

1 **Stability of dynamic functional architecture differs**
2 **between brain networks and states**

3 Le Li¹, Bin Lu^{1,2}, and Chao-Gan Yan^{1,2,3,4,*}

4 ¹CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China

5 ²Department of Psychology, University of Chinese Academy of Sciences, Beijing,

6 China ³Magnetic Resonance Imaging Research Center, Institute of Psychology,

7 Chinese Academy of Sciences, Beijing, China ⁴Department of Child and Adolescent

8 Psychiatry, NYU School of Medicine, New York, NY, USA

9

10 **Abstract**

11 Stable representation of information in distributed neural connectivity is critical to
12 function effectively in the world. Despite the dynamic nature of the brain's functional
13 architecture, characterizing its temporal stability has been largely neglected. Here we
14 characterized stability of functional architecture for each brain voxel by measuring the
15 concordance of dynamic functional connectivity (DFC) over time, and explored how
16 stability was modified by movie watching. High-order association regions, especially
17 the default mode network, demonstrated high stability during resting state scans,
18 while primary sensory-motor cortices revealed relatively lower stability. During
19 movie watching, stability in the primary visual cortex was decreased, which was
20 associated with larger DFC variation with neighboring regions. By contrast,
21 higher-order regions in the ventral and dorsal visual stream demonstrated increased
22 stability. The distribution of functional stability and its modification describes a
23 profile of the brain's stability property, which may be useful reference for examining
24 distinct mental states and disorders.

25

26

27 Stability is a critical feature for consciousness, to maintain stable and consistent
28 representation of information by distributed neural activity and connectivity patterns
29 over time ¹. The brain coordinates information from multiple regions and moments
30 through distributed functional connections among regions in conscious states ^{2,3}, thus
31 a stable functional architecture is essential. However, despite the neurobiological
32 significance of such stability, how stability is distributed across brain systems and
33 how it is modified when executing tasks remain largely unknown.

34

35 The brain implements cognitive functions in a spatially organized way ^{2,4}. The
36 association regions, involved in high-order cognitive processing, are more globally
37 connected, compared to unimodal regions that underlie primary sensory-motor
38 processing, from a static perspective ^{5,6}. From a dynamic perspective, studies report
39 higher temporal variability in association areas in terms of functional connectivity
40 with other regions, while lower temporal variability is found in unimodal areas in the
41 resting state ^{7,8}. This is consistent with the hypothesis that association regions switch
42 or change their functional connections frequently since they integrate information
43 from various modalities into multimodal representations ⁹, thus exhibiting a lower
44 level of stability of functional architecture. However, competing evidence and
45 hypotheses exist. Between-session intra-subject functional connectivity variability
46 was shown to be smaller in association regions than unimodal regions ¹⁰. In addition,
47 association regions were proposed to process information over a longer time scale (in
48 minutes) than unimodal regions (in seconds) ¹¹. Therefore, association regions may
49 serve as hubs to coordinate neural signals over time, and would be hypothesized to
50 display high stability of functional architecture which requires direct confirmation.
51 Studies examining flexibility ^{7,8} could have failed to support the alternate hypothesis
52 due to two factors: 1) they characterized functional architecture with the Automated
53 Anatomical Labeling (AAL) atlas, a structural atlas that is considered coarse and
54 functionally inaccurate, and cannot adequately reflect the functional architecture of
55 the human brain ¹²; and 2) by omitting quantification of stability as a property,
56 emphasizing flexibility may highlight areas with low signal-to-noise ratio, e.g.,
57 anterior temporal regions. Thus, it is crucial to test the two competing hypotheses
58 empirically to enhance our understanding of the dynamic architecture of human brain,
59 by precisely characterizing the stability of functional architecture voxel-by-voxel.

60

61 To implement a specific task, the brain's functional architecture changes according to
62 the current task demands of cognitive processes ^{13, 14, 15}. This change in turn results in
63 modification in the stability of functional architecture. Cole et al. (2013) showed high
64 between-task flexibility of functional architecture for the frontoparietal network ¹³,
65 while the stability within a continuous task (e.g., a naturalistic task) remains unknown.
66 Movie watching, for example, requires viewers to constantly integrate presented
67 stimuli which are closely related to each other in context over time. Prior studies with
68 naturalistic tasks have revealed dynamic changes of functional connectivity of the
69 default mode network (DMN) that was specifically induced by the task ¹⁶. However,
70 the stability profile in such a real-life situation remains unknown. Integration of visual
71 and auditory information involves the occipital temporal cortex (OTC) and superior
72 temporal sulcus (STS) ^{17, 18}, which can be regarded as association regions for this task.
73 Functional stability of these regions should be increased due to the need to constantly
74 integrate information over a long time scale in natural viewing tasks, though this
75 hypothesis needs to be tested.

76

77 Here we sought to precisely characterize stability of functional architecture across the
78 brain and its modification during task states. Resting-state fMRI can measure the
79 “intrinsic” brain functional architecture which is consistently present across a wide
80 variety of cognitive states ^{4, 19}. We first analyzed resting-state data to quantify stability
81 of functional architecture in its intrinsic form across the brain. We defined stability of
82 functional architecture for a brain voxel as the concordance of its voxel-level dynamic
83 functional connectivity (DFC) over time. Furthermore, we explored how the stability
84 profile was modified by a naturalistic task from its intrinsic form, through comparison
85 of functional stability between a movie-watching task and resting state, using a
86 movie-watching dataset.

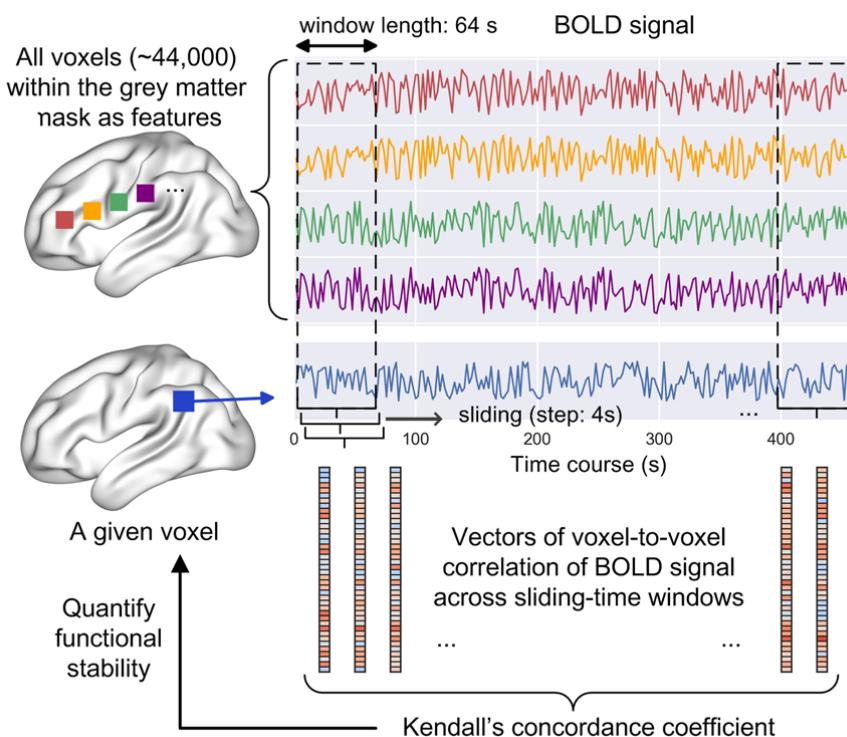
87

88 **Results**

89 **Profile of stability of intrinsic functional architecture**

90 We analyzed resting-state fMRI data of 216 young adults from the CoRR (Consortium
91 for Reliability and Reproducibility) release ²⁰, to examine intrinsic functional stability
92 across the brain. The data contained two scanning sessions acquired on different days.

93 Functional stability for a brain voxel was defined as the Kendall's coefficient of
94 concordance (KCC, also known as Kendall's W) of DFC over time between that
95 voxel and all other regions in the brain (Methods). DFC was calculated over
96 consecutive segments of data in a sliding window approach ²¹. Notably, analyses were
97 conducted in a voxel-to-voxel approach, in which the KCC of a voxel was computed
98 based on the features of its voxel-level DFC maps (Fig. 1). Such approach can
99 provide a refined and global characterization of how a brain region changes its
100 functional architecture over time. The derived KCC for each subject was
101 z-standardized across a grey matter mask. Standardization minimizes the effect of
102 overall discrepancy in KCC across subjects and conditions, and thus enabled us to
103 examine relative differences among brain regions ²². A higher KCC value for a region
104 means its functional architecture configuration is more consistent and stable over
105 time.

