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10 Abstract
11  Stable representation of information in distributed neural connectivity is critical to
12  function effectively in the world. Despite the dynamic nature of the brain’s functional
13  architecture, characterizing its temporal stability has been largely neglected. Here we
14  characterized stability of functional architecture for each brain voxel by measuring the
15  concordance of dynamic functional connectivity (DFC) over time, and explored how
16  stability was modified by movie watching. High-order association regions, especially
17 the default mode network, demonstrated high stability during resting state scans,
18 while primary sensory-motor cortices revealed relatively lower stability. During
19 movie watching, stability in the primary visual cortex was decreased, which was
20 associated with larger DFC variation with neighboring regions. By contrast,
21  higher-order regions in the ventral and dorsal visual stream demonstrated increased
22  sahility. The distribution of functional stability and its modification describes a
23  profile of the brain’s stability property, which may be useful reference for examining
24 distinct mental states and disorders.
25
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27  Stability is a critical feature for consciousness, to maintain stable and consistent
28  representation of information by distributed neural activity and connectivity patterns
29 over time *. The brain coordinates information from multiple regions and moments
30 through distributed functional connections among regions in conscious states %3, thus
31 a stable functional architecture is essential. However, despite the neurobiological
32 significance of such stability, how stability is distributed across brain systems and
33 how it ismodified when executing tasks remain largely unknown.

34

35 The brain implements cognitive functions in a spatially organized way % *. The
36  association regions, involved in high-order cognitive processing, are more globally
37  connected, compared to unimodal regions that underlie primary sensory-motor
38  processing, from a static perspective > °. From a dynamic perspective, studies report
39 higher tempora variability in association areas in terms of functional connectivity
40  with other regions, while lower temporal variability isfound in unimodal areas in the
41  resting state "8 This is consistent with the hypothesis that association regions switch

42  or change their functional connections frequently since they integrate information

&

from various modalities into multimodal representations °, thus exhibiting a lower

R

level of stability of functiona architecture. However, competing evidence and
45 hypotheses exist. Between-session intra-subject functional connectivity variability
46  was shown to be smaller in association regions than unimodal regions . In addition,
47  association regions were proposed to process information over alonger time scale (in
48  minutes) than unimodal regions (in seconds) . Therefore, association regions may
49  serve as hubs to coordinate neural signals over time, and would be hypothesized to
50 display high stability of functional architecture which requires direct confirmation.
51  Studies examining flexibility 2 could have failed to support the aternate hypothesis
52  due to two factors: 1) they characterized functional architecture with the Automated
53 Anatomica Labeling (AAL) atlas, a structural atlas that is considered coarse and
54  functionally inaccurate, and cannot adequately reflect the functional architecture of

55 the human brain

; and 2) by omitting quantification of stability as a property,
56 emphasizing flexibility may highlight areas with low signal-to-noise ratio, e.g.,
57 anterior tempora regions. Thus, it is crucia to test the two competing hypotheses
58 empirically to enhance our understanding of the dynamic architecture of human brain,

59 by precisely characterizing the stability of functional architecture voxel-by-voxel.
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60

61 Toimplement a specific task, the brain’s functional architecture changes according to
62 the current task demands of cognitive processes ****° This change in turn resultsin
63  modification in the stability of functional architecture. Cole et al. (2013) showed high
64 between-task flexibility of functional architecture for the frontoparietal network *,
65  while the stability within a continuous task (e.g., a naturalistic task) remains unknown.
66 Movie watching, for example, requires viewers to constantly integrate presented
67  stimuli which are closely related to each other in context over time. Prior studies with
68 naturalistic tasks have revealed dynamic changes of functional connectivity of the
69 default mode network (DMN) that was specifically induced by the task °. However,
70  thestability profile in such areal-life situation remains unknown. Integration of visual
71  and auditory information involves the occipital temporal cortex (OTC) and superior
72 temporal sulcus (STS) "8 which can be regarded as association regions for this task.
73 Functional stability of these regions should be increased due to the need to constantly
74  integrate information over a long time scale in natural viewing tasks, though this
75  hypothesis needs to be tested.

76

77  Here we sought to precisely characterize stability of functional architecture across the
78 brain and its modification during task states. Resting-state fMRI can measure the
79  “intrinsic” brain functional architecture which is consistently present across a wide
80 variety of cognitive states * *°. We first analyzed resting-state data to quantify stability
81 of functiona architecturein itsintrinsic form across the brain. We defined stability of
82  functional architecture for a brain voxel as the concordance of its voxel-level dynamic
83 functional connectivity (DFC) over time. Furthermore, we explored how the stability
84  profile was modified by a naturalistic task from its intrinsic form, through comparison
85 of functional stability between a movie-watching task and resting state, using a
86  movie-watching dataset.

