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Abstract 

Background. Identification of de novo mutations from cell populations requires single-

cell whole-genome sequencing (SCWGS). Although many experimental protocols of 

SCWGS have been developed, few computational tools are available for downstream 

analysis of different types of somatic mutations, including copy number variation (CNV).  

Results. We developed SCCNV, a software tool for detecting CNVs from whole genome-

amplified single cells. SCCNV is a read-depth based approach with adjustment for the 

whole-genome amplification bias.  

Conclusions. We demonstrate its performance by analyzing data collected from most of 

the single-cell amplification methods, including DOP-PCR, MDA, MALBAC and 

LIANTI. SCCNV is freely available at https://github.com/biosinodx/SCCNV. 
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Background 

Each single cell in a tissue or cell population has its own unique genome due to 

accumulating de novo mutations, such as single-nucleotide variations (SNVs), structural 

variations (SVs), copy number variations (CNVs) and aneuploidies. The frequency and 

spectrum of the mutations reflect the loss of genome integrity of a cell population, 

important to cancer and aging [1]. To detect the mutations unique to a single cell, single-

cell whole-genome sequencing (SCWGS) is necessary. However, SCWGS requires 

whole-genome amplification (WGA), which often causes allele-specific or locus-specific 

bias. The bias essentially constrains the usage of variant callers designed for non-

amplified bulk DNA. We recently developed a new software tool, SCcaller, that corrects 

for allelic bias using SNP markers [2]. Another major type of mutation, i.e., copy number 

variation (CNV), is detected on the basis of read depth, which is also affected by locus-

specific amplification bias [3-5]. Yet, the only available tool is a webserver which 

requires uploading of the SCWGS data [6]. The uploading could be time consuming 

because SCWGS data is often in big size, i.e., 100 GB per single cell. This lack of a 

software tool for detecting CNVs is becoming a limiting factor for the application of 

SCWGS data for which many experimental protocols are available, e.g., DOP-PCR, 

MDA, MALBAC and LIANTI [2-5, 7]. To meet this need, we present SCCNV, a 

software tool to identify CNVs from SCWGS. SCCNV is also based on a read-depth 

approach; it controls not only bias during sequencing and alignment, e.g., bias associated 

with mapability and GC content, but also the locus-specific amplification bias. We 

demonstrate the application of SCCNV to SCWGS data of multiple experimental 

protocols, i.e., DOP-PCR, MDA, SCMDA, MALBAC and LIANTI. 

 

Implementation 
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SCCNV was written in Python. It uses SCWGS data after alignment as input (i.e., a bam 

file). First, it divides the genome into bins of equal size (500kb as default), and counts the 

numbers of reads per bins of a cell. SCCNV then normalizes mapability, which indicates 

the efficiency of the alignment to a genomic region. For a bin b of a cell, SCCNV adjusts 

the raw number of reads, denoted by NRraw, by dividing over the mapability M, 

,
, = raw b

map b
b

NR
NR

M  (1) 

where mapability M is a value ranging from 0 to 1. SCCNV uses Encode Align100mer 

mapability score, downloaded from the USCS genome browser, and calculates the 

mapability of each bin by using their weighted average. 

 Then, SCCNV normalizes for GC content. For a cell, SCCNV calculates the 

percentile of GC content of each bin. For a bin b of the cell, its number of aligned reads 

after normalizing GC content, NRGC,b, is, 

,
, ,

, ,

=  map genome
GC b map b

map b percentile

NR
NR NR

NR  (2) 

where NRmap,genome is the average NRmap per bin of all bins from the cell; NRmap.b,percentile is 

the average NRmap per bin of bins in the same GC percentile as bin b. 

 A consistent pattern of sequencing depth presents in different cells amplified 

using the same experimental protocol. This reflects the pattern of locus-specific 

amplification bias. Therefore, the bias is normalized across all cells in a particular batch 

and experiment. First, to make the NRGC,b comparable across cells, SCCNV converts it to 

a raw copy number estimate, denoted by CNraw,b for bin b of cell c, as follows, 

,b,c
, ,

,genome,c

= GC
raw b c

GC

NR
CN ploidy

NR  (3) 

where NRGC,genome,c is the median NRGC,c per bin in the genome of cell c; ploidy is 2 by 

default. Second, the adjusted copy number is estimated as, 

, ,
, ,

, ,−

= raw b c
adjusted b c

raw b c

CN
CN ploidy

CN  (4) 

where CNraw,b,-c denotes the average CNraw for bin b across all cells except cell c. Then 

SCCNV uses a sliding window approach to further minimize amplification noise. By 

default, a window includes 10 500kb bins, i.e., 5 Mb in total, with a 500kb step size 

between two neighboring windows. 

 SCCNV then models the distribution of CNsmoothed,b,c of all bins in autosomes of a 

cell c as a normal distribution N(μ, σc
2). The μ=2, and σ is estimated as, 

,30.9%, ,69.1%,| | | |c smoothed c smoothed cCN CN  = − + − (5) 

where CNsmoothed,30.9%,c and CNsmoothed,69.1%,c are the 30.9% and 69.1% percentiles of the 

CNsmooth,b,c of all bins in the autosomes, respectively. 

