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Abstract

Animals frequently overcome stressors and the ability to learn and recall these salient
experiencesis essential to an individual’s survival. As part of an animal’ s stress coping style,
behavioral and physiological responses to stressors are often consistent across contexts and time.
However, we are only beginning to understand how cognitive traits can be biased by different coping
styles. Here we investigate learning and memory differences in zebrafish (Danio rerio) displaying
proactive and reactive stress coping styles. We assessed learning rate and memory duration using an
associative fear conditioning paradigm that trained zebrafish to associate a context with exposure to a
natural olfactory alarm cue. Our results show that both proactive and reactive zebrafish learn and
remember this fearful association. However, we note significant interaction effects between stress
coping style and cognition. Zebrafish with the reactive stress coping style acquired the fear memory
at asignificantly faster rate than proactive fish. While both stress coping styles showed equal
memory recall one day post-training, reactive zebrafish showed significantly stronger recall of the
conditioned context relative to proactive fish four days post-training. Through understanding how
stress coping strategies promote biases in processing salient information, we gain insight into

mechanisms that can constrain adaptive behavioral responses.

Key Words. Animal Personality; Stress Coping Style; Cognitive Biases; Learning and Memory;

Alarm Substance; Zebrafish
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I ntroduction

When animal's successfully overcome stressors, cognitive processes facilitate the
encoding and recalling of these salient experiences to modify or reinforce beneficial coping
behaviorsin the future. Within an individual, behavioral and physiological responses to stress
often co-vary as part of acorrelated suite of traits that are consistent across contexts and time
(i.e. animal personality)(Baker et al., 2017; Koolhaas et al., 1999; Koolhaas et al., 2010; @verli
et a., 2007). Animals that are risk-prone or risk-averse differ in boldness, aggression, and stress
physiology, and represent opposite ends of a response continuum observed across many taxa
(e.g. bold-shy, proactive-reactive axis)(Koolhaas et al., 1999, 2010; @verli et al., 2007; Sih et al.,
2004). While variation in cognitive abilities can be due to a variety of factors (Dalesman, 2018;
Lucon-Xiccato & Bisazza, 2017; Miller, 2017; Sorato et al., 2018), studies are beginning to
demonstrate that learning and memory processes are also biased according to personality type
(Brown et al., 2013; Dougherty & Guillette, 2018; Lucon-Xiccato & Bisazza, 2017; Miller,

2017; Sih & Ddl Giudice, 2012).

In line with other behavioral and physiological traits, studies suggest that proactive and
reactive stress coping styles differ in information processing, decision making, and learning and
memory capabilities (Carere & Locurto, 2011; Dougherty & Guillette, 2018; Griffin et al., 2015;
Lucon-Xiccato & Bisazza, 2017; @verli et a., 2007; Sih & Dd Giudice, 2012). The more risk-
prone proactive individuals tend to rely on past experiences and form morerigid routines (i.e.
low behavioral flexibility). In contrast, the risk-averse reactive individuals are more sensitive to
environmental cues for learned associations and display higher behavioral flexibility. Despite
these observations, there are incons stencies across studies investigating how learning and

memory abilities vary with personality type in mammals, birds, and teleosts, often relating to the
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type of paradigm and stimulus valence. Some studies show that reactive individuals will learn
faster (Budaev & Zhuikov, 1998; Exnerovaet al., 2010; Miller et al., 2006), but others show
support for proactive individuals learning faster (Amy et al., 2012; Bolhuis et al., 2004;
DePasguale et a., 2014; Dugatkin & Alfieri, 2003; Mazza et al., 2018; Mesquita et a., 2015;
Trompf & Brown, 2014). The same conflicting observations are documented with memory
performance between the stress coping styles (Brown et al., 2013; Exnerovaet al., 2010; Moreira
et a., 2004). Examining to what extent encoding and recalling of salient information is
influenced by stress coping style is important towards understanding factors that may facilitate

the development of correlated suites of traits within an individual.

