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Abstract

Here we describe the first worldwide haplotype map for soybean (GmHapMap) constructed using
whole-genome sequence data for 1,007 Glycine max accessions and yielding 15 million variants.
The number of unique haplotypes plateaued within this collection (4.3 million tag SNPs)
suggesting extensive coverage of diversity within the cultivated germplasm. We imputed
GmHapMap variants onto 21,618 previously genotyped (50K array/210K GBS) accessions with
up to 96% success for common alleles. A GWAS performed with imputed data enabled us to
identify a causal SNP residing in the NPC1 gene and to demonstrate its role in controlling seed
oil content. We identified 405,101 haplotypes for the 55,589 genes and show that such haplotypes
can help define alleles. Finally, we predicted 18,031 putative loss-of-function (LOF) mutations in
10,662 genes and illustrate how such a resource can be used to explore gene function. The

GmHapMap provides a unique worldwide resource for soybean genomics and breeding.
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Introduction

Soybean (Glycine max [L.] Merr.) is a unique crop with substantial economic value. It is the
largest plant source of both animal feed protein and edible oil. It also plays a key role in
sustainable agriculture as it fixes atmospheric nitrogen with the help of microorganisms
(Hymowitz 1970). Diverse evolutionary processes and forces (including cycles of polyploidization
and subsequent diploidization), along with domestication and modern breeding have shaped the
soybean genome (Schmutz et al. 2010). The detection of the molecular footprints of these processes
is essential for understanding how genetic diversity is generated and maintained and for identifying

allelic variants responsible for phenotypic variation (Torkamaneh et al. 2018).

The global production of soybean has increased substantially in recent years (Supplementary
Figure 1), but the rate of annual yield gains has lagged behind that of maize (FAOSTAT
Database). In addition, with increased fluctuations in climatic conditions, next-generation soybean
cultivars must not only be higher yielding but also more resilient to multiple abiotic and biotic
stresses (Djanaguiraman et al. 2018). In the main soybean-growing areas of the world, soybean is
an introduced crop and the foundational germplasm was very limited in its genetic diversity (Hyten
et al. 2006; Maldonado dos Santos 2016). Continued genetic improvement in soybeans will require
a better understanding of the genetic and especially allelic diversity within worldwide resources

(Qiu et al. 2013).

Here we present the first haplotype map for soybean (GmHapMap) assembled from DNA
resequencing data for a collection of 1,007 worldwide G. max accessions. We explore the use
of this GmHapMap for (i) imputation of untyped variants to create high density genotype data
required for gene-level resolution of genomewide association studies (GWAS); (ii) construction

of gene-centric haplotypes (GCHSs) for the entire set of soybean genes; and (iii) identification
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of 11K knock-out genes due to loss-of-function (LOF) mutations. The GmHapMap provides a

unique resource for translational and functional genomics for the worldwide soybean community.

Results

Development of GmHapMap

Genomic variation

To establish a first worldwide haplotype map for soybean (GmHapMap), a total of 1,007
resequenced soybean accessions, representative of the worldwide cultivated germplasm, were used
(Figure 1A). These accessions span thirteen maturity groups (MGs) (000-X) based on their
latitudinal adaptation. This collection includes 727 previously resequenced accessions, as well as
280 accessions sequenced as part of this study which were selected to achieve a more complete
coverage of soybean worldwide diversity. Genome sequencing, analyses, and accession
information for GmHapMap accessions are summarized in a Supplementary Note and

Supplementary data 1.

In total, 165 billion paired-end reads (100-150 bp; total of 19.2 trillion bp) provided an average
depth of coverage of more than 15% and these were analyzed using a single pipeline (Fast-WGS)
to ensure uniform variant calling. After mapping against the soybean reference genome (cv.
Williams 82 va2.v1) (Schmutz et al. 2010), we identified 14,872,592 nucleotide variants (Table
1), including 13M single- and multiple-nucleotide variants (SNVs and MNVs) and 2M small
insertions/deletions (InDels) (-50 bp to +32 bp). Approximately 45% of these were rare (minor
allele frequency (MAF) < 5%) (Supplementary Figure 2). Coding regions represent ~6% of the

soybean genome, but only ~2.3% of the total nucleotide variants were present in these regions
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(Table 1) with an average non-synonymous/synonymous ratio of 1.49. Nucleotide variants were
2-fold more abundant in coding regions compared to InDels, however InDels were overrepresented
in the regulatory regions. Missing data comprised less than 8% of the data, and these were
subsequently imputed with high accuracy (r? = 99.7%). Using independent genotyping data (SNP
array and dbSNP database), we estimated the false-positive rates of nucleotide variants to be
~0.03%. This constitutes an extensive and highly accurate set of foundational data for a soybean

haplotype map.