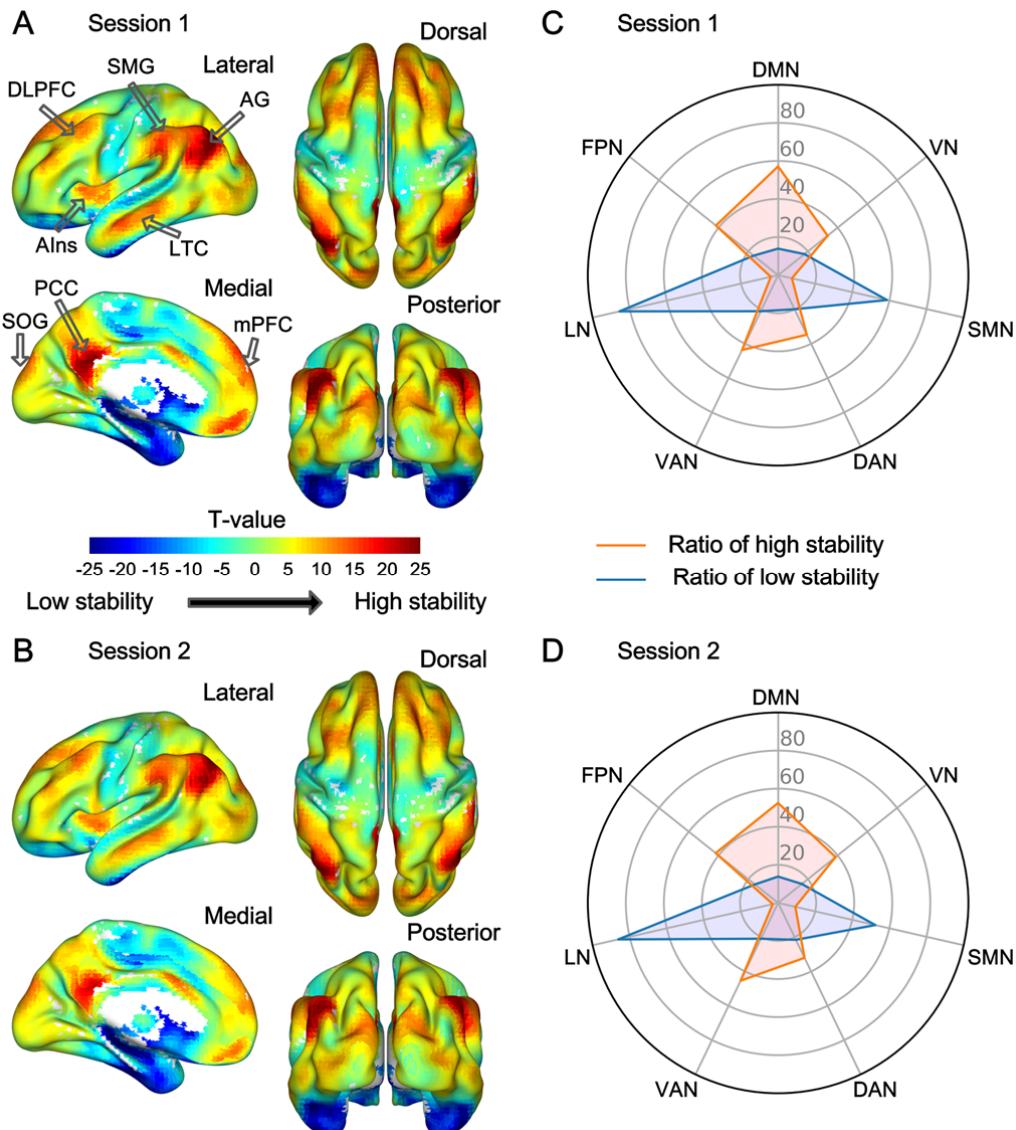


106
107 Figure 1. Schematic diagram shows how the stability of functional architecture is computed in
108 a voxel-to-voxel approach. Dynamic functional connectivity (DFC) for a given voxel is
109 calculated with all voxels within the grey matter mask for each window, and constitutes
110 features for the functional architecture for that voxel. The rectangular windows are 64 s in
111 length, with 4 s sliding steps. Kendall's concordance coefficient is computed based on DFC

112 across windows, and quantifies the functional stability for that voxel.

113

114 One-sample T-tests ($n = 216$) revealed that in both sessions, the intrinsic stability of
115 functional architecture differed substantially across the brain. First, the apex of
116 intrinsic stability was observed bilaterally in the dorsolateral prefrontal cortex
117 (DLPFC), anterior insula (AIns), lateral temporal cortex (LTC), supramarginal gyrus
118 (SMG), angular gyrus (AG), medial prefrontal cortex (mPFC), posterior cingulate
119 cortex (PCC), and occipitoparietal cortex (Fig. 2A,B in red). These regions are
120 high-order association areas. At the other extreme, the lowest intrinsic stability was
121 found in regions near cavities and ventricles, including the anterior temporal lobe,
122 orbitofrontal cortex, and caudate nucleus (Fig. 2A,B in blue). High susceptibility to
123 artifacts results in low signal-to-noise ratio in these regions²³, which inevitably leads
124 to substantial decrease in functional stability. Other regions showed intermediate
125 levels of intrinsic stability. Compared to the high-order association regions, unimodal
126 regions (including auditory, somatosensory, visual, and motor regions) displayed
127 relatively lower intrinsic stability (Fig. 2A,B), indicating that their functional
128 architectures were less consistent over time. Within the framework of brain networks
129 defined by Yeo et al.²⁴, the ratio of voxels with higher stability was largest for the
130 DMN, followed by the frontoparietal network (FPN) and the ventral attentional
131 network (VAN) (Fig. 2C,D). Notably, the pattern of intrinsic stability across the brain
132 was similar between the two resting-state sessions, indicating high reliability of these
133 results. The averaged stability across all subjects resembled the T-test result (Fig. S1).



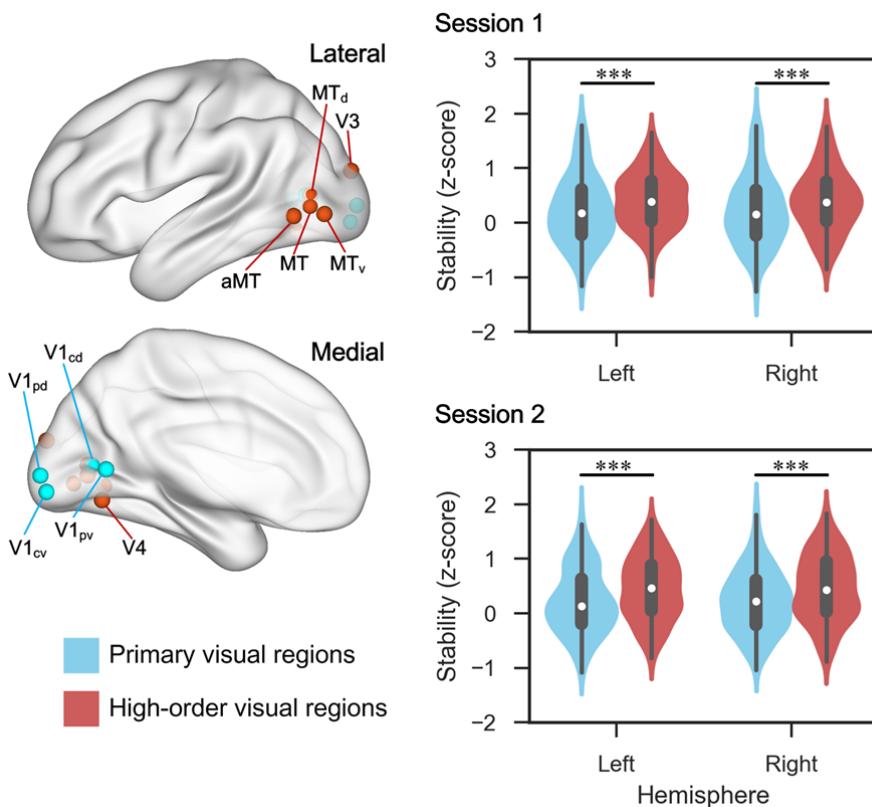
134

135 Figure 2. Profile of intrinsic functional stability across the brain. (A,B) Results of one-sample
136 T-tests on functional stability (converted to z-scores) in resting state. (C,D) the ratio of voxels
137 showing high and low stability for the seven brain networks. A positive value (in yellow to
138 red) denotes high stability while a negative value (in cyan to blue) denotes low stability. The
139 ratio was computed as the number of significant voxels after Gaussian random field
140 correction divided by the total number of voxels in a network. High stability is observed in
141 several association regions indicated by black hollow arrows. DLPFC, dorsolateral prefrontal
142 cortex; AG, angular gyrus; AIns, anterior insular; LTC, lateral temporal cortex; SOG, superior
143 occipital gyrus; PCC, posterior cingulate cortex; mPFC, medial prefrontal cortex.

144

145 Notably, as shown in Fig. 2, some regions in the visual network exhibited an above

146 average level of functional stability (in yellow-orange). This observation might seem
147 to contradict the finding that the brain's functional architecture was more stable for
148 association regions than for unimodal regions. We thus compared functional stability
149 between associative and primary visual cortices (Methods). Four associative and six
150 primary visual regions were selected, for each hemisphere (Fig. 3, see Yeo, et al. 2011
151 for the coordinates). Functional stability was averaged for each of the two types of
152 visual regions, respectively, and then compared between them with paired-sample
153 tests for each hemisphere. The results revealed that high-order association regions
154 also exhibited higher functional stability than unimodal regions in the visual network
155 of both the left hemisphere ($t = 4.28$, $p < 0.001$ for the first session; $t = 4.65$, $p <$
156 0.001 for the second session; Fig. 3) and the right hemisphere ($t = 3.54$, $p < 0.001$ for
157 the first session; $t = 4.98$, $p < 0.001$ for the second session; Fig. 3).



158
159 Figure 3. Difference of intrinsic functional stability between high-order associative visual
160 regions and primary visual regions. The locations of presented regions of interest of these two
161 types of regions are shown in the left panel. The violin plots in the right panel reveal the
162 distribution and difference of functional stability between them for both hemispheres and both
163 sessions. ***, $p < 0.001$. MT, middle temporal area; V1, primary visual area; V1_{pd}, dorsal part

164 of peripheral V1; p, peripheral; c, central; d, dorsal; v, ventral; a, anterior.

