

1 **SHORT-FORM PAPER FOR AAC**

2

3 **Implication of HisF from *Acinetobacter baumannii* in persistence during a**  
4 **pneumonia infection.**

5 Marta Martínez-Guitián<sup>†</sup>, Juan C. Vázquez-Ucha<sup>†</sup>, Laura Álvarez-Fraga<sup>†</sup>, Kelly Conde-  
6 Pérez, Juan A. Vallejo, Germán Bou, Margarita Poza\*<sup>#</sup> and Alejandro Beceiro<sup>#</sup>.

7 Servicio de Microbiología do Complexo Hospitalario Universitario da Coruña (CHUAC) -

8 Instituto de Investigación Biomédica da Coruña (INIBIC) - Centro de Investigacións

9 Científicas Avanzadas (CICA) – Universidade da Coruña (UDC), A Coruña, Spain.

10 <sup>†</sup> MM-G, JCV-U and LA-F contributed equally to this work.

11 <sup>#</sup> A.B. and M.P. contributed equally to this work.

12 \* CORRESPONDING AUTHOR: Dr. Margarita Poza

13 E-mail:

14 margarita.poza.dominguez@sergas.es

15 Address:

16 Servicio de Microbiología

17 Hospital Universitario

18 As Xubias s/n

19 15006 A Coruña, SPAIN

20

21

22 **Running title:** HisF from *A. baumannii* in murine pneumonia

23

24

25 **ABSTRACT**

26  
27  
28 The *hisF* gene from *A. baumannii* ATCC 17978 was found over-expressed during a murine  
29 pneumonia infection. A mutant strain lacking *hisF* showed its involvement in virulence during mice  
30 pneumonia as well as in host inflammatory response, where the product of HisF may act as negative  
31 regulator in the production of pro-inflammatory cytokines. This work evaluates the role of HisF in the  
32 *A. baumannii* pathogenesis and suggests its potential as a new target for antimicrobial therapies.

33  
34  
35

36 **TEXT**

37 *Acinetobacter baumannii*, included by the WHO in a list of the most important antibiotic  
38 resistant pathogens (1, 2), shows a great capacity to persist in the hospital environments  
39 developing antimicrobial resistance. There is an urgent need of finding new therapeutic  
40 targets for the design of new strategies for fighting against this bacterium.

41 The *hisF* gene of *A. baumannii* is involved in purines and histidine biosynthesis. The  
42 *hisH* and *hisF* products shape the heterodimeric protein imidazole glycerol phosphate (IGP)  
43 synthase. This heterodimeric enzyme catalyzes the transformation of the intermediate N'-(5'-  
44 phosphoribosyl)-formimino-5-aminoimidazol-4-carboxamide ribonucleotide (PRFAR) into 5'-  
45 (5-aminoimidazol-4-carboxamide) ribonucleotide (AICAR) and imidazole glycerol  
46 phosphate (ImGP), which are further used in purine and histidine biosynthesis, respectively(3-  
47 5) (Figure 1).

48 One of the products of HisF, AICAR, an analog of adenosine monophosphate (AMP), is  
49 capable of stimulating AMP-activated protein kinase (AMPK) activity. Both small molecules,  
50 AICAR monophosphate and AMP, trigger a conformational change in the AMPK complex  
51 that allows further activation by phosphorylation of Thr-172 (6). The central regulator of  
52 energy homeostasis, AMPK, is an enzyme that participates in the cellular response to  
53 metabolic stress, being considered as an important therapeutic target for controlling different  
54 human diseases (6).

55 Once activated, AMPK phosphorylates numerous metabolic enzymes causing a global  
56 inhibition of biosynthetic pathways and the activation of catabolic pathways, thus generating  
57 and conserving energy (7). It has been proven that AICAR, beyond the AMPK stimulation  
58 activity, is also able to inhibit the lipopolysaccharide-induced production of proinflammatory  
59 cytokines. The treatment with an adenosine kinase inhibitor was able to block the ability of  
60 AICAR to activate AMPK, preventing the inflammation inhibition in mice mesangial cells.