Table 1. Type, number and location of nucleotide variants in GmHapMap.

Statistics Location (%)
Types Count CDS*  Intron  UTRfY Splice Up/Down Intergenic
sites stream
SNV 12,197,920 2.5 8.5 1.6 0.2 44.8 42.4
MNV 801,373 2.3 6.9 1.0 0.1 44.6 45.1
INS 887,485 0.9 10.2 2.7 0.2 54.3 31.6
DEL 985,814 1.0 10.1 2.3 0.3 53.0 33.2
Total 14,872,592 2.8 8.6 1.7 0.2 45.9 41.7

*Coding DNA sequence; TUntranslated region; # 5 kb before or after a gene

Extensiveness of GmHapMap

The extensiveness of the GmHapMap was measured based on nucleotide diversity and haplotype
diversity. Previously, the SoySNP50K array has been used to genotype the entire USDA soybean
germplasm collection (20,087 accessions of G. max and G. soja) (Song et al. 2013). We found that
GmHapMap includes nearly all polymorphisms (99.4%) with a MAF > 1%, as well as ~89% of

rare SNPs (MAF < 1%) documented within these G. max accessions. Haplotype diversity
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(pairwise LD using both r? and D*) was calculated for sequence variants and the average distance
over which LD decayed to 0.2 was ~138 kb (Supplementary Figure 3). We identified 4.3 million
haplotype-based tag SNPs and, to determine if a good level of saturation of both variants and
haplotypes had been achieved, we randomly selected subsets of samples of increasing size (N=100,
200, ..., and 1,007). As illustrated in Figure 1B, the number of variants discovered did not increase
significantly beyond ~750 accessions, while the number of haplotypes reached a plateau much
faster (within the first ~500-600 accessions). Together, these results suggest that the GmHapMap
dataset offers an exhaustive characterization of the variants and haplotypes present in soybean

germplasm.

Genetic diversity and artificial selection

Bayesian clustering (STRUCTURE) of GmHapMap accessions using whole-genome SNP data
revealed 12 subpopulations (Supplementary Note & Supplementary Figure 4). We explored the
phylogenetic relationships among GmHapMap accessions by constructing an un-rooted neighbor-
joining tree. As can be seen in Figure 1C, the grouping of accessions reflected geographic origin
with some admixture (Figure 1C and Supplementary Figure 5). Genomewide genetic diversity
(0x) analysis showed a consistent level of genetic diversity (mean of 6, = 1.36 x 1073, ranging
between 1.19 x 102 to 1.72 x 107?) in different soybean populations (Figure 1A). Nucleotide
diversity was plotted for the 20 chromosomes and found to be highest in the terminal regions of
chromosomes (Supplementary Figure 6). Extensive peri-centromeric regions were very low in
genetic diversity but chromosomes Chrl3 and Chrl7 maintained higher diversity across these
regions. Genic regions showed even lower levels of diversity (mean 6, = 7.1 x 10%) and

exceptionally low diversity was seen within 527 genomic regions (including 540 genes; mean 0,
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Phasing, identity-by-descent, and large-scale imputation of untyped variants

The GmHapMap dataset captures substantial amounts of identity-by-descent (IBD) allele sharing
which allows a rule-based approach to long-range phasing that yields very accurate haplotypes.
Using long-range phasing, we found 95 blocks of IBD larger than 1 Mb in size (Supplementary
data 3). The determination of haplotype phase is important because of its applications such as the
imputation of untyped variants. Imputation of untyped variants greatly boosts variant density,
allowing fine-mapping studies of GWAS loci and large-scale meta-analysis. We created two
reference panels: REF-1 comprising all SNPs and REF-11 containing 1.9M haplotype-based tag
SNPs that reside in genic regions. Three lower density genotype datasets, SoySNP50K (20,087
accessions genotyped with 43K SNPs), genotyping-by-sequencing (GBS; 1,531 accessions
genotyped with 210K SNPs), and combined GBS/SoySNP50K (1,531 accessions genotyped with
250K SNPs) were used for untyped variant imputation with each of the two reference panels. In
all but one case, the accuracy (squared correlation (R?) between imputed and known genotypes,
see M&M for details) ranged between 92% and 96% for common variants (allele frequency (AF)
> 0.2) in each dataset, while decreasing gradually with allele frequency (Figure 2A). In the case
of the SoySNP50K dataset using REF-I, the accuracy of imputed untyped variants was
significantly lower (80-85% for common alleles). Given the observed variation in the accuracy of
imputation using different reference panels and datasets, we investigated the causes of erroneous
inferred calls. Several characteristics were tied to inaccurately imputed SNPs: these were
commonly rare variants (low AF), located in recombination hot spots, in short LD blocks or in
genomic regions with structural variants. Furthermore, the initial marker density in the
experimentally-derived dataset had a large impact on imputation accuracy. GBS and SNP array

