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Abbreviations

AUC area under the curve 
ANOVA analysis of variance 
CRC colorectal cancer 
DE differentially expressed 
FC fold-change 
FIT fecal immunochemical test 
HRA high-risk adenoma 

LRA low-risk adenoma 
MRA medium-risk adenoma 
NPV negative predictive value 
PPV positive predictive value 
ROC receiver operating characteristic 
seRNA stool-derived eukaryotic RNA

 

Abstract 
Background and aims: Colorectal cancer (CRC) is the second leading cause of cancer related deaths in the 
United States. Mortality is largely attributable to low patient compliance with screening and a subsequent high 
frequency of late-stage diagnoses. Noninvasive methods, such as stool- or blood-based diagnostics could 
improve patient compliance, however, existing techniques cannot adequately detect high-risk adenomas 
(HRAs) and early-stage CRC.  
Methods: Here we apply cancer profiling using amplicon sequencing of stool-derived eukaryotic RNA for 275 
patients undergoing prospective CRC screening. A training set of 154 samples was used to build a random 
forest model that included 4 feature types (differentially expressed amplicons, total RNA expression, 
demographic information, and fecal immunochemical test results). An independent hold out test set of 121 
patients was used to assess model performance. 
Results: When applied to the 121-patient hold out test set, the model attained a receiver operating 
characteristic (ROC) area under the curve (AUC) of 0.94 for CRC and a ROC AUC of 0.87 for CRC and HRAs. 
In aggregate, the model achieved a 91% sensitivity for CRC and a 73% sensitivity for HRAs at an 89% 
specificity for all other findings (medium-risk adenomas, low-risk adenomas, benign polyps, and no findings on 
a colonoscopy).  
Conclusion: Collectively, these results indicate that in addition to early CRC detection, stool-derived 
biomarkers can accurately and noninvasively identify HRAs, which could be harnessed to prevent CRC 
development for asymptomatic, average-risk patients. 
 
Keywords: colorectal cancer screening, colorectal cancer prevention, high-risk adenoma detection, 
prospective clinical study 
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Introduction 
Colorectal cancer (CRC) is the third most common cancer in both men and women in the United States, the 
second deadliest cancer globally, and accounted for over 50,000 deaths in 2018 in the US alone.1,2 Disease 
onset is typically insidious, starting as a small polyp which can take several years to further accrue somatic 
mutations and develop into an invasive carcinoma.3,4 If detected early, CRC has a five-year survival rate of 
92%. However, 63% of newly diagnosed patients have advanced disease, with an associated five-year survival 
rate as low as 14%.1,5,6 Late-stage diagnosis typically results from patient noncompliance with screening 
guidelines, indicating these cancers could have been detected earlier by following standard protocols. CRC 
screening compliance has remained stagnant over the past 20 years and is currently estimated to be 
approximately 60%,1,7 well below the National Colorectal Cancer Roundtable’s goal of 80%.7 Additionally, 
nearly a quarter of adults in at-risk populations have never been screened.6 Historically, low compliance rates 
have been due to the inconvenience, unpleasantness, and perceived hazards of colonoscopies. In an open-
ended survey of 660 patients regarding the most important barrier to CRC screening, three of the top four 
responses cited were directly related to the invasive nature of a colonoscopy: “afraid/fear,” “prep unpleasant,” 
and/or “anticipated pain”.8 Therefore, it is likely that a noninvasive alternative screening method would 
significantly increase the number of patients opting for CRC screening.  
 
While many noninvasive tests have been developed to address compliance issues, none compare to the 
diagnostic accuracy of a colonoscopy.9 As such, colonoscopies remain the preferred first-line screening option 
by gastroenterologists. Currently, the most accurate noninvasive diagnostic on the market (Exact Sciences, 
Cologuard) cites a CRC sensitivity of 92%.10 However, the high-risk adenoma (HRA) detection rate for this 
diagnostic is only 42%.10 Other noninvasive stool-based tests include the fecal occult blood test and the fecal 
immunochemical test (FIT), which use lateral flow for detection of blood in stool. These alternatives can be 
highly sensitive (79%) and specific (94%) for CRC, but have HRA sensitivity of less than 30%.11 Accurate 
detection of precancerous adenomas would allow for preemptive excision of dysplastic tissue prior to 
carcinogenesis, thus reducing the CRC incidence and associated morbidity and mortality.4,12 
 