61 (8, 9). Other authors have also described the role of AICAR in the regulation of inflammation  
62 (8, 10).

63 First, an experimental model of pneumonia in mice was employed to describe the  
64 transcriptome of the *A. baumannii* ATCC 17978 strain during the course of the infection, as  
65 previously published (11). A bronchoalveolar lavage (BAL) was performed to obtain bacteria  
66 suitable for RNA extraction (*in vivo* samples). RNA extracted from bacteria grown in LB  
67 medium was used as experimental control (*in vitro* samples). All experiments were done in  
68 accordance with regulatory guidelines and standards set by the Animal Ethics Committee  
69 (CHUAC, Spain, project code P82). Total RNA was used for RNAseq analysis (Illumina,  
70 Biogune, Spain). Raw data were deposited in the GEO database under the accession code  
71 GSE100552. Gene expression profiles were determined and analyzed as previously described  
72 (11). Transcriptomic analysis revealed that the A1S\_3245 gene was over-expressed in  
73 bacteria isolated during the lung infection (7.2-fold change), compared with bacteria grown *in*  
74 *vitro*. Therefore, the aim of the present work was to study the role of this gene in the  
75 pathogenesis of *A. baumannii*.

76 Thus, the isogenic deletion derivative strain  $\Delta$ 3245 was obtained from the *A. baumannii*  
77 ATCC 17978 strain by double crossover recombination using the suicide vector pMo130, as  
78 described previously (11, 12). The upstream and downstream regions flanking the A1S\_3245  
79 gene were PCR-amplified and cloned into the vector pMo130 using the primers shown in  
80 Table S1.

81 Phenotypes of the parental and the mutant  $\Delta$ 3245 strains were compared through several *in*  
82 *vitro* assays previously described (11, 13), these including determination of biofilm,  
83 attachment to A549 human alveolar epithelial cells and motility abilities, as well as analysis  
84 of fitness and antimicrobial susceptibility (by disk diffusion assays), and no significant  
85 differences were observed (data not shown). Also, survival rates of A549 alveolar epithelial

86 cells infected with the ATCC 17978 and the mutant Δ3245 strains were analyzed finding no  
87 differences.

88 A huge epithelial surface in contact with the inspired air makes lungs particularly susceptible  
89 to infection. This implies that respiratory tract must present wide defense mechanisms, such  
90 as the anatomical barriers of the nose or the phagocytic cells of alveoli. The cytokine IL-6 is  
91 involved in the regulation of inflammatory responses during bacterial infection and high IL-6  
92 concentrations are detected in BAL fluids of patients with pneumonia (14). In murine models  
93 of pneumonia, IL-6 plays an important role in antibacterial host defense and in the regulation  
94 of the cytokine network in the lung (15). Thus, acute pulmonary inflammatory response  
95 caused by local exposure to bacterial lipopolysaccharide is regulated by inflammatory  
96 mediators such as IL-6.

97 Therefore, immunoassays were done to detect the cytokine IL-6 in macrophages RAW 264.7  
98 infected with the parental and the mutant strain (MOI of 350), analyzing cell supernatants at  
99 2, 6 and 20 h post-infection (N=5). IL-6 was measured by ELISA (16) using the Murine IL-  
100 6 ELISA Kit (Diacclone, France). Data indicated that the mutant strain produced more IL-6  
101 than the parental strain ( $p = 0.01$ ) at 2 h post-infection, disappearing this effect after 6 h post-  
102 infection, when no significant differences were found (Figure 2 A).

103 Furthermore, a pneumonia model using BALB/c mice (N=10), infected by intratracheal  
104 inoculation with 40 µL of bacterial suspensions of  $3 \times 10^9$  CFU/mL of sterile saline solution  
105 and 10% porcine mucin (wt/vol) (Sigma-Aldrich) mixed at 1:1 ratio, was also used to analyze  
106 the role of the A1S\_3245 gene in virulence. Data showed that mice infected with the mutant  
107 strain presented a significant greater survival rate than mice infected with the parental strain  
108 ( $p > 0.0001$ ) (Figure 2 B).

