

1 Title:

2 ***Saccharomyces cerevisiae* strains display robust**
3 **phenotypes in the presence of Dyskeratosis congenita**
4 **mutations in the *Cbf5* gene**

5

6 Short Title:

7 **Dyskeratosis congenita mutations in yeast *cbf5***

8

9 Authors:

10 Abeer Abdullah Ogailan, Anne C. Rintala-Dempsey and Ute Kothe*

11

12 Affiliation:

13 Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and
14 Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada

15

16

17 * Corresponding Author

18 E-mail: ute.kothe@uleth.ca

19

20

21 Keywords:

22 Dyskeratosis congenita, dyskerin, Cbf5, H/ACA ribonucleoprotein, ribosome

23 Abstract

24 Dyskeratosis congenita is a rare, congenital disorder affecting the skin, nails and oral
25 mucosa of patients that often progresses to bone marrow failure and an increased
26 predisposition for a variety of carcinomas. Mutations in the human dyskerin gene have
27 been identified as the most prevalent cause of the disease. Dyskerin is a pseudouridine
28 synthase and the catalytic subunit of H/ACA ribonucleoproteins (RNPs) responsible for
29 the modification of uridines to pseudouridine in ribosomal RNA (rRNA), but dyskerin also
30 binds to the telomerase RNA component (TERC). Accordingly, Dyskeratosis congenita
31 mutations have been reported to affect both telomerase function as well as ribosome
32 biogenesis, but the relative contribution of each pathway to the diseases is under debate.
33 As the yeast homolog of dyskerin, Cbf5, does not interact with telomerase RNA,
34 *Saccharomyces cerevisiae* is an ideal model to identify the selective impact of
35 Dyskeratosis congenita mutations on ribosome biogenesis. Therefore, chromosomal
36 mutations in the yeast homologue of dyskerin, Cbf5, were introduced at positions
37 corresponding to the mutations in human dyskerin that result in Dyskeratosis congenita.
38 To determine if the mutations affect cellular fitness, we screened for growth defects in
39 yeast. Growth curves at different temperatures and yeast spot assays under several
40 stress conditions revealed that the mutations in *cbf5* did not impair growth compared to
41 wild type. These findings suggest that in the yeast cell, Dyskeratosis congenita mutations
42 do not significantly affect ribosome biogenesis, and we discuss the implications for
43 understanding the molecular cause of Dyskeratosis congenita.

44 Introduction

45 Dyskeratosis congenita, also known as Zinsser-Cole-Engman syndrome, is a rare
46 congenital disorder that was first observed by Zinsser in 1910 [1]. Symptoms and severity
47 vary widely among affected individuals, but usually include the triad of abnormal skin
48 pigmentation, nail dystrophy and leukoplakia of oral mucous membranes [2]. The disease
49 often leads to aplastic anemia, or bone marrow failure, due to reduced red blood cell
50 production which is the primary cause of premature death. In addition, patients also have
51 an increased risk of developing leukemia and other cancers as well as pulmonary fibrosis
52 resulting in reduced oxygen transport [3]. Originally thought to be X-linked and affecting
53 only males, Dyskeratosis congenita was later found to also affect a smaller percentage
54 of females and could either be autosomal recessive or dominant depending on the
55 affected gene [4, 5].

56 Dyskeratosis congenita is caused by mutations in several different genes (namely *DCK1*,
57 *TERT*, *TERC*, *TINF2*, *NOP10*, *NHP2*, *ACD*, *WRD79*, *CTC1* and *RTEL1*), all of which are
58 involved in chromosome maintenance [6, 7]. In brief, *TERT* codes for the protein
59 component of the telomerase complex and is responsible for adding telomere segments
60 to the ends of chromosomes, while *TERC* codes for the RNA component of the complex,
61 called hTR. The *TINF2*, *RTEL1*, and *ACD* genes code for proteins that are members of
62 the shelterin complex and involved in the protection of the telomere. The *CTC1* protein is
63 a member of CST complex involved in telomere maintenance during stress conditions
64 while *WRD79* codes for TCAB1, a protein responsible for the localization of the
65 telomerase complex to Cajal bodies.

66 Mutations in the *DKC1* gene result in the most abundant and also most severe cases of
67 Dyskeratosis congenita [8-10]. *DKC1* codes for dyskerin, a protein with multiple functions.
68 On the one hand, dyskerin binds to the hTR RNA stabilizing the telomerase complex [11,
69 12]. On the other hand, dyskerin is also a critical subunit of H/ACA small nucleolar
70 ribonucleoproteins (snoRNPs) [13]. This family of enzymes is responsible for the
71 modification of specific uridines to generate all pseudouridines in rRNA, but also
72 introduces some pseudouridines in small nuclear RNA (snRNA), messenger RNA
73 (mRNA) and other RNAs [14, 15]. Dyskerin is the catalytic subunit of the ribonucleoprotein
74 complex whereas the guide RNA directs the H/ACA snoRNP to the target uridine by base-
75 pairing interactions [16]. Moreover, at least one specialized and essential H/ACA RNA in
76 complex with dyskerin is required for processing of rRNA [17]. Over 50 mutations in the
77 *DKC1* gene have been identified as causes of Dyskeratosis congenita [10]. The majority
78 of the mutations result in single amino acid substitutions across all domains of the
79 dyskerin protein including the catalytic domain, the PUA domain, a positive amino acid
80 rich region binding RNA, and the N- and C-termini.

81 Given the different functions of dyskerin, it remains unclear to which extent impaired
82 ribosome biogenesis contributes to the development of Dyskeratosis congenita which is
83 often considered to be a telomere-linked disorder [10, 18, 19]. In this context, it is notable
84 that the yeast homologue of human dyskerin called Cbf5 is the only essential
85 pseudouridine synthase in yeast and is the sole enzyme responsible for all
86 pseudouridines found in rRNA. Together with the H/ACA guide RNA snR30, Cbf5 also
87 contributes to rRNA processing. However, unlike in mammals, the telomerase RNA in
88 yeast does not interact with Cbf5 or the other H/ACA proteins [20]. Therefore, this study

89 aimed at dissecting the impact of Dyskeratosis congenita mutations in *cbf5* on ribosome
90 biogenesis without confounding effects on telomere maintenance by generating *S.*
91 *cerevisiae* model strains.

92 **Materials and methods**

93

94 **Materials**

95 All chemicals and biochemical were purchased from Fisher Scientific unless noted
96 otherwise. Yeast media was obtained from Sunrise. Oligonucleotides were from
97 Integrated DNA Technologies (IDT).

98

99 **Preparation of Yeast-integrating plasmids harboring *cbf5***
100 **mutations**

101 Overlapping primers for each *cbf5* mutation were used to introduce mutations in a pUC19-
102 ScCbf5 plasmid by QuikChange mutagenesis using Q5 DNA polymerase (NEB) (Table
103 1). The pUC19-ScCbf5 plasmid contains the entire *CBF5* coding region flanked by 33 nt
104 upstream and 348 nt downstream of the coding region. After DpnI digestion, the
105 mutagenesis products were transformed into *E. coli* DH5 α cells. Subsequently, the
106 mutated *cbf5* gene was excised from pUC19-ScCbf5 by EcoRI and Sall restriction and
107 ligated into equally digested and dephosphorylated YIp5 plasmid and transformed into *E.*
108 *coli* DH5 α competent cells. All plasmid sequences were confirmed by sequencing
109 (Genewiz).

110

111 **Table 1: Overlapping primers to introduce mutations into *Cbf5*.** The resulting amino
112 acid substitution in the *S. cerevisiae* *Cbf5* protein is stated.

Cbf5 substitution	Forward primers (5` to 3`)	Reverse primers (5` to 3`)
S91G	GGTCACGGTGGTACATTGGAT CCAAAAGTTACAG	CAATGTACCACCGTGACCAGTCT TCTCACAAAC
R128W	GTATTGTCTGGTTGCATGATG CTTGAGGATG	CATGCAACCAGACAATACACACA TACTCCTTACC
S250R	GAACGTTACTTGAGATCCATT ATTCAACC	GGATCTCAAGTAACGTTCATCTC TTGTATTGTCG
K284R	GGTGCAAGGTTGATGATCCCT GGTTTATTGCG	GATCATCAACCTTGCACCATAAC ATACTGCATTGAC
M320T	CGCACAAACGTCAACCGTTGAC TTCCTG	CGGTTGACGTTGTGCGATGGCAA
G372E	GGATAAATACGAGCGTGTAAAC CACCCCCAG	CACGCTCGTATTATCCAATTTGCC GC

113

114 **Generation of mutant yeast strains**

115 The YIp5-*Sccbf5*(*mutant*) plasmids were linearized by single restriction within the *cbf5*
116 gene using BshTI for *cbf5* K284R, M320T and G372E or HpaI (KspAI) for *cbf5* S91G and
117 R128W and BamHI for S250R. The linearized YIp5-*Sccbf5* plasmids were transformed
118 into haploid BY4741 cells and plated onto Sc-ura + 2% glucose plates resulting in
119 integration of the plasmid within the chromosomal *CBF5* gene [21, 22]. The transformant
120 had one full-length *cbf5* gene followed by the YIp5 sequence and an additional copy of
121 the coding region lacking a promoter. After transformation, genomic DNA from yeasts
122 cells was extracted by using Geneaid-Presto Mini gDNA Yeast Kit from FroggaBio
123 Scientific Solutions following the manufacturer's instructions. To verify the correct
124 integration of the YIp5-*Sccbf5* plasmid and the presence of the mutation, a PCR reaction
125 of genomic DNA was prepared using the forward primer EcoR1-ScCbf5-up and the

126 reverse primer YIp5 downstream Sall reverse (Table 2). The PCR product was visualized
127 via agarose gel electrophoresis and confirmed by sequencing (Genewiz, see Table 2 for
128 sequencing primers). The location of the primers relative to the chromosomal *cbf5* gene
129 is illustrated in Fig 1A.

130 **Table 2: Primers used to amplify *cbf5* or for sequencing.**

Primer Name (abbreviation used in Fig 1)	Sequence (5` to 3`)
EcoR1-ScCbf5-up (a)	AATTCATGTCAAAGGAGGGATTCGTTAT
Sall-ScCbf5down (g)	GTCGACGGAATGCAATAATCGGCGATAT
ScCbf5 seq 1038 antisense (d)	GGACCCAAACCCCATCTCTTGGG
ScCbf5 seq 562 antisense (b)	GCATATAAGTACCAGCTTCACAGGAAGC
YIp5 downstream Sall reverse (h)	CAGTCATAAGTGCAGCGACG
ScCbf5 seq sense 976 (c)	GCTTCCTGTGATCATGGTGTGTTGC
Yeast Cbf5 antisense HindIII (f)	AAGCTTCATTCTTAGATTCTTAGATTTC
YIp5 integration Cbf5(C) reverse (e)	CCTCAGAACATACCGTCTTCAG
YIP5 integrated Amp forward	ATAATACCGCGGCCACATAGC

131
132 To remove the YIp5 plasmid sequence and the additional *cbf5* coding region from the
133 genome, yeast strains were streaked on SD-ura plates, and one colony was selected and
134 incubated in 5 mL YEPD liquid culture at 30°C for 7 to 8 h until the cells reached the
135 exponential phase (0.4 OD₆₀₀). The cells were collected via centrifugation at 3000 xg for
136 5 min and resuspended in YEPD to 5x10⁸ cells/mL. Serial dilutions of 1x10⁶ and 1x10⁷
137 cells/mL were plated on 5.7 mM 5-fluoroorotic acid (5-FOA) plates. The plates were

138 incubated at 30°C for 48 h. Following the plasmid removal, genomic DNA was prepared
139 of selected colonies as described above, the *cbf5* gene was amplified using the primers
140 “EcoR1-ScCbf5-up” and “Ylp5 downstream Sall reverse”, and the PCR products were
141 sequenced to identify strains harboring the *cbf5* mutation.