87

88 Results

89 Profileof stability of intrinsic functional architecture

90 Weanalyzed resting-state fMRI data of 216 young adults from the CoRR (Consortium
91 for Reliability and Reproducibility) release °, to examine intrinsic functional stability

92  across the brain. The data contained two scanning sessions acquired on different days.
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93 Functiona stability for a brain voxel was defined as the Kendall’'s coefficient of
94  concordance (KCC, aso known as Kendall’'s W) of DFC over time between that
95 voxel and all other regions in the brain (Methods). DFC was calculated over
96  consecutive segments of datain a sliding window approach #. Notably, analyses were
97  conducted in a voxel-to-voxel approach, in which the KCC of a voxel was computed
98 based on the features of its voxel-level DFC maps (Fig. 1). Such approach can
99 provide a refined and global characterization of how a brain region changes its
100 functional architecture over time. The derived KCC for each subject was
101 z-standardized across a grey matter mask. Standardization minimizes the effect of
102  overal discrepancy in KCC across subjects and conditions, and thus enabled us to
103  examine relative differences among brain regions %. A higher KCC value for aregion
104 means its functional architecture configuration is more consistent and stable over
105 time.
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106

107  Figure 1. Schematic diagram shows how the stability of functional architecture is computed in
108 a voxel-to-voxel approach. Dynamic functional connectivity (DFC) for a given voxe is
109 calculated with all voxels within the grey matter mask for each window, and constitutes
110 features for the functional architecture for that voxel. The rectangular windows are 64 s in

111  length, with 4 s dliding steps. Kendall’s concordance coefficient is computed based on DFC
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112 across windows, and quantifies the functional stability for that voxel.

113

114  One-sample T-tests (n = 216) revealed that in both sessions, the intrinsic stability of
115 functional architecture differed substantially across the brain. First, the apex of
116 intrinsic stability was observed bilaterally in the dorsolateral prefrontal cortex
117 (DLPFC), anterior insula (Alns), lateral temporal cortex (LTC), supramarginal gyrus
118 (SMG), angular gyrus (AG), media prefrontal cortex (mPFC), posterior cingulate
119 cortex (PCC), and occipitoparietal cortex (Fig. 2A,B in red). These regions are
120 high-order association areas. At the other extreme, the lowest intrinsic stability was
121  found in regions near cavities and ventricles, including the anterior temporal lobe,
122  orbitofrontal cortex, and caudate nucleus (Fig. 2A,B in blue). High susceptibility to
123 artifacts results in low signal-to-noise ratio in these regions %, which inevitably leads
124  to substantial decrease in functional stability. Other regions showed intermediate
125 levelsof intrinsic stability. Compared to the high-order association regions, unimodal
126  regions (including auditory, somatosensory, visual, and motor regions) displayed
127  relatively lower intrinsic stability (Fig. 2A,B), indicating that their functional
128  architectures were less consistent over time. Within the framework of brain networks
129  defined by Yeo et a. %, the ratio of voxels with higher stability was largest for the
130 DMN, followed by the frontoparietal network (FPN) and the ventral attentional
131  network (VAN) (Fig. 2C,D). Notably, the pattern of intrinsic stability across the brain
132  was similar between the two resting-state sessions, indicating high reliability of these
133  results. The averaged stability across all subjects resembled the T-test result (Fig. S1).
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134
135  Figure 2. Profile of intrinsic functional stability across the brain. (A,B) Results of one-sample

136  T-tests on functional stability (converted to z-scores) in resting state. (C,D) the ratio of voxels
137  showing high and low stability for the seven brain networks. A positive value (in yellow to
138  red) denotes high stahility while a negative value (in cyan to blue) denotes low stability. The
139 ratio was computed as the number of significant voxels after Gaussian random field
140  correction divided by the total number of voxelsin a network. High stability is observed in
141  severa association regions indicated by black hollow arrows. DLPFC, dorsolateral prefrontal
142  cortex; AG, angular gyrus, Alns, anterior insular; LTG, lateral temporal cortex; SOG, superior
143  occipital gyrus, PCC, posterior cingulate cortex; mPFC, medial prefrontal cortex.