Exposure to highly stressful events such as predation are useful for investigating
individual differencesin learning and memory. Upon experiencing a threatening event, an
individual can associate a specific cue of the threatening stimulus and the general environment in
which it was experienced (e.g. context)(Maren et al., 2013). Many learning paradigms utilize
predator odors or chemical alarm signals as an unconditioned stimulus (US) to study ecologically
relevant cognitive behaviors (Takahashi et al., 2008). In teleosts a chemical alarm signal (alarm
substance) is released from epidermal cells when they are mechanically damaged. This olfactory
signal causes robust antipredatory behaviors even in the absence of a predator, and is used to
assess stress-related behaviors in zebrafish (Danio rerio) and other teleosts (Gerlai, 2010;
Speedie & Gerlai, 2008). Typical fear responses in teleost include bottom dwelling, swimming in
atighter shoal, erratic movements and freezing. While studies have utilized alarm substance for
associative conditioning paradigms of specific cues on schools of fish, it has presented some
challenges for measuring individual differencesin learning and memory (Brown et al., 2013;

Hall & Suboski, 1995; Ruhl et al., 2017). Further not much is known whether alarm substance
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can be used for contextual learning and recall of salient information. Utilizing alarm substance to
study the relationship between learning, memory, and personality types will require behavioral
assays that can be tested on individual fish, are rapidly and reliably acquired, and allow for

isolated examination of both learning and memory recall phases.

Here we test for differences in how contextual associations are formed and maintained
between two lines of zebrafish selectively bred to display proactive and reactive stress coping
stylesin an associative fear conditioning task. Using anovel contextual fear conditioning
paradigm, we compared the rate fish learned to associate aformerly neutral context with afearful
antipredatory response induced by exposure to alarm substance. Additionally, we tested memory
recall at two different time points following training to assess the duration of fear memory

retention.

Methods

Subjects

Here we use zebrafish to study how cognitive abilities varies with stress coping style.
Zebrafish are utilized in avariety of laboratory studies to understand the neural, genetic, and
pharmacological mechanisms of learning and memory (Gerlai, 2016; Norton & Bally-Cuif,
2010; Oliveira, 2013). Both wild and laboratory strains of zebrafish display the proactive and
reactive stress coping styles, which have distinct genetic architectures and neuroendocrine
responses (Oswald et al., 2012; Oswald et al., 2013; Russ, 2018; Wong €t al., 2015). Given their
rich repertoire of learning and memory behaviors, low costs, high-throughput assays, genetic
tractability, evolutionary significance, and homologous anatomy and physiology to their

mammalian counterparts, zebrafish are a promising system to study how an animal’s stress
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coping style influences fear learning and memory abilities (Bshary & Brown, 2014; Gaikwad et

a., 2011, Gerlai, 2010; ljaz & Hoffman, 2016; Norton & Bally-Cuif, 2010; Oliveira, 2013).

We specifically used the high-stationary behavior (HSB) and low-stationary behavior
(LSB) zebrafish strains (Wong et al., 2012). Starting from wild-caught zebrafish, the HSB and
L SB strains were generated and are maintained by artificial selection for opposing amounts of
stationary behavior to a novelty stressor (Wong et al., 2012). The HSB and L SB strains show
contrasting behavior, physiology, morphology, and neuromolecular profiles consistent with the
reactive and proactive coping styles, respectively (Kern et al., 2016; Russ, 2018; Wong &
Godwin, 2015; Wong et al., 2015; Wong et al., 2014; Wong et a., 2013). Additionally, these
divergent behavioral profiles between the strains are cons stent across contexts and over time and
are highly repeatable (Baker et al., 2018; Wong et al., 2012). We tested 32 individuals for each
of the LSB and HSB strains. Fish that did not display any response to the US were removed from
the study, resulting in afinal sample size of 24 LSB (N = 12 males, 12 females) and 24 HSB (N
=12 males, 12 females) for the treatment group receiving alarm substance during training. An
additional 8 LSB (N =4 males, 4 females) and 8 HSB (N = 4 males, 4 females) were used as a
control group being exposed to distilled (DI) water during training. LSB and HSB individuals
were 16 months post-fertilization when testing began. During testing, fish were individually
housed in 3-liter tanks on arecirculating water system (Pentair Aquatic Eco-Systems) using UV
and solid filtration on a 14:10 L/D cycle at atemperature of 27°C. Fish were fed twice a day with

Tetramin Tropical Flakes (Tetra, USA).