datasets are two highly complementary marker datasets because most (~90%) of the SoySNP50K
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markers are present in genic regions, while most of the GBS markers (~60%) are present in
intergenic regions (Supplementary Figure 8 & 9). Therefore, combining GBS and SoySNP50K
datasets (Supplementary Note) increases the density and uniformity of distribution of SNPs
across the genome. The joint use of such commonly available SNP data increased the level of

accuracy of imputation of untyped variants (Figure 2A).

To demonstrate the benefits of untyped-variant imputation on GWAS analysis, the imputation was
performed on a 1Mb-region harbouring a QTL previously identified for seed oil content on
chromosome 14. We used the REF-II panel to perform imputation on an initial dataset of 64K
GBS-derived SNPs (genomewide) among 139 soybean lines that had been characterized for their
seed oil content (Sonah et al. 2015). Using this enhanced SNP catalog and a multi-locus mixed-
model implementation, a very strong association (p-value = 4.2x10%* and g-value < 0.001) with a
SNP residing in the NPC1 (Niemann-Pick C1) gene (Glyma.14g001500) (Figure 2B) was
detected. An Arabidopsis mutant of this gene (npcl) exhibits a 58% higher fatty acid content
(Feldman et al. 2015) making this gene a likely candidate contributing to total oil content in
soybean. This demonstrates that the increased number of informative SNP loci, obtained through
the imputation of untyped variants, can prove highly beneficial in studying the genetic architecture

of complex agronomic traits in soybean.
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Figure 2. (a) Imputation accuracy as a function of allele frequency for 6 different scenarios; three
different experimentally derived genotype datasets (SoySNP50K, GBS, and GBS/SoySNP50K)
and two reference panels (REF-1 and REF-I11). (b) Top, association analysis for seed oil content on
chromosome 14. Blue dots represent imputed variants whereas red dots identify the original GBS-
derived variants. NPC1 (Niemann-Pick C1) is an orthologue of an Arabidopsis gene known to play
a key role in fatty acid synthesis. Bottom, schematic representation of strongly associated variants
in the vicinity of the NPC1. The nearest significantly associated GBS-derived variant (red line) is

located 100 kb upstream and exhibits a relatively low degree of LD (r> = 0.5).

Gene-centric haplotypes: a resource for translational genomics

HaplotypeMiner (Tardivel et al. unpublished) and the GmHapMap SNP dataset were used to
identify 405,101 gene-centric haplotypes (GCHSs) for 52,823 genes (94.5% of all soybean genes
(55,589)). As can be seen in Figure 3A, the number of GCHs per gene ranged between 2 and 43,
while averaging ~7 (Supplementary Figure 10, and Supplementary data 4). GCHs could not
be determined (ND) for 2,766 genes with the set of parameters used here. In total, 11,407 genes
had more than 10 GCHs with 71% (8,082 genes) of these harboring 11-15 GCHSs. Such genes were
typically located in very short LD blocks with a high degree of nucleotide diversity (mean 6, = 4.5
x 10%) (Supplementary Figure 11). A slight negative correlation was observed between gene
length and the number of GCHs. However, we found a positive correlation between GCH counts
and haplotype size (distance between two most distant SNPs defining a GCH) (Supplementary

Figure 12). An example of GCHs for the GmGla (Glyma.10g221500) gene (E2 locus controlling

11
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maturity) (Watanabe et al. 2012; Tsubokura et al. 2014), an orthologue of the arabidopsis

GIGANTEA (GI) gene, is presented in Figure 3B. We found three GCHs for GmGla, which is

consistent with the number of alleles that have been previously reported for this gene. Knowledge

of the GCHs (and possibly alleles) in all soybean genes can greatly facilitate the establishment of

a functional link between the various alleles of a gene and the associated phenotype.