142

143 **Fig 1: Location of Dyskeratosis congenita substitutions in *S. cerevisiae* *cbf5* used**
144 **in this study.** (A) Linear representation of the Cbf5 protein sequence including domain
145 representation. The catalytic domain of Cbf5 is shown in blue and the PUA domain in
146 magenta with amino acid substitutions indicated above. Primers used in the generation
147 of the mutant strains are shown below (see Table 2). (B) Mapping of amino acid
148 substitutions onto the crystal structure of yeast Cbf5-Nop10-Gar1 (PDBID: 3U28). The
149 substitutions S91G, R128W and S250R are located in the catalytic domain whereas the
150 substitutions K284R and M320T are in the PUA domain. The G372E mutation is within
151 the unresolved C-terminal region and is not shown.

152

153 **Growth analysis in liquid medium**

154 All yeast cells were grown in liquid YPD + 2% glucose unless otherwise specified. Three
155 colonies (biological replicates) from each strain were selected from YPD plates and grown
156 at 30°C and 200 rpm shaking for 5 hours. For each culture, three technical replicates
157 were generated by preparing three dilutions of 1x10⁶ of cells/130 µL in growth medium.
158 Each dilution was placed into one well of a 96-well plate; as blank, YPDE+ 2% glucose
159 was used. The OD₆₀₀ was measured every 15 min in a BioTeK microplate reader with

160 Gene5 software. This experiment was conducted at 30°C, 18°C and at 37°C with shaking
161 at 250 rpm. The average growth curve of the three technical replicates was calculated.

162

163 **Yeast Spot Assays**

164 Single colonies were used to inoculate culture tubes containing 5 mL YPD with 2%
165 glucose and grown for approximately 16 h at 30 °C with shaking. Dilutions of each culture
166 in sterile water were prepared to 0.5 OD₆₀₀ into a 96-well plate. Serial 1:10 dilutions were
167 performed in the 96-well plate using sterile water. Spots of 5 µL each were pipetted onto
168 either YPD or SC agar plates. Various stress conditions were tested by preparing YPD
169 and SC plates containing glycerol, ethanol or formamide. YPD agar with 2% glucose
170 (except when glycerol was added) was supplemented with final concentrations (v/v) of
171 3% glycerol, 4% ethanol or 3% formamide. Spot tests were performed in duplicate.

172 For the 5-fluorouracil yeast spot test, a 50 mM stock solution of 5-fluorouracil was
173 prepared in DMSO. To determine the concentration of 5-fluorouracil to use in yeast spot
174 assays, 6-well plates with agar containing 0, 5, 10, 50, 115 or 200 µM 5-fluorouracil
175 (BioBasic) in each well were used [23]. The 0 µM agar contained DMSO as a control.
176 Each well was spotted with 4 µL each of three serial dilutions of both wild-type BY7471
177 cells and the *cbf5*-S91G cells. Plates were incubated for 2 days at 30 °C. For the testing
178 of all strains, a final concentration of 50 µM 5-fluorouracil (1:1000 dilution) was used. In
179 addition, control SC plates with 0.1% DMSO were also prepared.

180

181 **Western blotting**

182 Whole-cell extracts were prepared from 2 OD₆₀₀ of cells from exponentially growing
183 cultures. After harvesting, the cells were resuspended in 0.4 mM NaOH for 5 min. After a
184 second centrifugation, the cells were resuspended in 0.1 M Tris pH8, 8 M Urea, 10% SDS
185 and boiled for 7 min before adding 6x SDS loading dye and additional boiling for 3 min.
186 The total protein concentration was determined by a Bradford assay. To detect and semi-
187 quantify Cbf5 protein levels, whole-cell extracts were separated by 12% SDS-PAGE and
188 blotted onto nitrocellulose. First, the membrane was incubated with 1:1000 PGK1
189 primary antibody conjugated with horseradish peroxidase (Abcam) overnight as a loading
190 control. The membrane underwent a mild stripping procedure and was then probed for
191 Cbf5. Primary antibody against *S. cerevisiae* Cbf5 was custom-made from BioBasic Inc.
192 by infecting two rabbits with an antigen of a 15-residue long, synthesized peptide
193 designed from a sequence at the C terminus of Cbf5 (aa 461-475:
194 KKEKKRKSEDGDSEE). The blot was incubated with a 1:1,000 dilution in 3% BSA in TBS
195 of this primary antibody overnight at 4°C. The next day, the blot was exposed to a
196 secondary antibody (horseradish peroxidase coupled anti-rabbit antibody (Sigma),
197 1:1,000 dilution in 3% BSA and 1x TBS), and the bands were visualized by
198 chemiluminescence.

199 **Results**

200 To determine how mutations in *cbf5* affect the ribosome, several human disease-causing
201 mutations in dyskerin were introduced at the corresponding sites in the yeast *cbf5* gene
202 (Fig 1). Representative mutations were chosen from different regions of the protein [24].
203 Specifically, point mutations in the dyskerin gene that result in the disease-causing amino
204 acid substitutions S121G, R158W, S280R, K314R, M350T and G402E were chosen for
205 mutation in yeast *cbf5*. The corresponding mutations in the Cbf5 protein are S91G,
206 R128W and S250R in the catalytic domain, K284R and M320T in the PUA domain and
207 G372E in the C-terminal region. Notably, the S121G substitution is found in patients
208 suffering from the severe Dyskeratosis congenita variant called Hoyeraal-Hreidarsson
209 syndrome, and the K314R and the M350T substitutions are present in multiple families
210 [10]. Each single mutation was introduced into the yeast genome and confirmed by
211 sequencing [22].

212

213 **Growth Assays**

214 To determine if the mutations in *cbf5* result in growth defects in yeast cells by possibly
215 affecting ribosome biogenesis, we first conducted growth assays in liquid medium at
216 different temperatures. Sensitivity of yeast cells to heat often indicates the mutation is
217 reducing protein stability while cold sensitivity can suggest problems with subunit
218 assembly [25]. Growth curves were recorded at 18, 30 and 37 °C in a plate reader until
219 cells reached stationary phase (Fig 2). At 30 °C, none of the mutant yeast strains is

220 growing significantly slower than the wild-type strain (Figs 2 A and B); notably some
221 mutations seem to enable faster growth, in particular for *cbf5-S250R*, *cbf5-M320T* and
222 *cbf5-G372E* cells. Next, the cells were grown at low temperature of 18 °C to determine if
223 any of the *cbf5* mutants displayed cold sensitivity (Figs 2 C and D). Again, all mutant yeast
224 strains display a growth curve that is overall similar to wild-type. For a high temperature
225 growth assay at 37 °C (Figs 2 E and F), similar results were obtained as no mutant yeast
226 strain has impaired growth relative to the wild-type. But again, the *cbf5-S250R* and the
227 *cbf5-M320T* cells appear to grow slightly faster than wild-type as also observed at 30 °C.
228 These experiments show that in liquid medium, the mutations in *cbf5* do not significantly
229 impair yeast growth and do not cause heat- or cold-sensitivity.

230

231 **Fig 2: Growth curves of the wild-type and the mutant *cbf5* strains at different**
232 **temperatures in liquid rich medium.** Growth curves for BY4741 wild-type yeast are
233 shown in comparison to mutant strains S91G, R128W and S250R (panels A, C and E) or
234 strains K284R, M320T or G372E (panels B, D and F). Growth curves were recorded in a
235 plate reader with shaking at the following temperatures: 30 °C (A and B), 18 °C (C and
236 D) and 37 °C (E and F).

237

238 **Analyzing growth of *cbf5* mutant cells under stress conditions**

239 Next, various stress conditions were tested for the presence of a phenotype of the mutant
240 yeast cells using spot tests on solid agar media. First, temperature was varied to confirm

241 the results observed in liquid medium (Figs 3A and B). Secondly, ethanol, formamide or
242 glycerol was added to either rich medium (YPD) or synthetic complete (SC) medium (Fig
243 3C). Minimal medium was sometimes used in addition to rich medium, as it has been
244 shown to enhance any milder phenotypes [25]. We also tested if mutations in *cbf5* result
245 in a phenotype on plates containing 5-fluorouracil (Fig 4).

246

247 **Fig 3. Spot tests of yeast strains with *cbf5* mutants under various stress conditions.**

248 Wild-type (BY4741) and mutant strains were grown at 24, 30 and 37 °C on rich media
249 plates (A). The strains were also assessed for growth on minimal medium under the same
250 temperature conditions (B). Lastly, cells were grown on YPD plates containing either 4%
251 ethanol, 3% formamide or 3% glycerol at 30 °C (C).

252

253 **Fig 4. Spot tests in the presence of 5-fluorouracil.** (A and B) An optimal 5-fluorouracil
254 concentration was determined in both YPD (Panel A) or SC (Panel B) medium using
255 BY4741 wild-type and the *cbf5* S91G strain. (C) Wild-type BY7471 and mutant strains
256 were spotted onto SC plates containing 50 µM 5-fluorouracil which were grown at 30 °C.

257

258

259 Heat and cold sensitivity was tested by spotting mutant *cbf5* yeast cells onto both YPD
260 and SC+ura plates followed by incubation at 24, 30 and 37 °C. As shown in Fig 3, all
261 mutant strains grew equally well compared to wild-type at 30 °C on both YPD and SC+ura

262 agar plates. Similarly, at a reduced temperature of 24 °C as well as an elevated
263 temperature of 37 °C, no obvious phenotype was observed on either rich or minimal
264 media for any of the *cbf5* mutant cells confirming the observations in liquid medium (Fig
265 2).

266 Next, ethanol was added to YPD at a concentration of 4% to examine the effects on
267 protein stability since ethanol is a polar solvent and disrupts hydrogen bonds [25]. As
268 shown in Fig 3C, ethanol had no effect on the growth of the mutant *cbf5* cells relative to
269 wild-type. To further corroborate this observation, a 3% concentration of formamide was
270 included in YPD medium to determine if the disruption of hydrogen bonds by a second
271 polar solvent affected protein stability in the *cbf5* cellss. No growth defects were observed
272 for any of the *cbf5* cells compared to wild-type cells suggesting the mutations to *cbf5* did
273 not significantly reduce the stability of the protein (Fig 3C).

274 Furthermore, we assessed growth of the mutant cells on alternative carbon sources.
275 When 3% glycerol was added to YPD medium, all mutant *cbf5* cells grew equally well
276 when compared to the wild-type cells (Fig 3C). Since the mutant strains were able to use
277 glycerol as a carbon source, this finding indicates that mitochondrial function remains
278 unaffected when *cbf5* is mutated [25].

279 Pseudouridine synthases have been shown to be particularly sensitive to 5-fluorouracil,
280 an inhibitor of pseudouridine formation [26-28]. Therefore, 5-fluorouracil was chosen to
281 be included in the stress conditions that were tested. To first determine the concentration
282 of 5-fluorouracil to use in yeast spot assays and whether YPD or SC medium would best
283 show a phenotype, initial tests were performed in 6-well plates containing either 5 ml YPD

284 or SC and a different 5-fluorouracil concentration ranging from 0 μ M to 200 μ M 5-
285 fluorouracil [23]. Wild-type and *cbf5*-S91G cells were spotted in each well and allowed to
286 grow at 30 °C. After 66 h of growth, 50 μ M 5-fluorouracil inhibited the growth of both wild-
287 type and *cbf5*-S91G cells to some extent while still forming colonies (Fig. 4 A and B). SC
288 medium was chosen over YPD since it can enhance the appearance of a phenotype.
289 Therefore, in subsequent yeast spot assays, a 5-fluorouracil concentration of 50 μ M in
290 SC medium was used. To ensure the DMSO used to dissolve the 5-FU was not affecting
291 cell growth, 0.1% DMSO was added to control plates lacking 5-fluorouracil. All *cbf5*
292 mutant cells grew as well as wild-type cells on plates containing 50 μ M 5-fluorouracil (Fig
293 4C).