165

166 Furthermore, we examined whether stability exceeded random levels. Simulated data
167 were created by randomizing the phases while maintaining the amplitudes of
168 resting-state signals. This removed the temporal alignment of neural signals which is
169 essential to measure stability, and thus resulted in a baseline level. Functional stability
170 raw values were compared between the observed and simulated data with
171 paired-sample T-tests. Results revealed that in almost all voxels across the brain, the
172 observed functional stability was greater than the simulated functional stability (all p
173 $< E-10$; Fig. S2). Taken together with the prior results, this indicates that functional
174 stability does not exist in simulated random data, and that it is distributed across the
175 brain in a biological meaningful way.

176

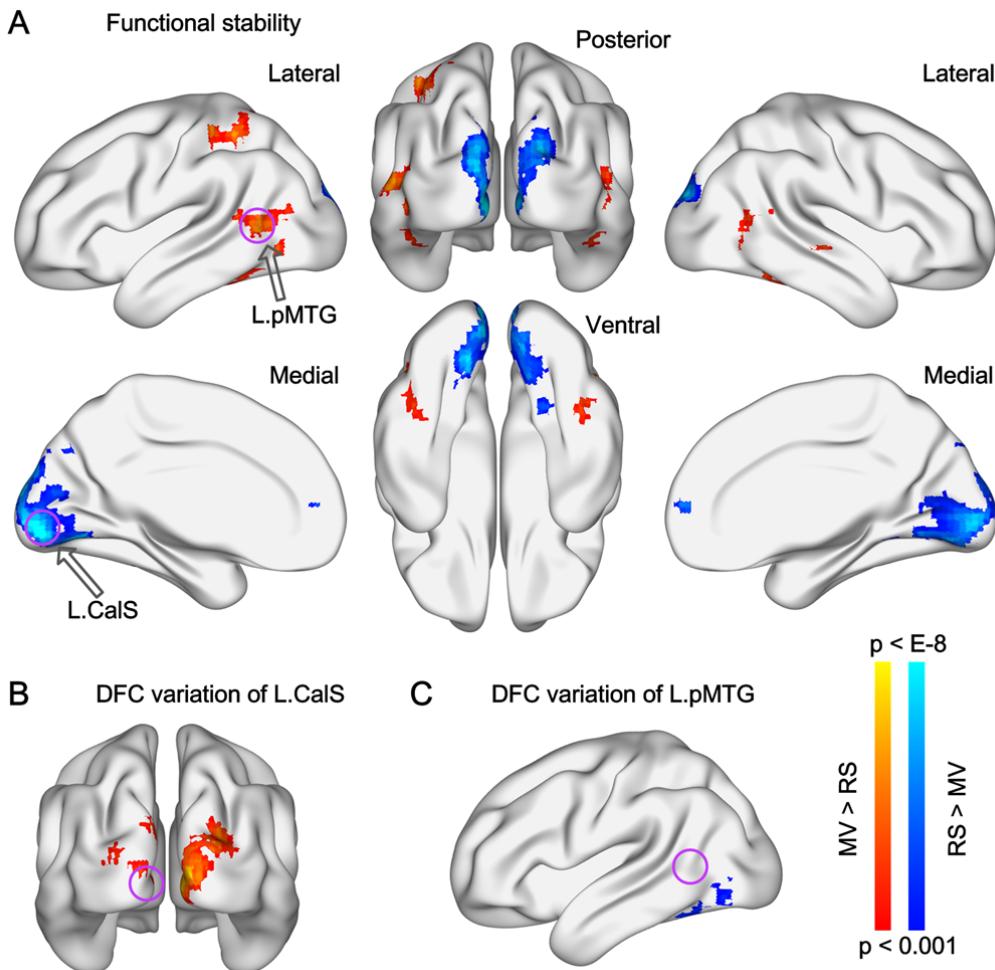
177 **Stability of functional architecture during natural viewing**

178 We next moved to investigate functional stability of the brain in a complex
179 naturalistic task with a continuous state. Here a movie watching task was employed,
180 during which viewers constantly received and integrated changing audiovisual stimuli
181 over time, to comprehend the movie. The dataset from the HBN (Healthy Brain
182 Network) released by the Child Mind Institute ²⁵ was analyzed. For this dataset, fMRI
183 data from 32 children and adolescents were entered into analyses, consisting of two
184 runs of 5-min resting-state scans, followed by another run of movie watching. The
185 movie was a 10-min clip of an animated film named “Despicable Me”. We divided
186 the movie-watching run into two halves, and then averaged functional stability
187 between the two halves and between the two resting-state runs (Methods). The
188 averaged functional stability was contrasted between movie watching and resting state
189 with paired-sample T-tests. This comparison allowed us to examine how stability was
190 modified from its intrinsic form (i.e., resting state) to a natural viewing task.

191

192 Results showed that functional stability was increased during movie watching in the
193 bilateral occipitotemporal cortex (OTC), left posterior middle temporal gyrus (pMTG),
194 left posterior fusiform gyrus (pFG), right posterior inferior temporal gyrus (pITG),
195 right superior temporal sulcus (STS), and left intraparietal sulcus (IPS) (voxel-level p
196 < 0.001 , Gaussian Random Field corrected to $p < 0.01$, two-tailed, the same below;

197 Fig. 4A and table 1). Most of these loci are in the higher visual processing stream.
198 Decreased stability was observed for movie watching in the mPFC, and the expanse
199 of bilateral medial and posterior occipital region, including the calcarine sulcus (CalS),
200 cuneus, and lingual gyrus (LG) (Fig. 4A and table 1). Notably, the within-subject
201 design of the contrast between movie watching and resting state can yield large effect
202 sizes despite a small sample size ²⁶.



203
204 Figure 4. Differences of functional stability and of ROI-based DFC variation between movie
205 watching and resting state. Brain maps of T-values show the results of paired-sample T-tests
206 between movie watching and resting state on functional stability (A), and on DFC variation of
207 left calcarine sulcus (L.CalS) (B) and of left posterior middle temporal gyrus (L.pMTG) (C).
208 The location of the two seed regions are indicated by purple circles. L, left; R, right; MV,
209 movie watching; RS, resting state.

210

211

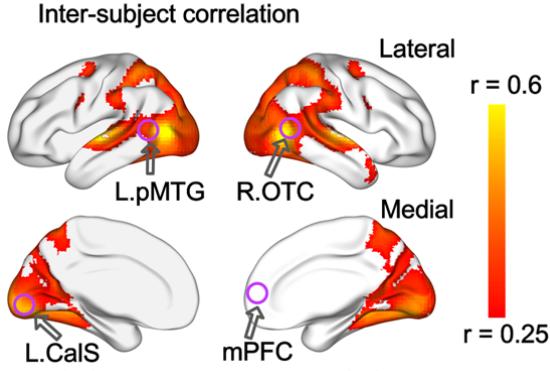
212 Table 1. Stability difference of movie watching vs. resting state

Cluster size	area	x	y	z	T-value
285	L.pMTG	-48	-54	9	6.959
	L.pFG	-42	-45	-18	5.390
112	R.OTC	45	-60	-3	6.753
117	L.IPS	-39	-33	57	6.184
66	R.STS	42	-30	-3	6.060
53	R.pITG	45	-51	-21	5.028
1303	L.calcarine	-6	-90	-3	-9.449
	L.cuneus	-12	-93	27	-7.303
	R.cuneus	18	-90	24	-7.218
46	L.LG	-15	-66	-6	-6.749
	R.LG	12	-75	-9	-6.341
	R.calcarine	15	-63	12	-3.853
46	mPFC	9	57	9	-5.675

213 L, left; R, right; pMTG, posterior middle temporal gyrus; pFG, posterior fusiform gyrus; OTC,
214 occipitotemporal cortex; IPS, intraparietal sulcus; STS, superior temporal sulcus; pITG,
215 posterior inferior temporal gyrus; LG, lingual gyrus; mPFC, medial prefrontal cortex.

216

217 To examine whether regions in which stability changed were actually engaged by
218 movie watching, we conducted an analysis of inter-subject correlation (ISC) of neural
219 activity ²⁷. The ISC measures the synchronization of responses to naturalistic stimuli
220 across subjects, which should only be caused by common cognitive processes ²⁸. It
221 can reveal which brain regions were engaged when subjects watched the movie, and
222 is not sensitive to within-subject confounding factors. The results revealed significant
223 ISC ($r > 0.25$ in average and $p < 0.001$ in one-sample T-test versus 0, Fig. 5)
224 bilaterally in the occipital lobe, OTC, superior temporal cortex, occipitoparietal cortex,
225 IPS, SMG, and precentral gyrus. These areas included all the regions in which
226 stability was modified by movie watching, except the mPFC, suggesting that stability
227 modification was relevant to regional engagement rather than within-subject
228 confounding factors.



229

230 Figure 5. Averaged inter-subject correlation of neural activity during movie watching. The
231 colored area was masked by a threshold of $r > 0.25$ and by Gaussian random field correction
232 for multiple comparisons ($p < 0.001$ at voxel level and cluster $p < 0.01$) in one-sample T-test.
233 The purple circles indicated four representative regions in which functional stability was
234 modified by movie watching. L, left; R, right; pMTG, posterior middle temporal gyrus; OTC,
235 occipitotemporal cortex; CalS, calcarine sulcus; mPFC, medial prefrontal cortex.

