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Abstract

Background. Identification of de novo mutations from cell populations requires single-
cell whole-genome sequencing (SCWGS). Although many experimental protocols of
SCWGS have been developed, few computational tools are available for downstream
analysis of different types of somatic mutations, including copy number variation (CNV).

Results. We developed SCCNV, a software tool for detecting CNVs from whole genome-
amplified single cells. SCCNV is a read-depth based approach with adjustment for the
whole-genome amplification bias.

Conclusions. We demonstrate its performance by analyzing data collected from most of
the single-cell amplification methods, including DOP-PCR, MDA, MALBAC and
LIANTI. SCCNV is freely available at https://github.com/biosinodx/SCCNV.
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Background

Each single cell in a tissue or cell population has its own unique genome due to
accumulating de novo mutations, such as single-nucleotide variations (SNVSs), structural
variations (SVs), copy number variations (CNVs) and aneuploidies. The frequency and
spectrum of the mutations reflect the loss of genome integrity of a cell population,
important to cancer and aging [1]. To detect the mutations unique to a single cell, single-
cell whole-genome sequencing (SCWGS) is necessary. However, SCWGS requires
whole-genome amplification (WGA), which often causes allele-specific or locus-specific
bias. The bias essentially constrains the usage of variant callers designed for non-
amplified bulk DNA. We recently developed a new software tool, SCcaller, that corrects
for allelic bias using SNP markers [2]. Another major type of mutation, i.e., copy number
variation (CNV), is detected on the basis of read depth, which is also affected by locus-
specific amplification bias [3-5]. Yet, the only available tool is a webserver which
requires uploading of the SCWGS data [6]. The uploading could be time consuming
because SCWGS data is often in big size, i.e., 100 GB per single cell. This lack of a
software tool for detecting CNVs is becoming a limiting factor for the application of
SCWGS data for which many experimental protocols are available, e.g., DOP-PCR,
MDA, MALBAC and LIANTI [2-5, 7]. To meet this need, we present SCCNV, a
software tool to identify CNVs from SCWGS. SCCNV is also based on a read-depth
approach; it controls not only bias during sequencing and alignment, e.g., bias associated
with mapability and GC content, but also the locus-specific amplification bias. We
demonstrate the application of SCCNV to SCWGS data of multiple experimental
protocols, i.e., DOP-PCR, MDA, SCMDA, MALBAC and LIANTI.

Implementation
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SCCNV was written in Python. It uses SCWGS data after alignment as input (i.e., a bam
file). First, it divides the genome into bins of equal size (500kb as default), and counts the
numbers of reads per bins of a cell. SCCNV then normalizes mapability, which indicates
the efficiency of the alignment to a genomic region. For a bin b of a cell, SCCNV adjusts
the raw number of reads, denoted by NRraw, by dividing over the mapability M,

NRI'v’:lW
NR b = %/I X (1)

where mapability M is a value ranging from 0 to 1. SCCNV uses Encode Align100mer
mapability score, downloaded from the USCS genome browser, and calculates the
mapability of each bin by using their weighted average.

Then, SCCNV normalizes for GC content. For a cell, SCCNV calculates the
percentile of GC content of each bin. For a bin b of the cell, its number of aligned reads
after normalizing GC content, NRgcp, is,

NR

map,b, percentile

where NRmap,genome 1S the average NRmap per bin of all bins from the cell; NRmap.b,percentile 1S
the average NRmap per bin of bins in the same GC percentile as bin b.

A consistent pattern of sequencing depth presents in different cells amplified
using the same experimental protocol. This reflects the pattern of locus-specific
amplification bias. Therefore, the bias is normalized across all cells in a particular batch
and experiment. First, to make the NRac,» comparable across cells, SCCNV converts it to
a raw copy number estimate, denoted by CNraw, for bin b of cell c, as follows,

NRg. , . .
CN raw,b,c — GC’%RGC,genome,c x pIOIdy (3)

where NRac genome,c 1S the median NRgc ¢ per bin in the genome of cell c; ploidy is 2 by
default. Second, the adjusted copy number is estimated as,

CNralw ¢ .
CNadjusted,b,c = '%Nrawb . X pIOIdy (4)

where CNraw,b,-c denotes the average CNraw for bin b across all cells except cell c. Then
SCCNV uses a sliding window approach to further minimize amplification noise. By
default, a window includes 10 500kb bins, i.e., 5 Mb in total, with a 500kb step size
between two neighboring windows.

SCCNV then models the distribution of CNsmoothed,o,c Of all bins in autosomes of a
cell ¢ as a normal distribution N(i, 6¢c?). The p=2, and o is estimated as,

o :l CNsmoothed,BO.Q%,c —H | + | CNsmoothed,GQ.l%,c —H | (5)

where CNsmoothed,30.9%,c aNd CNsmoothed,69.1%,c are the 30.9% and 69.1% percentiles of the
CNismooth,b,c OF all bins in the autosomes, respectively.