109 BALs were performed in a murine pneumonia, 4 and 24 h after the challenge, to determine  
110 the total leukocyte cell counts (N=7). Cells were fixed and stained with Diff-Quick Stain  
111 (Thermo-Scientific, USA). Counts were performed using a microscope (Olympus, Japan) and

112 the software Cell Sens Dimension (Olympus). Results showed *ca.* double counts of  
113 leukocytes from those lungs of mice infected with the mutant strain than in those infected  
114 with the ATCC 17978 strain ( $p > 0.001$ ) at 24 h (Figure 2 C). Murine BALs obtained at an  
115 early stage post-infection did not show differences in the amount of leukocyte counts (data  
116 not shown).

117 Other aliquots of the above mentioned BALs (N=7) were centrifuged 1000 x  $g$  for 10 min and  
118 the cell-free supernatants were stored at -20°C until use. Supernatants were used to measure  
119 IL-6 and revealed that the IL-6 concentration was higher in BALs from mice infected with the  
120 mutant than in those infected with the parental strain ( $p = 0.007$ ) at 24 h post-infection (Figure  
121 2 D). In contrast to the infection caused on macrophages, no significant differences were  
122 observed at the early stage post-infection in mice. This fact, as expected, reflects that the  
123 immune system takes longer to reoccupy and express cytokines in mice than in the case of a  
124 direct infection on macrophages.

125 In addition, a murine sepsis model (N=10), where mice were inoculated with 100  $\mu$ L of  
126 bacterial suspensions containing  $75 \times 10^7$  CFU/mL, was performed as previously described  
127 (17). Also, a *Galleria mellonella* infection model (N=10) was also carried out, where  
128 caterpillars (Bio Systems Technology, UK) were infected with  $2 \times 10^4$  CFU/larvae and  
129 virulence of the strains was evaluated analyzing the survival time, as described before (11).  
130 No changes were observed when the murine sepsis or the *G. mellonella* infection models were  
131 performed (data not shown).

132 Student's *t*-test was performed to evaluate the statistical significance of the observed  
133 differences in all assays, except in the survival assays, where the survival curves were plotted  
134 using the Kaplan-Meier method and analyzed using the log-rank test. The  $p$  values  $\leq 0.05$   
135 were considered statistically significant. All assays were performed at least by triplicate.  
136 The *hisF* gene from *A. baumannii* ATCC 17978, found as over-expressed during the course of  
137 a pneumonia infection, is involved in virulence, which places it as a new potential target for

138 antimicrobial therapies. Taking into account the data obtained here, the expression of the *hisF*  
139 gene seems to decrease the innate immunity and the inflammatory responses, which could  
140 partly explained the persistence ability of the strain in the lung.

141

142

143 **FUNDING**

144 This work has been funded by Projects PI15/00860 to GB, CP13/00226 to AB, PI11/01034 to  
145 MP and PI14/00059 and PI17/1484 to AB and MP, all integrated in the National Plan for  
146 Scientific Research, Development and Technological Innovation 2013-2016 and funded by  
147 the ISCIII - General Subdirection of Assessment and Promotion of the Research-European  
148 Regional Development Fund (FEDER) "A way of making Europe". The study was also  
149 funded by the project IN607A 2016/22 (Consellería de Cultura, Educación e Ordenación  
150 Universitaria, Xunta de Galicia) to G.B. This work was also supported by Planes Nacionales  
151 de I+D+i 2008-2011 / 2013-2016 and Instituto de Salud Carlos III, Subdirección General de  
152 Redes y Centros de Investigación Cooperativa, Ministerio de Economía y Competitividad,  
153 Spanish Network for Research in Infectious Diseases (REIPI RD12/0015/0014 and REIPI  
154 RD16/0016/006) co-financed by European Development Regional Fund "A way to achieve  
155 Europe" and operative program Intelligent Growth 2014-2020. J.C. Vazquez-Ucha was  
156 financially supported by the Miguel Servet Programme (ISCIII, Spain CP13/00226), M.  
157 Martínez-Gutián was financially supported by the Grant Clara Roy (Spanish Society of  
158 Clinical Microbiology and Infectious Diseases), J.A. Vallejo and K. Conde-Pérez by IN607A  
159 2016/22.