Number of genes
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Figure 3. Description of GCHs characterized in GmHapMap dataset. (a) Distribution of number

of genes based on their predicted GCHs. (b) Schematic representation of predicted GCHs for

GmGla.
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LOF Mutations: a resource for functional genomics

Using SnpEff, a subset of variants located inside the coding regions were predicted to have a large
functional impact. Of these variants, 18,031 putative loss-of-function (LOF) mutations are
predicted to severely impair protein synthesis or function through disruption of splicing,
introduction of a premature stop codon, shifts in the coding frame and alterations to the start/stop
codons (MacArthur et al. 2012) and these were identified in a total of 10,662 genes (19.3% of all
soybean genes) (Table 2). These mutations are the result of 5,987 SNVs (33.2%), 279 MNVs
(1.5%) and 11,765 InDels (65.3%). Frameshift-inducing variants (10,754) were the predominant
category, representing 59.6% of LOF mutations and affecting 6,718 genes. InDels (ranging from
-50 bp to +32 bp) were, understandably, over-represented (4-fold) in the LOF category due to their
high probability of resulting in a LOF allele. Overall, most of the LOF mutations were present at
low frequency, with 78% having an allele frequency below 10% (Supplementary Figure 13).
Genes harboring LOF one or more mutations were categorized into two groups: unique and multi-
copy. We reasoned that a LOF mutation in a unique gene would necessarily result in phenotypic
consequences. We found that only 706 (6.6%) of genes were single-copy genes, while the
remaining 9,957 (93.4%) had at least one other copy. This constitutes a significant enrichment (P
< 0.001) compared to the genomewide occurrence of gene duplication. LOF mutations in
duplicated genes could also have functional consequences if the mutated copy was uniquely
expressed as a consequence of neo- or sub-functionalization (Roulin et al. 2013). We assessed this
by examining transcriptomic data from 26 tissues and found that 9,570 of the 9,957 duplicated
genes (96%) exhibited a unique expression pattern (Supplementary Note, Supplementary data
5 & Supplementary Figure 14). Thus, despite the fact that the vast majority of LOF mutations

occur in genes for which there is more than one copy, a large proportion of these genes exhibit

13


https://doi.org/10.1101/534578
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/534578; this version posted January 29, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

1 unique expression patterns, thus making it possible that a LOF will result in a detectable

N

phenotype.

4  Table 2. Number of loss-of-function variants by sequence ontology (SO).

SO term SN\ MNV INS  DEL 0B Genes
variants
Splice site-disrupting (donor) 1,270 38 247 205 1,760 1,640
Splice site-disrupting (acceptor) 1,546 52 207 146 1,951 1,803
Stop codon-introducing 2,826 149 100 7 3,082 2,418
Frameshift-inducing 0 0 4,158 6,596 10,754 6,718
Start/Stop codon-disrupting 345 40 54 45 484 452
Total 5,987 279 4,766 6,999 18,031 13,031
Total number of genes affected by LOF variants* 10,662

10
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12

13

14

15

16

17

18

* Some of the genes were affected with more than one LOF mutation, therefore the total number
of genes is lower than the sum of the all genes.

To assess the quality of this catalogue of mutations, we first inspected it for genes already known
(i.e. functionally validated) to harbor an LOF mutation. This is indeed the case, all known genes
in the literature were found within the catalogue (Supplementary data 6). Then we investigated
and confirmed the phenotypic impact of some of these LOF mutations in GmHapMap accessions
(Figure 4). A frameshift mutation (frequency=0.003) in the microsomal omega-3 fatty acid
desaturase (FAD3A), a key gene for linolenic acid synthesis in soybean seeds (Reinprecht & Pauls
2016), was found in three accessions. Near-infrared spectroscopy (NIRS) analysis of four soybean
lines (two with and without this LOF mutation) showed a significant (P < 0.01) decrease in
linolenic acid content in the mutant lines (4%) compared to the wild type (10%) (Figure 4A). A
mutation (f=0.005) in Glyma.04G050200, the gene underlying the J locus controlling the Long

Juvenile trait (Lu et al. 2017), resulted in a significant difference (P < 0.01) in grain weight per

14
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1 plant (8g in the mutant compared to 25g in the wild type) (Figure 4B). The introduction of a
2 premature stop codon (f=0.02) due to a SNV in GmGla/E2 (Watanabe et al. 2012) significantly (P
3 < 0.01) reduced the number of days from emergence to the appearance of the first open flower
4  (DAE) (from 125 in wild-type lines to 95 in the mutant) (Figure 4C). Finally, a SNV (f=0.009)
5  resulted in the disruption of splicing in the gene coding for the 3-ketoacyl-ACP synthase Il (KASII)
6  enzyme, a key gene in the oil biosynthesis pathway (Goettel et al. 2016). NIRS analysis of palmitic
7 acid levels showed a significant (P < 0.05) decrease in the mutant lines (9%) compared to the wild
8  type (12%) (Figure 4D). The development of a catalogue of LOF mutations represents a valuable

9  resource for functional genomics.
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Figure 4. Phenotypic variation observed between accessions with (blue) and without (red) a
predicted LOF mutation in four different genes. (a) FAD3A, a key gene for linolenic acid synthesis;
(b) GmJ, a key gene of Long Juvenile trait; (c) GmGla, a key gene controlling maturity; (d),

KASIla, a key gene in the oil biosynthesis pathway.

