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Abstract

Motivation: Recent efforts to describe the human epigenome have yielded thousands of
uniformly processed epigenomic and transcriptomic data sets. These data sets characterize a
rich variety of biological activity in hundreds of human cell lines and tissues (“biosamples”).
Understanding these data sets, and specifically how they differ across biosamples, can help ex-
plain many cellular mechanisms, particularly those driving development and disease. However,
due primarily to cost, the total number of assays that can be performed is limited. Previously
described imputation approaches, such as Avocado, have sought to overcome this limitation by
predicting genome-wide epigenomics experiments using learned associations among available
epigenomic data sets. However, these previous imputations have focused primarily on mea-
surements of histone modification and chromatin accessibility, despite other biological activity
being crucially important.

Results: We applied Avocado to a data set of 3,814 tracks of data derived from the EN-
CODE compendium, spanning 400 human biosamples and 84 assays. The resulting imputa-
tions cover measurements of chromatin accessibility, histone modification, transcription, and
protein binding. We demonstrate the quality of these imputations by comprehensively eval-
uating the model’s predictions and by showing significant improvements in protein binding
performance compared to the top models in an ENCODE-DREAM challenge. Additionally,
we show that the Avocado model allows for efficient addition of new assays and biosamples
to a pre-trained model, achieving high accuracy at predicting protein binding, even with only
a single track of training data.

Availability: Tutorials and source code are available under an Apache 2.0 license at
https://github.com/jmschrei/avocado.

Contact: william-noble@uw.edu or jmschr@cs.washington.edu
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Figure 1: The ENCODE2018-Core data matrix. In the matrix, columns represent biosamples and rows represent assays. Colors correspond to
general types of assays (histone modification ChiP-seq in orange, transcription factor ChIP-seq in red, RNA-seq in green, and chromatin accessibility
in blue). Biosamples are sorted by the total number of assays performed in them, and assays are first grouped by their type before being sorted by
the number of biosamples that they have been performed in.

1 Introduction
Recently, several scientific consortia have sought to collect large sets of genomic, transcriptomic
and epigenomic data. For example, since its inception in 2003, the NIH ENCODE Consortium
[1] has generated over 10,000 human transcriptomic and epigenomic experiments. Similar efforts
include Roadmap Epigenomics [2], modENCODE [3], the International Human Epigenome Con-
sortium [4], mouseENCODE [5], PsychENCODE [6], and GTEx [7]. These projects have varied
motivations, but all spring from the common belief that the generation of massive and diverse high-
throughput sequencing data sets can yield valuable insights into molecular biology and disease.

Unfortunately, the resulting data sets are usually incomplete. In the case of ENCODE, this
incompleteness is by design. Faced with a huge range of potential cell lines and primary cell types
to study (referred to hereafter using the ENCODE terminology “biosample”), ENCODE investi-
gators made the strategic decision to perform “tiered” analyses. Thus, some “Tier 1” biosamples
were analyzed using a large number of different types of sequencing assays, whereas biosamples
assigned to lower tiers were analyzed in less depth. This strategy allowed ENCODE to cover many
biosamples while also allowing researchers to examine a few biosamples in great detail. In other
cases, even for a consortium such as GTEx, which aims to systematically characterize a common
set of tissue types across a set of individuals using a fixed set of assays, missing data is unavoid-
able due to the cost of sequencing and loss of samples during processing. Given the vast space of
potential biosamples to study and the fact that new types of assays are always being developed to
characterize new phenomena, the sparsity of these compendia is likely to increase over time.

This incompleteness can be problematic. For example, many large-scale analysis methods
have trouble handling missing data. Despite the benefit that additional measurements may offer,
many analysis methods discard assays that have not been systematically been performed in the
biosamples of interest. More critically, many biomedical scientists want to exploit these massive,
publicly funded consortium data sets but find that the particular biosample type that they study was
relegated to a lower tier and hence is only sparsely characterized.

Imputation methods address this problem by filling in the missing data with computationally
predicted values. Imputation is feasible in part due to the structured nature of consortium-style
data sets, in which data from high-throughput sequencing experiments can be arranged system-
atically along axes such as “biosample” and “assay.” The first epigenomic imputation method,
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ChromImpute [8], trains a separate machine learning model for each missing experiment, deriving
input features from the same row or column in the data matrix, i.e., training from experiments that
involve the same biosample but a different assay or the same assay but a different biosample. A
second method, PREDICTD [9], takes a more wholistic approach, first organizing the entire data
set into a 3D tensor (assay × biosample × genomic position) and then training an ensemble of
machine learning models that each jointly decompose all experiments in the tensor into three ma-
trices, one for each dimension. PREDICTD imputes missing values by linearly combining values
from these three matrices. Most recently, a third method, Avocado [10], extends PREDICTD by
replacing the linear combination with a non-linear, deep neural network, and by modeling the ge-
nomic axis at multiple scales, thereby achieving significantly more accurate imputations without
the need to train an ensemble of models.

All three of these existing imputation methods rely upon a common data set. In creating
ChromImpute, Ernst and Kellis assembled what was, at the time, one of the largest collections of
uniformly processed epigenomic and transcriptomic data, derived from 1,122 experiments from the
Roadmap Epigenomics and ENCODE consortia. To allow for direct comparison between methods,
both PREDICTD and Avocado relied upon a subset of 1,014 of those experiments. Since 2015,
however, the amount of available data has increased tremendously. Here, we report the training of
Avocado on a data set derived from the ENCODE compendium that contains 3,814 tracks from 400
biosamples and 84 assays (Figure 1). This ENCODE2018-Core data set is 3.4 times larger than the
original ChromImpute data set. We demonstrate that this increase in size leads to a concomitant
improvement in predictive accuracy.