160

161 **TRANSPARENCY DECLARATIONS**

162 None to declare.

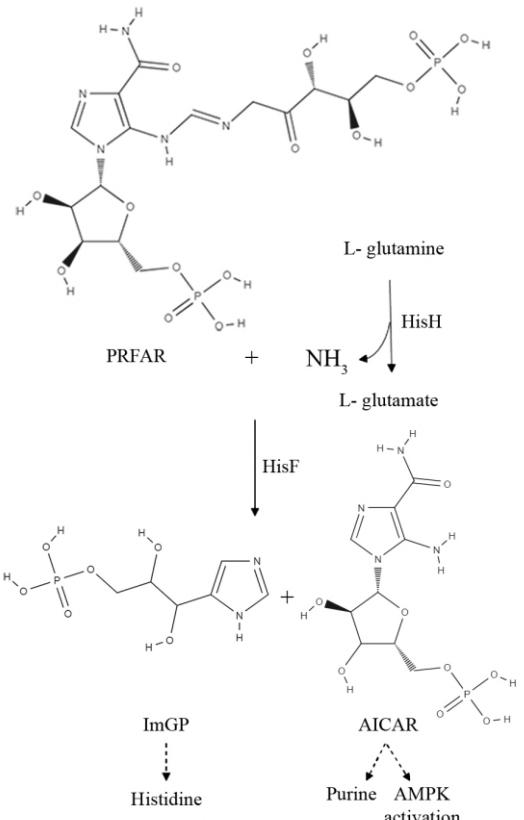
163

164

165

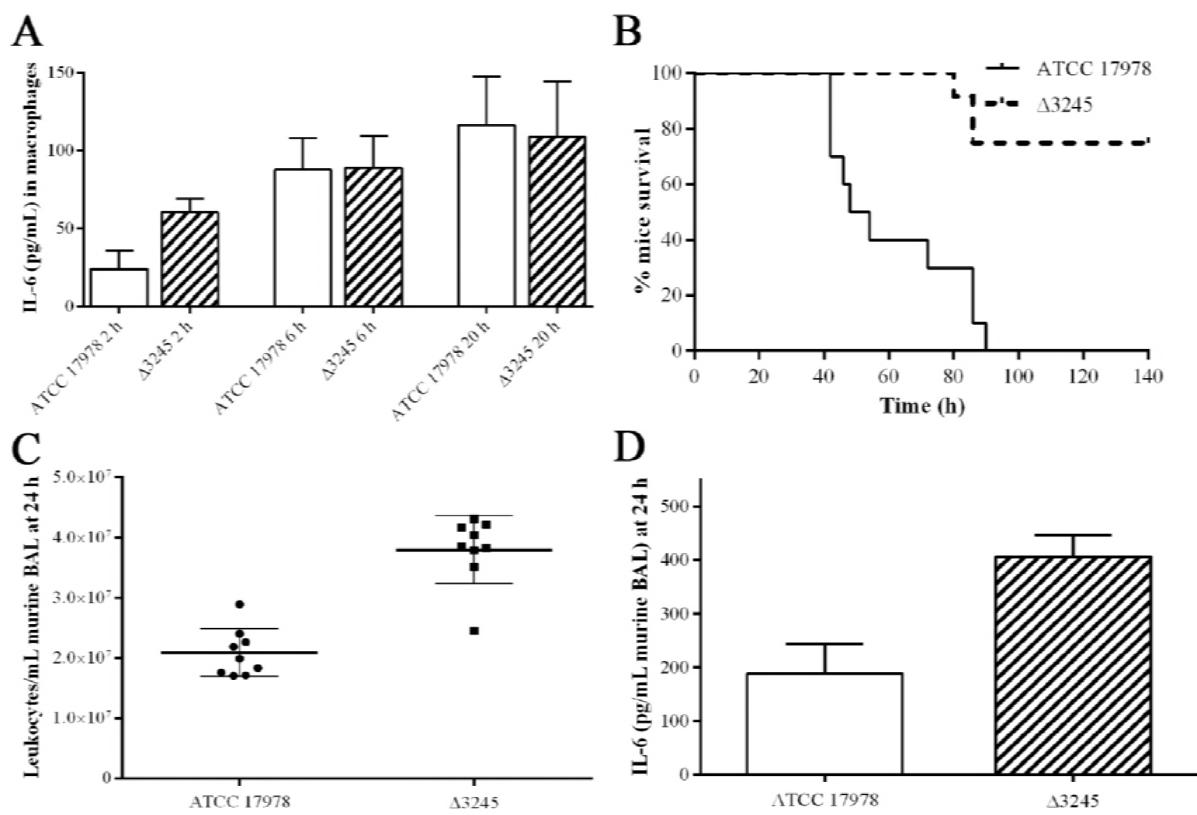
166

167


168 REFERENCES

- 169 1. Global priority list of antibiotic-resistant bacteria to guide research, discovery and  
170 development of new antibiotics. 2017. World Health Organization, Geneva, Switzerland.
- 171 2. Peleg AY, Seifert H, Paterson DL. 2008. *Acinetobacter baumannii*: emergence of a successful  
172 pathogen. *Clin Microbiol Rev.* 21(3):538-82.
- 173 3. Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, et al. 1996. Histidine  
174 biosynthetic pathway and genes: structure, regulation, and evolution. *Microbiol Rev.* 60(1):44-69.
- 175 4. Fani R, Brilli M, Fondi M, Liò P. 2007. The role of gene fusions in the evolution of metabolic  
176 pathways: the histidine biosynthesis case. *BMC Evol Biol.* 7 Suppl 2:S4.
- 177 5. Klem TJ, Davisson VJ. 1993. Imidazole glycerol phosphate synthase: the glutamine  
178 amidotransferase in histidine biosynthesis. *Biochemistry.* 32(19):5177-86.
- 179 6. Kim J, Yang G, Kim Y, Ha J. 2016. AMPK activators: mechanisms of action and  
180 physiological activities. *Exp Mol Med.* 48:e224.
- 181 7. Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, et al. 2003. AMPK as a  
182 metabolic switch in rat muscle, liver and adipose tissue after exercise. *Acta Physiol Scand.* 178(4):435-  
183 42.
- 184 8. Jhun BS, Jin Q, Oh YT, Kim SS, Kong Y, Cho YH, et al. 2004. 5-Aminoimidazole-4-  
185 carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition  
186 of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. *Biochem  
187 Biophys Res Commun.* 318(2):372-80.
- 188 9. Peairs A, Radjavi A, Davis S, Li L, Ahmed A, Giri S, et al. Activation of AMPK inhibits  
189 inflammation in MRL/lpr mouse mesangial cells. *Clin Exp Immunol.* 2009;156(3):542-51.
- 190 10. Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I. 2004. 5-aminoimidazole-4-  
