulation for
the block. These values are then binned into 12 phases bins, and the change in phase
is averaged within bins to obtain the bPRC.

Obtaining the change in amplitude (bARC) For each block, the change in ampli-
tude is given by the difference between the mean of the Hilbert amplitude during
the last second of the block and the mean of the Hilbert amplitude during the 1
second without stimulation before the block (see Figure 1). As for the change in
phase, this amplitude response is divided by the number of pulses in the block, and
averaged across blocks in the same phase bin to obtain the bARC.

Measuring response curves significance and PRC-ARC shift In order to identify
significant patient’s response curves, we performed two statistical analysis. First,
bPRCs and bARCs were tested for a main effect of phase by means of a Kruskal-
Wallis ANOVA (12 phase bins) to differentiate patients’ response curves that may
be dominated by noise (lack of phase-dependent response or data collection and
analysis unable to measure it). Second, since we are expecting response curves to
have a dominant first harmonic, the cosine model y = ¢1 + |ca| cos(z + ¢3) was
fitted to patients’ phase response and amplitude response curves. We assessed via
F-tests whether the cosine model was better at describing the data than a straight
line at the mean. Including the less specific ANOVA test allows for more generality,
as we do not wish to exclude patients with significant, but non-sinusoidal response
curves. On the other hand, the cosine test is more likely to detect phase-dependent
effects of stimulation in patients which indeed have sinusoidal response curves. We
therefore define the following criterion for selection of a patient for further study in
the rest of the manuscript.

Significance criterion: having both bPRC and bARC deemend significant under
FDR control (see below) by at least one of the two tests — ANOVA test for a main
effect of phase or cosine model F-test.
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Figure 1: Example showing the block method applied to a block of stimulation with
a target stimulation phase of 120 degrees. Stimulation triggers are shown in black
in the lower panel while filtered tremor is shown in blue in the upper panel. The
change in phase due to stimulation Ay is obtained by comparing at the end of the
block the actual Hilbert phase to a linear phase obtained by a straight line fit to
the phase evolution 1 s before the block (middle panel). The change in amplitude is
given by the difference between the mean of envgy, and env,.s (top panel). Both
the phase and amplitude responses are normalised by the number of pulses in the
block.

In both cases, the adaptive linear step-up procedure modified by Storey et al. in
[27] and reviewed in [28] was used to keep the false discovery rate (FDR) below
5%. It improves on the original Benjamini and Hochberg procedure [29] by using
an estimator 7hg for the number of true null hypothesis mq (total number of tests
m = 2 response curves X 6 patients = 12 for each analysis). Controlling the FDR
at 5% guarantees that the expectation of the number of false positives over the
number of positives is less than 5%.

Additionally, in datasets where both bPRC and bARC are significant according
to the cosine F-test, the relationship between bPRC and bARC is quantified by
the shift in phase between the cosine model fits to the bPRC and the bARC. In
these datasets, the PRC-ARC shift is calculated as ¢pppc — parc = chRC — 4RO
(mod 27), with ¢prc—@darc € [0,27). Calculating a PRC-ARC shift in other cases

is not meaningful.

2.2 Results of the analysis
We analysed six datasets from the five patients included in [30] (datasets 4R and
4L are for the right and left upper limbs of the same patient). bPRCs and bARCs
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obtained are shown in supplementary Figure 15 in Appendix H, and results of
the statistical tests are presented in Table 1. Based on the significance criterion
defined in the previous section, patients 1, 5 and 6 are selected for further study, as
both their bPRCs and bARCs are found significant by the cosine F-test under FDR
control. We note that patient 5 also has both his response curves deemed significant
by the ANOVA test under FDR control. Datasets 3, 4R and 4L do not satisfy our
selection criterion. In Figure 2, the shift ¢prc — ¢ arc is plotted for patients for
whom the cosine model was deemed significant in describing both their bPRC and
bARC (which happens to be the same subset as patients satisfying our significance
criterion). They have a shift in [g, 71'], patients 5 and 6 being quite close to 7.

Patient  Type  ANOVA p-value  F-test p-value

L+ _BPRC 0.0113 0.00993
bARC 0.1733 0.0365
3 BPRC 0.1097 0.448
bARC 0.1591 0.500
4R _BPRC 0.3463 0.581
bARC 0.2064 0.057
a _BPRC 0.2895 0.352
bARC 0.0077 0.200
5 #x _BPRC 4.925¢-04 0.00906
bARC 4.012e-06 0.00142
g #x _BPRC 4.815¢-04 0.0122
bARC 0.0527 0.0341

Table 1: P-values of both statistical tests performed on patients’ response curves:
Kruskal-Wallis ANOVAS testing a main effect for phase in patients’ response curves
(third column), and cosine model F-tests (fourth column). P-values in bold are
deemed significant with FDR control at the 5% level (separate FDR analyses per
test type, mg &~ 8.42 for the ANOVAs and nig =~ 7.37 for the F-tests). Double stars
indicate datasets satisfying our significance criterion as defined in section 2.1.

¢pPrC — PARC

2
[ ) Patient data:
[ ] patient 1
@® patient 6
patient 5

Figure 2: PRC-ARC shift in patients. Only showing patients with significant cosine
model F-test for bPRC and bARC under FDR control. The calculated PRC-ARC

shifts are in [%7 71'].
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3 Implementation of the Wilson Cowan model for essential
tremor DBS

To model the experimental data described in the previous section, we use a WC
model that describes the interaction between an excitatory and an inhibitory pop-
ulation of neurons. Specifically, we map a 2 population WC model without delays
as described in [31] onto the anatomy of the thalamus (Figure 3). The circuit we
are about to describe is a good candidate, but not the only biologically plausible
mapping of an excitatory/inhibitory loop in the context of tremor. In our candi-
date mapping, the VIM is modelled as an excitatory population, connected to an
inhibitory population of the thalamus, the reticular nucleus (nRT). The high co-
herence between ventral thalamic activity and electromyographic recording of the
contralateral wrist flexors [12, 13] is our justification for modelling tremor by the
activity of the excitatory population. VIM and nRT are reciprocally connected (the
excitatory projections from VIM to nRT are via Cortex). The VIM receive a con-
stant input from the deep cerebellar nuclei (DCN) and is part of a self-excitatory
loop via Cortex. nRT receives a constant cortical input. We add Gaussian white
noise to this two-population WC, and the activity of the VIM, E, and the activity
of the nRT, I, are described by the stochastic differential equations

dE = F\(E, I)dt + CdWg,

(1)
dI = Fy(E, I)dt + CdW,

where dWg and dW; are Wiener processes, ( the noise standard deviation. We
define

F\(E,I)=—(—E+ f(0p + wgpE —wigl)),

FQ(E,I) = (—I+f(91+wE1E)),

Nl

with wpg the weight of the projection from population “P” to population “R”, 6p
the constant input to population “P”, 7 a time constant (assumed to be the same
for both populations). We use a sigmoid function

1

@)= e

parametrized by a steepness parameter 5 (same choice as in [31]). The VIM is the
most common target of DBS for ET, which is why we model stimulation as a direct
increase in E. Analytical expressions for response curves are out of reach for the full
non-linear model, and we will study next a linearisation of a deterministic stable
focus model.
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t

DBS

Figure 3: The WC model can describe the populations thought to be involved in
the generation of ET. The excitatory population E and the inhibitory population I
model respectively the VIM and the nRT of the thalamus. Arrows denote excitatory
connections or inputs, whereas circles denote inhibitory connections. The VIM is
the target of DBS and also receives an input from the deep cerebellar nuclei (DCN).
The self-excitatory loop of the VIM, as well as the excitatory connection from VIM
to nRT are via cortex.