Alarm Substance

We created asingle batch of alarm substance following modified guidelines using 20

randomly selected donor fish (Speedie & Gerlai, 2008). In brief, donor fish were euthanized by
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rapid chilling followed by light abrasion of lateral skin cells on one side of each donor fish,
ensuring that no blood was drawn. Donor bodies were then individually soaked in 10 mL of DI
water for 10 minutes. We determined a working concentration through a pilot dose-response
study (DI water, 10%, 50%, and 100% alarm substance). The 50% concentration elicited a
significantly higher increase in freezing behavior compared to the DI water (1(22)=3.24, p =
.004, d = 2.33) and 10% (t(22)= 3.15, p = .005, d = 2.14) alarm substance administrations (Figure
S1). We therefore selected 50% as the working concentration. A total of 200 mL was filtered,

diluted in half, and stored in aliquots at -20° C until use.
Contextual Fear Learning

To assess learning and memory we devel oped anovel contextual fear conditioning
paradigm. Zebrafish were tested individually in an acrylic testing arena (16 x 16 x 10 cm) filled
with 1.4 L of system water. The arenas were surrounded by opague white plastic on the bottom
and sides to serve as the contextual stimulus. A second context consisted of red plastic on the

bottom with a picture of underwater plants on the side walls.

The paradigm consisted of three phases across 7 days of testing (Figure S2): acclimation,
training, recall. Three days prior to testing, test subjects were moved from group housing into
individual housing. On day one (acclimation phase), fish were individually placed in the testing
arenato acclimate for 15 minutes and then returned to their home tank. Two hours later thiswas
repeated in the second context. On day two (training phase), fish were trained to associate the
white context with exposure to alarm substance over four learning trials. Each learning trial was
15 minutes long and was divided into three subsections. Fish acclimated to the chamber for the
first five minutes, followed by five minutes of recording the conditioned fear response. After

these 10 minutes, 1 mL of alarm substance was administered into the water through plastic
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155  tubing that came from outside of the testing arena. Following alarm substance exposure, the

156  unconditioned fear response was recorded for five minutes. This was repeated for atotal of four
157  trials with 30 minutes between each. Between trials, we placed fish back into their individual
158  housing, rinsed out the testing arenas, and refilled with 1.4 L of fresh system water. On days
159  three and seven (recall phase), animals were re-exposed to both the neutral context and the

160  conditioned context for 15 minutes each, with two hours between tests. For acclimation and

161  recall testing, the order of context exposure was counterbalanced across individuals. All testing
162  procedures were approved by the Institutional Animal Care and Use Committee of University of

163  Nebraskaat Omaha/University of Nebraska Medical Center (17-070-00-FC, 17-064-08-FC).
164  Behavior Analysis

165 All trials were video-recorded from above and later analyzed with Noldus EthoVision XT
166  (Noldus XT, Wageningen, Netherlands). For each trial, we quantified two measures as indicators
167  of aconditioned response: freezing time and erratic movements. The subject was considered

168  frozenif it moved less than 0.5 crm/s. Erratic movement duration was quantified using

169  Ethovison’sActivity State analysis option (Noldus XT, Wageningen, Netherlands). The activity
170  threshold was set to 99% and bins less than 0.1 seconds were removed. As erratic movements
171 and freezing cannot occur simultaneously, we report duration of erratic movements as a

172 proportion of total time spent moving. To validate software quantification of erratic movement
173 duration, two independent observers manually recorded the duration of erratic movements for all
174  of the unconditioned responses of the alarm substance group. Computer analyzed erratic

175  movements were highly correlated with both observers (r gpserver 1 = 0.87, Popserver 1 = 1.93¥10°

176 and robse'\/a' 2 = 0.91, pobsaver 2 = 2.77* 10-19).

177  Satistics
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178 All statistics were performed using SPSS software (Version 24). To analyze freezing and
179  erratic movement durations, we used three-way analysis of variance (ANOVA) models with

180  strain, sex, and treatment group as between-subject factors. For analysis of acclimation on day
181  one and memory recall at days three and seven, we used a repeated-measures three-way ANOV A
182  with conditioned vs. neutral context as the within subjects factor. For analysis of the learning

183  phase, we used a repeated-measures three-way ANOV A with the four conditioned response trials
184  asthe within-subjects factor. Individual comparisons were made with independent samples t-

185  tests. Given the documented relationship between body size and boldness, we attempted to

186  control for this by entering standard length into the models as a covariate (Brown & Braithwaite,
187  2004; Harriset al., 2010; Kern et a., 2016; Roy & Bhat, 2018). To account for multiple