191 carboxamide-1-beta-4-ribofuranoside inhibits proinflammatory response in glial cells: a possible role  
192 of AMP-activated protein kinase. *J Neurosci.* 24(2):479-87.
- 193 11. Álvarez-Fraga L, Vázquez-Ucha JC, Martínez-Guitián M, Vallejo JA, Bou G, Beceiro A, et al.  
194 2018. Pneumonia infection in mice reveals the involvement of the *feoA* gene in the pathogenesis of  
195 *Acinetobacter baumannii*. *Virulence.* 9(1):496-509.
- 196 12. Álvarez-Fraga L, Pérez A, Rumbo-Feal S, Merino M, Vallejo JA, Ohneck EJ, et al.  
197 2016. Analysis of the role of the LH92\_11085 gene of a biofilm hyper-producing *Acinetobacter  
198 baumannii* strain on biofilm formation and attachment to eukaryotic cells. *Virulence.* 7(4):443-55.
- 199 13. González-Bello C, Tizón L, Lence E, Otero JM, van Raaij MJ, Martínez-Guitián M, et al.  
200 2015. Chemical modification of a dehydratase enzyme involved in bacterial virulence by an  
201 ammonium derivative: Evidence of its Active Site Covalent Adduct. *J Am Chem Soc.* 137(29):9333-  
202 43.
- 203 14. Dehoux MS, Boutten A, Ostinelli J, Seta N, Dombret MC, Crestani B, et al. 1994.  
204 Compartmentalized cytokine production within the human lung in unilateral pneumonia. *Am J Respir  
205 Crit Care Med.* 150(3):710-6.
- 206 15. van der Poll T, Keogh CV, Guirao X, Buurman WA, Kopf M, Lowry SF. 1997. Interleukin-6  
207 gene-deficient mice show impaired defense against pneumococcal pneumonia. *J Infect  
208 Dis.* 176(2):439-44.
- 209 16. Alnahas S, Hagner S, Raifer H, Kilic A, Gasteiger G, Mutters R, et al. 2017. IL-17 and TNF-  
210  $\alpha$  are key mediators of mediators of *Moraxella catarrhalis* triggered exacerbation of allergic airway  
211 inflammation. *Front Immunol.* 8:1562.
- 212 17. Beceiro A, Moreno A, Fernández N, Vallejo JA, Aranda J, Adler B, et al. 2014. Biological  
213 cost of different mechanisms of colistin resistance and their impact on virulence in *Acinetobacter  
214 baumannii*. *Antimicrob Agents Chemother.* 58(1):518-26.