236

237 Functional stability of specific regions was measured based on the whole-brain DFC
238 for those regions. A further step is to probe which connections specifically contributed
239 to the difference in stability observed between states. To partly address this problem,
240 we took the regions of which the stability was modified by movie watching as regions
241 of interest (ROIs, including the left pMTG and left CalS), and then compared their
242 DFC variation maps between movie watching and resting state. These two ROIs were
243 selected because they were representative visual regions showing the most significant
244 stability difference in either direction. The measure of DFC variation has been often
245 used to explore the dynamics of specific connections ^{29, 30, 31}, and is helpful for
246 understanding which connections contributed the most to altered stability. DFC
247 variation for each ROI was calculated as the standard deviation of DFC across
248 sliding-time windows, and compared between the two states. As shown in Fig. 4B,
249 DFC variation for the left CalS with its neighboring and contralateral regions was
250 larger in movie watching than in resting state. Fig. 4C revealed that DFC variation for
251 the left pMTG with the left OTC and left pFG was smaller in movie watching than in
252 resting state.

253

254

255 **Exploration and validation of the stability measurement**

256 The functional stability reported above was measured in a voxel-to-voxel approach.
257 This approach regarded voxel-level DFC (tens of thousands of voxels) as features to
258 determine the functional architecture of a given voxel, thus incurring a large
259 computational load. We also explored an approach that could reduce the
260 computational load, and determined to what extent the findings obtained with a
261 voxel-to-voxel approach were preserved. We used a voxel-to-atlas approach, in which
262 the features were defined in terms of DFC with 200 parcellations from the atlas
263 created by Craddock and colleagues³², and stability of a given voxel was computed as
264 KCC of DFC between that voxel with all parcellations (see Supplementary Note 1).
265 For the first dataset, the profile of intrinsic stability derived using the voxel-to-atlas
266 approach was very similar to that derived using the voxel-to-voxel approach (Fig. S3).
267 Statistically, across-subject correlation analyses ($n = 216$) revealed extremely high
268 correlation between voxel-to-atlas KCC and voxel-to-voxel KCC for all measured
269 voxels (mean $r = 0.921$, range from 0.728 to 0.975), indicating that the voxel-to-atlas
270 KCC explained most variance of the voxel-to-voxel KCC. For the second dataset, the
271 voxel-to-voxel and the voxel-to-atlas approaches also produced similar results of
272 stability modification by movie watching (Fig. S4).

273

274 We next explored whether our main results were specific to the sliding-window
275 parameters. DFC and then KCC were recomputed, with other settings of window
276 length, window step, and window type (see Supplementary Note 2). One-sample
277 T-tests of intrinsic stability revealed that results were consistent across different
278 settings (Fig. S5), indicating that our main results were not impacted by the
279 sliding-window parameters. In addition, contrasts of stability between movie
280 watching and resting state using several different sliding-window parameter settings
281 revealed similar patterns of modification in functional stability, especially for the
282 OTC and extended occipital areas (Fig. S6).

283

284 **Discussion**

285 The brain's functional organization changes dynamically even during rest^{21, 33}. While
286 prior studies have explored temporal variability or flexibility of functional
287 organization^{7, 8, 34}, this study investigated the other side, the stability of functional

288 architecture that may represent a critical property of the brain ¹. We first characterized
289 how stability of functional architecture is distributed across the brain, and found the
290 apex of functional stability over time in high-order association regions, especially
291 those in the DMN, rather than unimodal regions. Then we explored how functional
292 stability was modified during natural viewing, and showed that compared to resting
293 state, functional stability during movie watching was increased in high-order visual
294 regions (bilateral OTC, right STS, and left IPS), and decreased in low-order visual
295 regions (bilateral posterior and medial occipital lobes) and the mPFC.

296

297 **Stability of functional architecture differs across brain regions**

298 The study on brain dynamics by Allen et al. (2014) clustered highly-structured
299 reoccurring connectivity patterns into sub-states ³⁵, suggestive of stability for the
300 brain's functional architecture, in addition to flexibility. Our results revealed a high
301 level of stability in high-order association regions, especially in the DMN regions
302 (mPFC, AG, and PCC) which had the most stable functional architecture. The PCC
303 and mPFC are considered as the core DMN regions involved in internally-directed
304 thought ³⁶, and DMN connectivity has been associated with consciousness ³⁷. As a
305 part of the DMN, the AG is also proposed to subserve convergence of multisensory
306 information, and to thus participate in various complex tasks ³⁸. The DMN regions
307 situate at one end of a principal gradient of brain functional organization, of which the
308 other end is anchored by primary sensory and motor regions ³⁹. Previous studies
309 observed medium or low flexibility of functional architecture in core DMN regions ^{7,8}.
310 Importantly, these two studies did not characterize the core DMN regions as
311 high-order association regions. These regions do not specifically process signals of
312 one modality, and are generally considered to be brain hubs conducting high-order
313 cognitive processes ^{5,6,36}. The high stability may provide a foundation for the DMN
314 regions to integrate multimodal information over a long time scale.

315

316 Other regions with high functional stability were mainly located in the FPN and VAN,
317 including the DLPFC, AIns, and SMG. The DLPFC plays a critical role in executive
318 functions which refer to high-order organization and dynamic tuning of behaviors and
319 thoughts ^{40,41}. The AIns has been linked with human awareness ⁴², and with an
320 integral hub for high-order cognitive control ⁴³. On average, functional architecture

321 appeared less stable in the FPN and VAN than in the DMN, which was probably due
322 to greater DMN activity during resting state ¹⁹. The present study extends previous
323 findings by showing that the feature of global connection for these high-order
324 association regions ^{5, 6} is stable over time within a state. This observation is contrary
325 to the hypothesis that association regions change their functional connections
326 frequently since they switch to interact with distributed regions of different
327 modalities.

328

329 In comparisons across the brain, functional stability in sensory-motor cortices was
330 much lower than that in high-order association regions, indicating that unimodal
331 regions reorganized their activity or connection patterns over time. Unimodal regions
332 accumulate information in a short time scale ¹¹, so their functional organization is not
333 necessary to be stable over time. Moreover, neural activity of unimodal regions is
334 driven by both external stimuli and top-down modulation from high-order regions ⁴⁴,
335 and external dependence may explain the decreased functional stability (see below).

336

337 **Stability of functional architecture differs between states**

338 During movie watching, viewers receive a sequence of visual images which
339 constantly change in form but exhibit coherence in meaning. This task thus gives rise
340 to a continuous and natural state, as compared to conventional experimental tasks
341 with discrete and independent events and stimuli. Our results revealed that compared
342 to resting state, movie watching decreased functional stability of the bilateral primary
343 visual cortices and mPFC, and increased functional stability of bilateral OTC, left IPS,
344 and right STS which support high-order visual processing. The primary visual
345 cortices are proposed to process the form of visual images (e.g., orientation, color, etc.)
346 ^{45, 46}. Since sensory inputs directly affect neural activity of these regions, the
347 decreased stability could possibly be explained by adjustment of functional
348 architecture to the changes of received visual form over time. Considering that the
349 primary visual cortices also receive top-down influence from the high-order regions
350 of visual stream and top-down control from the frontoparietal regions ^{47, 48}, another
351 possibility is that the switch of connections to these regions caused the reduction of
352 functional stability. The analysis of ROI-based DFC variation comparison lent support
353 to the former explanation, which revealed larger DFC variation to neighboring regions

354 within the visual cortices.

355

356 In contrast, increased functional stability during movie watching was found in regions
357 that participate in high-order visual processing^{46, 49}. In the ventral visual stream, the
358 posterior MTG contributes to visual motion processing⁵⁰, while the STS and OTC are
359 considered to integrate auditory and visual information^{17, 18}. In the dorsal visual
360 stream, the IPS participates in visual processing due to its role in attention and space
361 processing^{51, 52}. To derive a comprehensive perception and cognition of sight,
362 high-order visual regions not only process visual information alone, but also integrate
363 information from other modalities^{53, 54}. Movie watching requires accumulation of
364 audiovisual information and integration of multimodal information over time.
365 Accordingly, as shown by our results, the functional architecture for these regions did
366 not change to a large extent over the course of movie watching, but was fairly stable.
367 Interestingly, although both the primary and high-order visual cortices were recruited
368 by movie watching (Fig. 5)²⁷, they could be distinguished by the direction in which
369 functional stability was modified by the task, suggestive of significance for this
370 measurement. On the contrary, the functional stability of the mPFC, a high-order
371 region, appeared to reduce during movie watching. This region integrates information
372 over a rather long window¹¹. A 10-min movie clip may be not long or integral enough
373 to elicit a stable connectivity pattern for the mPFC. Future studies using complete
374 versions of movies can address this issue.

375

376 **Significance of the functional stability measurement**

377 The distribution and modification pattern of functional stability illustrates from a
378 dynamic view how functional organization adapts to fulfill a complex naturalistic task.
379 The functional architecture of unimodal regions changed with alterations of explicit
380 forms of the input, while stability of the functional architecture of high-order regions
381 allows neural integration both across modalities and across time. This distinction is in
382 line with the previous finding that a hierarchy of temporal scales to integrate
383 information exists in the visual system³. It also echoes the resting state finding that
384 functional architecture appears more stable in high-order association regions than in
385 unimodal regions, since functional architecture in resting state is considered as a
386 composite reflection of multiple task states⁴.