Furthermore, whereas the ChromImpute data set included only chromatin accessibility, his-
tone modification, and RNA-seq data, the ENCODE2018-Core data set also includes ChIP-seq
measurements of the binding of transcription factors (TF) and other proteins, such as CTCF and
POLR2A (referred to hereafter, for simplicity, as “transcription factors,” despite the differences
in their biological roles). Accurate prediction of TF binding in a cell type-specific fashion is
an extremely challenging and well-studied problem (reviewed in [11]). We demonstrate that, by
leveraging the large and diverse ENCODE2018-Core data set, Avocado achieves high accuracy in
prediction of TF binding, outperforming several state-of-the-art methods.

Finally, we demonstrate a practically important feature of the Avocado model, namely, that
the model can be easily extended to apply to newly or very sparsely characterized biosamples and
assays via a simple transfer learning approach. Specifically, we demonstrate how a new biosample
or assay can be added to a pre-trained Avocado model by fixing all of the existing model parameters
and only training the new assay or biosample factors. We do this using experiments from a second
dataset, ENCODE2018-Sparse, that contains 3,056 experiments from biosamples that are sparsely
characterized and from assays that have been performed in only few biosamples. We find that the
model can yield high quality imputations for transcription factors that are added in this manner, and
that these imputations can outperform the ENCODE-DREAM challenge participants even when
trained using a single track of data. Finally, we find that when biosamples are added using only
DNase-seq experiments, the resulting imputations for other assays can still be of high quality.
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2 Methods
2.1 Avocado
Avocado topology Avocado is a multi-scale deep tensor factorization model. The tensor facti-
zation component is comprised of five matrices of latent factors that encode the biosample, assay,
and three resolutons of genomic factors at 25 bp, 250 bp, and 5 kbp resolution. Having multi-
ple resolutions of genomic factors means that adjacent positions along the genome may share the
same 250 bp and 5 kbp resolution factors. We used the same model architecture as in the original
Avocado model [10], with 32 factors per biosample, 256 factors per assay, 25 factors per 25-bp
genomic position, 40 factors per 250-bp genomic position, and 45 factors per 5-kbp genomic posi-
tion. The neural network model has two hidden dense layers that each have 2,048 neurons, before
the regression output, for a total of three weight matrices to be learned jointly with the matrices of
latent factors. The network uses ReLU activation functions, ReLU(x) = max(0, x), on the hidden
layers, but no activation function on the prediction.
Avocado training Avocado is trained in a similar fashion to our previous work [10]. This
procedure involves two steps, because the genome is large and the full set of genomic latent factors
cannot fit in memory. The first is to jointly train all parameters of the model on the ENCODE Pilot
regions, which comprise roughly 1% of the genome. After training is complete, the neural network
weights, the assay factors, and the biosamples are all frozen. The second step is to train only the
three matrices of latent factors that make up the genomic factors on each chromosome individually.
In this manner, we can train comparable latent factors across each chromosome without the need
to keep then all in memory at the same time.

Avocado was trained in a standard fashion for neural network optimization. All initial model
parameters and optimizer hyperparameters were set to the defaults in Keras. In this work, Avocado
was trained using the Adam optimizer [12] for 8,000 epochs with a batch size of 40,000. This
is longer than our original work, where the model was trained for 800 epochs initially and 200
epochs on the subsequent transfer learning step. Empirical results suggest that this longer training
process is required to reach convergence, potentially because of the large diversity of signals in
the ENCODE2018-Core data set. When adding in additional biosample or assay factors, due to
the small number of trainable parameters, the model was trained for only 10 epochs with a batch
size of 512. Due to the large data set size, one epoch is defined as one pass over the genomic axis,
randomly selecting experiments at each position, rather than one full pass over every experiment.

The model was implemented using Keras (https://keras.io) with the Theano backend [13], and
experiments were run using GTX 1080 and GTX 2080 GPUs. For further background on neural
network models, we recommend the comprehensive review by J. Schmidhuber [14].

2.2 Data and evaluation
ENCODE data set We downloaded 6,870 genome-wide tracks of epigenomic data from the EN-
CODE project (https://www.encodeproject.org). These experiments were all processed using the
ENCODE processing pipeline and mapped to human genome assembly hg38, except for the ATAC-
seq tracks, which were processed using an approach that would later be added to the ENCODE
processing pipeline. The values are signal p-value for ChIP-seq data and ATAC-seq, read-depth
normalized signal for DNase-seq, and plus/minus strand signal for RNA-seq. When multiple repli-
cates were present, we preferentially chose the pooled replicate; otherwise, we chose the second
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replicate. The experimental signal tracks were then further processed before being used for model
training. First, the signal was downsampled to 25 bp resolution by taking the average signal in each
25 bp bin. Second, a hyperbolic sin transformation was applied to the data. This transformation
has been used previously to reduce the effect of outliers in epigenomic signal [9, 15].