Discussion

Using whole-genome sequencing data from a large collection of 1,007 soybean accessions, we
developed the first haplotype map of soybean (GmHapMap), a valuable resource for soybean
genetic studies and breeding. A first challenge was to create a uniform and accurate catalogue of
nucleotide variation using a common version of the reference genome and a single bioinformatics
pipeline (Lek et al. 2016). The GmHapMap produced here is not only uniform but also it achieved
higher levels of genotype accuracy (>98%) compared to previous studies (92-97%) (Hwang et al.
2015). To create a representative haplotype map, a good level of saturation of both variants and
haplotypes is required. Close to 15M sequence variants (SNVs, MNVs, and Indels) were called
that captured nearly all polymorphisms with MAF > 1% in the USDA G. max germplasm
collection (Song et al. 2013). The number of sequence variants did not increase significantly
beyond the first 600 accessions, suggesting that a collection of this size has succeeded in capturing
a sizeable fraction of worldwide nucleotide variation within cultivated soybean. Similarly, the
number of unique haplotypes (4.3M tag SNPs) also plateaued relatively early within this collection
of soybean germplasm. Together, these data suggest that the 15M variants captured in GmHapMap
are both highly accurate and comprehensive of the genetic diversity within cultivated soybean at

a worldwide level.
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GmHapMap brings more resolution to the within-species diversity of G. max. A lower level of
genomewide genetic diversity was observed here in soybean (mean 6, = 1.36 x 10) compared to
other major crops such as rice (0 = 2.29 x 10~%) (Caicedo et al. 2007) and corn (6x = 6.6 x 1073) (
Gore et al. 2009). It is presumed that several genetic bottlenecks, as well as strong selection
pressure have reduced genetic diversity in soybean (Hyten et al. 2006). In addition, modern
soybean breeding is founded on a very limited number of the founder accessions (Hymowitz et al.
1983). We also noticed an average Nonsyn/Syn ratio of 1.49, which is higher than that reported in
other plants (sorghum (1.0), rice (1.2) and Arabidopsis (0.83) (Clark et al. 2007; McNally et al.
2009; Wang et al. 2015)). The greater accumulation of deleterious mutations in the soybean
genome could be attributed to (1) a reduced effective population size (Makino et al. 2018); (2) a
higher level of LD and the resulting ‘hitchhiking’ effect (Stephan et al. 2008); and (3) the

domestication-associated Hill-Robertson effect (Lu et al. 2006).

The GmHapMap was used as a reference panel and more than 21K accessions that had been
previously genotyped using common approaches (SNP array and/or GBS) and obtained an
imputation accuracy of 92-96% for common variants and ~80% for rare variants. The accuracy
levels, obtained here, are comparable to the 98% reported by Bukowski et al. (2018) in maize
(Bukowski et al. 2018). The success of untyped-genotype imputation depends critically on how
well a reference panel has captured the relevant haplotype diversity, as well as the marker density
of the experimental dataset (Browning & Browning 2016). Here we document that GmHapMap
provides an extensive capture of SNP and haplotype diversity within cultivated soybeans
worldwide. It is likely that the lower imputation accuracy observed for the SNP array dataset can

be attributed to the relatively low marker density of this dataset.
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Enhanced datasets resulting from large-scale imputation can improve the efficacy of GWAS
analysis (Hao et al. 2009; Marchini & Howie 2010). To illustrate the benefits of the GmHapMap
resource for GWAS, we performed an association analysis on soybean seed oil content using
imputed SNPs. A strong association with an imputed SNP residing in the NPC1 gene was detected
and its orthologue in Arabidopsis is known to contribute to seed oil content (Feldman et al. 2015).
Several studies in human (Li et al. 2009), cattle (Santana et al. 2014), pig (Yan et al. 2017), maize
(Yang et al. 2014) and rice (Wang et al. 2018) have demonstrated the capacity of imputation to
improve the power of GWAS analysis. In the coming years, we expect that soybean researchers
will deploy GmHapMap for imputation and more precise dissection of the genetic basis of complex

traits in soybean.