294

295 **Assessing Cbf5 protein levels**

296 To ensure the substituted Cbf5 proteins were all being expressed to a similar level
297 compared to wild-type Cbf5 protein, Western blotting was performed. Whole cell extract
298 was prepared from each of the *cbf5* mutant as well as wild-type cells using equal amounts
299 of cells. Cbf5 protein levels were determined using a Cbf5-specific antibody against 15
300 amino acids in the C-terminal region of Cbf5. In addition, primary antibody for
301 phosphoglycerate kinase 1 (PGK1) was used as a loading control. Relative protein levels
302 of each of the *cbf5* mutants cells indicate that the proteins were all being expressed to a
303 similar level (Fig 5).

304

305 **Fig 5: Western blot of Cbf5 from wild-type and mutant yeast strains.** For Western
306 blotting, a primary antibody against a small peptide chain in the C-terminus of Cbf5 was
307 generated whereas PGK1 was detected as a loading control. *S. cerevisiae* Cbf5 is
308 predicted to be 55 kDa in size, but presumably migrates a bit slower than expected due
309 to post-translational modifications. Relative intensity of Cbf5 protein bands is indicated
310 beneath each band. As a control (left lane), recombinantly expressed and purified ScCbf5
311 protein was analyzed [29]; this recombinant Cbf5 protein contains a hexahistidine tag and
312 is likely differently modified than endogenous *S. cerevisiae* Cbf5 causing it to migrate
313 differently.

314 Discussion

315 To distinguish the effects of Dyskeratosis congenita mutations on telomerase stability and
316 function compared to ribosome biogenesis, we created mutations in the *S. cerevisiae cbf5*
317 gene corresponding to human disease mutations in the dyskerin gene because in yeast
318 the dyskerin homolog, Cbf5, is only involved in ribosome biogenesis, but not in telomere
319 maintenance. Therefore, we hypothesized that all observed effects would reflect the role
320 of Cbf5 in ribosome biogenesis. All Cbf5 variants were expressed at similar protein levels
321 indicating that they were equally stable as the Cbf5 wild-type protein. However, several
322 different phenotypic assays in liquid and on solid medium, at different temperatures and
323 different stress conditions did not show any obvious phenotype of the mutant *cbf5* cellss.
324 Therefore, we conclude that *S. cerevisiae* can tolerate the Dyskeratosis congenita
325 mutations in *cbf5*.

326 What can explain the absence of phenotypic effects of the *cbf5* mutations in yeast?
327 Obviously, fungi will likely be less affected by such mutations in *cbf5* compared to
328 mammalian cells because telomerase will remain functional in mutant yeast strains.
329 Moreover, our results suggest that also other cellular functions such as ribosome
330 biogenesis are not severely affected by *cbf5* mutations in *S. cerevisiae*. However, we
331 cannot conclude from our results that Dyskeratosis congenita mutations in human
332 dyskerin do not affect ribosome formation. Rather, differences between the mammalian
333 and the yeast system might explain why no effect on ribosome formation and hence
334 cellular phenotype were observed for the *S. cerevisiae cbf5* mutations.

335 H/ACA ribonucleoproteins play two important roles during ribosome biogenesis. Most
336 H/ACA snoRNAs guide the site-specific pseudouridylation of rRNA catalyzed by the
337 protein Cbf5 [13]. In contrast, the only essential yeast H/ACA snoRNA snR30 is mediating
338 the processing of 18S precursor rRNA (pre-rRNA) [30]. The absence of a phenotype for
339 the *cbf5* strains suggests that pre-rRNA processing by the essential snR30 guide RNA is
340 not significantly affected implying that the Cbf5 protein variants harboring single-residue
341 substitutions can still sufficiently interact with snR30. Interestingly, impairments of pre-
342 rRNA processing have been reported for a zebrafish Dyskeratosis congenita model
343 system; however in this case, expression levels of H/ACA proteins were reduced rather
344 than introducing specific mutations [31, 32]. Presumably, yeast and possibly mammalian
345 cells harbor mechanisms to prioritize the essential processing of pre-rRNA to take place
346 even under sub-optimal conditions, e.g. when *cbf5* is mutated, but not absent.

347 It is noteworthy that we did not observe any reduction in protein levels for Cbf5 variants
348 in the mutant yeast strains as vertebrate Dyskeratosis congenita models have been
349 designed based on reduced Dyskerin expression [32-34]. However, the protein levels in
350 Dyskeratosis congenita patients are not known. Most mutations in *dyskerin* lead to single-
351 amino acid substitutions as assessed in this study whereas only a few mutations reside
352 in introns and could potentially cause altered splicing and reduced protein levels [10]. We
353 therefore speculate that most Dyskeratosis congenita mutations do not significantly
354 destabilize the Dyskerin protein and decrease its level, but rather impair the function of
355 Dyskerin.

356 The majority of H/ACA RNPs are responsible for rRNA modification by directing
357 pseudouridine formation. Interestingly, the human ribosome harbors many more

358 pseudouridines than the yeast ribosome, namely about 100 compared to 30
359 pseudouridines, respectively. Therefore, it is possible that the human ribosome depends
360 much more on pseudouridine formation by H/ACA RNPs than the yeast ribosome. Indeed,
361 yeast strains expressing only catalytically inactive Cbf5 protein that can form an RNP, but
362 cannot form pseudouridines, display a strong cold- and heat-sensitive phenotype, but are
363 viable suggesting that a yeast ribosome lacking pseudouridines can sustain cell growth
364 [16]. Interestingly, studies in mammalian systems mimicking Dyskeratosis congenita have
365 reported effects on translation, in particular internal ribosome entry site (IRES) mediated
366 translation [33, 35, 36]. In yeast, ribosomes lacking pseudouridines show reduced fidelity
367 and lower affinities for tRNAs and IRES elements [37]. Together, these studies suggest
368 that Dyskeratosis congenita mutations affect translation only of a subset of mRNAs
369 harboring IRES elements, but not necessarily all mRNAs. It is not clear how many mRNAs
370 with IRES elements are used in fungi [38]. Hence, the impairment of IRES-mediated
371 translation caused by *cbf5* mutations in yeast may affect only a small number of mRNAs
372 and may therefore not result in an observable phenotype in contrast to human cells which
373 might harbor many more IRES-dependent mRNAs.

374 Taken together, the lack of phenotypes observed for yeast strains harboring *cbf5*
375 mutations suggests that yeast is not a good model system to study Dyskeratosis
376 congenita. Both ribosome formation and ribosome function seem to be rather robust in *S.*
377 *cerevisiae* and can tolerate single-residue substitutions in the Cbf5 protein. Similarly,
378 deletions of most other pseudouridine synthases, that act in a guide-RNA-independent
379 manner and modify tRNAs, snRNAs and mRNAs, do not cause strong phenotypes in
380 yeast [39]. In general, the lack of phenotypes upon mutating *cbf5* or deleting other

381 pseudouridine synthases might reflect the adaptation of single-cell fungi to unpredictable
382 stress conditions requiring a robust translation apparatus in contrast to multi-cellular
383 organisms where ribosome biogenesis and translation are exposed to less variable
384 conditions and translation regulation is much more fine-tuned, e.g. through IRES-
385 mediated mechanisms.

386 **Acknowledgements**

387 We thank Dr. Linda Reha-Krantz for generous technical advice in creating the mutant
388 yeast strains.

389 **References**

390 1. Zinsser F. Atrophia Cutis Reticularis cum Pigmentations, Dystrophia Unguum et
391 Leukoplakis oris (Poikiodermia atrophicans vascularis Jacobi) Ikonographia
392 Dermatologica. 1910;5:219–23.

393 2. Sirinavin C, Trowbridge AA. Dyskeratosis congenita: clinical features and genetic
394 aspects. Report of a family and review of the literature. J Med Genet. 1975;12(4):339-54.
395 PubMed PMID: 768476; PubMed Central PMCID: PMCPMC1013312.

396 3. Dokal I. Dyskeratosis congenita. Hematology Am Soc Hematol Educ Program.
397 2011;2011:480-6. doi: 10.1182/asheducation-2011.1.480. PubMed PMID: 22160078.

398 4. Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A, et al.
399 Mutations in the telomerase component NHP2 cause the premature ageing syndrome
400 dyskeratosis congenita. Proceedings of the National Academy of Sciences of the United
401 States of America. 2008;105(23):8073-8. doi: 10.1073/pnas.0800042105. PubMed PMID:
402 PMC2430361.

403 5. Davide Ruggero Silvia G, Piazza F, Rego E, et al. Dyskeratosis congenita and
404 cancer in mice deficient in ribosomal RNA modification. Science. 2003;299(5604):259-
405 62. PubMed PMID: 213602390; 12522253.

406 6. Islam A, Rafiq S, Kirwan M, Walne A, Cavenagh J, Vulliamy T, et al.
407 Haematological recovery in dyskeratosis congenita patients treated with danazol. British
408 Journal of Haematology. 2013;162(6):854-6. doi: 10.1111/bjh.12432.

409 7. Walne AJ, Collopy L, Cardoso S, Ellison A, Plagnol V, Albayrak C, et al. Marked
410 overlap of four genetic syndromes with dyskeratosis congenita confounds clinical
411 diagnosis. *Haematologica*. 2016;101(10):1180-9. doi: 10.3324/haematol.2016.147769.

412 8. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, et al. X-
413 linked dyskeratosis congenita is caused by mutations in a highly conserved gene with
414 putative nucleolar functions. *Nat Genet*. 1998;19(1):32-8. doi: 10.1038/ng0598-32.
415 PubMed PMID: 9590285.

416 9. Knight SW, Heiss NS, Vulliamy TJ, Greschner S, Stavrides G, Pai GS, et al. X-
417 linked dyskeratosis congenita is predominantly caused by missense mutations in the
418 DKC1 gene. *Am J Hum Genet*. 1999;65(1):50-8. doi: 10.1086/302446. PubMed PMID:
419 10364516; PubMed Central PMCID: PMCPMC1378074.

420 10. Marrone A, Walne A, Dokal I. Dyskeratosis congenita: telomerase, telomeres and
421 anticipation. *Curr Opin Genet Dev*. 2005;15(3):249-57. doi: 10.1016/j.gde.2005.04.004.
422 PubMed PMID: 15917199.

423 11. Mitchell JR, Wood E, Collins K. A telomerase component is defective in the human
424 disease dyskeratosis congenita. *Nature*. 1999;402(6761):551-5. doi: 10.1038/990141.
425 PubMed PMID: 10591218.

426 12. Nguyen THD, Tam J, Wu RA, Greber BJ, Toso D, Nogales E, et al. Cryo-EM
427 structure of substrate-bound human telomerase holoenzyme. *Nature*.
428 2018;557(7704):190-5. doi: 10.1038/s41586-018-0062-x. PubMed PMID: 29695869;
429 PubMed Central PMCID: PMCPMC6223129.

430 13. Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--
431 pseudouridylation. RNA Biol. 2014;11(12):1483-94. doi:
432 10.4161/15476286.2014.972855. PubMed PMID: 25590339; PubMed Central PMCID:
433 PMCPMC4615163.