We divided these experiments into two data sets, the ENCODE2018-Core data set and the
ENCODE2018-Sparse data set. The ENCODE2018-Core data set contains 3,814 experiments from
all 84 assays that have been performed in at least five biosamples, and all 400 biosamples that have
been characterized by at least five assays. Hence, ∼88.6% of the data in the ENCODE2018-Core
data matrix is missing. The ENCODE2018-Sparse data set contains 3,056 experiments, including
1,281 assays that have been performed in fewer than five biosamples and 667 biosamples that have
been characterized by fewer than five assays, yielding a matrix that is ∼99.7% missing. These data
sets, and the resulting model, can be found at https://noble.gs.washington.edu/proj/avocado/. The
authors place no restrictions on the download and use of our generated data sets or model.
ENCODE-DREAM challenge data sets For our comparisons with the ENCODE-
DREAM challenge participants, we acquired from the challenge organizers both
genome-wide model predictions from the top four participants and the binary labels
(https://www.synapse.org/#!Synapse:syn17805945). The predictions and labels were de-
fined at 200 bp resolution, with a stride of 50 bp, meaning that each 50 bp bin was included in four
adjacent bins. The labels corresponded to conservative thresholded irreproducible discover rate
(IDR) peaks called from multiple replicates of ChIP-seq signal.
Comparison to ENCODE-DREAM predictions Avocado’s predictions had to be processed
in several ways to make them comparable with the data format for the challenge. First, because
Avocado’s predictions are in hg38 and the challenge was performed in hg19, the UCSC liftOver
command (https://genome.ucsc.edu/cgi-bin/hgLiftOver) was used to convert the coordinates across
reference genomes. Unfortunately, many of the 25 bp bins in hg38 mapped to the middle of bins
in hg19, blurring the signal. Further, ∼27% of positions on chromosome 21 of hg38 could not be
mapped to positions in hg19, so those positions were discarded from the analysis. Lastly, because
the challenge was performed at 200 bp resolution, the average prediction in the 200 bp region was
used as Avocado’s predictions for that bin. We then filtered out all regions that were marked as
“ambiguous”’ by the challenge organizers. These regions included both the flanks of true peaks as
well as regions that were considered peaks in some, but not all, replicates.

The evaluation of each model was performed using both the average precision, which roughly
corresponds to the area under a precision-recall curve, and the point along the precision-recall
curve of equal precision and recall (EPR). The EPR corresponds to setting the decision threshold
so that the number of positive predictions made by the model is equal to the number of positive
labels in the data set. This is also called the “break-even point”. A strength of EPR, in comparison
to taking the recall at a fixed precision, is that it accounts for the true sparsity in the label set. For
example, if it is known beforehand that an experimental track generally has between 100 and 200
peaks across the entire genome, then a reasonable user may use the top 150 predictions from a
model. However, if an experimental track had between 10,000 and 20,000 peaks, then a user may
use the top 15,000 predicted peaks.
Calculation of average activity In several of our experiments we compared model perfor-
mance against the average activity of an assay. In all instances involving the ENCODE2018-Core
data set, “average activity” refers to the average signal value at each locus across all biosam-
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ples in the training set for that particular experiment. Because the predictions across the entire
ENCODE2018-Core data set are made using five-fold cross-validation, the training set differ for
tracks from different folds. This approach ensures that the track being predicted is not included in
the calculation of average activity which would make the baseline unfair. In instances involving the
ENCODE2018-Sparse data set, “average activity” refers to the average activity across all tracks of
that assay that were present in the entire ENCODE2018-Core data set.

3 Results
3.1 Avocado’s imputations are accurate and biosample specific
We first aimed to evaluate systematically the accuracy of Avocado’s imputed values on the
ENCODE2018-Core data set. One challenge associated with this assessment is that no competing
imputation method has yet been applied to this particular data set, making a direct comparison
of methods difficult. However, we have shown recently that the average activity of a given assay
across many biosamples is a good predictor of that activity in a new biosample [16]. Admittedly,
this predictor is scientifically uninteresting, in the sense that it makes the same prediction for every
new biosample and so, by construction, cannot capture biosample specific variation. We reasoned
that improvement over this baseline indicates that the model must be capturing biosample specific
signal. However, because the signal from most epigenomic assays is similar across biosamples, the
average activity predictor serves as a strong baseline that any cross-cell type predictor must beat.
Accordingly, we compare the predictions made by Avocado to the average activity of that assay in
the training set that was used for model training.

Overall, we found that Avocado is able to impute signal accurately for a variety of different
types of assays. We compared Avocado’s imputations to those of the average activity predictor
across 37,249,359 genomic loci from chromosomes 12–22 using five-fold cross-validation among
epigenomic experiments in the ENCODE2018-Core data set. Qualitatively, we observed strong
visual concordance between observed and imputed values across a variety of assay types (Fig-
ure 2A). In particular, the imputations capture the shape of peaks in histone modification signal,
such as those exhibited in H3K27ac and H3K4me3, the shape of peaks found in assays of tran-
scription factors like ELF1 and CTCF, and exon-specific activity in gene transcription assays. As
our primary quantitative measure, we compute the global mean-squared error (MSE) between the
observed and imputed values. This value reduces from 0.0807 to 0.0653 (paired t-test p-value of
1e-157), a reduction of 19.1%, between the average activity predictor and Avocado (Figure 2B).