144

145 Notably, as shown in Fig. 2, some regions in the visual network exhibited an above
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146  average level of functional stability (in yellow-orange). This observation might seem
147  to contradict the finding that the brain’s functional architecture was more stable for
148  association regions than for unimodal regions. We thus compared functional stability
149  between associative and primary visua cortices (Methods). Four associative and six
150 primary visual regions were selected, for each hemisphere (Fig. 3, see Yeo, et a. 2011
151 for the coordinates). Functional stability was averaged for each of the two types of
152  visua regions, respectively, and then compared between them with paired-sample
153 tests for each hemisphere. The results revealed that high-order association regions
154  aso exhibited higher functiona stability than unimodal regions in the visual network
155  of both the left hemisphere (t = 4.28, p < 0.001 for the first session; t = 4.65, p <
156  0.001 for the second session; Fig. 3) and the right hemisphere (t = 3.54, p < 0.001 for
157  thefirst session; t = 4.98, p < 0.001 for the second session; Fig. 3).
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158
159  Figure 3. Difference of intrinsic functional stability between high-order associative visual

160 regionsand primary visual regions. The locations of presented regions of interest of these two
161  types of regions are shown in the left panel. The violin plots in the right panel reveal the
162  distribution and difference of functional stability between them for both hemispheres and both
163  sessions. ***, p < 0.001. MT, middle temporal area; V1, primary visual area; V1, dorsal part
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164  of peripheral V1; p, peripheral; c, centra; d, dorsal; v, ventral; a, anterior.

165

166  Furthermore, we examined whether stability exceeded random levels. Simulated data
167 were created by randomizing the phases while maintaining the amplitudes of
168 resting-state signals. This removed the temporal alignment of neural signals which is
169 essential to measure stability, and thus resulted in a baseline level. Functional stability
170 raw values were compared between the observed and simulated data with
171  pared-sample T-tests. Results revealed that in amost al voxels across the brain, the
172 observed functiona stability was greater than the simulated functional stability (all p
173 < E-10; Fig. S2). Taken together with the prior results, this indicates that functional
174  stability does not exist in ssmulated random data, and that it is distributed across the
175 braininabiologica meaningful way.

176

177  Stability of functional architecture during natural viewing

178 We next moved to investigate functional stability of the brain in a complex
179 naturaistic task with a continuous state. Here a movie watching task was employed,
180  during which viewers constantly received and integrated changing audiovisua stimuli
181 over time, to comprehend the movie. The dataset from the HBN (Hedthy Brain
182  Network) released by the Child Mind Institute ® was analyzed. For this dataset, fMRI
183 data from 32 children and adolescents were entered into analyses, consisting of two
184  runs of 5-min resting-state scans, followed by another run of movie watching. The
185 movie was a 10-min clip of an animated film named “Despicable Me”. We divided
186 the movie-watching run into two halves, and then averaged functional stability
187  between the two halves and between the two resting-state runs (Methods). The
188 averaged functional stability was contrasted between movie watching and resting state
189  with paired-sample T-tests. This comparison alowed us to examine how stability was
190 modified fromitsintrinsic form (i.e., resting state) to a natural viewing task.

191

192  Results showed that functional stability was increased during movie watching in the
193  bilateral occipitotemporal cortex (OTC), left posterior middle temporal gyrus (pMTG),
194  left posterior fusiform gyrus (pFG), right posterior inferior temporal gyrus (pITG),
195  right superior temporal sulcus (STS), and left intraparietal sulcus (1PS) (voxel-level p
196 < 0.001, Gaussian Random Field corrected to p < 0.01, two-tailed, the same below;
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Fig. 4A and table 1). Most of these loci are in the higher visual processing stream.
Decreased stability was observed for movie watching in the mPFC, and the expanse
of bilateral medial and posterior occipital region, including the calcarine sulcus (CalS),
cuneus, and lingua gyrus (LG) (Fig. 4A and table 1). Notably, the within-subject
design of the contrast between movie watching and resting state can yield large effect
sizes despite a small sample size %,

A

Functional stability

Lateral Lateral

B

MV > RS
[
[
RS > MV

Figure 4. Differences of functional stability and of ROI-based DFC variation between movie
watching and resting state. Brain maps of T-values show the results of paired-sample T-tests
between movie watching and resting state on functional stability (A), and on DFC variation of
left calcarine sulcus (L.CalS) (B) and of left posterior middlie temporal gyrus (L.pMTG) (C).
The location of the two seed regions are indicated by purple circles. L, left; R, right; MV,
movie watching; RS, resting state.
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212  Table 1. Stability difference of movie watching vs. resting state