4 Response curves and their relationship in a focus model

The goal here is to derive approximate analytic expressions for the first order phase
and amplitude responses to one pulse of stimulation in a 2D dynamical system
that is described by a (stable) focus. Such a linearisation can be applied to the
deterministic WC model given by equation (1) with ¢ = 0 in the focus regime. We
follow the previous section in modelling the tremor signal as the first coordinate of
the dynamical system, and in providing stimulation pulses along the first dimension.
The results will provide a basis for understanding how the effects of stimulation
on phase and amplitude are coupled in the WC model, and for comparison with

experimental data.

4.1 Linearisation of a focus

To distinguish scalars and vectors more easily, vectors will be denoted in bold. Let
Z = F(Z) be a dynamical system, where Z € R? and F is differentiable. The
Jacobian of F' is

OF, OF
— | oz 0Z
J= o8 o (2)
07, 0Z3

Let Z* be a fixed point of F. The dynamics of X = Z — Z* are approximated in
the vicinity of the equilibrium X = 0 by the linear equation

X = J(Z")X (3)

where J(Z*) is the Jacobian evaluated at the fixed point. We will treat the case
of Jacobians having complex conjugate eigenvalues A1 = o %+ w. In particular, we
are interested in stable foci, which imply ¢ < 0. The WC model can operate in
that regime [31]. The case of centers (¢ = 0, purely imaginary complex conjugate
eigenvalues) will also be described, although it is of little interest for patient fits.
If k = a + ib is the right eigenvector associated with Ay, K and K’ coefficients
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determined according to initial conditions, the general real valued solution of (3)
reads

X(t) = {K (acoswt — bsinwt) + K’ (asinwt + bcoswt)} €. (4)
We will be using the following notations for the coordinates of the eigenvector:

ai + iby
az + ibg

()

Equation (4) and what follows are not valid in the case of multiple or repeated real
eigenvalues, which are of no interest for our purposes (no rotation).

4.2 Phase definition
The notion of phase is central to phase-locked stimulation, and in this section we
define phase in a way that is approximately equivalent to what is commonly used in
the analysis of experimental data. A typical signal only has one component, and the
Hilbert transform provides a convenient way of reconstructing a phase from a single
component. Despite being a protophase (see discussion section), the Hilbert phase
is widely used to analyse experimental data (see for instance [9, 11, 32, 33, 34]),
and this is the reason why we choose in our linearised system a phase definition
approximately equivalent to it. We define a phase variable as ¢ = wt with a zero
phase point defined as the maximum of X7 (¢) (similarly to the Hilbert phase), which
is therefore on the nullcline of the first coordinate. This phase definition is different
from other common definitions such as the trajectory polar angle in the phase plane
of a 2D system, or isochronal (asymptotic) phase. We demonstrate next that it is
very close to the Hilbert phase of X for slow decay. It should be noted that this
is generally only true for the linearisation. As the Hilbert phase is also the phase
definition used in the other sections of this manuscript, the following proof ensures
consistency.

Let ‘H denote the Hilbert transform. To establish equivalence of our phase defini-
tion with the Hilbert phase of X7 given by

(®))
t)
a first step is to calculate the Hilbert transform of the signal X;(¢). The Hilbert
transform is a linear operator, and X;(t) is a linear combination of s(t)s.(t) and
s(t)sn(t) with s(t) = eIl s.(t) = coswt, and s,(t) = sinwt (see equation (4)).
Inspired by the proof of the Bedrosian identity [35], we calculate error terms and
show in Appendix A that H(s(t)s;(t)) ~ s(t)H(s;(t)) for j = ¢,n. The Hilbert
phase of X is therefore given by

¢Hzlbert arctan ——-~"7//

H(X
o (6)

v a2+ B2sin (wt — arctan %)

X (t
pitbert — arctan HX (1) ~ arctan , (7)
Xi() Va2 + 52sin (wt + 5§ — arctan %)
PpHibert ~ it — arctan %, (8)
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where

o = K’a1 —Kbl,
B = Ka1 —|—K,b1.

In the case of w > |o|, it can be shown that o and 8 are such that ¢fibert ig

referenced to the maximum of Xj.

4.3 Reference trajectory and stimulated trajectory
In order to calculate first order response curves, we will consider a reference trajec-
tory without stimulation, and a trajectory that underwent an instantaneous stim-
ulation pulse dX; at a stimulation phase ¢g. The effects of stimulation on phase
and amplitude will be measured at the next maximum of X for both trajectories.
We will denote these hPRC™Y) and hARC™) as they are first order responses based
on a phase definition equivalent to the Hilbert phase. A sketch of the method is
provided in Figure 4.

Expressions for the coefficients K,.; and K;,ef of the reference trajectory are
derived in Appendix B. We want to study the effects of stimulating at phase ¢q.
The point of stimulation X! at phase ¢¢ is expressed as

%0

X' = {K,cs (acos ¢y — bsingg) + K. ; (asin gy + bcosdg) } €7 <. (9)
An instantaneous stimulation 6X; is applied at X' as
X' = (XX = (X 40X XS, (10)

The trajectory after stimulation is still constrained by the dynamics given by equa-
tion (4), which allows for expressions for the coefficients on this new trajectory
Kotim and K., to be found (see Appendix C). To measure the change in phase
and amplitude between the next peaks of the stimulated trajectory and the refer-
ence trajectory, the phase ¢4, of the next maximum of the first coordinate on the
stimulated trajectory X;%™ is needed (the phase of the next maximum of X; on

the reference trajectory is 27). A derivation for ¢, is provided in Appendix D.

4.4 Phase response

The first order phase response curve can be calculated based on the reference tra-
jectory period Ty and the stimulated trajectory period T, which is given by the
sum of the time spent on the reference trajectory before stimulation and the time
spent on the new trajectory after stimulation:

2
Tozla
w
J (do —0) + (27 + Praz — o) _ 27 + Pmaa

w w
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a1 = 0.708,b; = 0,ay = 0.254,b, = —0.659
x1074 o=-0.612,w =327

reference trajectory
trajectory after stimulation
chf (0)
X
Xl
X (27 + Ppar) /@)
X7 (2m/w)

1 1
-1 -0.5 0 0.5 1

X, x1073

[ N _NON NO)

hPRC“)(qﬁ())/w

0.8

0.6 -

0.4+

0.2+

-04

-0.6

-0.8

-1 1 1 ; 1 1 1 |
-0.05 0 0.05 0.1 0.15 0.2 0.25

Figure 4: Illustration of the approach taken to derive expressions for the phase and
amplitude responses in the linearisation of a 2D focus model. Top: phase plane,
bottom: time-series of X;. The tremor is modelled by X7, and the stimulation 6 X,
is applied to X7. The system shown corresponds to the linearised fit of patient 1 as
described in section 6.1.
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For a phase response curve in radian, we obtain

hPRC(l)((bO) = 277% = —®maz- (11)
0

The phase ¢4, depends on § X7 through Ky, and K/,

! vim,» and a Taylor expansion

around 0 yields, to lowest order in X7,
5X1 2?0

hPRC (¢0) = o (A cos gy — Bsin o) Ce™7 (12)
1

with

= (a1a2 + blbg)w — (albg - agbl)U,
= (a1b2 — agbl)w + (alag + blbg)d,
w

A
B
C :
(w? + 0?)(arby — azb)

Although we are omitting the amplitude dependence in our notations for conve-
nience, the first order PRC is found to be proportional to the inverse of the peak
amplitude of the oscillations at the beginning of the stimulation period X?J. It is
also directly proportional to the stimulation amplitude §.X;, and directly depends
on phase via sinusoidal functions and a factor related to the decay. The constants
A, B, and C only depend on the real and imaginary parts of the eigenvalue A, and
the associated eigenvector k.