We also compute five complementary quantitative measures. Two measures emphasize the
ability of an imputation method to correctly identify peaks in the data. One of these (mse1obs),
defined as the MSE in the positions with the top 1% of observed signal, corresponds to a notion of
recall. The complementary measure (mse1imp), defined as the MSE in position with the top 1% of
imputed signal, corresponds to precision. Three additional measures focus on the MSE in regions
of biological activity: the MSE in promoters (mseProm), gene bodies (mseGene), and enhancers
(mseEnh). In aggregate, Avocado outperforms the average activity baseline on all six performance
measures (p-values between 8e-65 for mse1imp and 1e-157 for mseGlobal) (Figure 2B/C).

When grouped by assay, we find that Avocado outperforms the average activity in 71 of the
84 experiments in our test set according to mseGlobal. Further investigation suggested that these
problematic assays were mostly of transcription, indicating a weakness of the Avocado model, or
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Figure 2: Avocado imputes epigenomic experiments accurately. (A) Example signal, corresponding imputations, and the average activity of that
assay, for six assays performed in HepG2. The figure includes representative tracks for RNA-seq, histone modification, and factor binding. The
data covers 350 kbp of chromosome 20. (B) Performance measures evaluated in aggregate over all experiments in chromosomes 12 through 22.
Orange bars show the performance of the average activity baseline and green bars show the performance of Avocado’s imputations. (C) Performance
measures evaluated for each assay, with Avocado’s error (y-axis) compared against the error of the average activity (x-axis). The number of assays
in which Avocado outperforms the average activity is denoted in green for each metric, and the number of assays in which Avocado underperforms
the average activity is denoted in orange.
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assays that may have been of poor quality (Supplementary Note 1).
The primary benefit of the ENCODE2018-Core data set, in comparison to previous data sets

drawn from the Roadmap Compendium, is the inclusion of many more assays and biosamples. We
hypothesized that not only will this data set allow us to make a more diverse set of imputations,
but that these additional measurements will improve performance on assays already included in
the Roadmap Compendium. We reasoned this may be the case because, for example, previous
imputation approaches have imputed H3K36me3, a transcription associated mark, but have not
utilized measurements of transcription to do so. A direct comparison to previous work was not
simple due to differences in the processing pipelines and reference genomes, and so we re-trained
Avocado using the same five-fold cross-validation strategy after having removed all experiments
that did not originate from the Roadmap Epigenomics Consortium. Additionally, we removed all
RNA-seq and methylation data sets, as they had not been used as input for previous imputation
methods. This resulted in 1,072 tracks of histone modification and chromatin accessibility.

We found that the inclusion of additional assays and biosamples lead to a clear improvement in
performance on the tracks from the Roadmap compendium. The MSE of Avocado’s imputations
dropped from 0.115 when trained exclusively on Roadmap data sets to 0.107 when trained on all
tracks in the ENCODE2018-Core data set, an improvement of 7% (p-value of 8e-45). When we
grouped the error by assay, we observed that tracks appeared to range from a significant improve-
ment to only a small decrease in performance (Supplementary Figure S2a). When aggregating
these performances across assays, we similarly observe large improvements in the performance of
most assays, and small decreases in a few (Supplementary Figure S2b/c). These results indicate
that the inclusion of other phenomena do, indeed, aid in the imputation of the original tracks.

3.2 Comparison to ENCODE-DREAM participants
Predicting the binding of various transcription factors is particularly important due both to these
proteins’ critical roles in regulating gene expression and the sparsity with which their binding
has been experimentally characterized across different biosamples. For example, of the 50 tran-
scription factors included in the ENCODE2018-Core data set, only 11 have been performed in
more than 10 biosamples. The most performed assay measures CTCF binding, and has been
performed 136 times, which is almost twice as high as the next most performed assay, mea-
suring POLR2A binding, at 70 assays. In contrast, 11 of the 18 histone modifications in the
ENCODE2018-Core data set have been measured in more than 10 biosamples, and the top 6 have
all been performed in more than 200 biosamples. The sparsity of protein binding assays is exac-
erbated in the ENCODE2018-Sparse data set, where an additional 707 assays measuring protein
binding have been performed in fewer than five biosamples.

A recent ENCODE-DREAM challenge focused on the prediction of transcription fac-
tor binding across biosamples, and phrased the prediction task as one of classifi-
cation where the aim is to predict whether binding is occuring at a given locus
(https://www.synapse.org/#!Synapse:syn6131484). The challenge involved training machine
learning models to predict signal peaks using nucleotide sequence, sequence properties, and mea-
surements of gene expression and chromatin accessibility. The participants trained their models
on a subset of chromosomes and biosamples, and were evaluated based on how well their models
generalized both across chromosomes and in new biosamples. We acquired predicted probabili-
ties of binding from the top four teams, Yuanfang Guan, dxquang, autosome.ru, and J-TEAM, for

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 29, 2019. ; https://doi.org/10.1101/533273doi: bioRxiv preprint 

https://www.synapse.org/#!Synapse:syn6131484
https://doi.org/10.1101/533273
http://creativecommons.org/licenses/by-nc/4.0/


Biosample iPSC PC-3 liver liver liver liver liver liver liver
Assay CTCF CTCF EGR1 FOXA1 GABPA JUND MAX REST TAF1
Method