This is the first time that a comprehensive description of GCHs, for the complete set of genes
(55,589), has been achieved for a species. This catalogue of GCHs was obtained using
HaplotypeMiner (Tardivel et al. unpublished). Tardivel et al. reported that HaplotypeMiner
allowed the identification of SNP haplotypes for which 97.3% of lines sharing a same haplotype
were correctly identified as having the same allele (Tardivel et al. unpublished). It has been well
documented that haplotypes are more informative than single biallelic SNPs (Stephens et al. 2001).
Knowledge of the GCHs (and possibly alleles) can greatly facilitate the establishment of a
functional link between the various alleles of a gene and the associated phenotype. Haplotype-
phenotype association revealed the functional alleles of several genes in wheat (Jiang et al. 2015),
maize (Yang et al. 2013), rice (Si et al. 2016) and soybean (Langewisch et al. 2014). Knowledge
of the alleles present at one or many genes can be tremendously important to breeders. Epistatic

interactions between specific alleles as well as the effects of alleles at neighboring loci (carried
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along via linkage drag) can be very important when considering which combinations of alleles will

be most desirable to achieve a given phenotype.

A final aspect of this work is that the identification of LOF mutations in soybean protein-coding
genes. GmHapMap includes a set of nearly 11K knocked-out genes. We recognized that this
catalogue of knocked-out genes is highly advantageous for soybean functional genomics for

investigation of gene function, and application as genetic makers in soybean breeding programs.

The next challenge will be to link genetic variation, GCHs, and LOFs derived from GmHapMap
with agronomic traits. This will need an extensive effort to measure phenotypes under multiple
field and laboratory conditions. We believe that GmHapMap will lead and accelerate the soybean

breeding efforts and future sustainable agriculture.
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Methods

GmHapMap sequencing data

Two collections of soybeans were used: a first set of 727 accessions for which whole-genome
sequencing had been previously released (Zhou et al. 2015; Maldonado dos Santos et al. 2016;
Valliyodan et al.2016; Fang et al. 2017; Song et al. 2017; Torkamaneh et al. 2017) and a second
set of 280 accession which were sequenced in this study. These were chosen to provide a more
balanced representation of various soybean growing areas in the world. Seeds were planted in
individual two-inch pots containing a single Jiffy peat pellet (Gérard Bourbeau & fils inc. Quebec,
Canada). First trifoliate leaves from 12-day-old plants were harvested and immediately frozen in
liquid nitrogen. Frozen leaf tissue was ground using a Qiagen TissueLyser. DNA was extracted
from approximately 100 mg of ground tissue using the Qiagen Plant DNeasy Mini Kit according
to the manufacturer’s protocol. DNA was quantified on a NanoDrop spectrophotometer. Illumina
Paired-End libraries were constructed for 280 accessions using the KAPA Hyper Prep Kit (Kapa
Biosystems, Wilmington, Massachusetts, USA) following the manufacturer’s instructions
(KR0961 — v5.16). Samples were sequenced on an Illumina HiSeq X10 platform at the McGill

University-Génome Québec Innovation Center in Montreal, QC, Canada.

Nucleotide variants identification

Sequencing reads from all 1,007 accessions were processed using the same analytical
bioinformatics pipeline (Fast-WGS) (Torkamaneh et al. 2017) to create a uniform catalogue of
genetic variants. In brief, the 100-150-bp paired-end reads were mapped against the G. max

reference genome [Gmax_275 (Wm82.a2)] (Schmutz et al. 2010). Then we removed variants if:
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1) they had more than two alleles, 2) an allele was not supported by reads on both strands, 3) the
overall quality (QUAL) score was <32, 4) the mapping quality (MQ) score was <30, 5) read depth

(minNR) was <2 and 6) the minor allele frequency (MinMAF) was <0.0009.

Determining the accuracy of nucleotide variants

The SoySNP50K iSelect BeadChip has been used to genotype the entire USDA soybean
germplasm collection (Song et al. 2013). The complete dataset for 20,087 G. max and G. soja
accessions genotyped with 42,508 SNPs was downloaded from Soybase (Grant et al. 2010). Of
these accessions, we randomly selected 50 accessions which were in common with the
GmHapMap collection. For these 50 accessions, we extracted their genotype calls at all SNP loci
for which data were available. This large set of SoySNP50K genotype calls (2,125,400 genotypes
or data points) was directly compared with the WGS-derived SNP calls (obtained using the Fast-

WGS pipeline) to assess genotype accuracy.