Given the wide range of genomic variants that can cause healthy tissue to transform into a premalignant 
lesion, traditional diagnostics that target a small number of recurrent variants show reduced sensitivity for early 
carcinoma and precancerous change.4 The broad genomic landscape for CRC lesions can potentially be 
captured by evaluating a panel of RNA biomarkers that encompass the universal effects of most precancerous 
variants.13,14 Evaluating the downstream molecular symptoms derived from precancerous variants could 
improve sensitivity for adenomas.15–17 However, analysis of human RNA biomarkers in stool samples is 
extremely challenging due to extensive RNA degradation and a high bacterial transcript burden.18,19 Previous 
studies report that 25%-50% of stool samples evaluated for eukaryotic RNA are inadequate for downstream 
analysis.20 
 
We describe herein a method to reliably extract and evaluate stool-derived eukaryotic RNA (seRNA) 
transcripts. We first use these biomarkers to identify transcripts associated with CRC and HRAs in a 
prospective screening population. Subsequently, we build an algorithm that incorporates differentially 
expressed amplicons, total RNA expression, demographic information, and results from a FIT to determine an 
individual’s risk for colonic lesions (CRC and HRA). We then validate the algorithm using an independent hold 
out test set, thus demonstrating proof-of-concept capability to noninvasively, sensitively, and specifically detect 
CRC and HRAs in a screening population (Figure 1). 
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Methods 
Study design 
This study required prospective collection of stool samples from patients undergoing CRC screening or 
retrospective collection of stool samples from patients diagnosed with stage I-IV CRC prior to treatment or 
surgical resection. The Washington University School of Medicine (WUSM) (St. Louis, MO) Institutional Review 
Board (IRB) approved protocol and research procedures (IRB #20111107). The primary outcome of the study 
was to determine the feasibility of using stool-derived eukaryotic RNA (seRNA) to assess risk for CRC and 
HRAs. FITs were obtained for all samples prior to seRNA extraction. Subsequently, isolated seRNA was 
subjected to targeted amplification (TruSeq Targeted RNA Custom Panel; Illumina, San Diego, CA) and next-
generation sequencing (NextSeq 550; Illumina, San Diego, CA). Sequencing reads were used for transcript 
selection, model development, and model validation (see Supplementary Methods). 
 
Transcript selection for model development 
Feature selection was performed using bootstrapping of the training set (n = 154 samples). Specifically, the 
training set was segregated into 100 different 9:1 splits whereby each split was assessed for informative 
amplicons. An amplicon was considered informative if the absolute log2 fold-change was greater than 1 in both 
contrast groups (HRA vs. LRAs, benign polyps, no findings on a colonoscopy; MRAs vs. LRAs, benign polyps, 
no findings on a colonoscopy) and the ANOVA between the contrast groups had a p-value <0.05. If an 
amplicon was deemed informative in at least 33% of all bootstrapped splits, it was considered differentially 
expressed and eligible as a feature for model development. Other features (e.g., demographic information and 
raw GAPDH values) were also eligible for model development. 
 
Machine learning model development and assessment for high-risk adenomas 
A random forest model was built using all 154 samples in the training set and all eligible features. Specifically, 
after feature selection, 5,000 decision trees were constructed using an independent bootstrapping procedure 
on the training samples; each node split was optimized by Gini Importance; each tree was built until it reached 
full depth. Output from the model provided a prediction between 0-1 whereby a larger number reflected 
increased confidence in a positive finding. Receiver operating characteristic (ROC) curves were created using 
model predictions and area under the curve (AUC) was used to measure model performance. For ROC curves 
plotted with the FIT, a positive FIT forced model prediction to equal to 1. The random forest model was 
employed on the 110 prospectively collected stool samples (excluding 11 retrospectively collected CRC 
samples). ROC curves were plotted with and without incorporating FIT results. 
 