Yuanfang Guan 0.729 0.600 0.397 0.282 0.353 0.533 0.441 0.319 0.281
dxquang 0.866 0.783 0.274 0.400 0.347 0.260 0.330 0.312 0.264
autosome.ru 0.778 0.486 0.331 0.243 0.342 0.416 0.384 0.264 0.221
J-TEAM 0.812 0.747 0.363 0.462 0.344 0.415 0.377 0.196 0.272
Avocado 0.723 0.791 0.530 0.354 0.396 0.660 0.574 0.477 0.384
Similar Biosample — — 0.363 0.389 0.226 0.568 0.446 0.408 —
Same Biosample 0.741 0.878 0.648 0.716 0.573 0.731 0.622 0.622 0.556
Average Activity 0.574 0.735 0.240 0.299 0.253 0.223 0.349 0.124 0.140

Table 1: Comparison of methods on ENCODE-DREAM challenge test set. The average precision (AP) computed across nine epigenomic
experiments in the ENCODE-DREAM challenge test set in chromosome 21. For each track, the score for the best-performing predictive model is
in boldface.

13 tracks of epigenomic data. Avocado did not make predictions for four of the included assays,
E2F1, HNF4A, FOXA2, NANOG, so only 9 tracks were used in this evaluation.

We compared Avocado’s predictions of transcription factor binding to the predictions of the top
four models from the ENCODE-DREAM challenge to serve as an independent validation of Avo-
cado’s quality. We used both the average precision (AP) and the point on the precision-recall curve
where precision and recall are equal (EPR) to evaluate the methods. In order to provide an upper
limit for how good Avocado’s predictions could be after the conversion process, we included as a
baseline the experimental ChIP-seq data that the peaks were called from (called “Same Biosam-
ple”). Additionally, we compared against the average activity of that assay in Avocado’s training
set for that prediction. This baseline serves to show that Avocado is learning to make biosample-
specific predictions. Further, when we investigated the training sets for the various experiments,
we noted that there were two liver biosamples, male adult (age 32), and female child (age 4), that
had similar assays performed in them. To ensure that Avocado was not simply memorizing the
signal from one of these biosamples and predicting it for the other liver biosample, we compare
against the signal from the related biosample as well (denoted “Similar Biosample”).

We observed that Avocado’s predictions outperform all of the challenge participants in all
tracks except for CTCF in iPSC and FOXA1 in liver (Table 1, Supplementary Table S1). The most
significant improvement comes in predicting REST, a transcriptional factor that represses neuronal
genes in biosamples that are not neurons, and the highest overall performance is in predicting
CTCF binding, likely because CTCF binding is similar across most biosamples. Importantly, the
REST assay for both liver biosamples were in the same fold, and TAF1 was only performed in
one of the liver biosamples, so Avocado’s good performance on those tracks are strong indicators
of its performance. Visually, we observe that some of the participants models appeared to over-
predict signal values, suggesting that a source of error for these models is their lack of precision,
corresponding to rapid drop in precision for predicting REST (Supplementary Figure S3). Inter-
estingly, Avocado appears to underperform using the related liver biosample as the predictor for
FOXA1, suggesting that perhaps the factors for FOXA1 are poorly trained. However, this result is
further evidence that Avocado is not simply memorizing related signal. We also note that, in the
case of CTCF in iPSCs, the ChIP-seq signal from iPSC appears to underperform two challenge
participants, suggesting that the conversion process may limit Avocado’s performance.

We did our best to ensure a fair comparison between Avocado and the challenge participants,
but the comparison is necessarily imperfect, for several reasons. Two factors make the comparison
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easier for Avocado. First, Avocado is exposed to many epigenomic measurements that the chal-
lenge participants did not have available, including measurements of the same transcription factor
in other cell types. Second, as an imputation approach, Avocado is trained on the same genomic
loci that it makes predictions for, whereas the challenge participants had to make predictions for
held-out chromosomes. On the other hand, three factors skew the comparison in favor of the chal-
lenge participants. First, unlike the challenge participants, Avocado was not directly exposed to
any aspect of nucleotide sequence or motif presence. Second, Avocado makes predictions at 25 bp
resolution in hg38, whereas the challenge was conducted at 200 bp resolution in hg19. We were
able to use liftOver to convert between assemblies, followed by aggregating the signal from 25
bp resolution to 200 bp resolution, but both steps blurred the signal. Third, Avocado is trained to
predict signal values directly, whereas the challenge participants are trained on the classification
task of identifying whether a position is a peak. Evaluation is done in a classification setting. In
particular, Avocado is penalized for accurately predicting high signal values in regions that aren’t
labeled as peaks, exemplifying the discordance between the regression and classification settings.
For all these reasons, Avocado would not have been a valid submission to the challenge. Finally,
it is perhaps worth emphasizing that whereas the challenge was truly blind, our application of Av-
ocado to the challenge data is only blind “by construction.” We emphasize that we did not adjust
Avocado’s model or hyperparameters based on looking at the challenge results: the comparison
presented here is based entirely on a pre-trained Avocado model.

3.3 Extending Avocado to more biosamples and assays
Despite including 3,814 epigenomic experiments, the ENCODE2018-Core data set does not con-
tain all biosamples or assays that are represented in the ENCODE compendium. Specifically, the
data set does not include 667 biosamples where fewer than five assays had been performed, and it
does not include 1,281 assays that had been performed in fewer than five biosamples. The miss-
ing biosamples primarily include time courses, genetic modifications, and treatments of canonical
biosamples, such as HepG2 genetically modified using RNAi. However, several primary cell lines
and tissues such as amniotic stem cells, adipocytes, and pulmonary artery, were also not included
in the ENCODE2018-Core data set due to lack of sufficient data. The majority of the missing as-
says corresponded to transcription measurements after gene knockdowns/knockouts (shRNA and
CRISPR assays) or to binding measurements of eGFP fusion proteins. Yet some transcription fac-
tors, such as NANOG, FOXA2, and HNF4A, were excluded as well. We collect these experiments
into a separate data set, called ENCODE2018-Sparse (see Methods 2.2).