188  comparisons, we applied the Benjamini-Hochberg correction to determine significance

189  (Benjamini et al., 2001). For all significant differences (p < 0.05) we also report the effect sizes
190 (Cohen’sd (d) for t-tests and partial eta-squared (np?) for ANOV As)(Wassertheil & Cohen,

191  1970). All effect sizes were medium or large effects (Richardson, 2011; Starkings, 2012;

192  Wasserthell & Cohen, 1970).

193 Reaults

194 During Day 1 acclimation there were no significant within-subjects effects of context or
195  any interaction effect on baseline freezing or erratic movement behaviors. HSB fish froze

196  significantly more than LSB fish overall (Fy, 55 =10.81, p = .002, np? = .16). However, there were
197  no other significant between-subjects effects or interaction effects for freezing, nor any for

198  eratic movements (all p > .05; Figure S3)

199 During the training phase (Day 2), fish that received alarm substance showed a

200  significantly higher unconditioned response for freezing (Fy s5 = 563.41, p = 1.41*10°%°, np2= .91)
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203  Figurel. Acquisition of fear memory over four training trials. Freezing time (A) and erratic
204  movement ratio (B) were measured for high stationary behavior (HSB) and low stationary
205  behavior (LSB) fish exposed to distilled water (DI) or alarm substance (AS). Points represent
206 mean £ 1 standard error. * indicates p < .05 for within-treatment group compari son.

207

208  and erratic movements (F1, s5 = 11.77, p = .001, np?=.18) compared to DI water (Figure $4).

209  There were no other significant between-subjects effects or interaction effects for the

210  unconditioned fear response (all p > .05). In the conditioned fear response period, there was a
211 gignificant trial* treatment group interaction effect for both freezing (Fs, 165 = 71.31, p = 1.26* 10
212 % npe= 57) and erratic movements (Fs, 165 = 2.74, p = .045, np2= .05). The alarm substance group

213 increased freezing across the four trials at a faster rate than the DI control group (Figure 1). For

10
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217  Figure 2. Fear memory recall 24 hours post-training. We measured freezing time (A) and erratic
218  movement ratio (B) for high stationary behavior (HSB) and low stationary behavior (LSB) fish
219  exposed to distilled water (DI) or alarm substance (AS) during training. Bars represent mean = 1
220  standard error in the conditioned context and neutral context. * indicatesp < .05.

221

222 freezing behavior, there was a significant trial* strain*treatment group interaction (F3 165 = 3.52,
223 p=.016, np*=.06) where treated HSB fish increased freezing behavior at a faster rate than LSB

224  fish. HSB fish exposed to alarm substance froze significantly more than LSB fish at trial two

11
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225  (t(46) = 3.29, p=.002, d = .95) and was not significant at trials one (t(46) = 1.78, p = .082), three
226 (t(46) =1.97, p=.055), or four (t(46) = 1.33, p = .189). Full model results are presented in Table

227 S2.
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231 Figure 3. Fear memory recall 96 hours post-training. We measured freezing time (A) and erratic
232 movement ratio (B) for high stationary behavior (HSB) and low stationary behavior (LSB) fish
233  exposed to distilled water (DI) or alarm substance (AS) during training. Bars represent mean + 1
234  standard error in the conditioned context and neutral context. * indicates p < .05. ” indicates p
235  <.05 for within-treatment group comparison in the conditioned context.
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During memory recall testing there was a significant context* treatment group interaction
effect for both behaviors at 24h (Freezing: Fy s5= 49.45, p = 2.97*10°°, np2= .48, erratic
movements: F1 ss = 5.41, p =.024, np?= .09, Figure 2) and freezing behavior at 96h (F;, s5= 8.03,
p = .006, np?=.127, Figure 3) post-training. In the alarm substance, but not the DI water group,
both strains displayed significantly higher antipredatory behaviorsin the conditioned context
compared to the neutral context. At 96 hours post-training, there was a significant
strain*treatment interaction effect for freezing behavior (F1, 55 =4.13, p = .047, np?>=.07). Treated
HSB fish showed significantly higher freezing behavior compared to treated LSB fish in the
conditioned context at 96h (t(46) = 3.62, p = .001, d = 1.01). Full moddl results are presented in
Table S2.