4.5 Amplitude response

For our purposes we are interested in the amplitude of the first coordinate, and
the first order amplitude response curve (ARC) is obtained as the difference in
first coordinates between the stimulated and the reference trajectories evaluated at
their respective next peak after stimulation. It should be noted this is equivalent to
a first order change in Hilbert amplitude, at least for w > |o|. The first order ARC
is calculated as

hARCY (¢g) = X5t (2” + ¢’”‘“”> —x7el <27T> : (13)

w w

A Taylor expansion around 0 yields, to lowest order in § X7,

hARC™M (o) = 6X1 (cos do + Dsin g) e 5 (14)
with
aias + blbg
D=——-—.
Cl1b2 — a2b1

Interestingly, the first order ARC close to the fixed point does not depends on
the amplitude of the oscillations X?. As expected, the first order ARC is directly
proportional to the stimulation amplitude § X;. Similarly to the first order PRC, it
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directly depends on phase via sinusoidal functions and a factor related to the decay,
and the constant D only depends on k. The obvious similarities between the first
order PRC and ARC suggest there may be a relationship between the two.

4.6 Relationship between first order PRC and ARC
We seek a relationship involving the derivative of the first order PRC, which, based
on equation (12), is given by

dhPRC™ 5X, 5 fo=2r
- 0 (d0) _ = Fx0 (cos ¢ + Gsingp)e 7 = (15)
with
F— (a1ba — aghy) (w? + 0?) Jprs
(a1b2 70,2()1) (w2 70’2) +2(CL10,2 +b1b2)wa ’
Q- (a1a2 + blbz)(u} — 0 ) — 2(@1[)2 — agbl)wa

(albg —agbl)( —0'2) —|—2(CL1(L2 —&-blbg)wa'
Let us study the case where w > |o|:
2
(arbs = asby) (1+ (2)%) .
e w
(a1b2 — a2b1 (1 — (% 2) + 2 a1a2 + blbz)

)
(a1a2 + b1b2) ( ( )2) —2(a1by — asby)
(a1b2 — a2b1 ( (%) ) + 2 a1a2 + b1b2

F =

~1-2(D—m)
%

)

E zD—2(1+D2)gzD.

) w

Therefore in that case the first order ARC is approximately the opposite of the

IS
IS

€19

derivative of the first order PRC scaled by the peak amplitude at the beginning of
the stimulation period (in general, the scaling factor is FXY):

,X? thRC(l)(¢O)

~ (1)
T ~ hARC™ (¢y). (16)

For a slow decay compared to the rotation, the PRC-ARC shift in the linearisation
of a focus will therefore be close to 7, which is the value observed for patient 5 (see
Figure 2). A detailed analysis of the PRC-ARC shift in the model is provided in
section 6.

4.7 Applications to simple systems

We turn to simple systems to illustrate the results of the previous sections. In what
follows, response curves are given for 6X; = 2 x 1074 and X) = 1073, X} being
a maximum of X; as a function of time (these only act as scaling factors of the
response curves and will not change their shape).

Circular flow without decay As an introductory example, let us consider a simple
circular flow for which the J matrix is

-1
Jcirc = [0 ] .
1 0
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The eigenvalues of J.;-. are +i so the results of the previous sections can be applied.
Equations (12) and (14) are plotted for this system with our choice of §X; and X?).
The result for the first order PRC is shown in Figure 5, panel A2, and for the first
order ARC in panel A3. For this system, hPRC™ is simply the opposite of a sine,
hARC®Y simply a cosine. Moreover, o = 0, hence G = D (see section 4.6) and
equation (16) is exact, as exemplified in Figure 5, panel A3. hARC™ is obtained by
only scaling the derivative of hPRCY by — X as az = by = 0 and F = 1. Note that
WC parameters for which the system’s Jacobian at the fixed point is J.;-. cannot
be found as the second diagonal term cannot be 0, at least in the version of the WC
model used in this work (see (38) in Appendix E).

a; = 0.707,b; = 0,03 = 0,b, = —0.707 x107*

0.2 3
- —0w=1
plet o=0w ) hARC®)
........ _ px0dPRCY
0.1 1 dgy
5 1
. -
o 0 =0
0 < <
1
5 -0.1
Al A2 A3
02 -3
1 05 0 05 1 0 2 4 6 0 2 4 6
X, x1073 N
@ = 07076, = 0,4 =0,b, = 0707
—4 = —{ w = -
R
........ _FXdpECY
o1
5
1
s =
- 5 o
0 < 0
-5 -0.1 B
02 2 3
1 05 0 05 1 0 2 4 6 0 2 6
Xi x107% %o %o
a1 = 0.707,b; = 0,05 = 0,b, = —0.707
x107* o=-02,w=1
wRC
. 0.4 e PxpagCn
4 0.2
S
S <
0 0
2
. c1] o
5 0 5 10 0 2 1 6 0 2 4 6
X, x1074 o

ay = 0.408, b, = 0.408, a; = 0.816,b, = 0
$106 = —-9.Tle — 1T,w=1

hPRCW

0.2

0.1

=0 g0 4
05 0.1 -
-1 -0.2
D1
1 0 1 0 2 1 6 o 2 1 6
X, %1073 o %0

Figure 5: Analytical results in simple systems (initial conditions as in the main text).
First column: phase space. Second column: first order PRC as per equation (12).
Third column: first order ARC as per equation (14) and opposite of the derivative

of the first order PRC scaled by FXY. Panel A corresponds to Ji.. (circular flow,
Jfast

cire

Jslow

no decay), panel B to J5°¥ (circular flow, slow decay), panel C to (circular

flow, fast decay), and panel D to Jey;, (tilted elliptic flow, no decay).
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Circular flow with decay We can introduce a slow decay (Figure 5, panel B) and
then a fast decay (Figure 5, panel C) in the circular flow. We choose the J matrices

etow _ | 51070 1 1 fast _ l —2107 -1 ]
1 —5.107% |’ 1 —-2.1071

The slow decay leads to a scaling factor F' &~ 1, and the approximation of equa-
tion (16) is very good, as w > |o| (see Figure 5, panel B3). The case of the fast
decay corresponds to w = 5|o|. The first order PRC and ARC no longer look like
pure sinusoids and the approximation relating the response curves is less accurate
(w = 200|0|, see Figure 5, panel C3). It is possible to find WC parameters for which
the system’s Jacobian at the fixed point is J5° or .J fﬁn‘zt How such parameters are
found is explained in Appendix E, and the results are presented in supplementary
Table (3) in Appendix I. In both cases, wig = wrg, and wgg = 0.

Tilted elliptic flow without decay The tilted elliptic flow without decay of Figure 5,
panel D, corresponds to the J matrix

1 -1
Jellip = [2 _1‘| .

The first order PRC and ARC are sums of a sine and a cosine, which brings a hor-
izontal shift in phase compared to a circular flow without decay. The eigenvalues
are still purely imaginary, but F' is no longer one. Because o = 0, the relationship
of equation (16) is still exact (see Figure 5, panel D3). It is possible to find WC
parameters for which the system’s Jacobian at the fixed point is Je;, (see supple-
mentary Table (3) in Appendix I). Patient fits fall in the category of (potentially
tilted) elliptic flows with decay, and will be dealt with in section 6.1. The linearised
stable focus model exhibits close to sinusoidal response curves and a PRC-ARC shift
close to 5, which when contrasted with patient data (response curves passing the
cosine model F test and PRC-ARC shifts in [g, 7r] as shown in Figure 2), provides
a strong motivation to fit the WC model to data.

5 Fitting the full Wilson Cowan model to patient data and
response to phase-locked stimulation

5.1 Fitting procedure

We now turn to fitting our stochastic neural mass model (equation (1)) to patient
data. The model is fitted to features (also known as summary statistics) extracted
from patient tremor recordings. The parameters we fit are shown in Table 2, and
include model parameters, stimulation magnitude and stimulation delay (time be-
tween the stimulation trigger is recorded and stimulation is actually provided to
the E population, more about its interpretation in section 7). Stimulation is imple-
mented directly in the Euler update of our integration scheme. We aim at repro-
ducing tremor dynamics and fit to three dynamical features: the power spectrum
density of the data (PSD), its Hilbert envelope probability density function (PDF),
and its Hilbert envelope PSD. While the envelope PDF captures the range of am-
plitudes present in the tremor, the envelope PSD describes how quickly tremor


https://doi.org/10.1101/535880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/535880; this version posted April 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Duchet et al. Page 17 of 39

amplitude changes. But we also aim at reproducing response to stimulation, and
fit to the patient bPRC. The data dynamical features are obtained after filtering
and z-scoring the data as described in section 2.1. The data bPRC is obtained as
described in section 2.1.