We constructed the ENCODE2018-Sparse data set to attempt to address some of the problems
of missingness in ENCODE2018-Core. This sparse version of the data has 99.7% missing entries,
in comparson to 88.6% missing in ENCODE2018-Core. Within ENCODE2018-Sparse, we iden-
tified four main groups of biosamples: (1) 417 biosamples that only had DNase-seq performed
on them, with 58 additional biosamples that had DNase and one or more other assays performed
in it (2) 112 biosamples that had various measurements of transcription performed in them, (3) 7
biosamples that were well characterized by at least 50 sparsely performed assays of transcription
factor binding, and (4) biosamples derived from HepG2 and K562 that were well characterized by
various knockouts (Supplementary Figure S1).

In general, handling sparsely characterized assays or biosamples in a model like Avocado is
challenging. Hence, we designed a three-step process that we hypothesized would allow us to make
accurate imputations for additions with few corresponding tracks (Supplementary Figure S4). This
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approach is conceptually similar to our main approach for training Avocado. First, we trained the
Avocado model on all 3,814 experiments in ENCODE2018-Core. Second, we froze all of the
weights in the model, including both the neural network weights and all five of the latent factor
matrices. Third, we fit the new biosample or assay factors to the model using only the experimental
signal derived from the ENCODE Pilot Regions. This resulted in a model whose only difference
was the inclusion of a set of trained assay or biosample factors that were not present in original
model. This training strategy has the benefit of allowing for quick addition of biosamples or assays
to the pre-trained model, with requiring retraining of any of the existing model parameters.

In order to test the effectiveness of this approach, we extended Avocado to include assays that
were in the ENCODE-DREAM challenge but not in the ENCODE2018-Core data set. For the
four assays that we did not compare against (HNF4A and FOXA2 in liver, NANOG in iPSC, and
E2F1 in K562), all but E2F1 had been performed in a biosample other than the one included in the
challenge. Fortunately, for the two tracks derived from liver, the assays had also been performed
in a non-liver biosample, allowing us to more rigorously test Avocado’s generalization ability.
Accordingly, we fit these three new assay factors using the procedure above. This fitting was done
using HNF4A and FOXA2 from HepG2 and NANOG from h1-hESC. We then used the new assay
factors, coupled with the pre-trained network, genome factors, and relevant biosample factors, to
impute three remaining tracks in the challenge.

We observed that Avocado’s imputed tracks for HNF4A and FOXA2 in liver were of high
quality and outperformed several baselines (Figure 3a). Most notably, both of these tracks outper-
formed all four challenge participants in their respective settings according to both EPR and AP.
Second, they both outperformed simply using the track that they were trained on as the predictor,
indicating that the model is leveraging the pre-trained biosample latent factors to predict biosample
specific signal. Due to FOXA2’s similarity to FOXA1, we anticipated that predictions for these two
transcription factors would be similar. To ensure that the model was not simply predicting the same
signal for both FOXA1 and FOXA2, we compared against the predictions made for FOXA1 and
noted that they perform worse than the predictions for FOXA2. Interestingly, the predictions for
FOXA1 appear to outperform all four challenge participants’ predictions for FOXA2, highlighting
that the two transcription factors have very similar binding propensities.

However, we also observed that Avocado’s imputations for NANOG in iPSCs are of partic-
ularly poor quality. Avocado’s predictions underperform all four challenge participants. More
notably, Avocado also underperforms using the signal from h1-hESC that it was trained on as the
predictor. One potential reason for this poor performance is that relevant features of the NANOG
binding sites are not encoded in the genomic latent factors. Alternatively, given that Avocado also
underperformed the challenge participants at predicting CTCF in iPSC, it may be that the iPSC
latent factors are not well trained, leading to poor performance in predictions of any track.

Finally, we tested the ability of the three-step process in Supplementary Figure S4 to make
accurate predictions for biosamples that the model was not originally trained on. We observed
good performance when imputing assays for biosamples that were trained using only DNase-seq
(Supplementary Note 2).

4 Discussion
To our knowledge, we report here the largest imputation of epigenomic data that has been per-
formed to date. We applied the Avocado deep tensor factorization model to 3,814 epigenomic
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Figure 3: Avocado’s performance when adding new transcription factors to a pre-trained model. Precision-recall curves for three transcription
factors that were added to a pre-trained model using a single track of data each from the ENCODE2018-Sparse data set.

experiments in the ENCODE2018-Core data set. The resulting imputations cover a diverse set
of biological activity and cellular contexts. Due to the cost of experimentation and the increas-
ing sparsity of epigenomic compendia we anticipate that imputations of this scale will serve as a
valuable communal resource for characterizing the human epigenome.