Determining the effects of nucleotide variants

The functional impact of nucleotide variants was performed using the soybean genome using
SnpEff and SnpSift (Cingolani et al. 2012). Based on the genome annotation, nucleotide variants
were categorized on the basis of their location (exonic, intronic, splice sites, UTR (3 & 5 prime),
upstream and downstream regions (within 5kb of a gene), and intergenic) and their predicted
functional impact (missense, nonsense, and silent). To determine LOF mutation, a database was
built using 55K soybean protein-coding genes (Gmax 275 Wm82.a2.v1.gene.gff3, from

Phytozome on Jan. 2016) for SnpEff. The LOF variants were extracted from the SnpEff-annotated
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VCF file using grep command lines. Variants were mapped on to transcripts annotated as
“protein_coding” and containing an annotated “START” codon, and then classified as
synonymous, missense, nonsense (stop codon-introducing, start/stop codon-disrupting or splice
site-disrupting (canonical splice sites)). In this work, we excluded transcripts labelled as NMD
(predicted to be subject to nonsense-mediated mRNA decay). We also applied another filtering
step, based on annotation, to identify high-confidence knocked-out genes. The genes with LOF
mutations were removed if (i) the ‘REF’ field in the input VCF file did not match the reference

genome, (ii) they had an incomplete transcript, or (iii) they did not have a proper START codon.

Population structure and genetic diversity

Structure

Population structure was estimated using a variational Bayesian inference implemented in
fastSTRUCTURE (Raj et al. 2014). Five runs were performed for each number of populations (K)
set from 1 to 15 using genomewide SNP data. The most likely K value was determined by the log
probability of the data (LnP(D)) and delta K, based on the rate of change in LnP(D) between
successive K values. Similar analyses were performed separately for all 20 chromosomes of

soybean.

Genetic relationship

The evolutionary history was inferred using the Neighbor-Joining method (Saitou & Nei 1987)
(rooted and unrooted) with the 12M genomewide SNPs identified in this study. The taxa were
clustered together using bootstrap test (1,000 replicates) (Felsenstein 1985). The tree was drawn

to scale, with branch lengths (next to the branches) in the same units as those of the evolutionary
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distances used to infer the phylogenetic tree. The evolutionary distances were computed using the
Maximum Composite Likelihood method (Tamura et al. 2004) and the units correspond to the
number of base substitutions per site. Evolutionary analyses were conducted in MEGA7 (Kumar

et al. 2016).

Genetic diversity

We measured the nucleotide diversity () in sliding windows of 1000 bp across the genome using
VCFtools (Danecek et al. 2011). The average pairwise divergence within a subpopulation (67) was
estimated for the whole genome among different subpopulations. Sliding windows of different
sizes (1 kb, 7kb, 10 kb and 100 kb) that had a 90% overlap between adjacent windows were used
to estimate On for both whole genome and each chromosome. To display the pattern in each

chromosome, a window of 100 kb was used.

Linkage disequilibrium and tag SNP identification

Genomewide pairwise linkage disequilibrium (LD) analysis (r?> and D*) was performed using all
nucleotide variants from the GmHapMap dataset. The average r? value was calculated for each
length of distance (<1000 bp), and LD decay calculated using PopLDdecay (Zhang et al. 2018).
For tag SNP selection, we used PLINK (Purcell et al. 2007) to calculate LD between each pair of
SNPs within a sliding window of 50 SNPs and we removed all but one SNP that were in perfect

LD (LD = 1); the remaining SNPs were deemed tag SNPs.

23


https://doi.org/10.1101/534578
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/534578; this version posted January 29, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

21

22

aCC-BY 4.0 International license.

Phasing, identification of identity by descent (IBD) and imputation

The IBD analysis was conducted using BEAGLE v4.1 (Browning & Browning 2016). In brief, to
identify IBD segments, the genotypic dataset was phased using BEAGLE with 50 iterations for
each chromosome. The output of these calculations was a Series of “putative” IBD segments shared
between pairs of individuals. Each segment comes with the following information attached: IDs
for the pair of individuals, start and end position of the IBD segment, and probability score (LOD

score). We filtered these segments using LOD score and the length of IBD.

Imputation of untyped variants

We used two reference panels for untyped-variant imputation. The ‘REF-I’ panel includes 1,006
accessions from GmHapMap with the entire SNP dataset, while the ‘REF-II" panel includes 1,006
accessions and only 1.9M tag SNPs from genic regions (tag SNPs in genic regions or within 2kb
of a gene). These two reference panels were created for all 20 chromosomes of soybean and were

phased using BEAGLE v4.1 (Browning & Browning 2016) with 100 iterations.