Downsampling analysis of training set 
To understand the extent of model training, downsampled fractions of training data were selected and 
performance was assessed using the testing set. The downsampling fractions ranged from 30% to 100% with 
10% increments. For each downsampling fraction, feature selection was performed using bootstrapping, a 
random forest model was trained using the differentially expressed features, and the model was employed on 
the hold out test set. The resulting ROC AUC was used to assess model performance. This process was 
repeated 10 times for each downsampling fraction to reduce selection bias in subsampling, and model 
performance was assessed with and without incorporating FIT results. 
 
Ultimate model performance on the hold out test set and extrapolation to screening population 
The random forest model was ultimately employed on all 121 patients in the complete hold out test set (110 
prospectively collected samples and 11 retrospectively collected CRC samples). Output from the model 
provided a prediction between 0-1 and a positive FIT forced model prediction to equal 1. A ROC curve was 
plotted whereby only CRC samples were considered positive and all other categories were considered 
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negative. A separate ROC curve was plotted whereby CRC and HRA samples were considered positive and all 
other categories were considered negative.  

To attain a better approximation of ultimate model performance, the accuracy profile observed on the 
hold out test set was extrapolated to the relative frequencies expected in a prospective screening population. 
ROC curves as described above were plotted to show model performance. A point on the ROC curve was 
selected to optimize sensitivity and specificity. Subsequently, the blended sensitivity for CRC and HRAs, 
negative predictive value (NPV), and positive predictive value (PPV) were calculated. 

Results 
Sample demographic information 
In total, stool samples from 275 individuals were collected for this study. Sequencing data, demographic 
information (i.e., gender, age, ethnicity, smoking status, and family history of CRC), results from a FIT, and 
colonoscopy results with histopathology information, if applicable, were obtained for all patients. In the study 11 
patients had CRC (stage I-IV), 26 patients had high-risk adenomas (HRAs), 37 patients had medium-risk 
adenomas (MRAs), 61 patients had low-risk adenomas (LRAs), 50 patients had benign polyps, and 90 patients 
had no findings on a colonoscopy (Table 1). A training set of 154 patients was used for feature selection and 
model development and a hold out test set of 121-patients was used for model validation. There were two 
statistically significant differences between the characteristics of the training set and the hold out test set. First, 
retrospectively collected samples (i.e., samples from patients with CRC) were not included in the training set. 
Second, the hold out test set had different processing quality relative to the training set. Specifically, there was 
a reduction in the average stool input used for seRNA extraction (12.9 grams vs. 12.0 grams; p-value = 0.03), 
there was a reduction in the average seRNA concentration (168.6 ng/uL vs. 56.1 ng/uL; p-value < 0.01), and 
there was a reduction in average library preparation fragment size (200.6 base pairs vs. 192.2 base pairs; p-
value < 0.01) (Table 1). 
 
Custom amplicon panel development 
A custom panel of 639 amplicons was developed for target enrichment in the Illumina DesignStudio (Figure 
2A). The custom amplicons were associated with 408 transcripts, which were selected using previously 
conducted research (see Supplementary Methods).21 Specifically, using microarray data (Affymetrix Human 
Transcriptome Array 2.0) from 265 individuals (177 patients with CRC or adenomas and 88 patients with no 
findings on a colonoscopy), 214 transcripts were identified as differentially expressed (p<0.03). Using 
molecular barcoding data (NanoString nCounter) from 85 individuals (59 with CRC or adenomas and 26 with 
no findings on a colonoscopy), an additional 123 transcripts were identified as differentially expressed. Finally, 
71 transcripts were selected for the custom amplicon panel based on literature review.22–26 
 