Random sets of model
parameters with PSD

close to data Local Same process with

2500 sets optimization 20 best finer time step
(generalized
attern search)

ODE integration
Stimulation at target phase Computation\of features and cost

vs o5, smpltudePDE__ B

) \ “r Best set of parameters:

according to block/desi,
bARC prediction?

bARC prediction

~ 001

200 100
phase of stimulation (deg)

Figure 6: The fitting procedure involves 2500 local optimisations for each patient.
The simulation of the model at each optimisation step requires to track the zero-
crossing phase in order to provide stimulation at the right phase. The phase-tracking
ability of the scheme is satisfactory when compared to the actual Hilbert phase (left,
detailed in Figure 16 in Appendix H). The optimiser minimises a cost function that
includes the comparison of three tremor dynamics features (tremor PSD, tremor
envelope PSD, tremor envelope PDF) plus the PRC against the data (middle).
Following a second optimisation of the 20 best results with a finer time step, a
best set of parameter comes out of the procedure, and the model ARC can be
compared against the data ARC. More details on the fitting procedure are given in
Appendix F.

The fitting procedure is summarized in Figure 6. Local optimisations are carried
out using gradient free optimisation, specifically a direct search algorithm called
the generalized pattern search algorithm (more details are given in Appendix F). In
order to measure response to stimulation as in the data, each local optimisation step
needs to simulate the model with phase-locked blocks of stimulation. This requires
integrating the differential equations of the model while tracking the phase and pro-
viding stimulation at the right time, which is done by monitoring the zero-crossing
phase alongside a Euler integration scheme. Appendix G details implementation
of the simulator. The four features are computed on the model output at each
optimisation step. The same method is used as for the data features, with three
differences. The first is that for increased stability of the optimisation, the model
bPRC is averaged over a much greater number of trials (600 trials), while the more
robust dynamical features are obtained from nine trials only to reduce computation
cost. The second is that the model output is not filtered to compute the dynamical
features (only z-scored), as we want the model output to primarily generate the
filtered tremor signal (a model generating mostly 1Hz oscillations but reproducing
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Best fit values

Parameter Symbol Patient I Patient 5 Patient 6
I to E weight WIE 9.4014 26.048 5.2064
E to I weight WET 9.6306 25.3384 24.4813
E to E weight WEE 6.7541 1.548 2.7514
Sigmoid steepness parameter B 1.1853 2.4234 4.1933
Time constant (s) T 0.0758 0.29984 0.2513
Constant input to E O 1.4240 22.8621 2.9127
Constant input to | 0r -3.2345 -9.9279 -3.4008
Noise standard deviation C 0.0457 0.013707 0.0263
Stimulation magnitude 0F 0.001634 0.00598 0.001686
Stimulation delay (ms) Atstim  138.8366 4441573  183.4711

Table 2: Best parameters for the 3 fitted patients.

patient tremor when filtered at 5Hz would not be desirable). Computing the bPRC
still requires filtering, as it relies on the Hilbert transform. The third difference is
that the filtering window for the bPRC cannot be adjusted manually in optimisa-
tion steps, so a 4Hz band centered on the model PSD peak is used. As for the data
bPRC and bARC, the actual Hilbert phase at which stimulation occurred is used to
compute response curves via the re-binning process described in section 2.1, and the
zero-crossing phase is only needed to enable phase-locked stimulation in the model.
Phase-tracking performance is illustrated in supplementary Figure 16 in Appendix.

At each step, once the four features have been computed on the model output,
the optimiser returns the cost

Ny, data model

4 2

1 i= n,d  In,i

=32 Zgl(y’ ), )
n=1\ >0 (ygazw - yg%ta)

with y,,n € {1,2,3,4} being the four features considered, and N,, the length of y,,.
At the end of the procedure, the fit with the lowest R?> = 1 — ¢ for each patient is
deemed the best fit. In case of a tie (difference in mean costs lower than standard
error of the mean), foci are preferred over limit cycles.

5.2 Results of the fits

Patients passing our significance criterion (section 2) are fitted to, namely patient
1, 5, and 6. For these patients, we find that the model successfully reproduces
tremor dynamics, including tremors with sudden bursts, and can fit to patient phase
response to stimulation. The best fits obtained upon completion of the optimisation
procedure are shown in Figures 7, 8, and 9. In addition to reproducing tremor
dynamics and being able to fit to patient bPRCs, the model seems to be able to
reasonably predict patient bARCs (obtained as in section 2.1, but not fitted to), and
in particular which phases are approximately the best phase to stimulate, i.e. the
phases at which the maximum decrease in tremor happens. Because of averaging
across 600 trials, the model bPRC and bARC error bars are small compared to the
data error bars (only about 10 trials).

Validating fitted stimulation magnitude Cagnan et al. [11] report what the device
settings are, and in particular the total electrical energy delivered (TEED) per
unit time. We can build a quantity based on the fitted stimulation that should
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Figure 7: Best fit to patient 1. The four features that were included in the cost
function are shown on the left, namely tremor PSD (A), tremor envelope PDF
(B), tremor envelope PSD (C) and bPRC (D). The R? for the model fit to these
features is 0.795, and the model reasonably predicts the data bARC (E). The model
phase plane is shown in H, and the model tremor time-series (F) is shown next to
the patient tremor time series (G). The framed black bar in H indicates the fitted

stimulation magnitude to scale.
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Figure 8: Best fit to patient 5. The four features that were included in the cost
function are shown on the left, namely tremor PSD (A), tremor envelope PDF (B),
tremor envelope PSD (C) and bPRC (D). The R? for the model fit to these features
is 0.823, and the model predicts the data bARC (E). The model phase plane is
shown in H, and the model tremor time-series (F) is shown next to the patient
tremor time series (G). The framed black bar in H indicates the fitted stimulation
magnitude to scale.
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Figure 9: Best fit to patient 6. The four features that were included in the cost
function are shown on the left, namely tremor PSD (A), tremor envelope PDF
(B), tremor envelope PSD (C) and bPRC (D). The R? for the model fit to these
features is 0.830, and the model reasonably predicts the data bARC (E). The model
phase plane is shown in H, and the model tremor time-series (F') is shown next to
the patient tremor time series (G). The framed black bar in H indicates the fitted

stimulation magnitude to scale.

scale with the TEED per unit time. Because of z-scoring along the E dimension,
we have to divide the fitted stimulation which is measured along the E dimension
by the standard deviation of E (before z-scoring), and turn the fitted stimulation
into an effective stimulation. As bursts are delivered once per period, this effective
stimulation should be multiplied by the mean frequency of E to obtain a quantity
proportional to energy per unit time (the number of pulses per burst is the same
for the three patients). Figure 10 shows the effective stimulation times the mean
frequency for the 15 best performing fits against the TEED per unit time for each
patient (correlation coefficient for fit averages r = 0.98). Under the assumption that
patient intrinsic sensitivities to stimulation are somewhat similar, we can conclude
from the correlation that the fitting procedure successfully captures the scale of

stimulation across patients.

PRC-ARC shift in WC synthetic data The PRC-ARC shift is computed on WC
synthetic data with phased-locked blocks of stimulation generated by the full model
fitted to each patient. This time we can take full advantage of the model and
compute bPRCs and bARCs from more trials than for patient data or model data
in optimisation steps, and perform 10 repeats of 600 trials for the top 15 fits for
each patient. The PRC-ARC shift is then measured as in section 2.1 for each of the
10 repeats, and shown in Figure 11. The large filled circles represent the mean of
the 10 repeats for each patient fit. It appears that the PRC-ARC shift obtained for
synthetic data of top patient fits mostly lie in the upper-left quadrant of the unit

us

circle for all three patients ( [5, 71']), similarly to patient data. One fit to patient 6
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Figure 10: Fitted effective stimulation times mean frequency of E versus total elec-

effective fitted stimulation

0

trical energy delivered per unit time by the device, for the three fitted patients.
Showing the 15 best performing models for each patients, along with the mean and

standard error of the mean error bars for each patient in black.

is an outlier in terms of its shift, due to high effective stimulation (defined in the
previous section). While the model can allow for a larger shift than 7, this is not
the case for the linearised model, and the difference is the focus of the next section.