As initial lower density datasets, we used three collections of soybean accessions genotyped with
commonly used genotyping tools. A first set of 20,087 accessions (the entire USDA Soybean
Germplasm Collection) had been characterized using the SoySNP50K iSelect Bead Chip (Song et
al. 2013) to yield a set of 43K polymorphic markers. A second set comprised 1,531 accessions
which had been subjected to genotyping-by-sequencing (GBS; ApeKI protocol) (Sonah et al. 2013)
and in which SNPs had been called using the Fast-GBS pipeline (Torkamaneh et al. 2017). Finally,
a third set of 1,531 accessions (GBS set) with a combined SNP catalogue derived from GBS and

SoySNP50K (Supplementary Note).
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Phasing and imputation were performed using BEAGLE v4.1 (Browning & Browning 2016) for
each chromosome with the following parameters: (i) nthreads = 10 (number of threads); (ii)
window = 100,000 (number of markers in a sliding window); (iii) overlap = 50,000 (number of
overlapping markers between adjacent windows); (iv) niterations = 100 (number of phasing

iterations) and (v) err = 0.00001 (the allele miscall rate).

Determining the imputation accuracy

The WGS SNP data from 1,006 of the 1,007 resequenced accessions were used as a reference
panel to impute untyped variants. The remaining line was kept out of the reference panel to
determine how accurately data at untyped loci (present in the GmHapMap data but absent from
the low-density genotype catalogue) could be imputed in this accession. We performed three such
permutations where a single accession was kept aside to estimate imputation accuracy. For these
lines purposely excluded from the reference panel, we compared the imputed genotypes against

the genotypes called at these same loci following WGS.

Genomewide association analysis

Sonah et al. (2013) described a set of QTLs using GWA analysis on a subset of 139 soybean
accessions. These accessions were genotyped via GBS. We imputed untyped variants on this low-
density genotype dataset from GmHapMap in 1Mb of chromosome 14, encompassing a QTL for
seed oil content. GWA analysis was conducted using GAPIT R package (Lipka et al. 2012) using

a MLMM model (Segura et al. 2012). A candidate gene was identified using SoyBase database
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(Grant et al. 2010) and The Arabidopsis Information Resource (TAIR)

[https://www.arabidopsis.org/servlets/TairObject?type=gene&name=AT4G38350.1]

Identification of gene-centric haplotypes

The identification of GCHs was performed using the HaplotypeMiner R package
(https://github.com/malemay/HaplotypeMiner) with the entire SNP dataset on 55,381 protein-
coding genes in the soybean genome. In brief, the following parameters were used: (i) R2_measure
= "r2s" (the estimation of linkage disequilibrium between markers was measured based on
corrected r?,s which takes into account information related to genetic relatedness and population
structure); (ii) cluster R2 = "r2s" (LD measure to use in the clustering step); (iii)
max_missing_threshold = 0.05 (the maximum proportion of missing genotypes allowed for a
marker); (iv) max_het_threshold = 0.01 (the maximum proportion of heterozygous genotypes
allowed for a marker); (v) min_allele_count = 4 (the minimum number of times the minor allele
has to be seen for a marker to be retained); (vi) cluster_threshold = 0.9 (the minimum LD beyond
which markers were clustered); (vii) max_flanking_pair_distance = 10000 (the maximum distance
(in bp) that can separate two markers in LD at the final selection step: (viii)
max_marker_to_gene_distance = 6000 (the maximum distance (in bp) from a marker to the center

of the gene of interest); (ix) marker_independence_threshold = 0.8 (the minimum LD for two

markers to be considered in LD at the final selection step).

26


https://doi.org/10.1101/534578
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/534578; this version posted January 29, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

aCC-BY 4.0 International license.

Identification of duplicated genes

We detected putative duplicated genes, presumably derived from WGD or gene duplication, using
protein homology analysis integrated in the Phytozome (Goodstein et al. 2012) and SoyBase
(Grant et al. 2010) databases. Protein homologs were identified using dual-affine Smith-Waterman
alignments between the predicted translation product of the selected transcript (aka query gene)
and all other predicted proteins in the soybean genome. We identified duplicated genes with 90%

identity (ID>90), 90% coverage (CV>90), and 5% size difference (SD<5) threshold.

Code availability
The bioinformatics codes and scripts applied in this study for variant calling, population structure
analysis, genetic diversity, tag SNP selection, imputation, GWAS, annotation and GCHs detection

are publicly available at https://figshare.com/account/home#/projects/56921.

Data availability

The datasets produced in this study (GmHapMap nucleotide variants (complete dataset), reference
panels (REF-I and REF-I11), annotated GmHapMap nucleotide variants, GCHs for all 55K genes
and LOF variants and genotypes) are publicly available at

https://figshare.com/account/home#/projects/56921
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