Technical and biological replicate analysis 
Five patients were used to assess reproducibility of seRNA extraction, library preparation, and sequencing 
(see Supplementary Methods). Technical replicates consisting of aliquots from the same library preparation 
exhibited minimal difference in amplicon expression (Pearson r2 correlation range = 0.98-1.00; Pearson r2 
average = 0.99) (Supplementary Figure 1). Replicates consisting of aliquots derived from a single stool 
sample had higher variation but exhibited good overall correlation. For the five biological replicates that 
underwent paralleled extraction, were subjected to different targeted enrichment strategies (200 ng with 30 
cycles vs. 400 ng with 28 cycles), and were sequenced together, the average Pearson r2 correlation for 
expression of all 639 amplicons was 0.76 (Supplementary Figure 2). For the five biological replicates that 
underwent parallelled extraction, were subjected to the same target enrichment strategy (400 ng with 28 
cycles), and were sequenced separately, the average Pearson r2 correlation for expression of all 639 
amplicons was 0.73 (Supplemental Figure 3).  
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Significant transcripts associated with disease 
Normalized expression of 639 amplicons was evaluated for all samples in the training set (n = 154 samples). 
Of these 639 amplicons, 48 amplicons were not expressed in any sample and an additional 71 amplicons were 
not expressed in >95% of samples; these amplicons were eliminated from the analysis. For the remaining 
amplicons, a bootstrap analysis was performed (see Methods). In total, there were 40 amplicons identified as 
informative in at least 1 of the 100 splits and there were 10 amplicons identified as differentially expressed 
(informative in at least 33 of the 100 splits) (Figure 2B). For the 10 differentially expressed amplicons, the 
linkage to tumorigenesis and precancerous transformation are described in Supplementary Table 1. 
Ultimately, the 10 differentially expressed amplicons, raw GAPDH values, and 2 demographic identifiers (age 
and smoking status) were used as features for model development (Figure 2A).  

 
Accuracy profile for HRAs using 110-patient hold out test set (excluding 11 CRC patients) 
The primary goal of this study was to use seRNA data to identify HRAs with a high sensitivity. Model 
performance was assessed through accuracy of predictions on the prospective hold out test set (excluding 11 
retrospectively collected CRC stool samples). Using the 13 features described in Supplementary Table 1, a 
random forest model was built using all 154 samples in the training set and employed on the prospective hold 
out test set (Figure 3A). The most influential features in the final model were ACY1 and TNFRSF10B (Gini 
Importance ≥ 0.13) and the least important feature was PER3 (Gini Importance < 0.05). Raw GAPDH was the 
4th most important feature in building the random forest model (Supplementary Table 1). The model attained 
a ROC AUC of 0.67 without FIT results and a ROC AUC of 0.78 when including FIT results (Figure 3B). It was 
observed that model output was correlated with disease severity, which was not provided as a feature for 
model training (Figure 3C). Specifically, directionality of categories (e.g., medium-risk adenomas are less 
severe than high-risk adenomas) and disease subsets (e.g., high-risk adenoma stratification based on 
adenoma size or level of dysplasia) were not available to the model during development. 
 
Assessment of extent of model training using incremental downsampling analysis 
The extent to which model performance was optimized was assessed using a downsampling analysis of the 
154 samples in the training set (see Methods). The downsampling analysis showed a positive relationship 
between total number of samples used for training and performance on the hold out test set. When excluding 
FIT results, median ROC AUC for HRAs versus all other categories increased from 0.55 (30% of training data) 
to 0.67 (100% of training data) (Supplementary Figure 4A). When including FIT results, median ROC AUC for 
HRAs versus all other categories increased from 0.72 (30% of training data) to 0.78 (100% of training data) 
(Supplementary Figure 4B).  
 
Accuracy profile for CRCs and HRAs using 121-patient hold out test set 
Predictions incorporating FIT results were also made for the 11 retrospectively collected stool samples from 
CRC patients. Using all 121 samples in this complete hold out test set, the model attained a ROC AUC of 0.94 
for CRC versus all other categories (HRAs, MRAs, LRAs, benign polyps, and no findings on a colonoscopy) 
and a ROC AUC of 0.87 for CRC and HRAs versus all other categories (MRAs, LRAs, benign polyps, and no 
findings on a colonoscopy) (Figure 4A). When weighting cancer and HRAs to expected prevalence in a 
prospective screening population, the model attained a ROC AUC of 0.80 for CRC and HRAs versus all other 
categories (Figure 4B).    

Upon selection of the optimal point on the ROC curve to maximize sensitivity and specificity, the model 
demonstrated a 91% sensitivity for CRC (n = 11 samples) and a 73% sensitivity for HRAs (n = 11 samples) at 
an 89% specificity (n = 99 samples). Extrapolation of results onto a prospective screening population enabled 
calculation of the blended sensitivity for CRC and HRAs, the negative predictive value (NPV), and the positive 
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predictive value (PPV). This extrapolated accuracy profile demonstrated a blended sensitivity for CRC and 
HRAs of 74%, a positive predictive value of 37%, and a negative predictive value of 98% (Figure 4C). 