We used multiple independent lines of reasoning to confirm that Avocado’s imputations are
both accurate and biosample specific. First, we compared each imputed data track to the average
activity of that assay and found that, for almost all assays, that Avocado’s imputations were more
accurate. A current weakness in Avocado’s imputations is imputing transcription, likely due to the
sparse, exon-level activity of these assays along the genome. Second, we compared imputations
of transcription factor binding tracks to the predictions made by the top four models in the recent
ENCODE-DREAM challenge. In almost all cases, the Avocado imputations were significantly
more accurate than the imputations produced by the challenge participants. Notably, Avocado is
not exposed to nucleotide sequence at all during the training process, and so its ability to correctly
impute transcription factor binding is based entirely on local epigenomic context, rather than bind-
ing motifs.

Ongoing characterization efforts regularly identify new biosamples of interest and develop as-
says to measure previously uncharacterized phenomena. These efforts aid in understanding the
complexities of the human genome but pose a problem for imputation efforts that must be trained
in a batch fashion. Given that it took almost a day to fit the Avocado genomic latent factors for even
the smallest chromosome, re-training the model for each inclusion is not feasible. We demonstrated
that, by leveraging parameters that had been pre-trained on the ENCODE2018-Core data set, new
assays and biosamples could be quickly added to the existing Avocado model. Our observations
suggest that not only is this approach computationally efficient, with three new assays taking only
a few minutes to add to the model, but that the resulting imputations are highly accurate.

One potential reason that this pre-training strategy works well is that the genomic latent factors
efficiently encode information about regions of biological activity. For example, rather than mem-
orizing the specific assays that exhibit activity at each locus, the latent factors may be organizing
general features of the biochemical activity at that locus. We have previously demonstrated the
utility of Avocado’s latent genomic representation for several predictive tasks [10]. Investigating
the utility and meaning of the latent factors from this improved Avocado model is ongoing work.

Notably, however, the encoding of relevant information in the latent factors may lead to a
potential weakness in Avocado’s ability to generalize to novel biosamples or assays. Specifically,
if the signal in a novel biosample or assay is not predictable from the tracks that were used to train
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the initial genomic latent factors, then it is unlikely that Avocado will make good imputations for
the new data. For example, if a transcription factor is dissimilar to any factors in the training set,
then the genomic latent factors may not have captured features relevant to the novel factor. This
may explain why Avocado fails to generalize well to NANOG.

A strength of large consortia, such as ENCODE, is that they are able to collect massive amounts
of experimental data. This amount of data is only possible because many labs collect it over the
course of several years. Inevitably, this results in some data that is of poor quality. While quality
control measures can usually identify data that is of very poor quality, they are not perfect, and the
decision of what to do with such data can be challenging. Unfortunately, data of poor quality poses
a dual challenge for any large scale imputation approach. When an imputation approach is trained
on low quaity data, then the resulting imputations may be distorted by the noise. Furthermore,
when the approach is evaluated against data that is of poor quality, imputations that are of good
quality may be incorrectly scored poorly. Thus, when dealing with large and historic data sources,
it is important to ensure the quality of the data being used.

The imputation approach offered by Avocado has great potential to be extended to precision
medicine. In this setting, a biosample is sparsely assayed in a variety of individuals, and the
goal is to correctly impute the inter-individual variation, particularly in regions associated with
disease. We anticipate that Avocado could either be applied directly in this setting, or be extended
to accommodate a 4D data tensor, where the fourth dimension corresponds to distinct individuals.
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Supplementary Note 1
We investigated further the 13 experiments for which Avocado underperforms the average activity
predictor. This set is enriched for measurements of transcription: 10 of the 13 experiments (77%)
measure gene transcription, such as CAGE, RAMPAGE, microRNA-seq, polyA-depleted RNA-
seq, and small RNA-seq. The remaining three assays for which Avocado does not outperform the
average activity predictor according to mseGlobal are H3K9me2, EP300, and ATAC-seq. Further
investigation on the ENCODE portal showed all H3K9me2 experiments had audit warnings and
that only one of the experiments, in iPSC cells, had a fraction of reads in peaks (FRiP) score above
the general quality control theshold of 1% used for ChIP-seq experiments [17]. While standards
for ATAC-seq experiments have been released, the quality metrics associated with the experiments
we used had not yet been released on the ENCODE portal, and so we were unable to verify their
quality.

We then investigated those assays that Avocado underperformed the average activity baseline
on other performance measures. First, we notice that Avocado imputed transcription poorly across
all measures. On all measures except mse1imp, at least 9 of the underperforming assays related
to measurements of transcription. Second, we notice that H3K9me2 and ATAC-seq are poor per-
formers across all metrics as well. The consistent poor performance of these 11 assays may give a
more pessimistic view of Avocado’s performance in general.

We then evaluated assay performance across different performance measures. We noticed that
Avocado only underperforms the average activity baseline on only five of the problematic tran-
scription assays. This suggests that Avocado may have a higher precision than recall when it
comes to predicting exon-specific activity. However, one weakness of mse1imp and mse1obs is
that the percentage used to approximate peak coverage, 1%, may be appropriate for histone marks,
but is not as specific to areas of transcription.
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Supplementary Note 2
We wanted to evaluate the ability for the three step processes descrived in Supplemantary Figure S4
to fit new biosamples from a limited number of assay measurements. To do so, we began by
training biosample factors for 475 biosamples not in the ENCODE2018-Core data set that had
DNase-seq performed in them. We then evaluated Avvocado’s ability to predict other assays that
were performed in these biosamples. A large number of these biosamples had only DNase-seq
performed in them, so we also evaluated Avocado’s ability to predict DNase-seq as well. We
reasoned that because the biosample factors were trained using the ENCODE Pilot regions, but
the predictions were evaluated in chromosome 20 without re-training the corresponding genomic
latent factors, this would be a fair evaluation.