¢pPrC — GARC

’ L X Synthetic data for:

o R ® patient 1
e patient 5
/ o ® patient 6

Figure 11: PRC-ARC shift in synthetic data (full WC model fitted to patients). For
each patient, the shift for all 10 repeats of the top 15 fits is shown (smaller circles),
as well as the repeat mean for each fit (larger circles). One repeat corresponds to
600 trials.

6 PRC-ARC shift in the model

The linearised model makes different predictions for patient fits than the full model,
in particular in terms of PRC-ARC shift. The present section will look at the deter-
ministic linearisation of patient fits, and then contrast it with the full model with

noise.

6.1 Relationship between analytic response curves in the linearised fitted WC models
The first order PRC and ARC expressions derived in section 4 can be applied to the
linearisation of the best WC models fitted to data from the three selected patients,
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and the Jacobians at the fixed points are

)

11.9723 —35.0323 | —0.2252  —52.3293
34.9513 —13.1953 |’ ° 7| 232880 —3.3351

I [ 2.8269 —12.8784 ]
101.6943 —3.9789
In the fits by = 0 or by = 0, which marginally simplifies equations (12) and (14).
The curves obtained are shown in Figure 12. The same values as in section 4.7
are used for X¥ and §X;. Note that the stimulation delay Aty is not shown —
it affects both the PRC and the ARC and does not play a role in the PRC-ARC
shift. More interestingly, we observe that w > |o| in the 3 fits (see supplementary
Table 4 in Appendix I), suggesting that the response curves’ relationship described
by equation (16) should approximately hold. This is indeed the case as shown in
the third column of Figure 12. The decay is higher for patient 5 and as expected,
the approximation is slightly worse for this patient (panel B3 in Figure 12). For
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1 p— —pxpuERCY
5 0-1 1
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1
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Figure 12: Analytical results for linearised patient fits (initial conditions as in the
main text). First column: phase space. Second column: first order PRC as per
equation (12). Third column: first order ARC as per equation (14) and opposite of
the derivative of the first order PRC scaled by FX?. Panel A, B, and C correspond
to patient 1, 5, and 6, respectively.

small stimulation, the deterministic picture with patient parameters close to the


https://doi.org/10.1101/535880
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/535880; this version posted April 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Duchet et al. Page 23 of 39

fixed-point is that the PRC-ARC shift should be very close to 5. In what follows,
we investigate the difference between this idealised picture and what is observed in
synthetic data.

6.2 Accounting for the difference in shift between focus model analytic expressions
and WC synthetic data

Four factors could account for the difference in PRC-ARC shift between the idealised
picture given by analytic response curves with patient parameters (previous section)
and what is observed in WC synthetic data (section 5.2). First, stimulation may
be large enough that the Taylor expansions used to derive the analytic PRC and
ARC expressions are no longer approximately valid. Second, tremor in patient fits
may correspond to a regime not so close to the fixed point, compromising the
linearisation validity. Third, the introduction of noise in the model may result in
effects on the PRC-ARC shift that do not average out to zero. Fourth, in synthetic
data, the response to stimulation is measured by the block method, which differs
from the first order approach taken in our derivations. We next show that for the
three best fits considered non-linearity is the main driver.

Ten repeats of 600 trials of synthetic data are generated for the linearisation of
the best fits to each patient. The integration scheme with live phase tracking and
stimulation is the same as described in section 5.1, only the stochastic differential

equations are now

dE
dl

E - E*
-1

=J dt + ¢ (18)

dWg
dwr |’

where dWpg and dW; are Wiener processes, ¢ the noise standard deviation (same
values as in the non-linear case), E* and I'* are the coordinates of the fixed point,
and J is the Jacobian at the fixed point of the patient fit. The same values as
in the non-linear case are used for the stimulation magnitude and delay, with the
exception of patient 5, for whom the stimulation magnitude is set to a fifth of its
value in the non-linear case, as higher values were seen to cause a breakdown of
phase tracking, and result in unreliable response curves.

For each patient and for each of the 10 repeats, bPRCs and bARCs are obtained,
and the PRC-ARC shift is then measured as in section 2.1. The results are shown
in Figure 13 (middle), alongside the shifts measured from the response curves pre-
sented in section 6.1 (left), and the shifts measured in the full WC model (right).
It can be seen that going from the analytic response curves to the linearised model
(i.e. adding noise, measuring the response to stimulation via the block method and
not a first order method, and using a finite stimulation magnitude rather than a
infinitesimal stimulation), doesn’t affect the shift much. However, a substantial in-
crease in the shift is obtained by introducing the non-linearity, which brings the
shift in the upper-left quadrant, where patient data lie.
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Figure 13: Non-linearity accounts for most of the difference in PRC-ARC shift seen
in synthetic data (middle and right), when compared to the PRC-ARC shift derived
in the focus model (left). When computed from synthetic data, the PRC-ARC shift
of all 10 repeats is shown (smaller circles), as well as the repeat mean (larger circles).
One repeat corresponds to 600 trials, only showing best fits for each patient.

7 Discussion

We showed that in a 2D linearised stable focus model, the first order PRC and the
ARC are close to sinusoidal, in particular for small decay. Moreover, the PRC-ARC
shift is close to 5. Half of the patients in our dataset had significant sinusoidal
bPRCs and bARCs (an effect of stimulation phase could not be found in other
patients in at least one of their response curves), and the significant patients have
a PRC-ARC shift in the interval [g, 7T]. A full WC model can be fitted to tremor
dynamics features and to the bPRC for these patients, and as hinted at by the simi-
larities seen in the linearised focus model and the data, the best fits — a vast majority
of stable foci — can reproduce the dependence of the effects of stimulation on the
phase of stimulation. The best fits also reasonably predict the bARC, and notably
what is approximately the best phase to stimulate. Compared to the 2D linearised
focus, the non-linearities of the full WC model allow for a better reproduction of
the phase dependence found in patient data, in particular as far as the PRC-ARC
shift is concerned. Our full model can capture the behaviour of neural populations
plausibly involved in the generation of tremor, which, together with its success in
reproducing phase response and predicting amplitude response in patients, makes

it a strong candidate for further study of phase-locked DBS.

Phase definition While asymptotic phase definitions are common in theoretical
studies, experimental studies tend to favour instantaneous phase definitions such as
the Hilbert phase. To reproduce the data, an instantaneous phase seems more appro-
priate than an asymptotic phase, as there is no indication of stimulation happening
on or close to an attractor. It has been shown recently in [36] how an operational
definition of the phase can describe transient spiking, when an asymptotic phase
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does not capture the phase dependence of transients. In this study, our phase def-
inition is the Hilbert phase of the tremor data. It is therefore referenced to the
maximum of the tremor oscillations (represented by the first coordinate of the dy-
namical system), and does not require a limit cycle. The Hilbert phase is an angle
in the analytic signal space, it does not generally grow linearly with time, and is
a protophase [37]. This is not a concern from the perspective of describing patient
data, as this is the observable choice we are making for both the data and the model.
Commonly used with data, the Hilbert transform has also been proposed as a ro-
bust method to measure steady state PRCs in single neuron models [38]. Moreover,
stimulation is assumed to be small in our analytical expressions (section 4), but not
in the full model, contrary to standard asymptotic phase reduction strategies.