Cluster size area X y z T-value

285 L.pMTG -48 -54 9 6.959
L.pFG -42 -45 -18 5.390

112 R.OTC 45 -60 -3 6.753
117 L.IPS -39 -33 57 6.184
66 R.STS 42 -30 -3 6.060
53 RpITG 45 -51 -21 5.028
1303 L.cacarine -6 -90 -3 -9.449
L.cuneus -12 -93 27 -7.303

R.cuneus 18 -90 24 -7.218

LLG -15 -66 -6 -6.749

RLG 12 -75 -9 -6.341
R.calcarine 15 -63 12 -3.853

46 mPFC 9 57 9 -5.675

213 L, left; R, right; pMTG, posterior middle temporal gyrus; pFG, posterior fusiform gyrus; OTC,
214  occipitotempora cortex; IPS, intraparietal sulcus; STS, superior temporal sulcus, plITG,
215  posterior inferior temporal gyrus; LG, lingua gyrus; mPFC, medial prefronta cortex.

216

217 To examine whether regions in which stability changed were actually engaged by
218 movie watching, we conducted an analysis of inter-subject correlation (ISC) of neural
219  activity #. The ISC measures the synchronization of responses to naturalistic stimuli
220  across subjects, which should only be caused by common cognitive processes %, It
221  can revea which brain regions were engaged when subjects watched the movie, and
222  isnot sensitive to within-subject confounding factors. The results revealed significant
223 ISC (r > 0.25 in average and p < 0.001 in one-sample T-test versus 0, Fig. 5)
224 hilateraly in the occipital lobe, OTC, superior temporal cortex, occipitoparietal cortex,
225 IPS, SMG, and precentral gyrus. These areas included all the regions in which
226  stability was modified by movie watching, except the mPFC, suggesting that stability
227 modification was relevant to regiona engagement rather than within-subject

228  confounding factors.
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229
230 Figure 5. Averaged inter-subject correlation of neural activity during movie watching. The

231  colored area was masked by athreshold of r > 0.25 and by Gaussian random field correction
232 for multiple comparisons (p < 0.001 at voxel level and cluster p < 0.01) in one-sample T-test.
233  The purple circles indicated four representative regions in which functiona stability was
234  modified by movie watching. L, left; R, right; pMTG, posterior middle temporal gyrus; OTC,
235  occipitotemporal cortex; CalS, calcarine sulcus, mPFC, medial prefrontal cortex.

236

237  Functiona stability of specific regions was measured based on the whole-brain DFC
238  for thoseregions. A further step is to probe which connections specifically contributed
239  tothe difference in stability observed between states. To partly address this problem,
240  wetook the regions of which the stability was modified by movie watching as regions
241  of interest (ROIs, including the left pMTG and left CalS), and then compared their
242  DFC variation maps between movie watching and resting state. These two ROIs were
243  selected because they were representative visual regions showing the most significant
244  sability difference in either direction. The measure of DFC variation has been often
245 used to explore the dynamics of specific connections 2 3 3!
246  understanding which connections contributed the most to altered stability. DFC

, and is helpful for

247  variation for each ROI was calculated as the standard deviation of DFC across
248  dliding-time windows, and compared between the two states. As shown in Fig. 4B,
249 DFC variation for the left CalS with its neighboring and contralateral regions was
250 larger in movie watching than in resting state. Fig. 4C revealed that DFC variation for
251 theleft pMTG with the left OTC and left pFG was smaller in movie watching than in
252  resting state.

253

254
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255 Exploration and validation of the stability measurement

256  The functional stability reported above was measured in a voxel-to-voxel approach.
257  This approach regarded voxel-level DFC (tens of thousands of voxels) as features to
258 determine the functional architecture of a given voxel, thus incurring a large
259 computational load. We also explored an approach that could reduce the
260 computational load, and determined to what extent the findings obtained with a
261  voxel-to-voxel approach were preserved. We used a voxel-to-atlas approach, in which
262 the features were defined in terms of DFC with 200 parcellations from the atlas
263  created by Craddock and colleagues %, and stability of a given voxel was computed as
264 KCC of DFC between that voxel with all parcellations (see Supplementary Note 1).
265  For the first dataset, the profile of intrinsic stability derived using the voxel-to-atlas
266  approach was very similar to that derived using the voxel-to-voxel approach (Fig. S3).
267  Statigtically, across-subject correlation analyses (n = 216) reveadled extremely high
268 correlation between voxel-to-atlas KCC and voxel-to-voxel KCC for all measured
269  voxels (mean r = 0.921, range from 0.728 to 0.975), indicating that the voxel-to-atlas
270  KCC explained most variance of the voxel-to-voxel KCC. For the second dataset, the
271  voxe-to-voxel and the voxel-to-atlas approaches also produced similar results of
272  stability modification by movie watching (Fig. S4).