Discussion 
Currently, the most commonly used noninvasive screening alternative for CRC (Exact Sciences, Cologuard) 
offers a 92% sensitivity for CRC and a 42% sensitivity for HRAs, at an 87% specificity.10 Cologuard has 
received strong adoption, with 147,000 prescribing physicians and 934,000 tests completed in 2018. This test 
volume represents 4.1% of the total market for CRC screening, demonstrating the significant opportunity that 
exists for an improved noninvasive screening tool.27 Despite Cologuard’s strong commercial adoption, the 
test’s accuracy profile does not significantly improve upon existing, cheaper alternatives. One fecal 
immunochemical test (Polymedco, OC-Light S FIT) has a documented accuracy of 93% for CRC at a 91% 
specificity (estimated HRA accuracy is 25-35% at unknown specificity).11 Since Cologuard is a FIT-DNA test, it 
is clear that the addition of the nine stool-derived DNA biomarkers do not improve the CRC accuracy and offer 
insignificant improvement in HRA accuracy.  

The FIT-RNA assay described here, attained a 91% sensitivity for CRC, a 73% sensitivity for HRAs, and an 
89% specificity for all other findings. This accuracy profile represents a significant improvement relative to all 
existing noninvasive alternatives. Specifically, the reported 73% sensitivity for HRAs represents a 74% 
improvement over Cologuard and the 74% blended sensitivity for CRC and HRAs represents a 61% 
improvement over Cologuard. Improved sensitivity is attributable to the use of seRNA biomarkers, which offer 
several advantages relative to other stool- or blood-based biomarkers. First, seRNA biomarkers are derived 
from epithelial cells shed within the gastrointestinal tract. Therefore, the signal of the seRNA represents a 
homogenized sampling of the perilesional tissue, which is preferentially shed into the lumen and excreted in 
stool. Second, seRNA provides a concentrated and amplified signal that can be observed across multiple 
transcripts in a single pathway. This is a direct advantage over DNA-based biomarkers, which are limited to 
two copies per cell. Finally, the RNA transcriptome provides an assessment of the downstream molecular 
consequence of many precancerous variants regardless of tumorigenesis pathway. Therefore, a relatively 
small panel of seRNA biomarkers can be used to capture the vast genomic landscape that causes adenoma 
development. Leveraging seRNA biomarkers to attain high sensitivity for HRAs enables development of a 
diagnostic that would facilitate early intervention and prevention, rather than merely detection, of CRC. 

Our use of a prospective study for biomarker selection and model development provides a true assessment of 
model performance in the desired screening population. This is a major advantage relative to the majority of 
research conducted in this space. For example, in 2012, Exact Sciences conducted a retrospective study with 
678 patients (252 patients with CRC, 133 patients with HRAs, and 293 patients with no findings on a 
colonoscopy). Using only stool-derived DNA biomarkers and no FIT test, this study demonstrated an accuracy 
of 85% for CRC and an accuracy of 54% for HRAs at a 90% specificity.28 When comparing the impact of the 
DNA biomarkers in the prospective study relative to the retrospective study, it is clear that the retrospective 
study overestimated the DNA biomarkers’ sensitivity and specificity for both CRCs and HRAs. This 
overestimation is likely attributable to the exclusion of intermediate patient populations (i.e., MRAs, LRAs, and 
benign polyps) for marker selection and assessment. This problematic use of a retrospective cohort is also 
common in blood-based screening research. For example, cell-free DNA29 and circulating tumor cell30 studies 
cite high sensitivity and specificity on retrospectively selected samples from specific cohorts (CRC or HRAs, 
vs. no findings on colonoscopy). However, these studies have neither tested samples from intermediate patient 
populations nor tested samples from patients with confounding diseases or other cancers. The results 
described herein are not subject to aforementioned limitations. In this study, biomarker selection and accuracy 
profile development used samples from all patient populations within the CRC screening cohort. Specifically, 
patients with CRC or HRAs were considered positive and patients with all other findings (MRAs, LRAs, benign 
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polyps, and patients with no findings on a colonoscopy) were considered negative. By overcoming common 
limitations of other development studies, we anticipate a consistent accuracy profile throughout development of 
the FIT-RNA test. 