Linearisation The response curves derived for the linearisation of a 2D focus in
section 4 can be related to previously published expressions. In particular, the in-
finitesimal PRC for radial isochron clocks has been derived in [39], and has been
recently included in [40] under the larger umbrella of general radial isochron clocks.
The radial clock case (K(¢) = w in [40]) perturbed along the first dimension agrees
with our equation (12) for the case of a circular flow (see section 4.7). For this
simple system, the asymptotic phase response is the same as the first order Hilbert
phase response.

Moreover, for small decay, the best phase to stimulate corresponds to the maxi-
mum positive slope of the first order PRC in the response curves derived. In fact,
the first order ARC is simply a scaled version of the opposite of the first order PRC
derivative. A similar relationship has been first reported in a theoretical study in
the context of an individual oscillator [41], and more recently in [15] in the context
of population response curves of a Kuramoto model. It is noteworthy that we found
a similar result for the linearisation of any 2D focus (i.e. any model whose dynamics
obey equation (4)) with slow decay, and in particular for the linearisation of the WC
model, another popular neuroscience model very different in essence from coupled
oscillator models. In the thermodynamic limit and under certain assumptions about
the distribution of oscillator frequencies, the Kuramoto model can be reduced to
a two-dimensional system [42]. Our results are applicable to the linearisation of a
fully desynchronised reduced Kuramoto model observed through X; = p cos 6 where
r = pe’? is the order parameter (p is the modulus and 6 the angle in the complex
plane). Such a system therefore satisfies equation (16) as well (for small decay).

Our derivations do not assume proximity to a limit cycle, and this allows the
study of the dependence of the response to stimulation on the amplitude of the
oscillations for a given model (limit cycles do not have an amplitude variable in the
case of infinitesimal perturbations). In the linearisation, the PRC is found to be
inversely proportional to the amplitude of the oscillations before stimulation (see
equation (12)), while the ARC does not dependent on it.

Because the block method phase and amplitude response used in the rest of paper
are normalised by the number of pulses and blocks are only about 25 period long,
it seems legitimate to think that, although they are different objects, the first order
response to a single pulse (hWPRC™ and hARC(l)) and the block method response
(bPRC and bARC) could be related, and in particular that they might share similar
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PRC-ARC relationships. Part of the connection hinges on our proof that the phase
definition in the linearisation of the focus model overlaps with the Hilbert phase
when the decay is small compared to the rotation (section 4.2). And indeed, the
PRC-ARC shift predicted by our expressions derived for the first order response to
one pulse of stimulation in a linearised focus is very close to the shift obtained by
the block method on linearised WC synthetic data (see Figure 13). Our analytical
derivations provide a rationale to fit the full WC model to data and an intuition
for why the model can predict patient ARC, but do not offer an exact analytic
treatment of the block method. Specifically, individual pulses in a block may have
different effects depending on where they are located in the block and depending
on stimulation history within the block [11].

Fitting procedure Fits were performed using the generalized pattern search algo-
rithm on many sets of random initial parameters. This approach was chosen for
its robustness and computational efficiency in a non-smooth, non-convex landscape
with four non-linear features and 10 parameters, despite requiring the use of a su-
percomputer. In particular it has been deemed superior in finding better fits to the
simplex algorithm. The implementation used also has the additional benefit of be-
ing able to handle failed simulations (which occasionally happen as response curves
with 12 phase bins can not be obtained for some parameters). However the fitting
procedure results in many “good” local optima. What these “good” sets of parame-
ters have in common and what they can tell us about the patients we are fitting to is
not easily addressed with our current fitting strategy. Even real biological networks
may have redundancies, and may exhibit the same behavior under different network
configurations. Approximate Bayesian computation [43, 44] allow to approximate
the posterior distribution over parameters for intractable likelihoods, hence to an-
swer the question what is the space of parameters consistent with the data. Whether
approximate Bayesian computation methods could successfully tackle a complicated
landscape and provide more meaningful insight on fitted model parameters in the
setting of the present work is a promising avenue for further research. A limitation
of our fitting method is related to the integration scheme: to reduce computation
cost, the Euler step used in the first optimisation process is 1 ms. The top 20 best
fits are then re-optimised based a Euler step of 0.1 ms, and results are produced
with this finer time step, as dynamics can be qualitatively different (further re-
duction in the Euler step has not been seen to change the dynamics). While the
necessities of phase-locked stimulation precludes the use of built-in, powerful inte-
gration schemes, a more advanced event-based stochastic integration scheme could
remove the need for a second optimisation while keeping the computation cost down.
The performance of our simple phase-tracking strategy is good for patient 1 and
6 and satisfactory for patient 5 (see Figure 16 in Appendix). Response curves are
obtained based on the actual Hilbert phase of stimulation in a post-hoc manner,
which makes up for the reduced performance observed for patient 5. Still, more ac-
curate algorithms could be explored. Our zero-crossing strategy would benefit from
a better frequency estimate for the current period (currently simply the period of
the previous period) and more robustness to noise. The proposition of [45] involving
autoregressive forward prediction and the Hilbert transform is attractive, although
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its computational cost may be high, and some parameters need to be adjusted for
each time series.

Non-linear WC model The full WC model is fitted to data with Gaussian white
noise (equation (1)). The best performing fits are stable foci for all three patients,
and very few limit cycles are found in the top 15 fits for all three patients. One
is found for patient 1 (shares the 1st place with a stable focus - distance between
mean costs only 30% of the standard error of the mean), one for patient 5, and
none for patient 6. In the stable focus regime, noise brings the system away from
the stable fixed point, and the interaction of the noise with the dynamics of the
system makes the reproduction of patient tremor possible. In the absence of noise,
the system would converge to the stable fixed point and no tremor would be gen-
erated, so symptoms are related to the noise level in this model. Instead of noise,
tremor-like activity may be obtained by exploiting chaotic dynamics arising from
coupling several WC models together [46], but this would significantly increase the
complexity of the model (more on increasing complexity in the last part of this
section).

In fitting our thalamic model to tremor acceleration, we are assuming thalamic ac-
tivity and tremor are directly related as mentioned before (see section 5.1). Tremor
activity is however expected to lag thalamic activity due to conduction delays. The
accelerometer used to measure tremor is also expected to introduce an electrome-
chanical coupling delay. In the model, we allow for a stimulation delay Atgp, be-
tween the stimulation trigger and the time when stimulation is actually delivered to
the excitatory population. This parameter is fitted to the data, and gives the model
the ability to shift its bPRC in phase. Fitted stimulation delays are hundreds of
milliseconds, and conduction and accelerometer delays (tens of milliseconds) only
account for a small part. The higher fitted values are required by the model to
match data bPRCs. With our candidate VIM/nRT mapping in mind, the higher
fitted values remain unexplained on the biology side, although as mentioned before
tremor generation and ET DBS are not fully understood. It is interesting to note
that the stimulation delay of the best performing model for patient 5 is longer than
one period (see Table 2). This is found consistently in the top three best fits, and
reducing the delay to its value modulo the average period substantially reduces the
quality of the bPRC fit. Besides this short term delay, our model does not include
medium or long term plasticity effects, which are not expected to be strongly present
in the recordings as stimulation is only delivered for periods of 5 seconds in a row.
In our model, stimulation is provided to the E population via a direct increase in
the population activity. While stimulation is provided via the sigmoid function of
the excitatory population in other studies [18], we found this approach too restric-
tive due to sigmoid saturation, and inadequate to reproduce the full extent of the
response to phase-locked DBS in some patients. As a reminder, the choice of stim-
ulating the excitatory population rather than the inhibitory population is made for
biological consistency, as the VIM is the most common stimulation target in ET
DBS.

The success of the WC model in predicting patient ARCs when fitted to their
PRCs is partially explained by its ability to modulate the PRC-ARC shift. The
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PRC-ARC shift in the full model can reach the range found in patients while the
linearised version of the WC is limited to the close vicinity of . The response curves
of the full WC model are also better at reproducing the data and can vary from
pure sinusoids. However there is still some room for improvement in reproducing
the shift, in particular as far as patient 1 is concerned (patient shift quite a bit
larger than the model). The model can allow for a larger shift as shown by a fit
hand-picked in the top 15 shown in Figure 17 in Appendix H. The PRC-ARC shift
could be selected as an additional feature to fit to to improve ARC reproduction.