434 14. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo
435 BX, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated
436 pseudouridylation of ncRNA and mRNA. Cell. 2014;159(1):148-62. doi:
437 10.1016/j.cell.2014.08.028. PubMed PMID: 25219674; PubMed Central PMCID:
438 PMCPMC4180118.

439 15. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV.
440 Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human
441 cells. Nature. 2014;515(7525):143-6. doi: 10.1038/nature13802. PubMed PMID:
442 25192136; PubMed Central PMCID: PMCPMC4224642.

443 16. Zebarjadian Y, King T, Fournier MJ, Clarke L, Carbon J. Point mutations in yeast
444 CBF5 can abolish in vivo pseudouridylation of rRNA. Mol Cell Biol. 1999;19(11):7461-72.
445 PubMed PMID: 10523634; PubMed Central PMCID: PMCPMC84741.

446 17. Eliceiri GL. The vertebrate E1/U17 small nucleolar ribonucleoprotein particle. J Cell
447 Biochem. 2006;98(3):486-95. doi: 10.1002/jcb.20821. PubMed PMID: 16475166.

448 18. Ruggero D, Shimamura A. Marrow failure: a window into ribosome biology. Blood.
449 2014;124(18):2784-92. doi: 10.1182/blood-2014-04-526301. PubMed PMID: 25237201;
450 PubMed Central PMCID: PMCPMC4215310.

451 19. Penzo M, Montanaro L. Turning Uridines around: Role of rRNA Pseudouridylation
452 in Ribosome Biogenesis and Ribosomal Function. *Biomolecules*. 2018;8(2). doi:
453 10.3390/biom8020038. PubMed PMID: 29874862; PubMed Central PMCID:
454 PMCPMC6023024.

455 20. Vasianovich Y, Wellinger RJ. Life and Death of Yeast Telomerase RNA. *J Mol Biol*.
456 2017;429(21):3242-54. doi: 10.1016/j.jmb.2017.01.013. PubMed PMID: 28115201.

457 21. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, et al. Epitope
458 tagging of yeast genes using a PCR-based strategy: more tags and improved practical
459 routines. *Yeast*. 1999;15(10B):963-72. doi: 10.1002/(SICI)1097-
460 0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W. PubMed PMID: 10407276.

461 22. Zhang L, Radziwon A, Reha-Krantz LJ. Targeted mutagenesis of a specific gene
462 in yeast. *Methods Mol Biol*. 2014;1163:109-29. doi: 10.1007/978-1-4939-0799-1_8.
463 PubMed PMID: 24841302.

464 23. Dilworth D, Nelson CJ. Rapid identification of chemical genetic interactions in
465 *Saccharomyces cerevisiae*. *J Vis Exp*. 2015;(98):e52345. doi: 10.3791/52345. PubMed
466 PMID: 25867090; PubMed Central PMCID: PMCPMC4401395.

467 24. Li S, Duan J, Li D, Yang B, Dong M, Ye K. Reconstitution and structural analysis
468 of the yeast box H/ACA RNA-guided pseudouridine synthase. *Genes Dev*.
469 2011;25(22):2409-21. doi: 10.1101/gad.175299.111. PubMed PMID: 22085967; PubMed
470 Central PMCID: PMCPMC3222906.

471 25. Hampsey M. A review of phenotypes in *Saccharomyces cerevisiae*. Yeast. 1997;13(12):1099-133. doi: 10.1002/(SICI)1097-0061(19970930)13:12<1099::AID-YEA177>3.0.CO;2-7. PubMed PMID: 9301019.

474 26. Gustavsson M, Ronne H. Evidence that tRNA modifying enzymes are important in 475 vivo targets for 5-fluorouracil in yeast. RNA. 2008;14(4):666-74. doi: 10.1261/rna.966208. 476 PubMed PMID: 18314501; PubMed Central PMCID: PMCPMC2271368.

477 27. Hoskins J, Butler JS. RNA-based 5-fluorouracil toxicity requires the 478 pseudouridylation activity of Cbf5p. Genetics. 2008;179(1):323-30. doi: 479 10.1534/genetics.107.082727. PubMed PMID: 18493057; PubMed Central PMCID: 480 PMCPMC2390612.

481 28. Samuelsson T. Interactions of transfer RNA pseudouridine synthases with RNAs 482 substituted with fluorouracil. Nucleic Acids Res. 1991;19(22):6139-44. PubMed PMID: 483 1956773; PubMed Central PMCID: PMCPMC329106.

484 29. Caton EA, Kelly EK, Kamalampeta R, Kothe U. Efficient RNA pseudouridylation by 485 eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning 486 of guide RNA. Nucleic Acids Res. 2018;46(2):905-16. doi: 10.1093/nar/gkx1167. PubMed 487 PMID: 29177505; PubMed Central PMCID: PMCPMC5778458.

488 30. Morrissey JP, Tollervey D. Yeast snR30 is a small nucleolar RNA required for 18S 489 rRNA synthesis. Mol Cell Biol. 1993;13(4):2469-77. PubMed PMID: 8455623; PubMed 490 Central PMCID: PMCPMC359567.

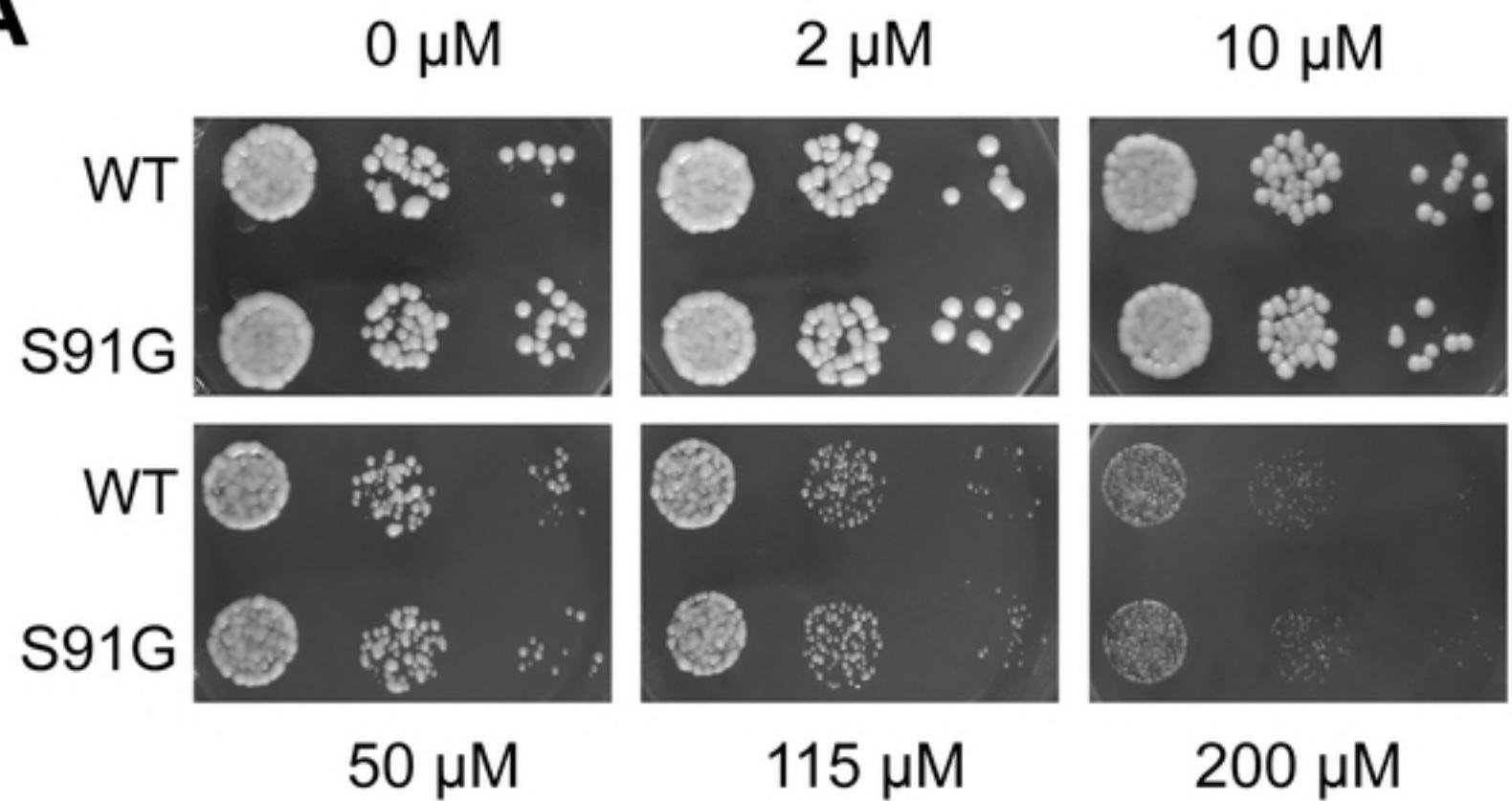
491 31. Pereboom TC, van Weele LJ, Bondt A, MacInnes AW. A zebrafish model of
492 dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from
493 ribosomal protein-mediated p53 stabilization. *Blood*. 2011;118(20):5458-65. doi:
494 10.1182/blood-2011-04-351460. PubMed PMID: 21921046.

495 32. Zhang Y, Morimoto K, Danilova N, Zhang B, Lin S. Zebrafish models for
496 dyskeratosis congenita reveal critical roles of p53 activation contributing to hematopoietic
497 defects through RNA processing. *PLoS One*. 2012;7(1):e30188. doi:
498 10.1371/journal.pone.0030188. PubMed PMID: 22299032; PubMed Central PMCID:
499 PMCPMC3267717.

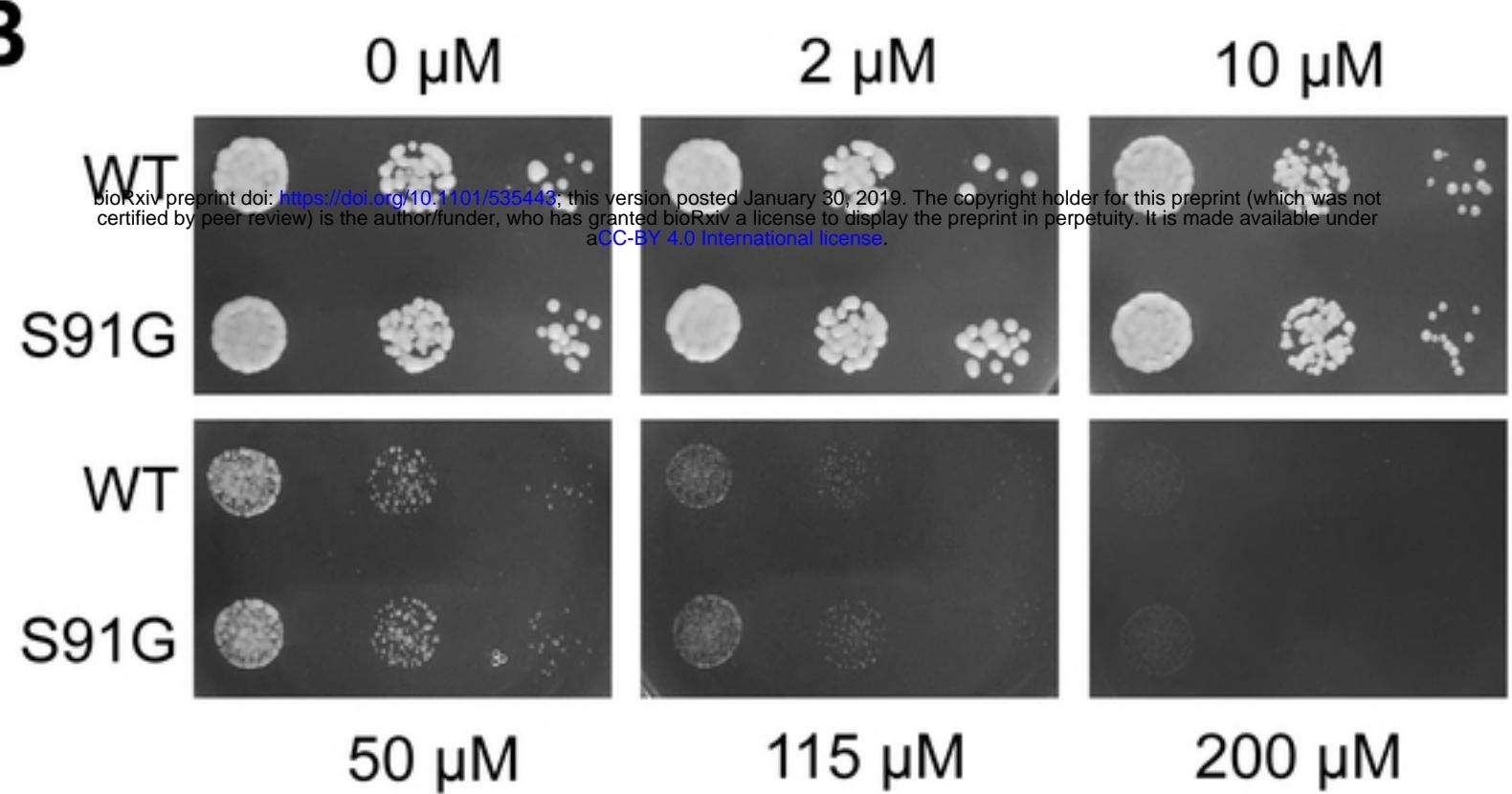
500 33. Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, et al. Dyskeratosis
501 congenita and cancer in mice deficient in ribosomal RNA modification. *Science*.
502 2003;299(5604):259-62. doi: 10.1126/science.1079447. PubMed PMID: 12522253.