215

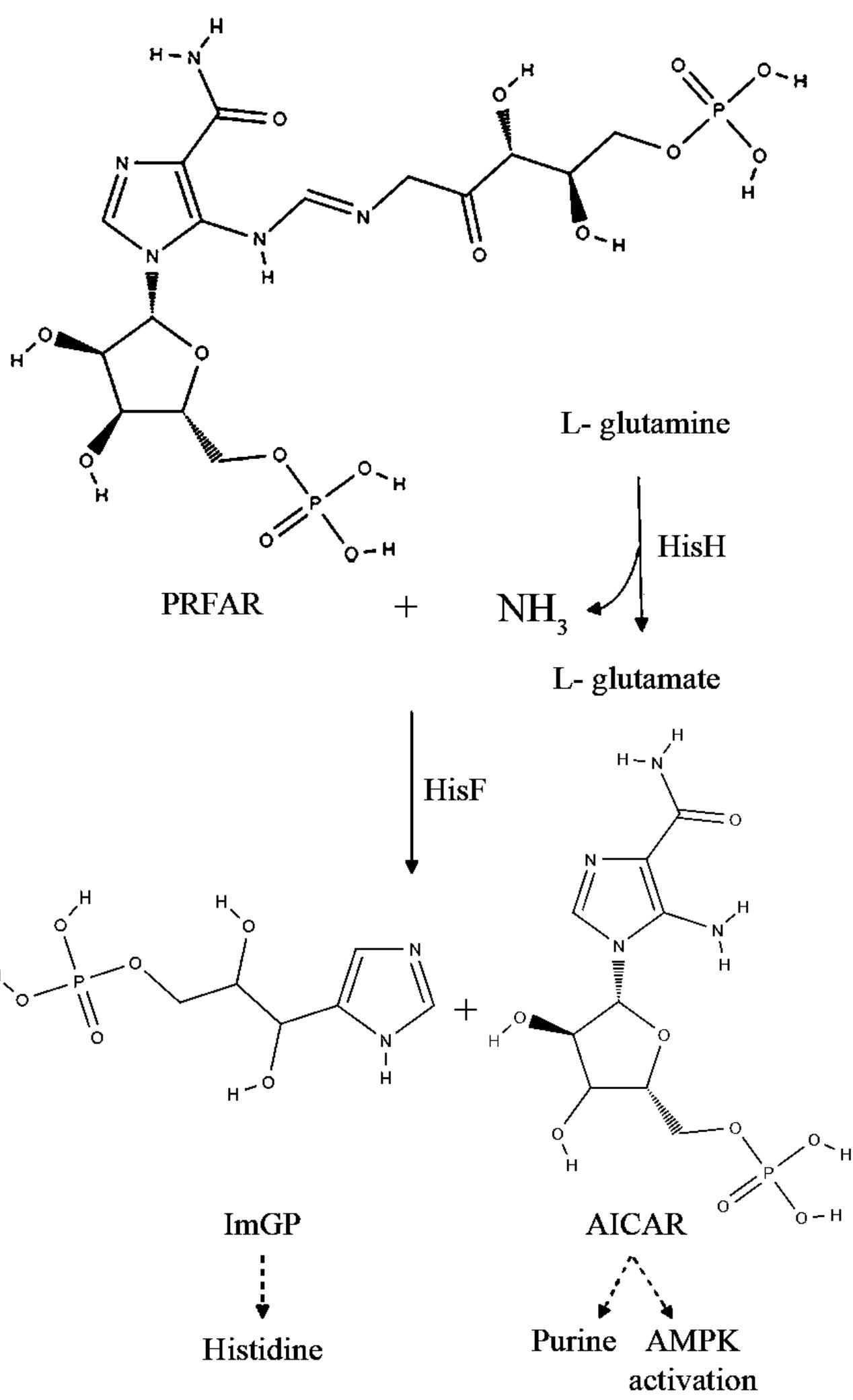

216

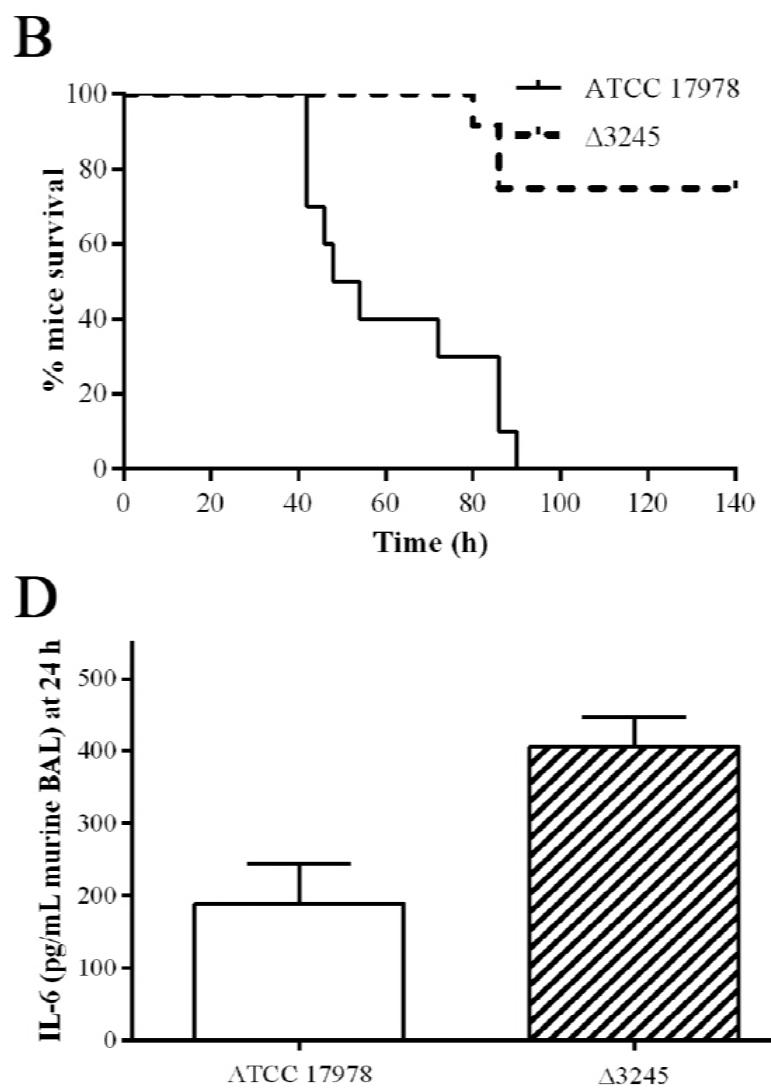
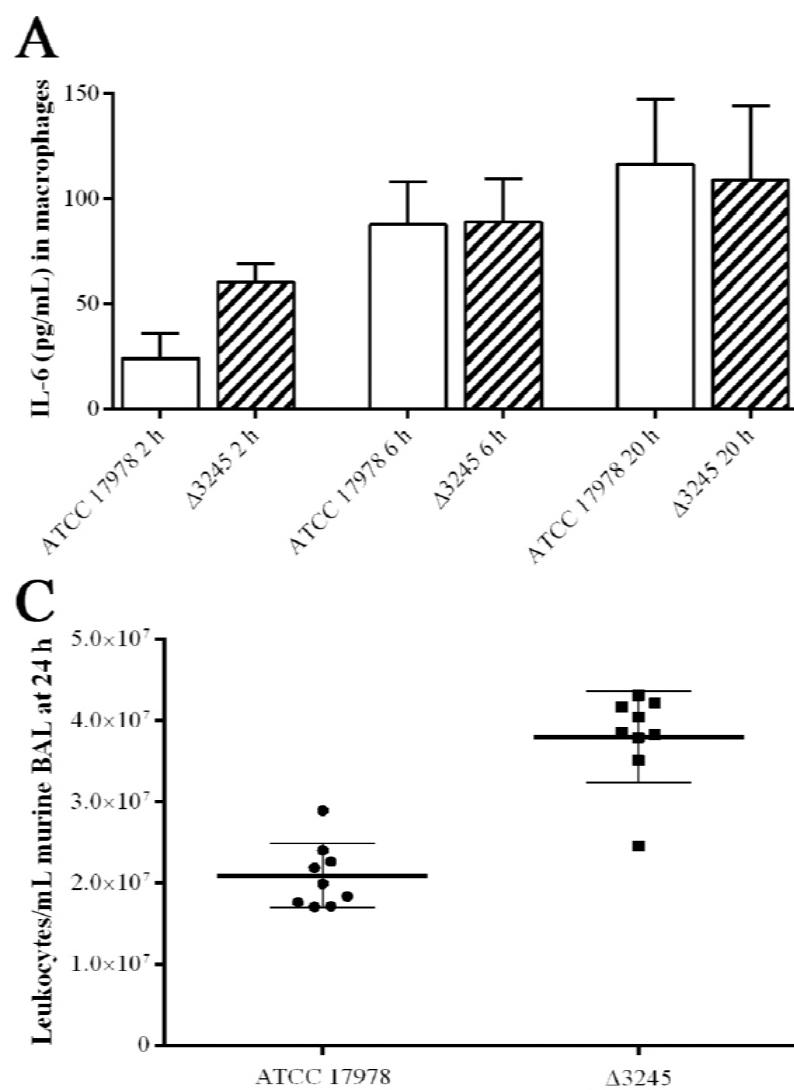
217 **FIGURES**



218

219 **Figure 1.** Reactions catalyzed by HisH and HisF. The ammonia molecule required for this reaction is  
220 provided by the glutaminase HisH which transfers nitrogen from L-glutamine to form L-glutamate.  
221 Later, PRFAR is converted by HisF into ImGP and AICAR. The second product of the reaction,  
222 AICAR, is further used in *de novo* purine biosynthesis and AMPK activation.






223

224

225

226 **Figure 2.** *In vitro* and *in vivo* assays using the parental ATCC 17978 and the mutant Δ3245 A.  
227 *baumannii* strains. A) Amount of IL-6 at 2, 6, and 20 h post-infection in the cell-free supernatant of  
228 macrophages RAW 264.7 (N=5). B) Survival rates in a murine pneumonia model (N=10). C) Total  
229 leukocytes counts in BAL from mice infected lungs (N= 7). D) Amount of IL-6 at 24 h in BAL from  
230 mice infected lungs (N=7).