387

388 We speculate that high functional stability in association regions may render the brain
389 adaptive to the environment. During conscious processing, the brain selects
390 information for global broadcasting ¹, which should be carried out by high-order
391 association regions through their distributed functional connections ⁵. Our findings
392 thus provide evidence of a neurobiological basis from the functional network
393 perspective for the stability property of the brain. A variety of complex cognitive
394 functions require the brain to coordinate information from multiple modalities over
395 time ^{2, 4}. So far, it has remained largely unclear whether association regions organize
396 functional architecture in a stable or a flexible manner, to perform integration
397 processes within a continuous state. The present study provides strong evidence for
398 stability. High stability within a state as we found does not contradict high flexibility
399 between tasks or states observed in prior studies ^{13, 14}. The stability property (without
400 frequent alteration of connectivity) may provide the efficient capacity to coordinate
401 information over time.

402

403 **Methodological consideration and implication for future studies**

404 Here we measured functional stability using a voxel-to-voxel approach. Differences in
405 data analytic approaches may explain inconsistencies between our findings and
406 previous ones. The studies by Zhang et al. (2016) and Yin et al. (2016) found high
407 flexibility for high-order association regions ^{7, 8}, while we found high stability for
408 these regions. Those studies employed the AAL atlas and analyzed data in an
409 atlas-to-atlas approach. The AAL atlas separates the brain into 90 functionally
410 inaccurate parcellations that cannot adequately reflect the functional architecture of
411 the brain ¹². Such analyses would result in an imprecise estimation (Fig. S7). For
412 future studies, we therefore recommend using a refined division of the brain (e.g.,
413 voxel-level) to define functional architecture of the brain and examine derived
414 measurements. The voxel-to-atlas approach yielded a pattern of results similar to that
415 using the voxel-to-voxel approach, so when computational resources are limited, the
416 voxel-to-atlas approach is also admissible.

417

418 Several issues can be further addressed in the future. First, as a critical feature of the
419 brain, the stability of intrinsic functional architecture and the extent of its

420 modification by naturalistic tasks can be taken as potential biomarkers for quantitative
421 diagnoses of mental disorders. For example, patients with major depression disorder
422 could show less modification of stability when engaging in a task, which is associated
423 with mental slowing. Second, we were unable to accurately quantify functional
424 stability of regions near cavities. Future studies using scanning sequences that
425 increase signal-to-noise ratio for regions near cavities will be required to address this
426 issue.

427

428 In conclusion, the functional architecture of high-order association regions is stable
429 over time within a continuous state, and functional stability of this type of regions is
430 increased when they are employed in a task, suggestive of their role in coordinating
431 neural information from successive moments. By contrast, unimodal regions vibrate
432 their functional architecture to process ever-changing stimulus forms. The division of
433 labor between these two types of regions may reflect the way in which the human
434 brain implements high-level cognitions.

435

436 **Methods**

437 **Data sources and participants**

438 Two open neuroimaging datasets were used in the present study. The first was
439 obtained from the CoRR (Consortium for Reliability and Reproducibility) release ²⁰.
440 To keep scanning parameters (e.g., TR) and instructions uniform across subjects, only
441 one site with the largest sample size was used, which contained resting-state fMRI
442 data of 216 young adults (104 females; mean age = 20.0 years, range: 17 – 27 years).
443 The resting-state scanning lasted for 8 min 2 s during which participants were asked
444 to remain still and think of nothing specifically, with their eyes open. For the second
445 dataset obtained from the HBN (Healthy Brain Network) released by the Child Mind
446 Institute, fMRI data were acquired for 32 children and adolescents (20 females; mean
447 age = 12.1 years, range: 7 – 19 years) while they were at rest and while they watched
448 an audiovisual movie ²⁵. There were two runs of resting-state scans each lasting 5 min,
449 and a run of movie watching. The movie was a 10-min clip of an animated film
450 named “Despicable Me” (exact time from 1:02:09 – 1:12:09).

451

452 **Data preprocessing**

453 We used Matlab-based toolboxes of SPM12 and DPABI to run data preprocessing ⁵⁵.
454 For the first dataset, the initial 10 functional volumes (20 s) were deleted to allow for
455 signal stabilization. Functional images were corrected for slice acquisition timing
456 differences and head motion. Nuisance covariates, including linear trend, Friston 24
457 head motion parameters, white matter signal, and cerebrospinal fluid signal, were
458 regressed out from the functional signal. Then the functional images were normalized
459 to MNI space by DARTEL. Band-pass temporal filter (0.01 – 0.1 HZ) and spatial
460 smoothing (6 mm FWHM kernel) were applied to the normalized functional images.
461 For the second dataset, we also preprocessed the functional imaging data following
462 the above procedure except that the initial 25 volumes (20 s) were removed. In
463 addition, slice timing correction was not conducted, since this dataset employed a
464 multiband scanning series and the repetition time (0.8 s) was short. We used the same
465 procedure to preprocess data of the movie-watching run and the resting-state runs, to
466 make them comparable. Subjects with maximum head motion larger than 3 mm in
467 displacement or 3° in rotation were excluded from subsequent analyses, as well as
468 those with mean frame-wise displacement (FD) larger than 0.25 mm. Overall, 16
469 subjects for the first dataset and 83 subjects for the second dataset (children and
470 adolescents generally have larger head motion during scanning) were excluded. For
471 the remaining 32 subjects of the second dataset, head motion (mean FD) did not differ
472 significantly between the movie-watching run and the resting-state runs ($p = 0.241$).
473

474 **Computation of stability of dynamic functional architecture**

475 For a voxel in the brain, the stability of functional architecture was defined as the
476 concordance of DFC over time of that voxel with the whole brain. DFC was
477 calculated using a sliding-window approach, with the window length being 64 s (32
478 TRs for the first dataset and 80 TRs for the second) and the sliding step being 4 s ⁵⁶.
479 We conducted analyses in a voxel-by-voxel approach, such that DFC was computed
480 between a voxel with all other voxels within the mask, resulting in DFC maps across
481 the 101 time windows for that voxel (Fig. 1). The Kendall's coefficient of
482 concordance of these DFC maps with time windows as raters was computed as:

$$W = \frac{12S}{K^2(N^3 - N)}$$

$$S = \sum_{n=1}^N R_n^2 - \frac{1}{N} \left(\sum_{n=1}^N R_n \right)^2$$

483

484 where K is the number of windows, N is the number of connections of that voxel with
485 all voxels within the mask, and R_n is the sum of rank for the n-th connection across all
486 windows. For each window, connections are ranked across all voxels based on their
487 functional connectivity strength. W (ranges from 0 to 1) quantified stability of
488 functional architecture of that voxel. The connections of that voxel to the whole brain
489 are regarded as features to represent its functional architecture. Analyses were
490 confined to a grey matter mask, which was created by thresholding the mean grey
491 matter density across participants at 0.2 and intersected with a group mask of 90%
492 coverage of functional images. The derived KCC was z-standardized across the grey
493 matter mask, to increase comparability across participants and conditions.

494

495 **Characterization of intrinsic functional stability across the brain**

496 For the first dataset, one-sample T-tests on the KCC z-score were conducted across
497 the group mask, with age, sex, and head motion (mean FD) as covariates. In addition
498 to showing the profile of stability across the brain, we also computed the ratio of
499 voxels with positive and negative KCC after multiple comparison correction using
500 Gaussian Random Field (GRF) theory (with voxel p < 0.001 and cluster p < 0.01,
501 two-tailed; the same below), for each of the seven brain networks ²⁴.

502

503 To examine whether functional stability was also higher in high-order association
504 regions than unimodal regions within the visual network in the left hemisphere, we
505 selected four unimodal regions of interest (ROIs) located in the primary visual cortex
506 and six high-order association ROIs including V3, V4, and four MT regions (Fig. 3).
507 Their coordinates were the same as those used in the study by Yeo et al. ²⁴, and for
508 each ROI, a sphere centered on the coordinates was created with a radius of 4 mm.
509 Functional stability was averaged across the ROIs, for the high-order visual regions
510 and the unimodal visual regions, respectively. Paired-sample T-tests were conducted
511 to compare the averaged functional stability between these two types of visual regions.
512 We also examined the regions in the right hemisphere that were contralateral to the
513 above ROIs.

514

515 In addition, to examine whether functional stability was greater than expected by
516 random, observed KCC was compared to one derived from simulated data. The
517 preprocessed functional images of a whole run were transformed to the frequency
518 domain using FFT, and for each voxel the phases of frequency bands were
519 randomized, with the amplitude unchanged. This method removed the temporal
520 alignment of neural signals but kept the amplitude, and thus resulted in a stochastic
521 baseline for the measurement. The KCC was compared between observed data and
522 simulated data for each voxel with paired-sample T-test, using raw values instead of
523 z-scores.

524

525 **Modification of functional stability during task state**

526 For the second dataset, since the duration of the movie run was twice the duration of
527 the two resting-state runs, we divided the movie run into two parts and deleted the
528 beginning 20 s from the latter part of the movie run. This resulted in a duration of
529 280s for each part of the movie run, equal to that of the resting-state runs. For each
530 participant, voxel-to-voxel KCC was computed, z-standardized, and then averaged for
531 the two resting-state runs and for the two parts of the movie run, respectively. The
532 averaged KCC z-score was compared between movie watching and resting state with
533 paired-sample T-tests. GRF theory was used to correct for multiple comparisons. We
534 used a strict correction criterion (cluster $p < 0.01$, two-tailed) to avoid inflating false
535 positive rates^{26, 57}.