In its 2 population version, the suggested mapping of the excitatory and inhibitory
populations (VIM and nRT) is not the only possibility. Other candidates include
antidromically stimulated structures at the cerebellar level or below, such as DCN
as the inhibitory population, and the inferior olive as the excitatory population.
The model could also be extended by including more populations. With our current
mapping in mind, the cortex and the DCN could be turned into populations of
their own, which would make the model four dimensional. As suggested in [18], the
inferior olive which provides input to the DCN could also be modelled, and the spa-
tial extent of the VIM could be accounted for by splitting it in two populations or
more. Increasing the number of populations would however increase the number of
parameters of the model, and make the optimisation process more computationally
intensive, and the model more prone to over-fitting. In contrast, the incorpora-
tion of additional loops in the model architecture may help explain the inertia in
stimulation effects discussed above. Nevertheless, the model seems to be able to
reproduce the data in its current state, which suggests an increase in complexity
is not warranted. It is remarkable that one excitatory/inhibitory loop seems to be
enough to model the phase-dependent effects of ET DBS. It gives some support
to the hypothesis that sub-circuits of the central tremor network may behave as
individual oscillators entraining each other [47].

8 Conclusion

The focus WC model with noise can be fitted to ET patients with both response
curves showing significant phase dependence. The model reproduces the phase de-
pendence of the response to stimulation as well as predicts the amplitude response
to stimulation, which directly relates to tremor reduction. Phase-locked stimula-
tion promises less stimulation, hence less side effects for the same clinical benefits,
which would be highly desirable for patients. Our study positions the WC as a
strong candidate to model the effects of phase-locked DBS. Its ability to describe
all patients with both response curves significant in at least one of our tests should
be re-assessed as more data becomes available, both in terms of number of patients
and recording length. Phase dependent activity is thought to play a central role
in physiological information processing [48, 49], and in our analytical derivations,
the phase of the linearised model was defined in a way that does not depend on
modelling oscillations by a limit cycle, and that for small decay overlaps with the
Hilbert phase, which is widely used in experiments. Finally, as far as ET gener-
ation is concerned, we showed that a single excitatory/inhibitory loop is enough
to reproduce both the dynamics of the tremor and the phase dependent effects of
stimulation, however it should be non-linear.
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Appendices

We include here technicalities on approximating the Hilbert phase in the linearisa-
tion (Appendix A), details of the derivations leading to response curves analytical
expressions in the linearised system (Appendices B to D), and the procedure used
to obtain WC parameters from a given Jacobian (Appendix E). We also present
details of the two-step optimisation used for fitting to patient data (Appendix F),
the implementation of live-phase tracking and stimulation (Appendix G), as well as
supplementary figures (Appendix H) and supplementary tables (Appendix I).

A Hilbert transforms of sine and cosine exponential decays with error terms

The goal here is to show that H(s(t)s;(t)) ~ s(t)H(s;(t)) for j = ¢,n, with s(t) =
eIl s.(t) = coswt, and s, (t) = sinwt. The Bedrosian identity [35] states that the
Hilbert transform of the product of a low-pass and a high-pass signal with non-
overlapping spectra is the product of the low-pass signal and the Hilbert transform
of the high-pass signal. The spectrum support of s is R, but for low decay compared
to the rotation, the spectrum of s is very small where it overlaps with the spectra of
S or sp. The equality given by the Bedrosian identity turns into an approximation,
and inspired by the proof in [35], we can calculate error terms. Let S and S. be the
Fourier transforms of s and s, respectively:

s(t)s - e 1) Se(v)e T dudy
03clt) = oz [ [ S due, (19)
H(s(t)sc(t)) = (2;)2 /700 /700 S(u)Se(v)isgn(u + v)e T dudy. (20)

The Fourier transform of s, is given by S.(v) = 7 [0(v — w) + §(v + w)], so

H(s(t)s(t)) = (271T)2 /_00 S(w)e™ T () du (21)

where I'(u) = Z [sgn(u + w)e™’ + sgn(u — w)e~™*]. This can be simplified as

0 lul < w

[(u) =2 sinwt + ¢ —2Fe! 4 < —w .

27”6*“” U > w

The Fourier transform S(u) = UQZfUQ is even, therefore

211

H(s(t)sc(t) = &2@2 /00 S(u)e™ du + € /:O S(u) (ei(“*‘*’)t — G*i(u*w)t> du,
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with
H(sc(t)) = sinwt,

2 oo
I, = ;/w %—i—u? sin (u — w)tdu.

A similar derivation provides
H(s(t)sn(t)) = s(t)H(sn(t)) + Ls, (24)
with

H(sn(t)) = — coswt,

2 oo
ISn = ; /w ﬁ COS (u — (A})tdu

Numerical integration proves that for w > |o|, and in particular in the case of the
patients we are interested in, Z,_ and Z,, are under 5% of the signal scale for about
12 periods (see Figure 14). This is more than enough for our purposes as only one
period is needed to derive response curves. It is therefore reasonable to ignore Z,

and Zs, .
5
4.5 cos(wt)e~7M
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4 patient 6
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Figure 14: Relative error made across patients in estimating H(s(t)s.(t)) by
s(t)H(sc(t)) (solid lines) and H(s(t)s,(t)) by s(t)H(sn(t)) (dashed lines). The error
is calculated as the ratio of Z,_ (respectively Z; ) over the modulus of the numeri-
cal Hilbert transform of the signal, which is the envelope of the signal. The relative
error is under 5% in all cases for at least 12 periods.
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B Reference trajectory without stimulation

Let us find the coefficients K,.; and K;ef of the trajectory starting at t = 0 at a
maximum of the first coordinate X; = X? > 0. With the choice ¢ = wt, this will
ensure we are referencing the phase to the maximum of X;. It should be noted at
this point that we are not using the nullcline equations in what follows as we are
interested in the dependence of the response on the rotation w and the decay o.

From the initial condition at ¢t = 0,

Kyepar + K] ;b1 = X7. (25)

Additionally, X{ being a maximum requires that dd)il =0 at t = 0, therefore

dXi

= e’ [—w(Krepar + K ;by) sinwt + w(—Kyepby + K, pay) cos wi+

0 {(Krepar + K, ;b1) coswt + (—Kyepby + K] pa1)sinwt}] . (26)

Using the condition at ¢ = 0,

Kref(oay — wby) + K] p(0b1 +war) =0, (27)
Kref = %X%

(25) + (27) — (a1 +51) (28)
/ — —oa1+twby X(]
ref w(ai+b]) 1

We are excluding the case where the denominator in (28) is equal to zero, which
corresponds to both a; and b; being zero, which would imply X;(¢) = 0. Also note
that by picking a positive X7, we are ensuring that the null derivative corresponds

to a maximum of X7 rather than a minimum.