273

274  We next explored whether our main results were specific to the sliding-window
275 parameters. DFC and then KCC were recomputed, with other settings of window
276  length, window step, and window type (see Supplementary Note 2). One-sample
277  T-tests of intrinsic stability revealed that results were consistent across different
278  settings (Fig. S5), indicating that our main results were not impacted by the
279  diding-window parameters. In addition, contrasts of stability between movie
280 watching and resting state using several different dliding-window parameter settings
281 revealed similar patterns of modification in functiona stability, especialy for the
282  OTC and extended occipital areas (Fig. S6).

283

284  Discussion

285  The brain's functional organization changes dynamically even during rest ., While
286 prior studies have explored tempora variability or flexibility of functional
287 organization "3 this study investigated the other side, the stability of functional
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288  architecture that may represent a critical property of the brain *. We first characterized
289  how stability of functional architecture is distributed across the brain, and found the
290 apex of functional stability over time in high-order association regions, especialy
291 those in the DMN, rather than unimodal regions. Then we explored how functional
292  stability was modified during natural viewing, and showed that compared to resting
293  state, functional stability during movie watching was increased in high-order visual
294  regions (bilateral OTC, right STS, and left IPS), and decreased in low-order visual
295  regions (bilateral posterior and medial occipital lobes) and the mPFC.

296

297  Stability of functional architecture differsacross brain regions

298 The study on brain dynamics by Allen et al. (2014) clustered highly-structured
299  reoccurring connectivity patterns into sub-states %, suggestive of stability for the
300 brain’'s functional architecture, in addition to flexibility. Our results revealed a high
301 level of stability in high-order association regions, especialy in the DMN regions
302 (mPFC, AG, and PCC) which had the most stable functional architecture. The PCC
303 and mPFC are considered as the core DMN regions involved in internally-directed
304 thought **, and DMN connectivity has been associated with consciousness *’. As a
305 part of the DMN, the AG is also proposed to subserve convergence of multisensory
306 information, and to thus participate in various complex tasks *. The DMN regions
307 dSituate at one end of a principal gradient of brain functional organization, of which the
308 other end is anchored by primary sensory and motor regions *. Previous studies
309  observed medium or low flexibility of functional architecturein core DMN regions "8,
310 Importantly, these two studies did not characterize the core DMN regions as
311 high-order association regions. These regions do not specifically process signals of
312 one modality, and are generally considered to be brain hubs conducting high-order
313  cognitive processes > %%, The high stability may provide a foundation for the DMN
314  regionsto integrate multimodal information over along time scale.

315

316  Other regions with high functional stability were mainly located in the FPN and VAN,
317  including the DLPFC, Alns, and SMG. The DLPFC plays a critical role in executive
318 functions which refer to high-order organization and dynamic tuning of behaviors and
319 thoughts *> *'. The Alns has been linked with human awareness “*, and with an

320 integral hub for high-order cognitive control **. On average, functional architecture
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321 appeared less stable in the FPN and VAN than in the DMN, which was probably due
322  to greater DMN activity during resting state *°. The present study extends previous
323 findings by showing that the feature of global connection for these high-order
324  association regions > ° is stable over time within a state. This observation is contrary
325 to the hypothesis that association regions change their functional connections
326 frequently since they switch to interact with distributed regions of different
327 modalities.

328

329 In comparisons across the brain, functional stability in sensory-motor cortices was
330 much lower than that in high-order association regions, indicating that unimodal
331 regions reorganized their activity or connection patterns over time. Unimodal regions
332  accumulate information in a short time scale ', so their functional organization is not
333 necessary to be stable over time. Moreover, neural activity of unimodal regions is
334  driven by both external stimuli and top-down modulation from high-order regions *,
335 and externa dependence may explain the decreased functional stability (see below).
336

337  Stability of functional architecture differs between states

338 During movie watching, viewers receive a sequence of visual images which
339  constantly change in form but exhibit coherence in meaning. This task thus gives rise
340 to a continuous and natural state, as compared to conventional experimental tasks
341  with discrete and independent events and stimuli. Our results revealed that compared
342  to resting state, movie watching decreased functional stability of the bilateral primary
343  visua cortices and mPFC, and increased functional stability of bilateral OTC, left IPS,
344 and right STS which support high-order visual processing. The primary visua
345  cortices are proposed to process the form of visual images (e.g., orientation, color, etc.)
346 * % Since sensory inputs directly affect neural activity of these regions, the
347 decreased stability could possibly be explained by adjustment of functional
348  architecture to the changes of received visual form over time. Considering that the
349 primary visua cortices aso receive top-down influence from the high-order regions

47,48 another

350 of visua stream and top-down control from the frontoparietal regions
351 possihility is that the switch of connections to these regions caused the reduction of
352  functional stability. The analysis of ROI-based DFC variation comparison lent support

353 totheformer explanation, which revealed larger DFC variation to neighboring regions


https://doi.org/10.1101/533307
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/533307; this version posted January 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

354  within the visual cortices.