We observed good performance of the imputations for these biosamples. Visually, we notice the
same concordance between the imputed and the experimental signal and that biosample-specific
elements are being captured (Supplementary Figure S5a). We then evaluated the performance of
Avocado on the mseGlobal metric compared to the average activity baseline for each assay. We
observed that Avocado appears to produce high quality predictions for several assays, including
CTCF, H3K27ac, and POLR2A (Supplementary Figure S5b). However, for other assays, such
as H3K9me3 an H3K36me3, the average activity dominates. It is possible that this phenomenon
speaks to the ability of DNase to recover these other approaches. Overall, we observe a decrease
in error from 0.027 when using the average activity to 0.024 (paired t-test p-value of 1e-5) when
using the imputations from Avocado.
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Biosample iPSC PC-3 liver liver liver liver liver liver liver
Assay CTCF CTCF EGR1 FOXA1 GABPA JUND MAX REST TAF1
Method

Yuanfang Guan 0.655 0.564 0.433 0.341 0.355 0.535 0.473 0.386 0.320
dxquang 0.811 0.717 0.315 0.440 0.340 0.286 0.394 0.384 0.323
autosome.ru 0.709 0.458 0.364 0.323 0.360 0.441 0.434 0.353 0.261
J-TEAM 0.754 0.688 0.379 0.484 0.334 0.450 0.444 0.271 0.337
Avocado 0.665 0.724 0.542 0.401 0.431 0.630 0.570 0.513 0.425
Similar Biosample — — 0.410 0.437 0.257 0.581 0.500 0.457 —
Same Biosample 0.671 0.818 0.645 0.691 0.580 0.716 0.619 0.617 0.561
Average Activity 0.530 0.664 0.321 0.380 0.287 0.273 0.421 0.215 0.256

Table S1: Comparison of methods on ENCODE-DREAM challenge test set. The equal precision-recall (EPR) computed across nine epigenomic
experiments in the ENCODE-DREAM challenge test set in chromosome 21. For each track, the score for the best-performing predictive model is
in boldface.
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Figure S1: The ENCODE2018-Sparse data matrix. The ENCODE2018-Sparse data matrix includes all assays that were performed in fewer than
5 biosamples, and all biosamples that were characterized by fewer than 5 assays. Experiments that have been performed are displayed as colored
rectangles, and experiments that have not been performed are displayed as white. The color corresponds to the general type of assay, with blue
indicating chromatin accessibility, orange indicating histone modification, red indicating protein binding, and green indicating transcription. This
figure displays all biosamples, and the top 300 assays ranked number of biosamples that they were performed in.
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Figure S2: Accuracies of models trained on either the Roadmap compendium or the ENCODE2018-Core data. (A) Each panel depicts the
error of models trained on either the ENCODE2018-Core data set (Avocado (ENCODE)), or those tracks from the ENCODE2018-Core data set
that were provided by the Roadmap Epigenomics Consortium (Avocado (Roadmap)), when imputing the tracks contained in the latter. Each dot
corresponds to MSE on a single track, and each panel corrsponds to all tracks from that assay. Dots below the diagonal line indicate that the model
trained on the ENCODE2018-Core data set outperformed the model trained on the Roadmap data set, with the number in green specifying the
number of such tracks, and dots above the line indicate the reverse, specified by the red number. (B) The improvement in performance when using
a model trained on the full ENCODE2018-Core data set versus one trained on only the Roadmap tracks. (C) Similar to (B), except the percentage
improvement.
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Figure S3: Avocado imputes transcription factors correctly. (A) Example predictions from a region of chromosome 21 for the top four ENCODE-
DREAM participants, Avocado, and experimental ChIP-seq data measuring CTCF binding in PC-3. Cyan ticks at the bottom of the tracks indicate
peak calls. (B) A precision-recall curve showing the performance of the four participants and Avocado in chromosome 21. As additional baselines,
the experimental ChIP-seq signal (red) and the average signal across Avocado’s training set (orange) were included in the comparison. For each
approach, the average precision (AP) and the equal-precision-recall (EPR) are reported (see Section 2.2), and the position on the curve where the
EPR lies is marked as a dot. (C) Similar to (A), except for REST binding in a liver biosample. (D) Similar to (B), except for REST binding in a
liver biosample. The experimental signal from a different liver biosample is used as a further baseline (magenta).

A. Train on entire ENCODE2018-Core B. Freeze all parameters C. Train new factors using ENCODE2018-Sparse

Parameter Frozen

Figure S4: Transfer learning methodology. A schematic of the three step process to train Avocado on the ENCODE2018-Sparse data set. (A)
Train Avocado on the entire ENCODE2018-Core data set as normal. (B) Freeze the weights of both the neural network and the factors. (C) Train
only the factor values for new biosamples and assays that are being added to the model.
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Figure S5: Imputations and performance when adding biosamples to a pre-trained model (A) Imputations for two tracks of data in the
ENCODE2018-Sparse data set on chromosome 20 after fitting the biosample factors using only DNase-seq signal from the ENCODE Pilot Regions.
(B) Performance of Avocado at imputing tracks on chromosome 20 after fitting the biosample factors using only DNase-seq signal from the
ENCODE Pilot regions.
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