Discussion

Whileit isessential for animals to encode and recall salient experiences, it is unclear how
different stress coping strategies may influence the use of contextual information to predict and
avoid danger in the future. In the present study, we measured the learning rate and duration of a
fear memory in selectively-bred lines of zebrafish that display proactive and reactive coping
styles. Overall, we found that reactive zebrafish more readily associated a fearful olfactory
stimulus with contextual information and retained this fear memory longer compared to
proactive individuals. We did not observe any sex differencesin contextual fear learning or

memory.

Learning rate and memory duration can differ amongst individuals with different
personality types (Lucon-Xiccato & Bisazza, 2017; Sih & Dd Giudice, 2012). We observed that
reactive zebrafish (HSB strain) acquire a contextual fear memory at a significantly faster rate

than proactive zebrafish (LSB strain) (Figure 2). With higher tendencies to exhibit risk-averse

13
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behaviors and elevated cortisol responses, reactive individuals may perceive stressors as more
threatening, which could facilitate faster encoding of aversive experiences. Faster learning rates
in reactive individuals have also been observed in other teleost (Budaev & Zhuikov, 1998;
Mesquita et al., 2015) and avian species (Exnerova et a., 2010; Miller et al., 2006). While
studies have documented faster learning proactive individuals (Amy et al., 2012; Bolhuis et al.,
2004; DePasquale et a., 2014; Dugatkin & Alfieri, 2003; Mazza et a., 2018; Trompf & Brown,
2014), this may be due to different learning tasks or type of reinforcing stimulus. Reactive
individuals have higher learning performance with aversive conditioning whereas proactive
individuals tend to learn more quickly in exploratory or discrimination tasks with appetitive
conditioning (Bolhuis et a., 2004; Budaev & Zhuikov, 1998; DePasquale et al., 2014; Dugatkin
& Alfieri, 2003; Mesquita et al., 2015). It isunlikely innate contextual preferences could explain
our results as there was no significant difference in freezing during acclimation between the
conditioned or neutral context for either strains (Figure S3). Similarly, with no significant strain
differences in freezing and erratic behaviors after first exposure to the alarm substance
(unconditioned fear response period during first learning trial), it is also unlikely the strains have

different response thresholds (Figure $4).

Freezing time and erratic movements during the recall phase indicated that both strains
recalled the fear memory at least four days following training. However, the HSB fish showed
significantly higher levels of freezing in the conditioned context at 96 hours suggesting that
reactive individuals encode a more resilient fear memory than proactive individuals (Figure 3).
Differencesin learning and memory between stress coping styles are seen in both contextual
(e.g. general environment) and cued (e.g. specific neutral odors or visual stimuli) learning of

salient information using athreatening stimulus. Animals displaying a reactive coping style may

14
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repress exploratory behavior and be more risk-averse for longer when re-exposed to potentially
dangerous contexts or cues to minimize risks of injury. Thisinterpretation is cons stent with
other studies suggesting that reactive individuals retain fearful memories for longer (Brown et
al., 2013; Exnerovaet al., 2010). However, one study found that proactive rainbow trout retained
a conditioned fear response for longer, which may be due to the reactive trout having faster
extinction learning (Moreira et a., 2004). We speculate that differences in the rate of formation
and duration of associations between aversive stimuli and an environmental context (e.g.
microhabitat) may shape subsequent resource utilization (e.g. alter foraging routes, exploration
range, duration of behavioral displays) resulting in altered population dynamics and
compositionsin the wild. Studies show that predation levelsin a given habitat can influence
learning and memory behaviors at the population level where individuals from low predation
habitats tend to display higher activity and exploration (more proactive) and faster spatial
learning capabilities to find food resources (Brown & Braithwaite, 2005; Brydges et al., 2008;
DePasquale et a., 2014). While outside the scope of the current study, future studies should
examine whether contextual learning under wild conditions alters habitat use and how it differs

between individuals of alternative stress coping styles.