The features used for model development are unique relative to other biomarkers used for CRC screening. As 
expected, the 10 differentially expressed transcripts employed in the model have been previously implicated in 
CRC tumorigenesis. For example, ACY1 is highly expressed in CRC tissue and is positively correlated with 
tumor stage.31 SMAD432 and CTNNB1,33 are involved in the Wnt signaling pathway.34 Other selected 
transcripts are related to cell adhesion (i.e., ACHE, DST), cell growth (i.e., EGLN2, ERBB2), and cell death (i.e, 
EDN1, TNFRSF10B) (Supplementary Table 1). Novel features include the use of patient demographics and 
raw GAPDH values. It was observed that, relative to healthy patients, patients with MRAs, HRAs, and CRC 
had elevated raw GAPDH values. GAPDH is a commonly used epithelial housekeeping gene and it was 
hypothesized that increased total human RNA could be due to perilesional inflammation of the intestinal wall 
and subsequent sloughing of human cells into the lumen. Therefore, raw GAPDH values could provide a 
relative estimate of the total number of cells being sloughed and extracted during stool sample processing. 
Raw GAPDH was an effective biomarker in model development (Gini Importance score = 0.087) and assisted 
in detection of CRC and HRAs in the hold out test set. We also used age and smoking status for model 
development, which have known implications in tumor development but have never before been employed as 
features for CRC screening. 

An unexpected observation was that the model output was correlated with disease severity in the hold out test 
set (Figure 3C). This correlation was a direct reflection of CRC biology and not trained as part of the model. 
Specifically, feature selection and model input used three categories (HRAs, MRAs, and all other), but 
directionality of categories (e.g., medium-risk adenomas are less severe than high-risk adenomas) and disease 
subsets (e.g., high-risk adenoma stratification based on adenoma size or level of dysplasia) were not available 
for model training. Given that the model output provided a well-scaled confidence in disease severity, it could 
be used to further stratify patient care. For example, if a patient’s model output is negative but is relatively high 
within the negative cohort, it might indicate that the patient has an MRA that would require a higher frequency 
of screening relative to a negative patient with a lower score. 

The biomarker panel for CRC and HRA detection used only 11 seRNA biomarkers, 1 FIT, and 2 demographic 
features; therefore, supplementing the existing panel with additional biomarkers could further improve the 
accuracy profile. This could be accomplished by adding additional seRNA expression markers or by using 
expressed somatic variants for known transcripts (e.g., APC, KRAS, or TP53). Use of a FIT, transcript 
expression, and expressed variants could provide a comprehensive panel that encapsulates a variety of 
biomarkers in the same assay. Supplementing the existing panel with new biomarkers could also improve 
medium-risk adenoma (MRA) detection. In this study, we observed that MRAs exhibit a unique gene 
expression pattern that could be included in the model for sensitive detection of MRAs. Based on preliminary 
research presented here, we believe that seRNA biomarkers could be used to simultaneously detect CRC, 
HRAs, and MRAs, which could provide population health benefits in a prospective screening population. 

The low incidence of CRC in a screening population made it difficult to prospectively obtain stool samples from 
patients with CRC prior to a colonoscopy. To understand model performance on CRC samples, it was required 
to supplement the prospective collection with 11 samples that were obtained retrospectively from patients who 
had been diagnosed with CRC but who had not yet undergone surgical resection or treatment. It is possible 
that model results from this cohort would be different if the samples were obtained prior to screening 
colonoscopy and biopsy. That being said, the CRC accuracy profile reported here directly reflects the known 
accuracy profile of the OC-Light S FIT (Polymedco), which was the FIT used in this study. Therefore, we 
expect that the reported CRC accuracy profile (91% sensitivity) would be comparable in a prospective study.  
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Given that most CRC samples were collected retrospectively, the hold out test set was enriched for CRC. 
Measuring the negative predictive value (NPV) and positive predictive value (PPV) required extrapolating 
sensitivity and specificity results to a generalized screening population. This extrapolation analysis still showed 
that a model with the aforementioned accuracy profile would be a robust method for HRA and CRC detection 
with high blended sensitivity (74%) and high NPV (98%).  