503 34. Tortoriello G, de Celis JF, Furia M. Linking pseudouridine synthases to growth,
504 development and cell competition. *FEBS J*. 2010;277(15):3249-63. doi: 10.1111/j.1742-
505 4658.2010.07731.x. PubMed PMID: 20608977.

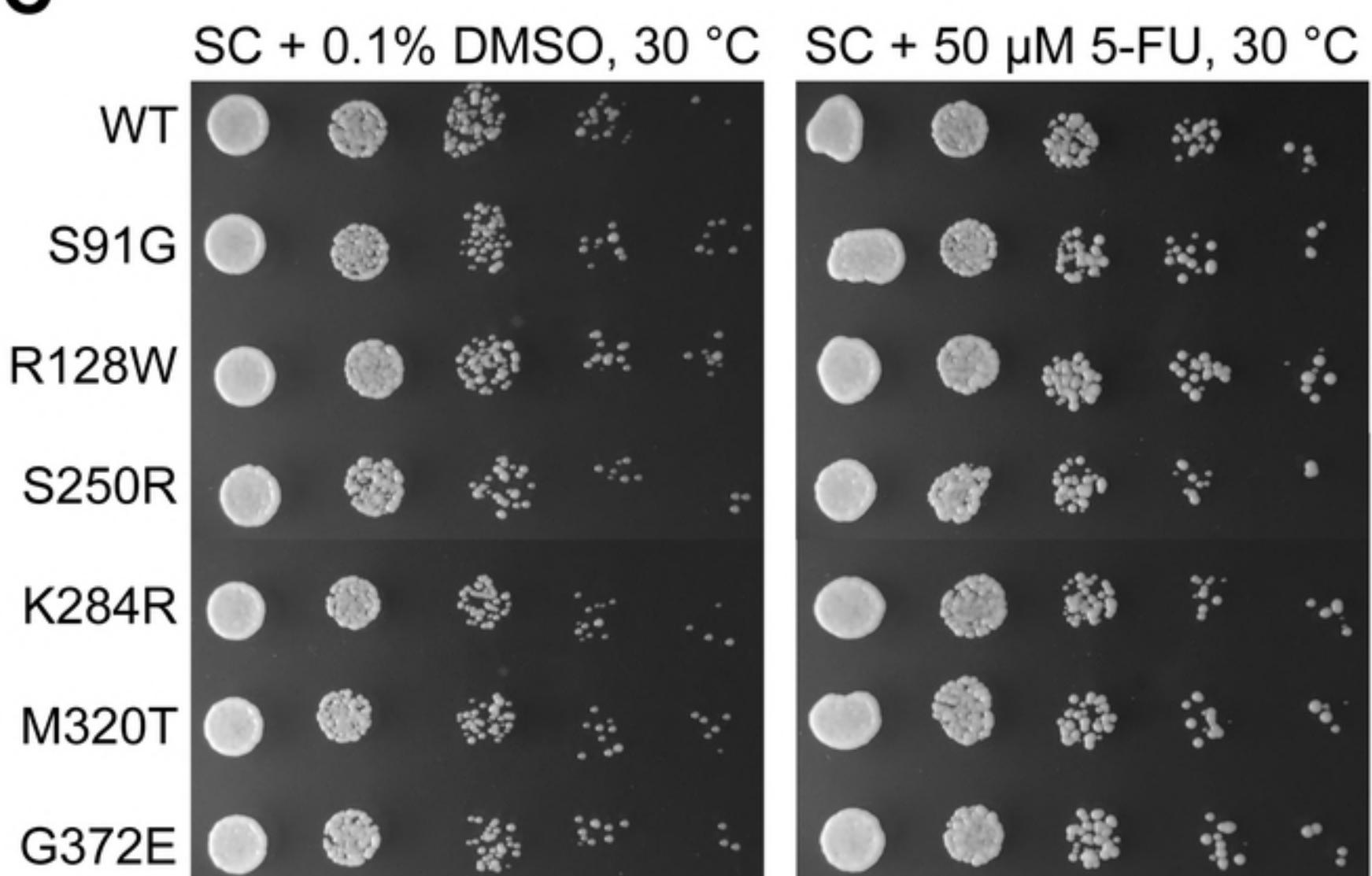
506 35. Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E, et al. Impaired control
507 of IRES-mediated translation in X-linked dyskeratosis congenita. *Science*.
508 2006;312(5775):902-6. doi: 10.1126/science.1123835. PubMed PMID: 16690864.


509 36. Penzo M, Rocchi L, Brugiere S, Carnicelli D, Onofrillo C, Coute Y, et al. Human
510 ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation.
511 *FASEB J*. 2015;29(8):3472-82. doi: 10.1096/fj.15-270991. PubMed PMID: 25934701.

512 37. Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, et
513 al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational
514 fidelity from yeast to human cells. *Mol Cell*. 2011;44(4):660-6. doi:
515 10.1016/j.molcel.2011.09.017. PubMed PMID: 22099312; PubMed Central PMCID:
516 PMCPMC3222873.


517 38. Peguero-Sanchez E, Pardo-Lopez L, Merino E. IRES-dependent translated genes
518 in fungi: computational prediction, phylogenetic conservation and functional association.
519 *BMC Genomics*. 2015;16:1059. doi: 10.1186/s12864-015-2266-x. PubMed PMID:
520 26666532; PubMed Central PMCID: PMCPMC4678720.

521 39. Rintala-Dempsey AC, Kothe U. Eukaryotic stand-alone pseudouridine synthases -
522 RNA modifying enzymes and emerging regulators of gene expression? *RNA Biol*.
523 2017;14(9):1185-96. doi: 10.1080/15476286.2016.1276150. PubMed PMID: 28045575;
524 PubMed Central PMCID: PMCPMC5699540.