536

537 To derive ISC for a given subject, we correlated the neural activity of that subject to
538 the averaged neural activity of the remaining subjects in each voxel. Then the Fisher's
539 transformation was applied to the correlation coefficient. ISC was computed for all
540 subjects in this way. At the group-level analysis, the ISC was compared to zero using
541 one-sample T-test across the brain, and the mean ISC was also computed. GRF theory
542 was applied to corrected for multiple comparisons. Based on previous research, we
543 also used a threshold of $r > 0.25$ to eliminate regions with a low level of ISC²⁷.

544

545

546 **References**

- 547 1. Dehaene S, Lau H, Kouider S. What is consciousness, and could machines
548 have it? *Science* **358**, 486-492 (2017).
- 549 2. Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are
550 hierarchically organized in time. *Proc Natl Acad Sci U S A*, (2017).
- 551 3. Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N. A hierarchy of temporal
552 receptive windows in human cortex. *J Neurosci* **28**, 2539-2550 (2008).
- 553 4. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and
554 task-evoked network architectures of the human brain. *Neuron* **83**, 238-251
555 (2014).
- 556 5. Cole MW, Pathak S, Schneider W. Identifying the brain's most globally
557 connected regions. *Neuroimage* **49**, 3132-3148 (2010).
- 558 6. Buckner RL, *et al.* Cortical hubs revealed by intrinsic functional connectivity:
559 mapping, assessment of stability, and relation to Alzheimer's disease. *J
560 Neurosci* **29**, 1860-1873 (2009).
- 561 7. Zhang J, *et al.* Neural, electrophysiological and anatomical basis of
562 brain-network variability and its characteristic changes in mental disorders.
563 *Brain* **139**, 2307-2321 (2016).
- 564 8. Yin D, *et al.* Dissociable Changes of Frontal and Parietal Cortices in Inherent
565 Functional Flexibility across the Human Life Span. *J Neurosci* **36**,
566 10060-10074 (2016).
- 567 9. Mesulam MM. From sensation to cognition. *Brain* **121** (Pt 6), 1013-1052
568 (1998).
- 569 10. Kong R, *et al.* Spatial Topography of Individual-Specific Cortical Networks
570 Predicts Human Cognition, Personality, and Emotion. *Cereb Cortex*, (2018).
- 571 11. Lerner Y, Honey CJ, Silbert LJ, Hasson U. Topographic mapping of a
572 hierarchy of temporal receptive windows using a narrated story. *J Neurosci* **31**,
573 2906-2915 (2011).
- 574 12. Smith SM, *et al.* Network modelling methods for fMRI. *Neuroimage* **54**,
575 875-891 (2011).
- 576 13. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS.
577 Multi-task connectivity reveals flexible hubs for adaptive task control. *Nat
578 Neurosci* **16**, 1348-1355 (2013).

579 14. Braun U, *et al.* Dynamic reconfiguration of frontal brain networks during
580 executive cognition in humans. *Proc Natl Acad Sci U S A* **112**, 11678-11683
581 (2015).

582 15. Fedorenko E, Thompson-Schill SL. Reworking the language network. *Trends
583 Cogn Sci* **18**, 120-126 (2014).

584 16. Simony E, *et al.* Dynamic reconfiguration of the default mode network during
585 narrative comprehension. *Nat Commun* **7**, 12141 (2016).

586 17. Beauchamp MS. See me, hear me, touch me: multisensory integration in
587 lateral occipital-temporal cortex. *Curr Opin Neurobiol* **15**, 145-153 (2005).

588 18. Zhao W, Riggs K, Schindler I, Holle H. Transcranial Magnetic Stimulation
589 over Left Inferior Frontal and Posterior Temporal Cortex Disrupts
590 Gesture-Speech Integration. *J Neurosci* **38**, 1891-1900 (2018).

591 19. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed
592 with functional magnetic resonance imaging. *Nat Rev Neurosci* **8**, 700-711
593 (2007).

594 20. Zuo XN, *et al.* An open science resource for establishing reliability and
595 reproducibility in functional connectomics. *Sci Data* **1**, 140049 (2014).

596 21. Hutchison RM, *et al.* Dynamic functional connectivity: promise, issues, and
597 interpretations. *Neuroimage* **80**, 360-378 (2013).

598 22. Yan CG, Craddock RC, Zuo XN, Zang YF, Milham MP. Standardizing the
599 intrinsic brain: towards robust measurement of inter-individual variation in
600 1000 functional connectomes. *Neuroimage* **80**, 246-262 (2013).

601 23. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo
602 TE. Anatomic localization and quantitative analysis of gradient refocused
603 echo-planar fMRI susceptibility artifacts. *Neuroimage* **6**, 156-167 (1997).

604 24. Yeo BT, *et al.* The organization of the human cerebral cortex estimated by
605 intrinsic functional connectivity. *J Neurophysiol* **106**, 1125-1165 (2011).

606 25. Alexander LM, *et al.* An open resource for transdiagnostic research in
607 pediatric mental health and learning disorders. *Sci Data* **4**, 170181 (2017).

608 26. Chen X, Lu B, Yan CG. Reproducibility of R-fMRI metrics on the impact of
609 different strategies for multiple comparison correction and sample sizes. *Hum
610 Brain Mapp* **39**, 300-318 (2018).

611 27. Hasson U, Malach R, Heeger DJ. Reliability of cortical activity during natural

612 stimulation. *Trends Cogn Sci* **14**, 40-48 (2010).

613 28. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R. Intersubject synchronization
614 of cortical activity during natural vision. *Science* **303**, 1634-1640 (2004).

615 29. Kaiser RH, *et al.* Dynamic Resting-State Functional Connectivity in Major
616 Depression. *Neuropsychopharmacology* **41**, 1822-1830 (2016).

617 30. Hutchison RM, Morton JB. Tracking the Brain's Functional Coupling
618 Dynamics over Development. *J Neurosci* **35**, 6849-6859 (2016).

619 31. Elton A, Gao W. Task-related modulation of functional connectivity variability
620 and its behavioral correlations. *Hum Brain Mapp* **36**, 3260-3272 (2015).

621 32. Craddock RC, James GA, Holtzheimer PE, 3rd, Hu XP, Mayberg HS. A whole
622 brain fMRI atlas generated via spatially constrained spectral clustering. *Hum*
623 *Brain Mapp* **33**, 1914-1928 (2012).

624 33. Chang C, Glover GH. Time-frequency dynamics of resting-state brain
625 connectivity measured with fMRI. *Neuroimage* **50**, 81-98 (2010).

626 34. Chang C, Metzger CD, Glover GH, Duyn JH, Heinze HJ, Walter M.
627 Association between heart rate variability and fluctuations in resting-state
628 functional connectivity. *Neuroimage* **68**, 93-104 (2013).

629 35. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD.
630 Tracking whole-brain connectivity dynamics in the resting state. *Cereb Cortex*
631 **24**, 663-676 (2014).

632 36. Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and
633 self-generated thought: component processes, dynamic control, and clinical
634 relevance. *Ann N Y Acad Sci* **1316**, 29-52 (2014).

635 37. Vanhaudenhuyse A, *et al.* Default network connectivity reflects the level of
636 consciousness in non-communicative brain-damaged patients. *Brain* **133**,
637 161-171 (2010).

638 38. Seghier ML. The angular gyrus: multiple functions and multiple subdivisions.
639 *Neuroscientist* **19**, 43-61 (2013).

640 39. Margulies DS, *et al.* Situating the default-mode network along a principal
641 gradient of macroscale cortical organization. *Proc Natl Acad Sci U S A* **113**,
642 12574-12579 (2016).

643 40. Brunoni AR, Vanderhasselt MA. Working memory improvement with
644 non-invasive brain stimulation of the dorsolateral prefrontal cortex: a

645 systematic review and meta-analysis. *Brain Cogn* **86**, 1-9 (2014).

646 41. Mansouri FA, Tanaka K, Buckley MJ. Conflict-induced behavioural
647 adjustment: a clue to the executive functions of the prefrontal cortex. *Nat Rev
648 Neurosci* **10**, 141-152 (2009).

649 42. Craig AD. How do you feel--now? The anterior insula and human awareness.
650 *Nat Rev Neurosci* **10**, 59-70 (2009).

651 43. Menon V, Uddin LQ. Saliency, switching, attention and control: a network
652 model of insula function. *Brain Struct Funct* **214**, 655-667 (2010).

653 44. Macaluso E, Driver J. Multisensory spatial interactions: a window onto
654 functional integration in the human brain. *Trends Neurosci* **28**, 264-271
655 (2005).

656 45. Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS. A
657 direct demonstration of functional specialization in human visual cortex. *J
658 Neurosci* **11**, 641-649 (1991).

659 46. Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex.
660 *Neuron* **56**, 366-383 (2007).

661 47. Li W, Piech V, Gilbert CD. Perceptual learning and top-down influences in
662 primary visual cortex. *Nat Neurosci* **7**, 651-657 (2004).

663 48. Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M. Top-down
664 control of human visual cortex by frontal and parietal cortex in anticipatory
665 visual spatial attention. *J Neurosci* **28**, 10056-10061 (2008).

666 49. Goodale MA, Milner AD. Separate visual pathways for perception and action.
667 *Trends Neurosci* **15**, 20-25 (1992).