C Trajectory with stimulation

Let us determine what the coefficients K4, and K’ are for the stimulated

stim

trajectory (still constrained by the dynamics of equation (4)). We have
X1 = {Kstim (acos ¢g — bsin ¢g) + K., (asin g + bcos ¢g)} e (29)

Solving for Ky, gives

X217 (a1 Sin¢0 + b1 COS¢0) — (X117 + 5X1)(ay Sind)o + b2 COS¢)0) _gd%o

Ktim =
t (L2b1 — a1b2 €
(30)
Plugging in X{ , X; , and the expressions for K.y and K, yields
Koy = way + oby X0_ as sin ¢g + by cos ¢y 5Xle*”¢70. (31)

w(af 4 b7) asby — a1by
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Similarly for K’

stim,» using the previous result:

_ ¢ .
X37e 7% = Kim(a1 cos ¢o — by sin ¢o)

K, = 32
stim ay sin ¢ + by cos ¢0 ’ (32)
K Tom+t wby X0+ @ cos ¢o — by sin ¢y Xy (33)

stim w(a% + b%) asb; — a1by

D Phase at the next maximum of X; on the stimulated trajectory

dXst' . .
47— = 0 at wt = ¢rae. This give us

We are looking for ¢4, such that

o ¢max

(& « [*W(Kstimal + K;tzmbl) sin ¢mam + w(*Kstimbl + K;timal) COS d’mar+
o {(Kstimal + K;timbl) Cos ¢maw + (_Kstimbl + thimal) sin ¢ma:p}] = 07

(34)
Kstim — wb K, b
tan Gmas = t (Ual w 1) + /stim(g 1 —|-OJCL1) ) (35)
Kstim (CTbl + wal) + Km.m(—aal —+ wbl)
The phase @nqs is returned by the arctan function in (—g, g), and corresponds to

the previous peak on the stimulated trajectory extended backwards. The next peak
has the same phase (mod 27) as the expression in square brackets in equation (34)
is 2m-periodic.

E Finding WC parameters corresponding to a given Jacobian

The Jacobian of (1) evaluated at (E*, I*) can be simplified by making use of f'(z) =
Bf(z)(1 — f(x)). We also have

with

@1 = wEEE* — ’U}]E'I* + 9E7

Oy = U)E]E* + 0;.

The Jacobian of (1) evaluated at (E*,I*) is therefore given by

Jioer = X wppf'(©1) =1 —wief'(©1)
e T wprf(O2) -1

| wgBE*(1 - E¥) -1

(38)

We are interested in finding WC parameters so that the linearisation of the WC
model at the fixed point will be characterised by a given Jacobian matrix

g Ju Jiz| (39)
Ja1 Joo
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If we pick values for 8, E* and I*, the remaining parameters can be obtained by
equating (38) and (39), and by re-arranging equations (36) and (37). Parameters in
supplementary Table 3 were obtained using this method, which yields

_ 1
ey
. TJ11+1
PR T BB (- B,
TJ12
WrE = 7BE*(1 —E*)’
o TJ21
WET = ﬁ[*(l —I*)’
QE =1- llIl <1 —1) —wEEE*—f—IU[EI*
g \E” ’
9[:1— %ln (;;(—1) —’U}E[E*.

F Two-step optimisation

The optimisation procedure is as follows. For each patient, random sets of param-
eters are picked from uniform distributions (bounds in supplementary Table 5). To
improve the efficiency of the optimisation, we accept parameters only if the PSD
peak of the corresponding model (without stimulation) is within 1 Hz and 25% in
magnitude of the data PSD peak. Once 2500 parameters have been accepted, we
put them through local optimisations. Local optimisations are carried out using a
direct search algorithm called the generalized pattern search algorithm. Parameters
are put on a similar scale to improve search robustness, and hard limits are given
to the optimiser (see supplementary Table 5 in Appendix I). Optimisations are per-
formed in parallel on a supercomputer. A time step of 1 ms is used for the fits (a
period is about 200 ms). At the end of this process, the 20 best performing sets of
parameters were put through more local optimisations with a finer time step of 0.1
ms and stop criteria leaving room for more steps. The finer time step is also used
to produce the results shown in section 5.2).

The implementation of the generalized pattern search algorithm used is Matlab’s
patternsearch optimiser with the poll method ”positive basis 2N” and the following
stop criteria:

e main optimisation (time step of 1 ms): mesh size of 10~%, function call budget
of 800,

e second optimisation (time step of 0.1 ms): mesh size of 1075, function call
budget of 1000.

G Live phase tracking and stimulation

One simulation consists of 600 trials with 12 blocks of phase-locked stimulation
each. As in the experimental paradigm, blocks last 25s, and inter-block intervals
are 1s. Inter-trial intervals are 5s, and the first trial starts after about 200 periods.
During this initial time, the mean of E and the standard deviation of E, ogim,
are obtained from about 20 periods after a ramp-up of about 40 periods. Phase-
tracking subsequently starts: E is centered and a threshold T" = 0.20;,, is used to
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track positive zero-crossings. The use of hysteresis via a threshold was found critical
to handle the noise included in the model. We define a positive zero-crossing as
happening when

E(n) < -T,
E(p) > T, (40)
p>n,

Vie{n+1,.,p—1},E®) € [-T,T).

These conditions are constantly monitored, and if found true, a positive zero-
crossing is declared to have happened at time step x = "T“’. We evolve the zero-
crossing phase according to a frequency based on the previous period, and if xj is
the last positive zero-crossing to have occurred, the current value of the zero-crossing
phase is given by

2

p= (= t)- (41)

th - th—l
If the value of 27 is reached, the phase value is set to 0 until the next positive zero-
crossing is detected. Stimulation is provided after ¢ reaches the target phase for
the block, and the stimulation trigger is recorded Atgy;,, before stimulation occurs.
If the zero-crossing phase hasn’t reached the target stimulation phase yet when the
next positive zero-crossing is detected, stimulation is provided right then. As in [11],
a pulse of stimulation consists of six quick bursts at 130 Hz.
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H Supplementary figures
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Figure 15: Patients’ PRCs (first column) and ARCs (second column) obtained as
described in section 2.1. Datasets with both response curves significant according
to at least one of our statistical tests under FDR control are highlighted with green
rectangles.
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Patient 1 Patient 5 Patient 6
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Figure 16: Phase tracking illustrated in the three fitted patients by histograms
of the pair (target stimulation phase for the stimulation block, average of actual
Hilbert phase at stimulation for the stimulation block). The actual Hilbert phase is
obtained post-hoc after filtering. A block average includes averaging across bursts
and within the block. Averages are obtained using circular means. The effect of the
stimulation delay was removed, and phases are reference to positive zero-crossings.
Phase tracking is satisfactory for all patients, although tracking is less precise for
later phases in patient 5.
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Figure 17: Fit to patient 1 showing the best PRC-ARC shift. The four features
that were included in the cost function are shown on the left, namely tremor PSD
(A), tremor envelope PDF (B), tremor envelope PSD (C) and PRC (D). The model
better predicts the data ARC (E) thanks to a PRC-ARC shift closer to that of the
data. The model phase plane is shown in H, and the model tremor time-series (F)
is shown next to the patient tremor time series (G). The framed black bar in H
indicates the fitted stimulation magnitude to scale.
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| Supplementary tables

Parameter Symbol  Jslow J{{i‘:spt Jettip

| to E weight WIE 200 5 1

E to | weight WET 200 5 2

E to E weight WEE 0 0 2
Sigmoid steepness parameter I} 4 4 4
Time constant (s) T 200 5 1
Constant input to E 5] 101 3.5 0.5
Constant input to | 0r -99 -1.5 0

Table 3: WC parameters corresponding to the Jacobians presented in section 4.7.
The steepness parameter 3 was set to 4, E* and I* to 0.5, and parameters were
determined according the method presented in Appendix E.

patient 1  patient 5  patient 6
ol 1.9% 5.1% 1.6%

w

Table 4: |o|/w ratios in the linearisation of patient fits.

Initial parameter distribution Hard limits enforced by optimizer

Parameter Symbol Lower bound ~ Upper bound  Lower bound Upper bound
| to E weight WIE 0 10 0 30
E to | weight WE] 0 10 0 30
E to E weight WEE 0 10 0 30
Sigmoid steepness parameter Jéj 0 10 0 30
Time constant (s) T 0 0.3 0 0.5
Constant input to E (5 -2 10 -30 30
Constant input to | 0r -10 2 -30 30
Noise standard deviation ¢ 0 0.1 0 0.3
Stimulation magnitude oF 0 0.02 0 0.1
Stimulation delay (ms) Atstim 0 250 0 500

Table 5: Lower and upper bounds of parameters uniform distributions used to gen-
erate initial parameters for fitting, and hard limits enforced by patternsearch during
the optimization process.
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