525

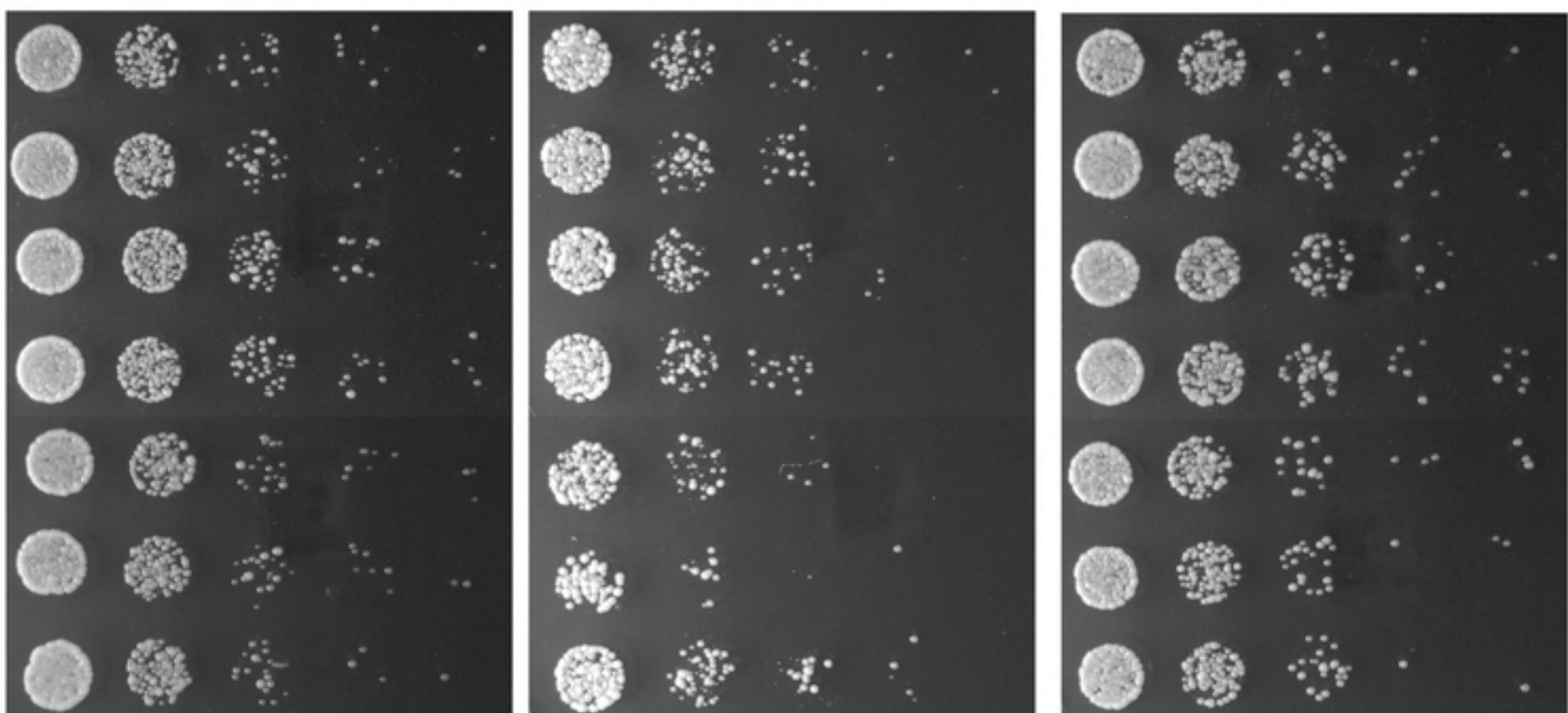
A

YPD

B

SC

C**Figure**


A

YPD, 30 °C

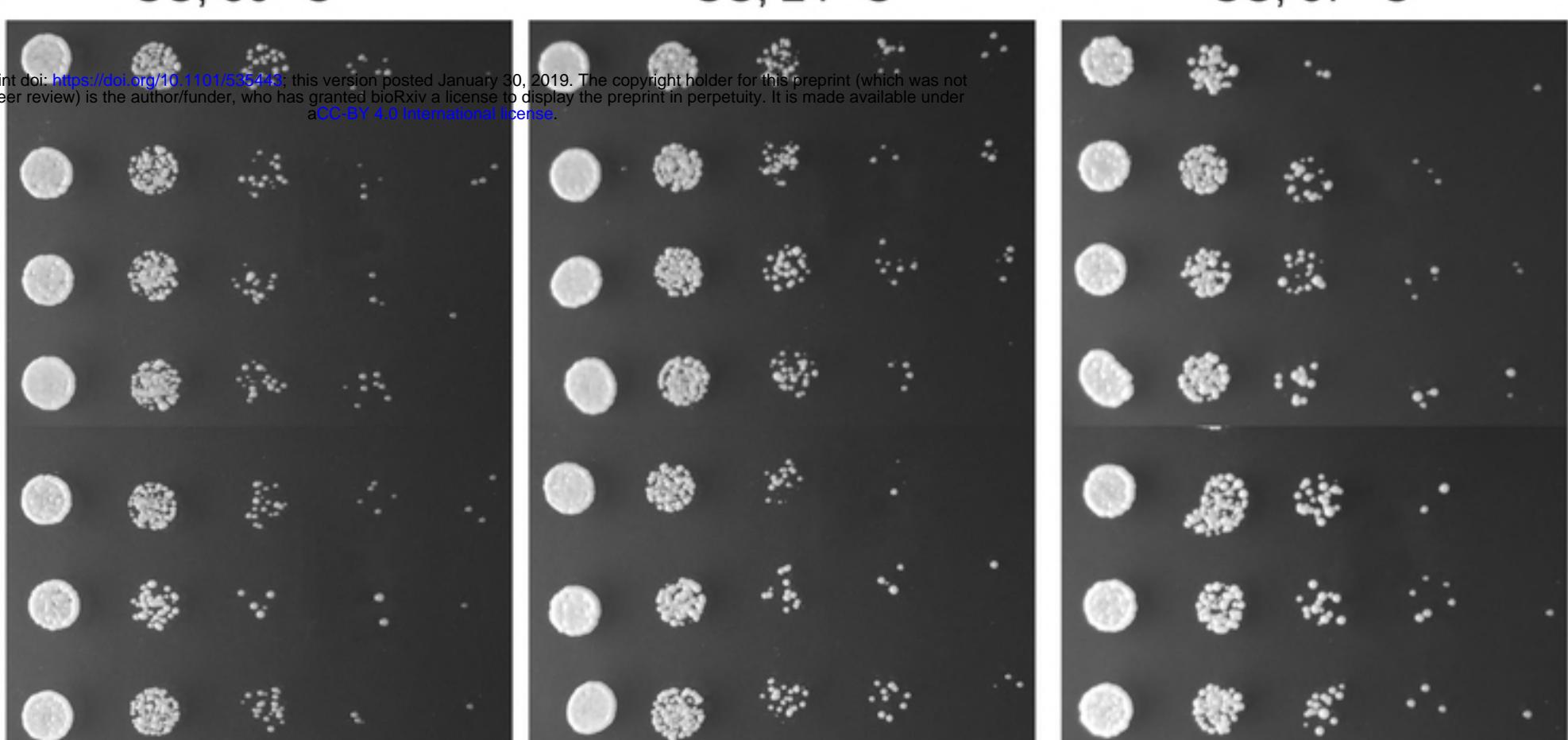
YPD, 24 °C

YPD, 37 °C

WT
S91G
R128W
S250R
K284R
M320T
G372E

B

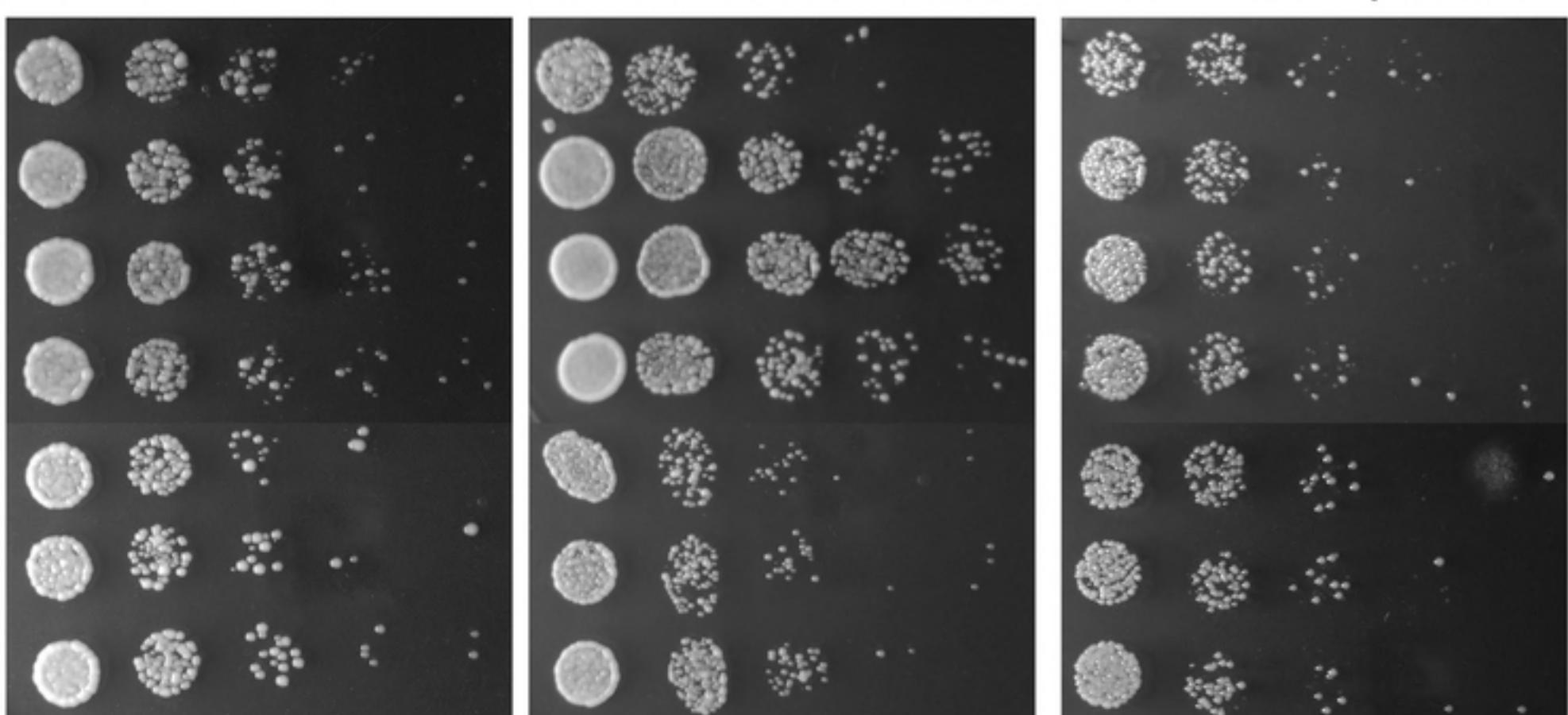
SC, 30 °C