Painful or frightening stimuli can quickly modify current and future behavioral responses.
Studies using electric shocks in fear conditioning have revealed important insightsinto the
proximate mechanisms of learning and memory (Maren, 2001; Maren et al., 2013). However,
electric shocks have limited ecological relevance to the evolution of adaptive animal behavior.
Predator odors or chemical alarm signals are alternative, but ecologically relevant aversive
conditioning stimuli. While alarm substance is used as an aversive conditioning stimulus in other

studies utilizing teleosts (Brosnan et al., 2003; Brown et a., 2013; Hall & Suboski, 1995; Ruhl et
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al., 2017), our conditioning paradigm allows for effective analysis of behavior at the individual
level and achieved an unconditioned response rate in ~80% of fish. Further, alarm substance
induced similar unconditioned fear responsesin all fish (Figure $4). Only fish exposed to alarm
substance displayed increasing conditioned fear responses across learning trials (Figure 1) and
had higher levelsin the conditioned context during memory recall (Figures 2, 3). Thisis
consistent with freezing and avoidance behaviors observed in other fear conditioning paradigms
utilizing chemical alarm signals and electric shocks (Brown et al., 2011; Kenney et al., 2017,
Takahashi et a., 2008). Collectively this suggests that all fish acquired the association between
the alarm substance and the contextual information, and were able to discriminate between the
conditioned and neutral contexts. Further, freezing behavior shows strong consistent individual
differences and is highly repeatable in both of the proactive and reactive zebrafish strainsused in
this study (Baker et al., 2018). Ecologically-relevant stimuli like alarm substance may help
elucidate adaptive cognitive processes in response to predation or other selective pressures (Kim

& Jung, 2018; Pellman & Kim, 2016).

Differences in cognition between proactive and reactive stress coping styles are observed
across various taxonomic groups, which suggest common underlying neuromolecular
mechanisms. Interestingly, key mechanismsfor learning and memory (neural plasticity and
neurogenesis), are elevated in reactive individuals which could bias learning and memory
capabilities (Qverli & Sarensen, 2016; Sgrensen et al., 2013; Wong et al., 2015). Additionally,
variation in cognitive flexibility among stress coping styles has been linked to key
neurotransmitter systems (e.g. dopaminergic, serotonergic, GABAergic)(Banuelos et al., 2014;
Beaset al., 2016; Coppens et a., 2010; Hoglund et al., 2017; Wong et al., 2015). Consistent with

thisidea, basal expression of genesin the brain related to neural plasticity and neurotransmission
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are differentially regulated between the HSB and LSB strains (Wong et al., 2015). We
hypothesize that faster fear learning rates and stronger memory recall of reactive individualsin
this study isfacilitated by altered expression of these genes in response to fearful stimuli.
Selectively bred proactive and reactive behavioral phenotypes will be useful in investigating

these proximate mechanisms of cognitive biases and other correlated traits in future studies.

Conclusion

Intriguingly we document several interaction effects between an individual’ s stress
coping style and learning and memory of a fearful association. Specifically, despite showing
similar acute responses to potential predation, we find that reactive individuals actively encode
thisinformation more quickly and that it lasts longer than proactive individuals. Alternatively,
proactive individuals may forget or suppress fearful associations sooner to maximize future
resource acquisition. We also show that alarm substance can be used to understand contextual
learning and memory differences between stress coping styles (i.e. personality types). Itis
important to consider a variety of paradigms as different associations and reinforcement valences
may incur different sets of tradeoffs that influence cognition. Lastly, these behavioral findings
present a promising basis to investigate the neuromolecular mechanisms underlying cognitive

biases and stress coping styles.
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567  Supplementary Information

568 Tables

569  Table S1. Results of repeated measures GLM for the acquisition learning phase for freezing time and
570  erratic movement ratio.

Freezing Time Erratic Movement
Fp.np Fep.n
Within-Subjects Effects (4 - 3, 165

Tria 3.42 (019, 06) 1.35 (261
Trial*Strain 0.18 (104 0.21 (8o2)
Trial*Sex 1.18 (a9 0.80 (495)

Trial* Treatment 71.31 (12610, 57) 2.74 oz, 05)
Trial* Strain* Sex 1.49 (220) 0.69 (se0)
Tria*Strain* Treatment 3.52 (016, 06) 0.16 (921
Tria* Sex* Treatment 1.29 (a1 0.48 (69
Trial* Strain* Sex* Treatment 0.45 (720) 0.63 (600)

Between Subjects Effects 4 =1, s5)

Intercept 7.63 (008, 12) 2.50 (120)
Strain 13.20 (001, 19) 0.11 (749
Sex 14.01 (a36+10" 20) 0.62 (439
Treatment 375.76 30010, &7) 16.25 (17210 23)
Strain* Sex 0.48 (400 1.37 (a0
Strain* Treatment 0.08 (7g3) 0.01 (a19)
Sex* Treatment 10.27 (002, 16) 0.01 (937)
Strain* Sex* Treatment 3.42 (om0 0.93 (339)

571  Boldtextindicates p < 0.05
572
573
574

575
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576  Table S2. Results of repeated measures GLM for the memory recall phase for freezing time and erratic
577  movement ratio at 24h and 96h post training.