Limitations of this study include use of a single organization for sample collection (3 endoscopy sites), use of a 
hold out test set obtained from the same collection sites, and a limited number of CRCs and HRAs in the hold 
out test set (n = 22 samples). This study is also limited by use of a retrospective cohort for CRC detection as 
described above. Future studies will increase breadth and diversity of collection sites and will increase total 
number of samples with positive findings in the hold out test set. 

In summary, this research validates the use of seRNA biomarkers for sensitive detection of CRC and HRAs. 
We show that these biomarkers can provides accurate partitioning of CRCs and HRAs from all other negative 
findings. Our novel use of a prospective cohort for biomarker selection and model development creates the first 
pre-FDA approval study with an accuracy profile that can be reproduced as study size increases. Use of a 
prospective screening cohort also provides insight on detection of smaller pre-malignant lesions (i.e., MRAs), 
detection of which has been challenged by existing noninvasive screening options. These data provide 
evidence that seRNA biomarkers could significantly impact the ability to noninvasively screen for colorectal 
neoplasms for the millions of Americans that are noncompliant with existing screening guidelines. 
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Tables 
Table 1. Patient types, demographics and processing metrics associated with the prospective training 
set, the prospective hold out test set, the retrospective hold out test set, and the whole study cohort 

 

Category Description 
Prospective 
training set 

Prospective hold 
out test set 

Retrospective 
hold out test set Total 

CRC (1.0) Stage I-IV CRC 0 0 11 11 

HRA (2.1) 
Any adenoma with carcinoma in 
situ or high-grade dysplasia 1 2 0 3 

HRA (2.2) 
Adenoma, villous growth pattern 
(>=25%), any size 4 2 0 6 

HRA (2.3) Adenoma, ≥1.0 cm in size 5 5 0 10 
HRA (2.4) Serrated lesion, ≥1.0 cm in size 5 2 0 7 

MRA (3) 
<3 adenoma(s), between 5-10 
mm in size, non-advanced 11 9 0 20 

MRA (4) 
≥3 adenomas, <1.0 cm in size, 
non-advanced 10 7 0 17 

LRA (5) 
1 or 2 adenoma(s), <=5 mm in 
size, non-advanced 37 24 0 61 

Benign polyps (6.1) Hyperplastic, benign polyp(s) 26 24 0 50 
No findings (6.2) No findings on a colonoscopy 55 35 0 90 
Total   154 110 11 275 

      
Category Description Training set Hold out test set p-value*  

Demographics 

Gender (Female vs. male) 63.0% 62.0% 0.87  
Age 52.8 ± 6.4 54.3 ± 7.4 0.07  
Ethnic background (white vs. 
other) 54.5% 44.6% 0.10  
Smoking status (never smoker 
vs. other) 70.1% 66.9% 0.57  
Family history (negative family 
history vs. other) 70.1% 76.0% 0.28  

      
Category Description Training set Hold out test set p-value*  

Processing 
metrics 

Average stool input (grams) 12.9 ± 3.2 12.0 ± 3.4 0.03  
Average RNA Integrity Value 
(RIN) 4.6 ± 1.2 4.4 ± 1.6 0.18  
Average RNA concentration - 
Qubit (ng/uL) 168.6 ± 139.8 56.1 ± 79.3 <0.01  
Average fragment size (bps) 200.6 ± 9.6 192.2 ± 16.8 <0.01  
Total library quantity (ng) 29.7 ± 29.5 32.8 ± 64.1 0.60  

 
*significant change in frequency was calculated using a two-tailed chi square test  
*significant change in population mean was calculated using a two-tailed t-test   