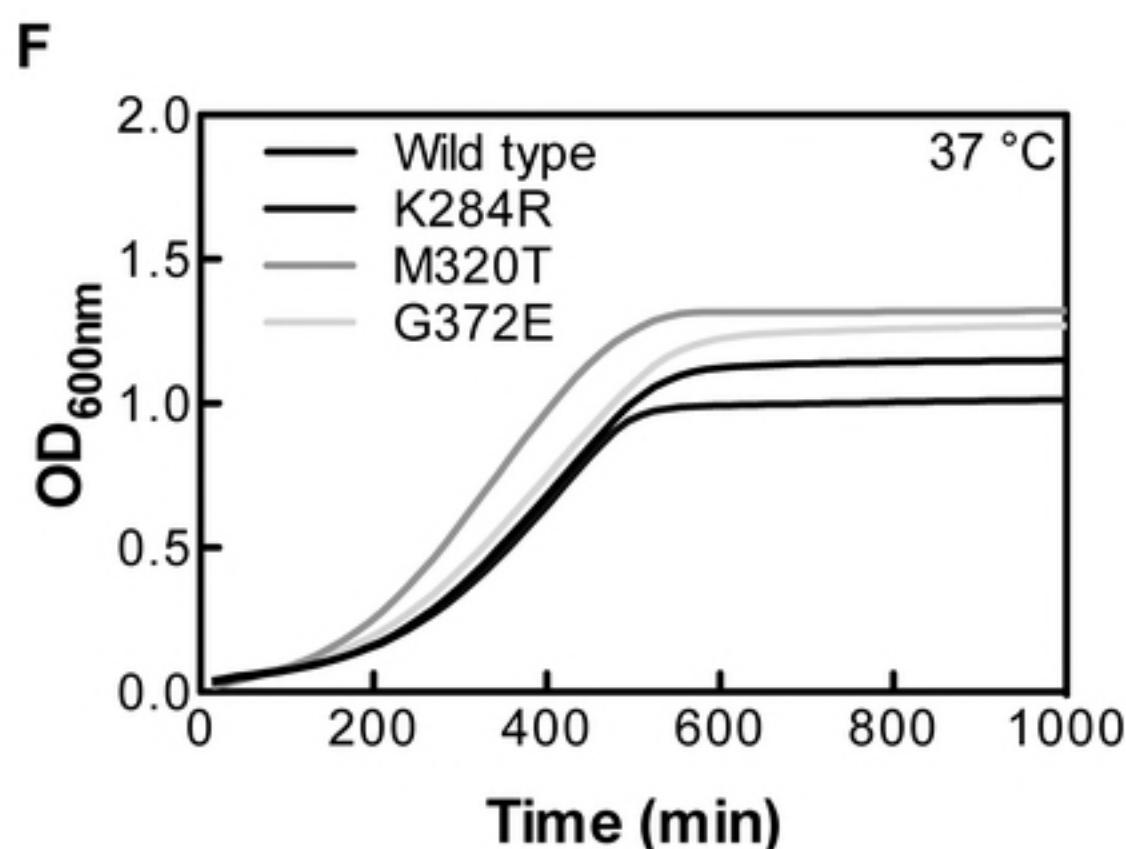
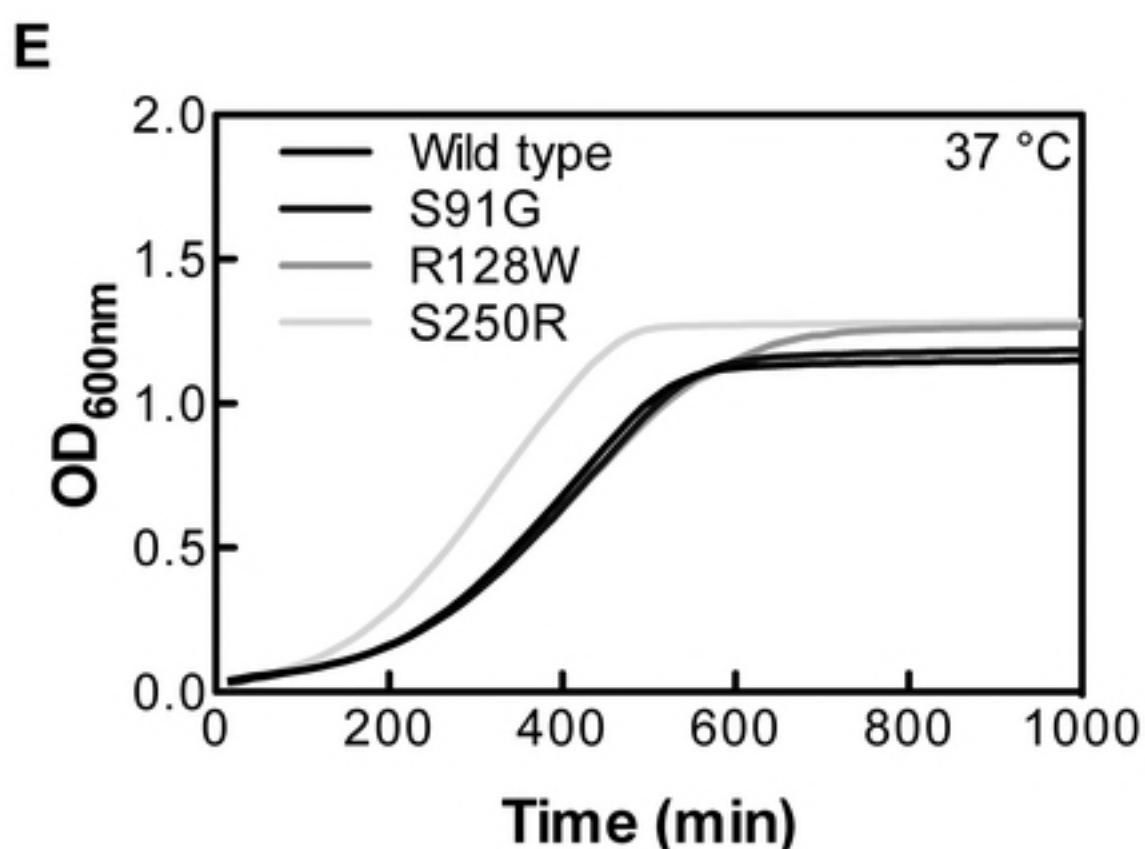
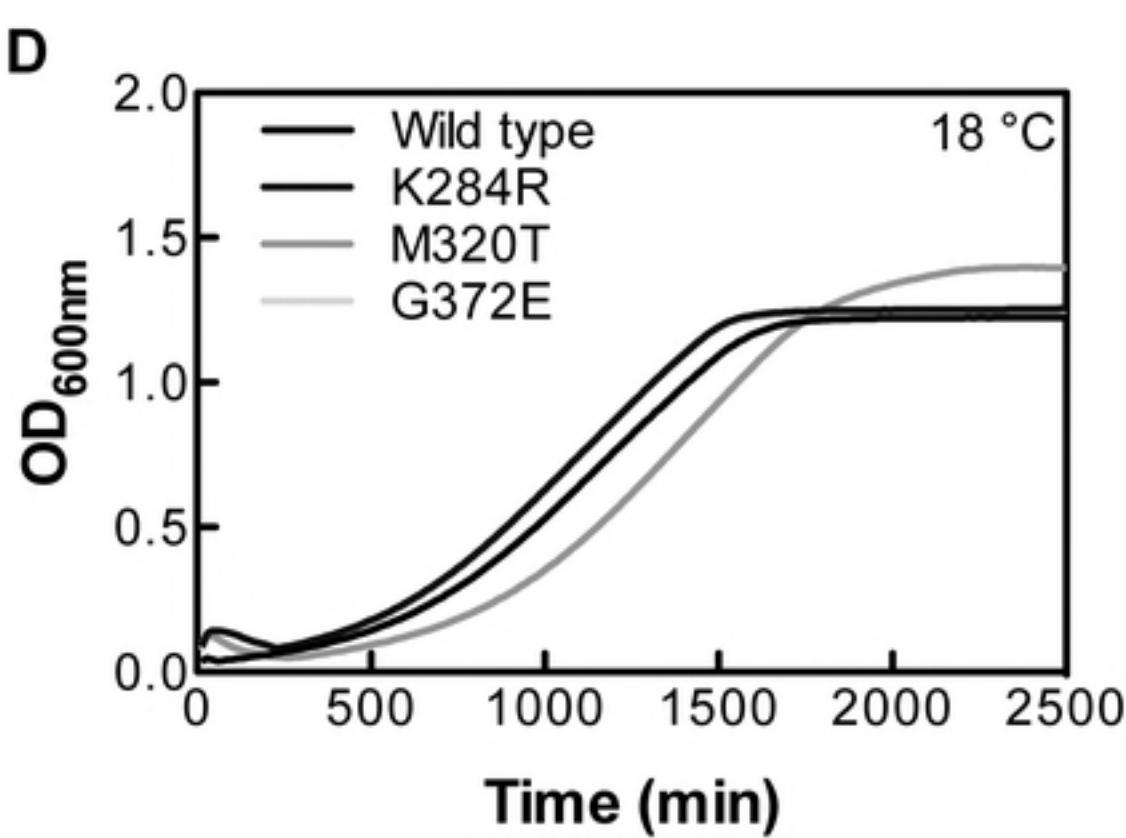
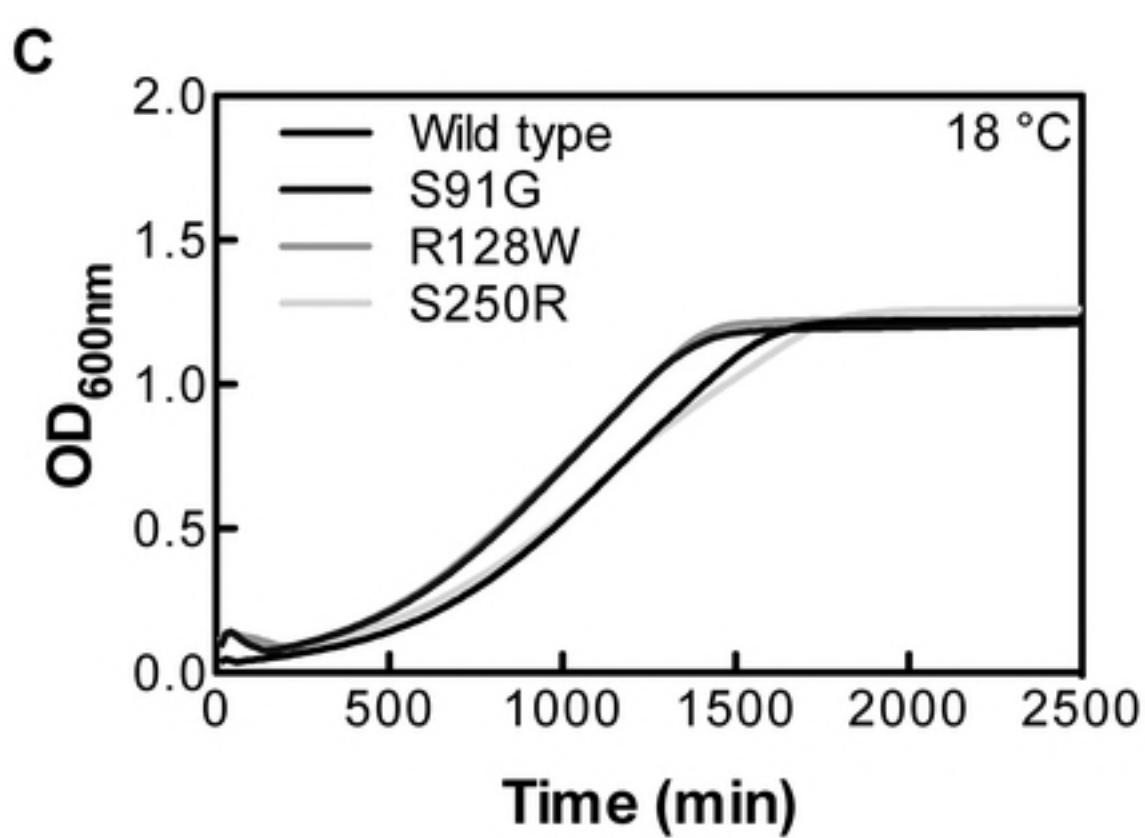
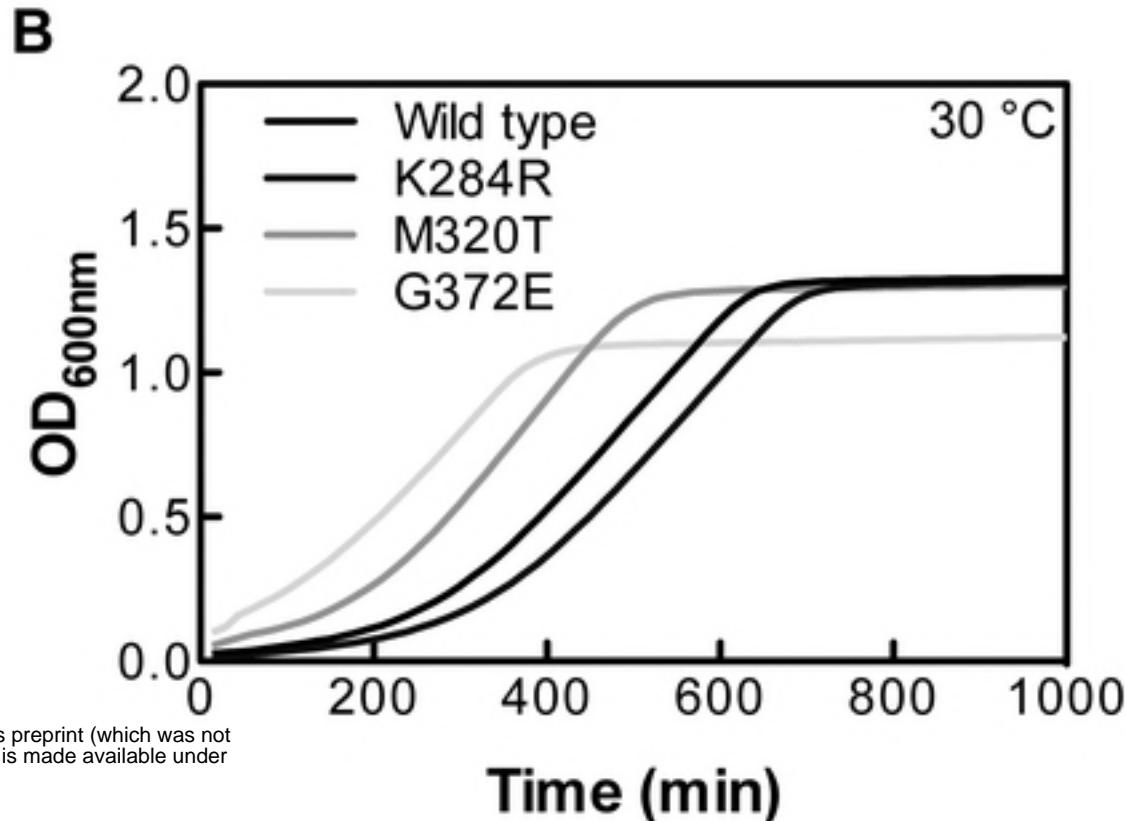
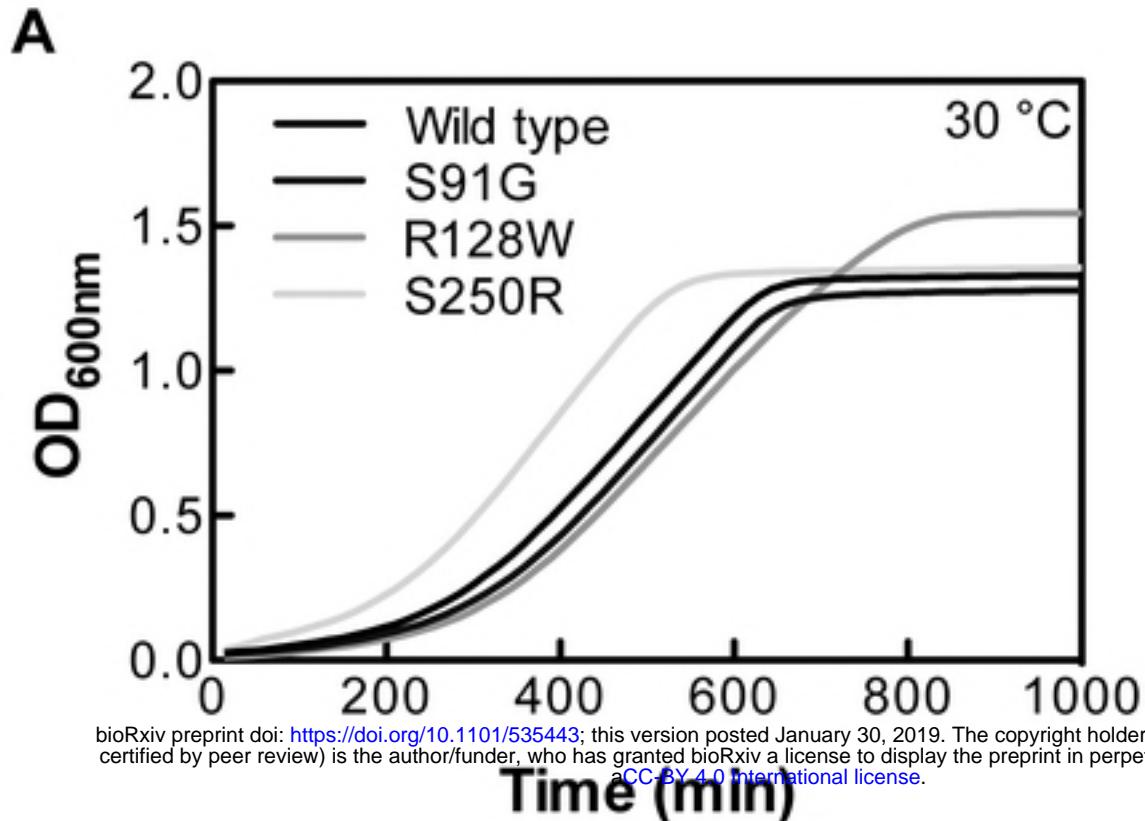