 Assuming equal priors, for a bin b and a given possible copy number k ∈ {0, 1, 

2, 3, 4}, its posterior probability is, 
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where x is the CNsmoothed,b,c; fi(x) is the probability density function of a normal 

distribution, 
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where the variance σc
2 is calculated according to equation (5). 

 SCCNV allows <1 false positive per cell. Therefore, it determines bin b as a copy 

number variant when, 

1
(H | x) 1 0.998

(3.2GB) / WindowSize(5Mb)
 − =kP

GenomeSize
(8) 

 

Results 

Figure 1 presents the major steps in SCCNV, including normalizing mapability and GC 

content, normalizing locus-specific amplification bias and inferring copy number. Before 

and after each step, SCCNV also generates intermediate results for users to monitor its 

performance. Using a single cell amplified with MDA as an example (SRA id: 

SRR2141574), we first show that our procedure normalized the bias in number of reads 

due to mapability as well as GC content (Figure 2 and 3). Second, we show that locus 

specific amplification bias was adjusted in Figure 4. Finally, copy number variations can 

be determined based on a statistic simulation and testing (Figure 5 and Equations 5-8).  

 SCCNV was applied to three publicly available SCWGS datasets [2, 5, 8]. The 

three datasets included SCWGS of 60 single human fibroblasts or neurons amplified 

using 8 different protocols, i.e., DOP-PCR (Sigma), Rubicon, MALBAC (Yikon), 

LIANTI, and MDA (including Qiagen, GE, Lodato et al’s MDA and SCMDA). Sequence 

alignment was performed using BWA and GATK (Supplementary Material) [9, 10]. Raw 

sequencing data of each sample (cell and bulk DNA) were obtained from SRA database 

and subjected to quality control using FastQC [11] and trimming using Trim Galore [12] 

with default parameters. Then they were aligned to human reference genome (version 

hg19) using BWA MEM [9]. PCR duplications were removed using picard tools [13]. 

The alignments were subjected to indel realignment and basepair recalibration using 

GATK (version 3.5) [10]. Reads with mapQ<30 were discarded. Numbers of reads per 

bin of each sample was calculated using samtools [14]. 

 As shown in Table 1, single cells amplified using DOP-PCR, Rubicon, MALBAC 

and LIANTI are generally of sufficiently good quality to determine CNVs: CNVs can be 

inferred for up to 100% of the genome. Among these methods, LIANTI performed the 

best. This is consistent with a previous report [5]. MDA-based methods were found to 

perform much less as compared to the others (up to 68.8% of the genome), although they 

suffer much less from artifactual SNVs [2]. 
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Conclusions 

We developed SCCNV to identify copy number variations from whole-genome amplified 

single cells. We demonstrated its performance using some of the recent SCWGS datasets 

generated with 8 different amplification protocols. 

 

Availability and requirements 

Project name: SCCNV. 

Project home page: https://github.com/biosinodx/SCCNV. 

Operating system(s): Linux or MAC OS. 

Programming language: Python. 

Other requirements: Python 2 or 3, Python module numpy, bedtools,  

License: GNU GPL version 3 or later. 

Any restrictions to use by non-academics: No. 

 

List of abbreviations 

SCWGS: single-cell whole-genome sequencing 

CNV: copy number variation 

WGA: whole-genome amplification 
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Table 1. A summary of data used for CNV analyses. 

Methodology Kit / method 
% genome 

qualified* 

Number 

of cells 
Refs 

DOP-PCR Sigma 92.0% 3 

Chen et al. Science 2017 

Rubicon 98.9% 3 

MALBAC Yikon 99.8% 3 

LIANTI LIANTI 100.0% 3 

MDA based 

Qiagen 0.03% 3 

GE 21.2% 3 

MDA 68.8% 36 Lodato et al. Science 2015 

SCMDA 38.9% 6 Dong et al. Nature Methods 2017 

* Fraction of genome can be used to determine CNV by SCCNV. The other parts of the 

genome either suffered too much amplification bias or lacked sequencing coverage. 
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Figure legends 

Figure 1. Major steps in SCCNV. The example is generated using a cell amplified with 

MDA (SRA id: SRR2141574). 

Figure 2. Mapability and number of reads per 500kb bin before (A) and after 

normalizing (B) the mapability. This example was generated using a cell amplified with 

MDA (SRA id: SRR2141574). 

Figure 3. GC content and number of reads per 500kb bin before (A) and after (B) 

controlling for GC content. This example was generated using a cell amplified with 

MDA (SRA id: SRR2141574). 

Figure 4. Correlation in copy number estimation between a cell and the other cells of the 

same batch before (A) and after (B) normalizing locus-specific amplification bias. This 

example was generated using a cell amplified with MDA (SRA id: SRR2141574). 

Figure 5. Inferring copy number variation by comparing the observed with a simulated 

distribution. This example was generated using a cell amplified with MDA (SRA id: 

SRR2141574). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/535807doi: bioRxiv preprint 

https://doi.org/10.1101/535807
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/535807doi: bioRxiv preprint 

https://doi.org/10.1101/535807
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/535807doi: bioRxiv preprint 

https://doi.org/10.1101/535807
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/535807doi: bioRxiv preprint 

https://doi.org/10.1101/535807
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/535807doi: bioRxiv preprint 

https://doi.org/10.1101/535807
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/535807doi: bioRxiv preprint 

https://doi.org/10.1101/535807
http://creativecommons.org/licenses/by-nc-nd/4.0/