355

356 Incontrast, increased functiona stability during movie watching was found in regions
357 that participate in high-order visua processing ““. In the ventral visual stream, the
358  posterior MTG contributes to visual motion processing *°, while the STS and OTC are
359 considered to integrate auditory and visual information *” '8, In the dorsal visual
360 stream, the IPS participates in visual processing due to its role in attention and space
361 processing ** %2, To derive a comprehensive perception and cognition of sight,
362 high-order visua regions not only process visual information alone, but also integrate
363 information from other modalities ** **. Movie watching requires accumulation of
364 audiovisual information and integration of multimodal information over time.
365  Accordingly, as shown by our results, the functional architecture for these regions did
366 not change to alarge extent over the course of movie watching, but was fairly stable.
367 Interestingly, although both the primary and high-order visual cortices were recruited
368 by movie watching (Fig. 5) %, they could be distinguished by the direction in which
369 functiona stability was modified by the task, suggestive of significance for this
370 measurement. On the contrary, the functional stability of the mPFC, a high-order
371  region, appeared to reduce during movie watching. This region integrates information
372  over arather long window ™. A 10-min movie clip may be not long or integral enough
373 to dicit a stable connectivity pattern for the mPFC. Future studies using complete
374  versions of movies can address this issue.

375

376  Significance of the functional stability measurement

377 The distribution and modification pattern of functiona stability illustrates from a
378  dynamic view how functional organization adapts to fulfill a complex naturalistic task.
379  The functional architecture of unimodal regions changed with aterations of explicit
380 forms of the input, while stability of the functional architecture of high-order regions
381  allows neura integration both across modalities and across time. This distinction isin
382 line with the previous finding that a hierarchy of temporal scales to integrate
383 information exists in the visual system 2. It also echoes the resting state finding that
384  functional architecture appears more stable in high-order association regions than in
385 unimodal regions, since functional architecture in resting state is considered as a
386  composite reflection of multiple task states *.
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387

388  We speculate that high functional stability in association regions may render the brain
389 adaptive to the environment. During conscious processing, the brain selects
390 information for global broadcasting *, which should be carried out by high-order
391  association regions through their distributed functional connections °. Our findings
392 thus provide evidence of a neurobiological basis from the functional network
393  perspective for the stability property of the brain. A variety of complex cognitive
394  functions require the brain to coordinate information from multiple modalities over
395 time?* So far, it has remained largely unclear whether association regions organize
396 functional architecture in a stable or a flexible manner, to perform integration
397  processes within a continuous state. The present study provides strong evidence for
398  stability. High stability within a state as we found does not contradict high flexibility
399  between tasks or states observed in prior studies ** . The stability property (without
400 frequent alteration of connectivity) may provide the efficient capacity to coordinate
401 information over time.

402

403 Methodological consideration and implication for future studies

404  Here we measured functional stability using a voxel-to-voxel approach. Differencesin
405 data analytic approaches may explain inconsistencies between our findings and
406  previous ones. The studies by Zhang et a. (2016) and Yin et al. (2016) found high
407  flexibility for high-order association regions "8, while we found high stability for
408 these regions. Those studies employed the AAL atlas and analyzed data in an
409 alasto-atlas approach. The AAL atlas separates the brain into 90 functionally
410 inaccurate parcellations that cannot adequately reflect the functional architecture of
411  the brain *. Such analyses would result in an imprecise estimation (Fig. S7). For
412  future studies, we therefore recommend using a refined division of the brain (e.g.,
413 voxel-level) to define functional architecture of the brain and examine derived
414  measurements. The voxel-to-atlas approach yielded a pattern of results similar to that
415 using the voxel-to-voxel approach, so when computational resources are limited, the
416  voxel-to-atlas approach is aso admissible.