SC, 24 °C

SC, 37 °C

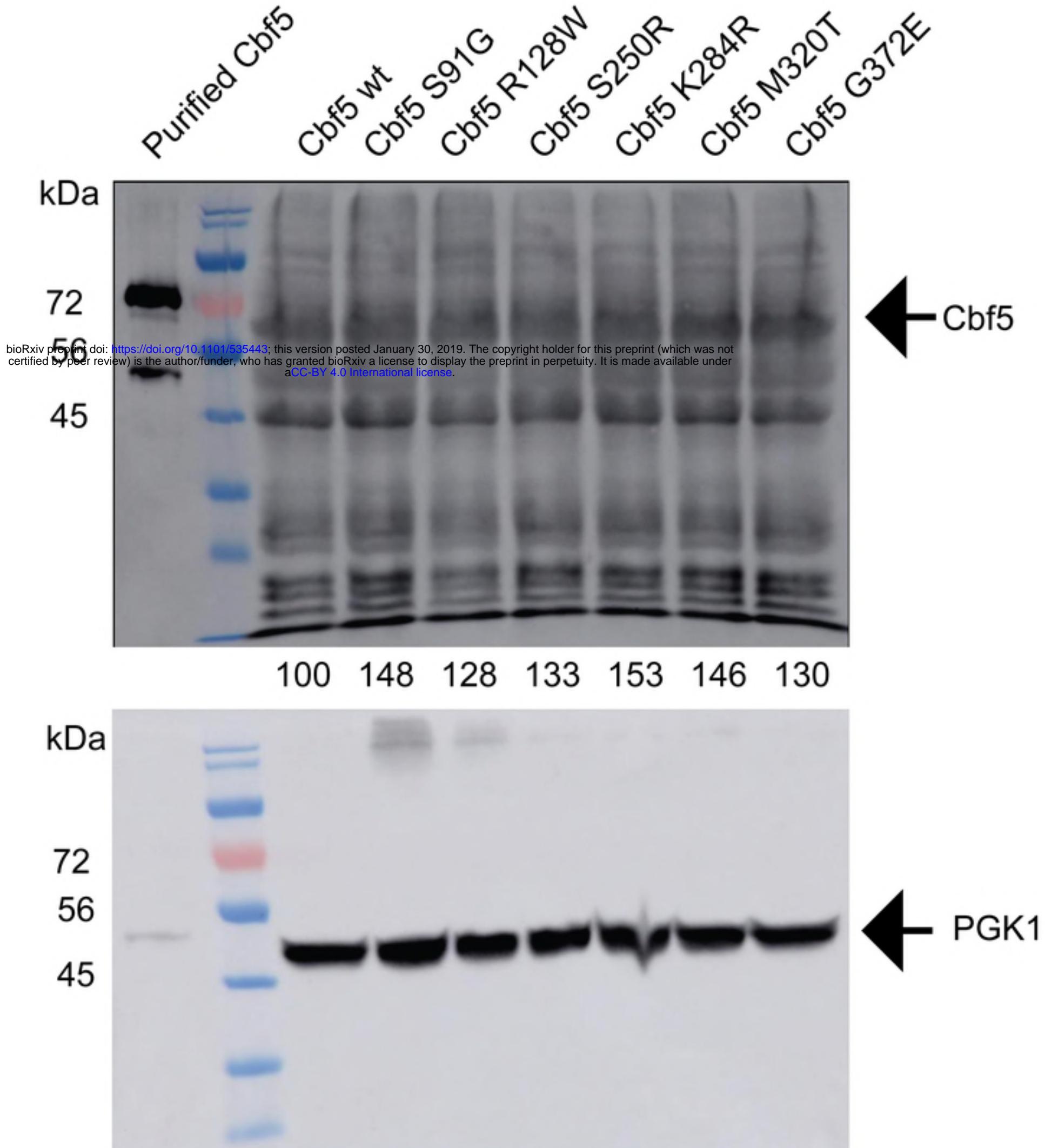
WT

bioRxiv preprint doi: <https://doi.org/10.1101/535443>; this version posted January 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

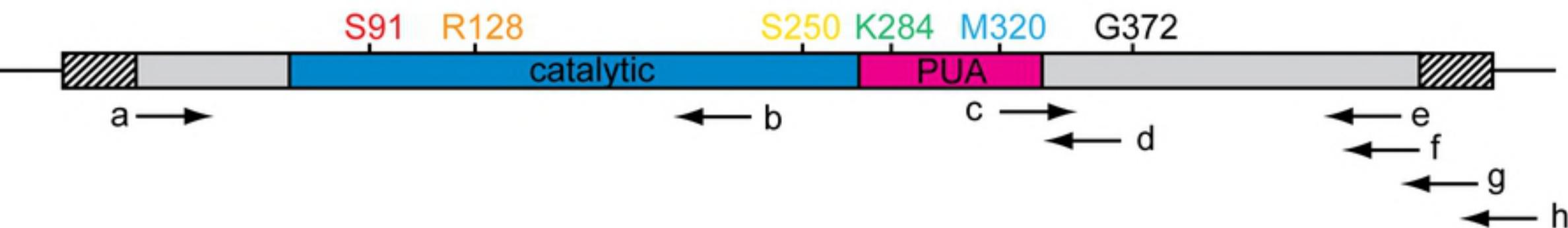

S91G
R128W
S250R
K284R
M320T
G372E

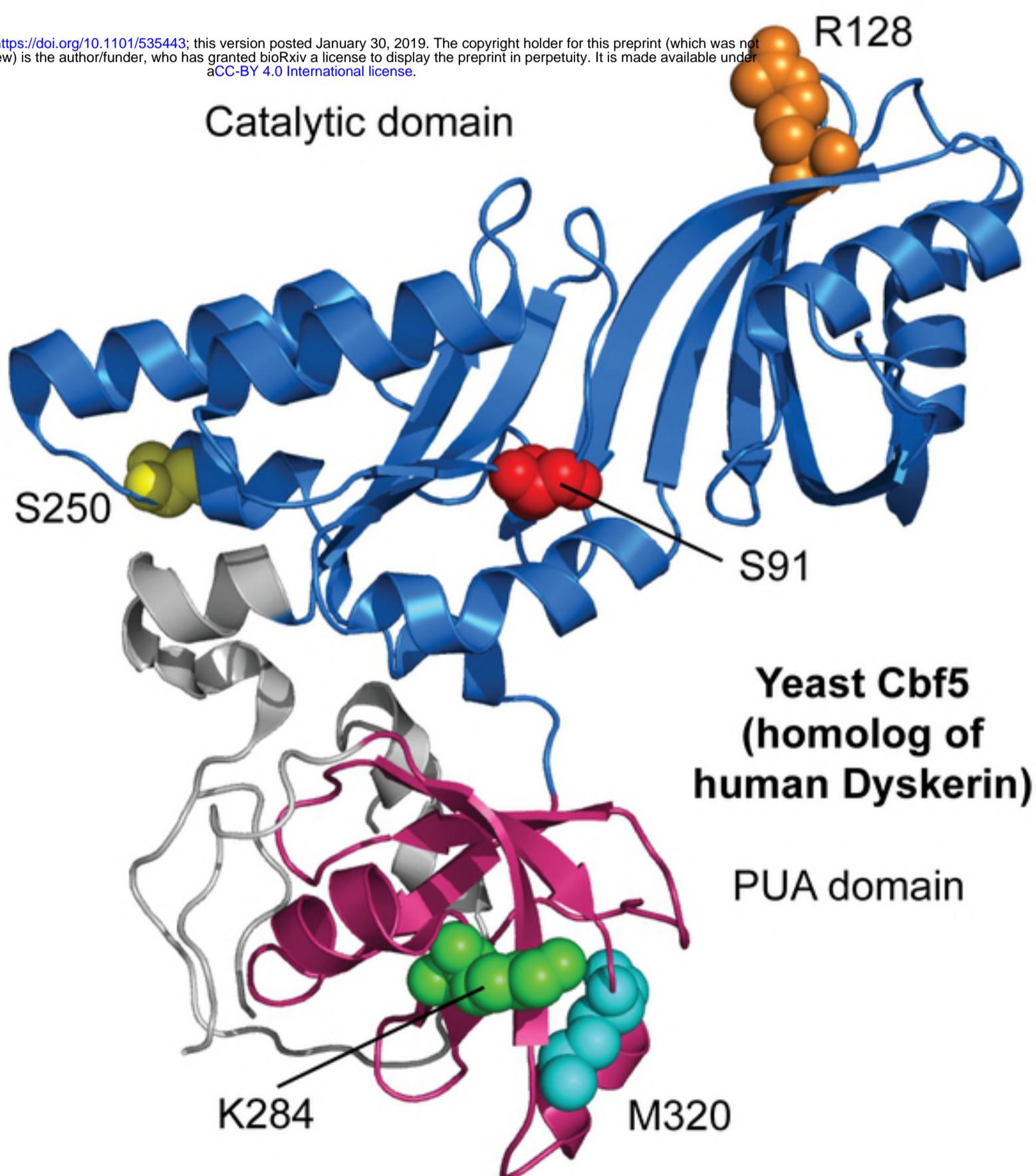






C

YPD + 4% EtOH, 30 °C YPD + 3% Formamide, 30 °C YPD + 3% Glycerol, 30 °C


WT

S91G
R128W
S250R
K284R
M320T
G372E


Figure


Figure

Figure

A

bioRxiv preprint doi: <https://doi.org/10.1101/535443>; this version posted January 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B**Figure**