668 50. Newsome WT, Pare EB. A selective impairment of motion perception
669 following lesions of the middle temporal visual area (MT). *J Neurosci* **8**,
670 2201-2211 (1988).

671 51. Husain M, Nachev P. Space and the parietal cortex. *Trends Cogn Sci* **11**, 30-36
672 (2007).

673 52. Behrmann M, Geng JJ, Shomstein S. Parietal cortex and attention. *Current
674 opinion in neurobiology* **14**, 212-217 (2004).

675 53. Ungerleider LG, Haxby JV. 'What' and 'where' in the human brain. *Curr Opin
676 Neurobiol* **4**, 157-165 (1994).

677 54. Shams L, Kim R. Crossmodal influences on visual perception. *Phys Life Rev* **7**,

678 269-284 (2010).

679 55. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: Data Processing & Analysis
680 for (Resting-State) Brain Imaging. *Neuroinformatics* **14**, 339-351 (2016).

681 56. Sakoglu U, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD. A
682 method for evaluating dynamic functional network connectivity and
683 task-modulation: application to schizophrenia. *MAGMA* **23**, 351-366 (2010).

684 57. Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for
685 spatial extent have inflated false-positive rates. *Proc Natl Acad Sci U S A* **113**,
686 7900-7905 (2016).

687

688

689 **Acknowledgments**

690 The authors appreciate the editorial assistance and support of Dr. F. Xavier
691 Castellanos. This work was supported by the National Key R&D Program of China
692 (2017YFC1309902), the National Natural Science Foundation of China (81671774
693 and 81630031), the Hundred Talents Program of the Chinese Academy of Sciences,
694 and Beijing Municipal Science & Technology Commission (Z161100000216152).

695

696

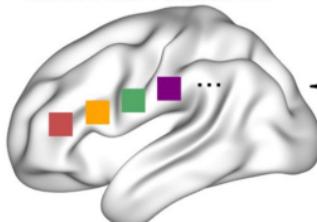
697 **Author contributions**

698 L.L. and B.L. acquired and preprocessed the data. L.L and C.Y. designed the research
699 and analyzed the data. All authors interpreted the results and wrote the manuscript.

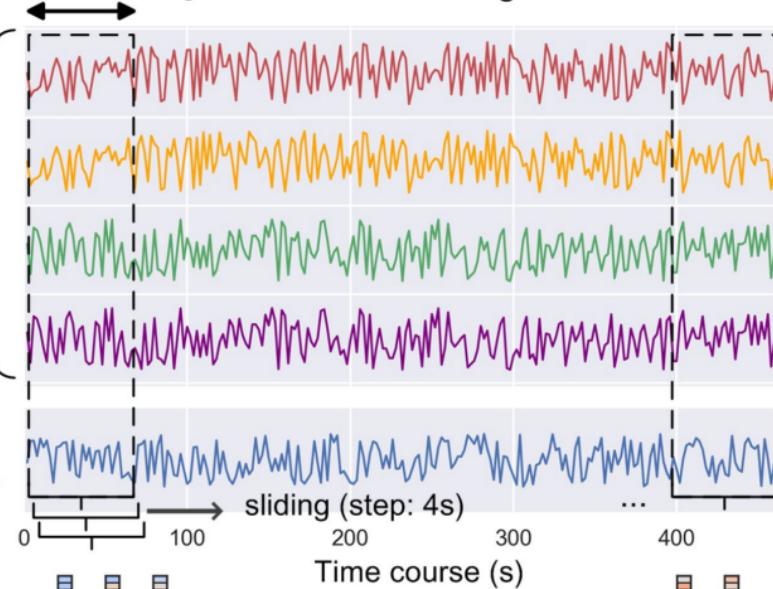
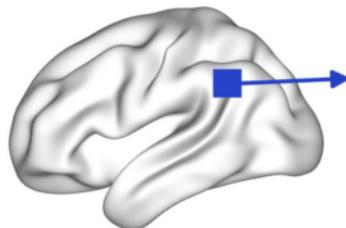
700

701

All voxels (~44,000)
within the grey matter
mask as features

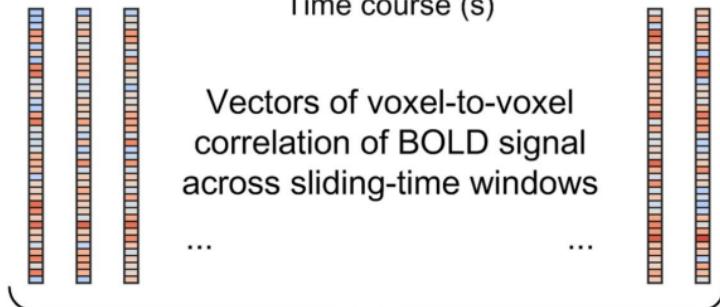


window length: 64 s BOLD signal



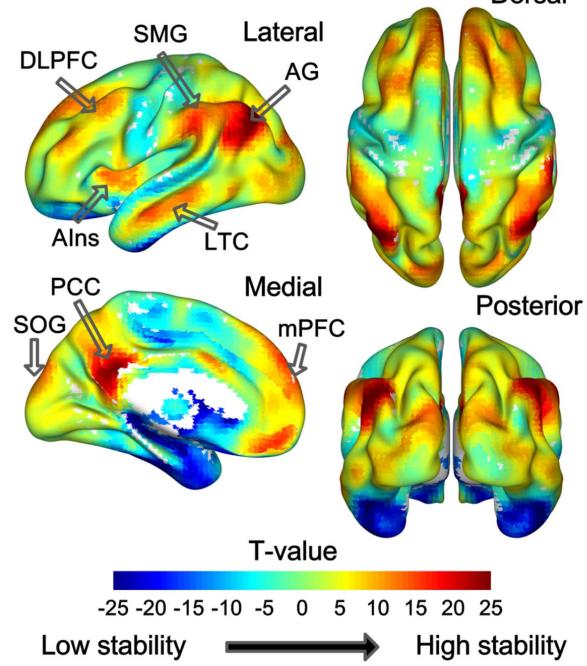
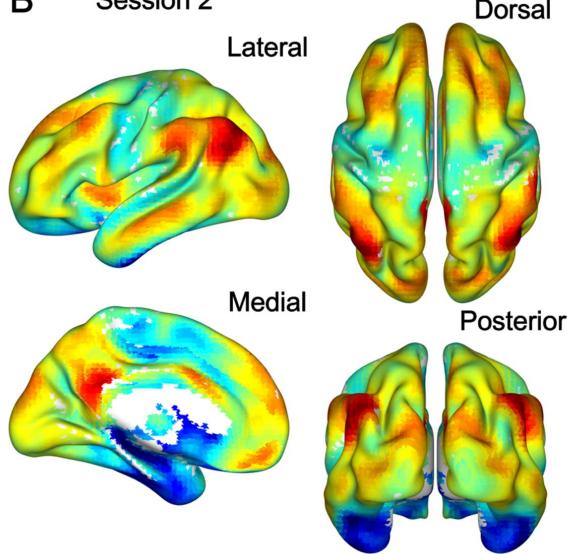
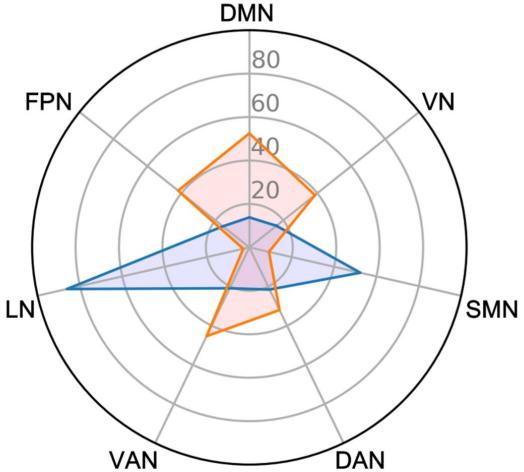
A given voxel

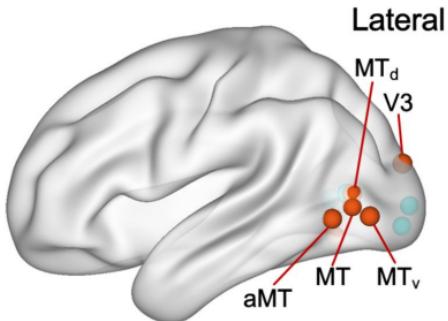
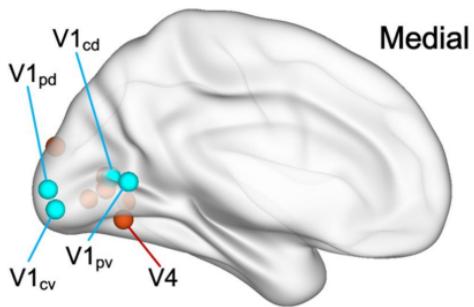
Quantify
functional
stability