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/534412doi: bioRxiv preprint 

https://doi.org/10.1101/534412
http://creativecommons.org/licenses/by-nc/4.0/


11 

Figures 
Figure 1. Overview of methods for obtaining samples, isolating stool-derived eukaryotic RNA (seRNA), 
sequencing seRNA, building a machine learning model, and testing the model’s accuracy. Sample 
collection: Stool samples were collected from patients prior to undergoing screening colonoscopy and 
subsequent histopathology. RNA processing: Eukaryotic transcripts were isolated from stool samples, 
expression analysis was performed via amplicon sequencing, and raw transcripts were aligned to the reference 
genome for quantification. Model analysis: Differentially expressed transcripts were identified, a random forest 
model was built, and the model was evaluated using an independent hold out test set. Abbreviations: FIT– 
fecal immunochemical test; seRNA – stool-derived eukaryotic RNA. 
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Figure 2. Eligible feature selection using bootstrapping of the training set. Transcripts used in the custom 
amplicon panel were selected based on a 265-sample microarray study, an 84-sample NanoString study, and 
pertinent literature. The 639 amplicons in the custom panel were used to obtain raw sequencing reads for the 
154 samples in the training set. Amplicon expression was normalized to GAPDH and differentially expressed 
amplicons were identified using a bootstrapping method. Specifically, the 154-patient training set was split 100 
times (9:1 sub-training vs. sub-testing) and each sub-training set was used to determine informative amplicons. 
An amplicon was considered informative if the absolute log2 fold-change between contrast groups was greater 
than 1 and the ANOVA p-value was less than 0.05. If an amplicon was observed in at least 33% of all 100 
splits, then it was considered differentially expressed (DE) and was eligible as a feature for model 
development. Eligible features included results from a fecal immunochemical test (FIT), demographic features, 
raw GAPDH expression, and DE amplicons. B) If an amplicon was observed in at least 33% of all 100 splits 
(bootstrap threshold), then it was considered differentially expressed and was eligible as a feature for the final 
model. In total, 10 amplicons were selected as differentially expressed. Abbreviations: FC – Fold change; 
ANOVA – analysis of variance; FIT – Fecal immunochemical test; DE – Differentially expressed 

.   

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/534412doi: bioRxiv preprint 

https://doi.org/10.1101/534412
http://creativecommons.org/licenses/by-nc/4.0/


13 

Figure 3. Model performance for the detection of HRAs based on the prospective hold out test set (n = 
110 samples). A) A random forest model was created using the training set (n = 154 samples) and all 13 
eligible features (see Figure 2A). The random forest model was employed on the prospective hold out test set 
(n = 110 samples) to determine model performance. Analysis was performed with and without using the FIT 
feature. When using the FIT, the model output was forced to 1 for FIT positive samples. B) The ROC curve 
shows model performance on the prospective hold out test set with and without the FIT feature. High-risk 
adenomas (HRAs) were considered positive and other findings (medium-risk adenomas, low-risk adenomas, 
benign polyps, no findings on a colonoscopy) were considered negative. C) Box plots show model output for 
each sample, parsed by sample type, for the prospective hold out test set. The top graph shows model 
predictions without the FIT feature and the bottom graph shows model prediction with the FIT feature. Sample 
type is ascending based on lesion severity (i.e., No finding 6.2 = least severe, HRA 2.1 = most severe) (see 
Table 1). The box plots represent quartiles, the bar represents the median value, the tails represent 95% of the 
data, and the dots indicate outliers (>2 standard deviations). Abbreviations: FIT – fecal immunochemical test; 
ROC – receiver operator characteristic; AUC – area under the curve; LRA – low-risk adenoma; MRA – 
medium-risk adenoma; HRA – high-risk adenoma 
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Figure 4. Model performance for the detection of CRC and HRAs based on the independent hold out 
test set (n = 121 samples) and extrapolation of model performance onto a screening population. A) The 
final model was employed on all samples in the hold out test set (including 11 retrospectively collected CRC 
samples). Model predictions could be positive based on the fecal immunochemical test (FIT+) or the random 
forest model prediction (Model+). Otherwise, the model prediction was considered negative (Negative). The 
sensitivity is shown for CRC and HRAs and specificity is shown for medium-risk adenomas, low-risk 
adenomas, benign polyps, and no findings on a colonoscopy. B) The model performance on the hold out test 
set was extrapolated to a generalized screening population to assess the negative predictive value and 
positive predictive value. Abbreviations: FIT – fecal immunochemical test; ROC – receiver operator 
characteristic; AUC – area under the curve; Sen. – sensitivity; Spec. – specificity; LRA – low-risk adenoma; 
MRA – medium-risk adenoma; HRA – high-risk adenoma; CRC – colorectal cancer; NPV – negative predictive 
value; PPV – positive predictive value. 
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