417

418  Several issues can be further addressed in the future. First, as a critical feature of the

419 bran, the stability of intrinsic functiona architecture and the extent of its
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420 modification by naturalistic tasks can be taken as potential biomarkers for quantitative
421  diagnoses of mental disorders. For example, patients with major depression disorder
422  could show less modification of stability when engaging in atask, which is associated
423  with menta slowing. Second, we were unable to accurately quantify functional
424 sability of regions near cavities. Future studies using scanning sequences that
425  increase signal-to-noise ratio for regions near cavities will be required to address this
426  issue.

427

428 In conclusion, the functional architecture of high-order association regions is stable
429  over time within a continuous state, and functional stability of this type of regionsis
430 increased when they are employed in a task, suggestive of their role in coordinating
431 neural information from successive moments. By contrast, unimodal regions vibrate
432  their functional architecture to process ever-changing stimulus forms. The division of
433 labor between these two types of regions may reflect the way in which the human
434 brain implements high-level cognitions.

435

436 Methods

437 Datasourcesand participants

438 Two open neuroimaging datasets were used in the present study. The first was
439  obtained from the CoRR (Consortium for Reliability and Reproducibility) release %°.
440  To keep scanning parameters (e.g., TR) and instructions uniform across subjects, only
441  one site with the largest sample size was used, which contained resting-state fMRI
442  data of 216 young adults (104 females; mean age = 20.0 years, range: 17 — 27 years).
443  The resting-state scanning lasted for 8 min 2 s during which participants were asked
444 to remain still and think of nothing specifically, with their eyes open. For the second
445  dataset obtained from the HBN (Healthy Brain Network) released by the Child Mind
446 Institute, fMRI data were acquired for 32 children and adolescents (20 females; mean
447  age = 12.1 years, range: 7 — 19 years) while they were at rest and while they watched
448  an audiovisual movie . There were two runs of resting-state scans each lasting 5 min,
449 and a run of movie watching. The movie was a 10-min clip of an animated film
450 named “Despicable Me” (exact time from 1:02:09 — 1:12:09).

451

452  Data preprocessing
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453  We used Matlab-based toolboxes of SPM12 and DPABI to run data preprocessing *.
454  For thefirst dataset, the initial 10 functional volumes (20 s) were deleted to allow for
455 signal stabilization. Functional images were corrected for dlice acquisition timing
456  differences and head motion. Nuisance covariates, including linear trend, Friston 24
457 head motion parameters, white matter signal, and cerebrospina fluid signal, were
458  regressed out from the functional signal. Then the functional images were normalized
459  to MNI space by DARTEL. Band-pass temporal filter (0.01 — 0.1 HZ) and spatial
460 smoothing (6 mm FWHM kernel) were applied to the normalized functional images.
461  For the second dataset, we aso preprocessed the functional imaging data following
462 the above procedure except that the initial 25 volumes (20 s) were removed. In
463  addition, slice timing correction was not conducted, since this dataset employed a
464  multiband scanning series and the repetition time (0.8 s) was short. We used the same
465  procedure to preprocess data of the movie-watching run and the resting-state runs, to
466  make them comparable. Subjects with maximum head motion larger than 3 mm in
467  displacement or 3° in rotation were excluded from subsequent analyses, as well as
468 those with mean frame-wise displacement (FD) larger than 0.25 mm. Overal, 16
469  subjects for the first dataset and 83 subjects for the second dataset (children and
470  adolescents generally have larger head motion during scanning) were excluded. For
471  theremaining 32 subjects of the second dataset, head motion (mean FD) did not differ
472  Significantly between the movie-watching run and the resting-state runs (p = 0.241).
473

474  Computation of stability of dynamic functional architecture

475  For a voxe in the brain, the stability of functional architecture was defined as the
476  concordance of DFC over time of that voxel with the whole brain. DFC was
477  caculated using a dliding-window approach, with the window length being 64 s (32
478  TRsfor the first dataset and 80 TRs for the second) and the sliding step being 4 s .
479  We conducted analyses in a voxel-by-voxel approach, such that DFC was computed
480  between avoxel with al other voxels within the mask, resulting in DFC maps across
481 the 101 time windows for that voxel (Fig. 1). The Kendall's coefficient of
482  concordance of these DFC maps with time windows as raters was computed as:

128

V= tewr -
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484  whereK isthe number of windows, N is the number of connections of that voxel with
485  all voxelswithin the mask, and R, is the sum of rank for the n-th connection across all
486  windows. For each window, connections are ranked across all voxels based on their
487  functional connectivity strength. W (ranges from O to 1) quantified stability of
488  functional architecture of that voxel. The connections of that voxel to the whole brain
489 are regarded as features to represent its functional architecture. Analyses were
490 confined to a grey matter mask, which was created by thresholding the mean grey
491 matter density across participants at 0.2 and intersected with a group mask of 90%
492  coverage of functional images. The derived KCC was z-standardized across the grey
493  matter mask, to increase comparability across participants and conditions.