Assuming equal priors, for a bin b and a given possible copy number k € {0, 1,
2, 3, 4}, its posterior probability is,
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P(H, %)=

6
PRRAS) ©)
where X is the CNsmoothed,b.c; fi(X) is the probability density function of a normal
distribution,
1 (x—k)?
f(x)= exp(—
00 = —=ep(= (7)

where the variance o¢? is calculated according to equation (5).

SCCNV allows <1 false positive per cell. Therefore, it determines bin b as a copy
number variant when,
1

P(H,[x) 21~ . . _ =0.998 (8)
GenomeSize(3.2GB) / WindowsSize(5Mb)

Results

Figure 1 presents the major steps in SCCNV, including normalizing mapability and GC
content, normalizing locus-specific amplification bias and inferring copy number. Before
and after each step, SCCNV also generates intermediate results for users to monitor its
performance. Using a single cell amplified with MDA as an example (SRA id:
SRR2141574), we first show that our procedure normalized the bias in number of reads
due to mapability as well as GC content (Figure 2 and 3). Second, we show that locus
specific amplification bias was adjusted in Figure 4. Finally, copy number variations can
be determined based on a statistic simulation and testing (Figure 5 and Equations 5-8).

SCCNV was applied to three publicly available SCWGS datasets [2, 5, 8]. The
three datasets included SCWGS of 60 single human fibroblasts or neurons amplified
using 8 different protocols, i.e., DOP-PCR (Sigma), Rubicon, MALBAC (Yikon),
LIANTI, and MDA (including Qiagen, GE, Lodato et al’s MDA and SCMDA). Sequence
alignment was performed using BWA and GATK (Supplementary Material) [9, 10]. Raw
sequencing data of each sample (cell and bulk DNA) were obtained from SRA database
and subjected to quality control using FastQC [11] and trimming using Trim Galore [12]
with default parameters. Then they were aligned to human reference genome (version
hg19) using BWA MEM [9]. PCR duplications were removed using picard tools [13].
The alignments were subjected to indel realignment and basepair recalibration using
GATK (version 3.5) [10]. Reads with mapQ<30 were discarded. Numbers of reads per
bin of each sample was calculated using samtools [14].

As shown in Table 1, single cells amplified using DOP-PCR, Rubicon, MALBAC
and LIANT]I are generally of sufficiently good quality to determine CNVs: CNVs can be
inferred for up to 100% of the genome. Among these methods, LIANTI performed the
best. This is consistent with a previous report [5]. MDA-based methods were found to
perform much less as compared to the others (up to 68.8% of the genome), although they
suffer much less from artifactual SNVs [2].
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Conclusions

We developed SCCNV to identify copy number variations from whole-genome amplified
single cells. We demonstrated its performance using some of the recent SCWGS datasets
generated with 8 different amplification protocols.

Availability and requirements

Project name: SCCNV.

Project home page: https://github.com/biosinodx/SCCNV.
Operating system(s): Linux or MAC OS.

Programming language: Python.

Other requirements: Python 2 or 3, Python module numpy, bedtools,
License: GNU GPL version 3 or later.

Any restrictions to use by non-academics: No.

List of abbreviations

SCWGS: single-cell whole-genome sequencing
CNV: copy number variation

WGA: whole-genome amplification
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Table 1. A summary of data used for CNV analyses.

DOP-PCR Sigma 92.0% 3
Rubicon 98.9% 3
MALBAC Yikon 99.8% 3 .
LIANTI CIANTI 100.0% 3 Chen et al. Science 2017

Qiagen 0.03% 3
GE 21.2% 3

MDA based MDA 68.8% 36 Lodato et al. Science 2015

SCMDA 38.9% 6 Dong et al. Nature Methods 2017

* Fraction of genome can be used to determine CNV by SCCNV. The other parts of the
genome either suffered too much amplification bias or lacked sequencing coverage.
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Figure legends

Figure 1. Major steps in SCCNV. The example is generated using a cell amplified with
MDA (SRA id: SRR2141574).

Figure 2. Mapability and number of reads per 500kb bin before (A) and after
normalizing (B) the mapability. This example was generated using a cell amplified with
MDA (SRA id: SRR2141574).

Figure 3. GC content and number of reads per 500kb bin before (A) and after (B)
controlling for GC content. This example was generated using a cell amplified with
MDA (SRA id: SRR2141574).

Figure 4. Correlation in copy number estimation between a cell and the other cells of the
same batch before (A) and after (B) normalizing locus-specific amplification bias. This
example was generated using a cell amplified with MDA (SRA id: SRR2141574).

Figure 5. Inferring copy number variation by comparing the observed with a simulated
distribution. This example was generated using a cell amplified with MDA (SRA id:
SRR2141574).
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