24h Erratic 96h Freezing 96h Erratic

24h Freezing Time  Movement Time Movement
Feo.nm Fep.m) Fep.m) Fep.m)
Within-Subjects Effects 4 - 1, 55)
Context 1.21 (o7 0.02 (900) 3.31 (o7 0.10 (755
Context* Strain 1.82 (519 0.63 (430) 0.10 (754 0.79 (arg)
Context* Sex 0.06 (505 0.09 (762 0.94 (33 0.42 (5
Context* Treatment 4945 por10° 49 541 (02, 09) 8.03 (007, 13) 3.54 (o)
Context* Strain* Sex 0.83 (365 0.02 (900) 0.82 (379 0.00 (963,
Context* Strain* Treatment 1.04 (19 0.82 (369 0.12 (72¢) 0.68 (413
Context* Sex* Treatment 0.89 (351 0.05 (g23) 1.79 (187) 0.67 (15
Context* Strain* Sex* Treatment 0.52 (479 0.01 (o4 0.22 (65 0.03 (&s2)
Between Subjects Effects (4 - 1, 55
I ntercept 0.07 (701 0.01 (g5 0.32 (572 0.12 (735
Strain 7.17% (010, 03) 0.78 (382 7.60 (009, .12) 0.24 (630
Sex 0.49 (49 0.06 (s02) 0.26 (613 0.76 (387)
Treatment 5131 or10” a5y 499 (0009  5LI5 @m0 4y 327 (o7
Strain* Sex 1.52 (23 0.00 (998) 1.77 (189 0.02 (8o
Strain* Treatment 3.47 (0eg) 0.65 (425 4.13 (047, 07) 0.65 (423
Sex* Treatment 6.65 (013, 11) 0.12 (729 1.11 (206 0.65 (429
Strain* Sex* Treatment 4.33 (045, 07) 0.04 (45 0.01 (909) 0.00 (g89)

578  Bold text indicates p < 0.05
579
580
581
582
583

584
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585  Figures

200 r

180 [ 1
160
140
120
100
80
60
40

Freezing Time (s)

20
0

0% 10% 50% 100%
Concentration

586

587  Figure S1. Dose response analysis of alarm substance administration on freezing behavior. For
588  pilot trials, fish were recorded for five minutes after administration of four concentrations of

589  alarm substance (DI water, 10%, 50%, 100%). Bars indicate mean + 1 standard error. * indicates
500 p<.05.
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607  Figure S2. Contextual fear conditioning protocol. On day one, animals were exposed to both the
608  conditioned and neutral contexts for 15 minutes to acclimate. On day two, fish were trained to
609  associate alarm substance exposure to the conditioned context. Training trials consisted of three
610  five minute blocks. For thefirst five minutes animals were allowed to acclimate to the arena. The
611  second five minutes were recorded as an indicator of conditioned fear, and used to measure

612  learning rate over four trials. Alarm substance was administered at the end of the conditioned

613  fear block, and the fish’s unconditioned fear response was measured for five minutes. The

614  training trial was repeated four times with 30 minutes in their home tank between trials. On days
615  three and seven, memory recall was tested by re-exposing fish to the conditioned and neutral

616  contextsfor 15 minutes each with two hours between contexts.
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Figure S3. Freezing time displayed during acclimation phase. We measured freezing time for
high stationary behavior (HSB) and low stationary behavior (LSB) fish exposed to distilled water
(DI) or alarm substance (AS). Bars represent mean + 1 standard error in the conditioned context
and neutral context. Overall, HSB fish froze significantly more than LSB fish. However, there
was no effect of context or treatment group on freezing time.
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Figure S4. Unconditioned fear response during the first learning trial. We measured freezing
time (A) and erratic movement ratio (B) for high stationary behavior (HSB) and low stationary
behavior (LSB) fish exposed to distilled water (DI) or alarm substance (AS). Bars represent
mean + 1 standard error in the conditioned context. * indicates p < .05.
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