494

495 Characterization of intrinsic functional stability acrossthe brain

496  For the first dataset, one-sample T-tests on the KCC z-score were conducted across
497  the group mask, with age, sex, and head motion (mean FD) as covariates. In addition
498 to showing the profile of stability across the brain, we also computed the ratio of
499  voxels with positive and negative KCC after multiple comparison correction using
500 Gaussian Random Field (GRF) theory (with voxel p < 0.001 and cluster p < 0.01,
501 two-tailed; the same below), for each of the seven brain networks 2.

502

503 To examine whether functional stability was aso higher in high-order association
504  regions than unimodal regions within the visual network in the left hemisphere, we
505 sdlected four unimodal regions of interest (ROIS) located in the primary visual cortex
506 and six high-order association ROIs including V3, V4, and four MT regions (Fig. 3).
507 Their coordinates were the same as those used in the study by Yeo et al. 2%, and for
508 each ROI, a sphere centered on the coordinates was created with a radius of 4 mm.
509 Functiona stability was averaged across the ROIs, for the high-order visual regions
510 and the unimodal visual regions, respectively. Paired-sample T-tests were conducted
511 to compare the averaged functional stability between these two types of visual regions.
512 We aso examined the regions in the right hemisphere that were contralateral to the
513 aboveROls.
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514

515 In addition, to examine whether functiona stability was greater than expected by
516 random, observed KCC was compared to one derived from simulated data. The
517  preprocessed functiona images of a whole run were transformed to the frequency
518 domain using FFT, and for each voxel the phases of frequency bands were
519 randomized, with the amplitude unchanged. This method removed the tempora
520 aignment of neura signals but kept the amplitude, and thus resulted in a stochastic
521 baseline for the measurement. The KCC was compared between observed data and
522 simulated data for each voxel with paired-sample T-test, using raw values instead of
523  z-scores.

524

525 Modification of functional stability duringtask state

526  For the second dataset, since the duration of the movie run was twice the duration of
527  the two resting-state runs, we divided the movie run into two parts and deleted the
528  beginning 20 s from the latter part of the movie run. This resulted in a duration of
529  280s for each part of the movie run, equal to that of the resting-state runs. For each
530 participant, voxel-to-voxel KCC was computed, z-standardized, and then averaged for
531 the two resting-state runs and for the two parts of the movie run, respectively. The
532 averaged KCC z-score was compared between movie watching and resting state with
533 paired-sample T-tests. GRF theory was used to correct for multiple comparisons. We
534  used astrict correction criterion (cluster p < 0.01, two-tailed) to avoid inflating false
535  positive rates % *.

536

537 To derive ISC for a given subject, we correlated the neural activity of that subject to
538 the averaged neural activity of the remaining subjects in each voxel. Then the Fisher’s
539 transformation was applied to the correlation coefficient. ISC was computed for all
540 subjectsin thisway. At the group-level analysis, the ISC was compared to zero using
541  one-sample T-test across the brain, and the mean 1SC was aso computed. GRF theory
542  was applied to corrected for multiple comparisons. Based on previous research, we
543  also used athreshold of r > 0.25 to eliminate regions with alow level of I1SC ’.
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Table 1. Stability difference of movie watching vs. resting state

Cluster size area X y z T-vaue

285 L.pMTG -48 -54 9 6.959
L.pFG -42 -45 -18 5.390

112 R.OTC 45 -60 -3 6.753
117 L.IPS -39 -33 57 6.184
66 R.STS 42 -30 -3 6.060
53 RpITG 45 -51 -21 5.028
1303 L.cacarine -6 -90 -3 -9.449
L.cuneus -12 -93 27 -7.303

R.cuneus 18 -90 24 -7.218

LLG -15 -66 -6 -6.749

RLG 12 -75 -9 -6.341
R.calcarine 15 -63 12 -3.853

46 mPFC 9 57 9 -5.675

L, left; R, right; pMTG, posterior middle tempora gyrus; pFG, posterior fusiform
gyrus, OTC, occipitotemporal cortex; IPS, intraparietal sulcus, STS, superior
temporal sulcus, pITG, posterior inferior tempora gyrus; LG, lingua gyrus; mPFC,
medial prefrontal cortex.
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