Vectors of voxel-to-voxel
correlation of BOLD signal
across sliding-time windows

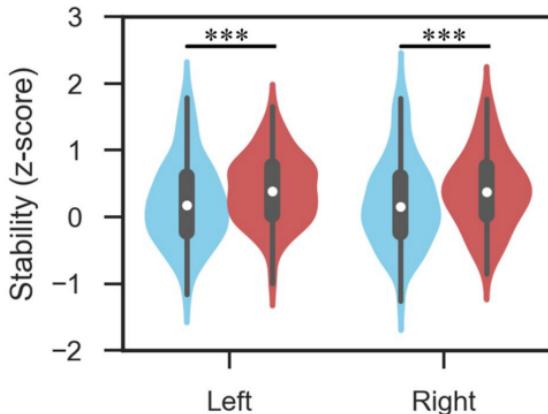
Kendall's concordance coefficient

A Session 1**C Session 1****B Session 2****D Session 2**

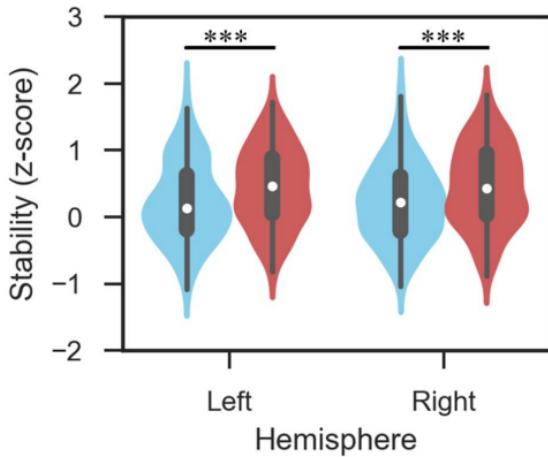


Primary visual regions
 High-order visual regions

Session 1

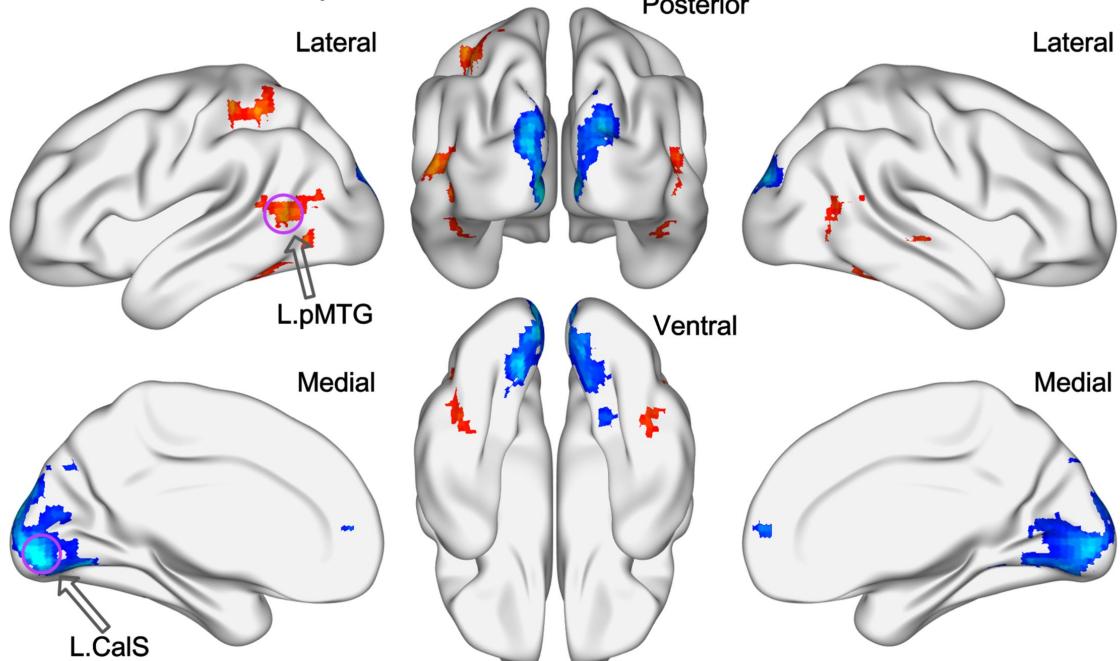


Session 2

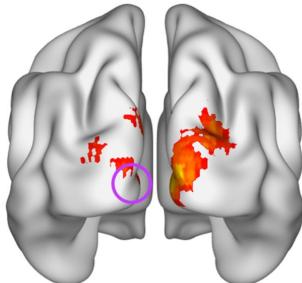


A

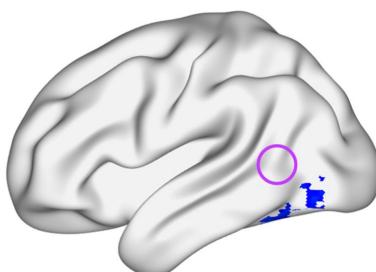
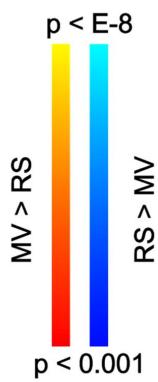
Functional stability

**B**

DFC variation of L.CalS

**C**

DFC variation of L.pMTG



Inter-subject correlation

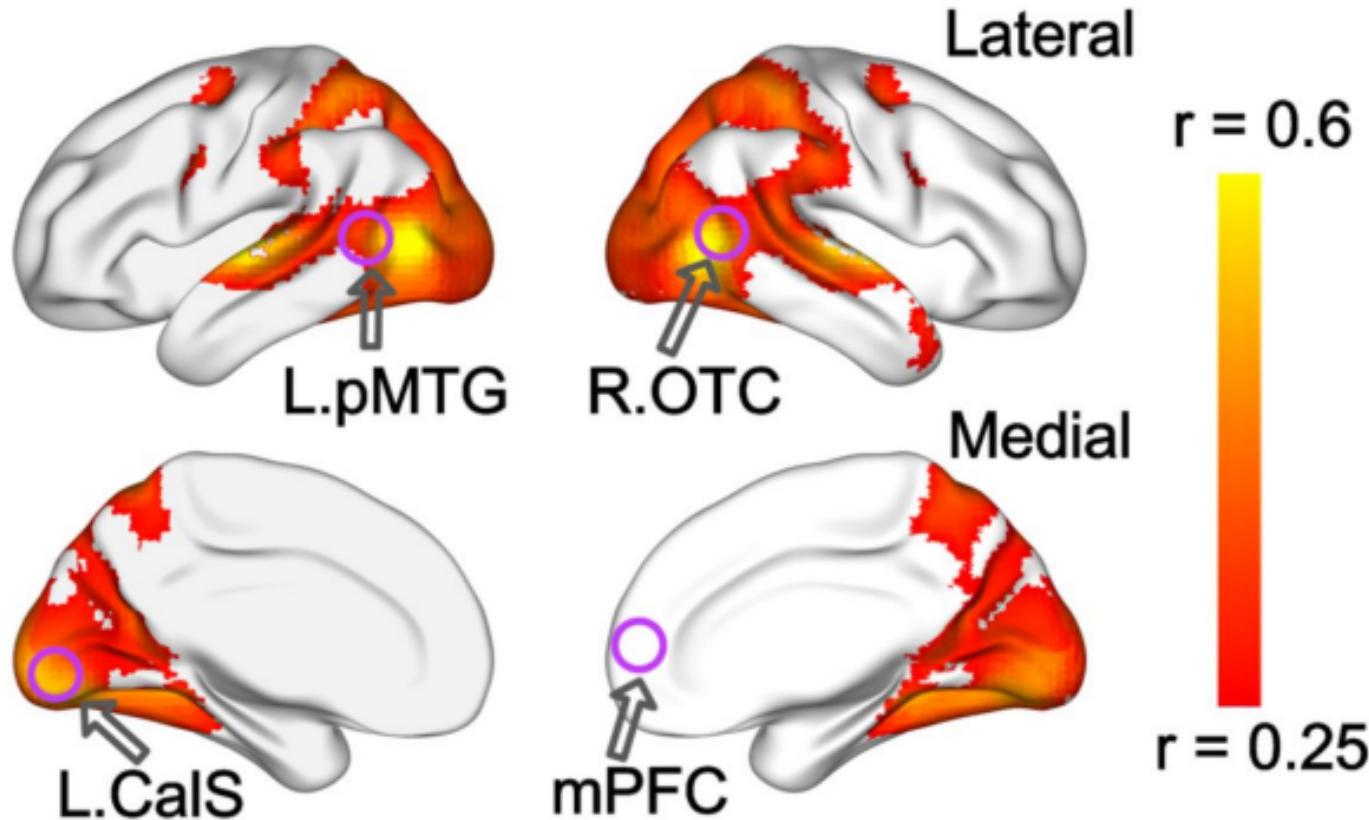


Table 1. Stability difference of movie watching vs. resting state

Cluster size	area	x	y	z	T-value
285	L.pMTG	-48	-54	9	6.959
	L.pFG	-42	-45	-18	5.390
112	R.OTC	45	-60	-3	6.753
117	L.IPS	-39	-33	57	6.184
66	R.STS	42	-30	-3	6.060
53	R.pITG	45	-51	-21	5.028
1303	L.calcarine	-6	-90	-3	-9.449
	L.cuneus	-12	-93	27	-7.303
	R.cuneus	18	-90	24	-7.218
46	L.LG	-15	-66	-6	-6.749
	R.LG	12	-75	-9	-6.341
	R.calcarine	15	-63	12	-3.853
46	mPFC	9	57	9	-5.675

L, left; R, right; pMTG, posterior middle temporal gyrus; pFG, posterior fusiform gyrus; OTC, occipitotemporal cortex; IPS, intraparietal sulcus; STS, superior temporal sulcus; pITG, posterior inferior temporal gyrus; LG, lingual gyrus; mPFC, medial prefrontal cortex.