

1 Impoverished auditory cues limit engagement of brain
2 networks controlling spatial selective attention

3 Authors: Yuqi Deng¹, Inyong Choi², Barbara Shinn-Cunningham^{1, 3}, Robert Baumgartner^{1, 4*}

4 Affiliations:

5 ¹ Biomedical Engineering, Boston University, Boston, MA 02215, USA

6 ² Communication Sciences & Disorders, University of Iowa, Iowa City, IA 52242, USA

7 ³ Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA

8 ⁴ Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria

9 * Corresponding Author: robert.baumgartner@oeaw.ac.at

10 Author contributions: R.B., B.S.-C., Y.D., and I.C. designed research; Y.D. and R.B. performed
11 research; Y.D. and R.B. analyzed data; and Y.D., R.B., B.S.-C., and I.C. wrote the paper.

12 **Highlights**

- 13 • Neural responses are weak or even absent with impoverished spatial auditory cues.
- 14 • Spatial cue realism affects parietal alpha activity and early evoked cortical responses.
- 15 • Differences due to cue realism disappear by the next level of neural processing.
- 16 • Robust engagement of spatial attention mechanisms requires realistic spatial cues.

17 **Abstract**

18 Spatial selective attention enables listeners to process a signal of interest in natural settings. However,
19 most past studies on auditory spatial attention used impoverished spatial cues: presenting competing
20 sounds to different ears, using only interaural differences in time (ITDs) and/or intensity (IIDs), or using
21 non-individualized head-related transfer functions (HRTFs). Here we tested the hypothesis that
22 impoverished spatial cues impair spatial auditory attention by only weakly engaging relevant cortical
23 networks. Eighteen normal-hearing listeners reported the content of one of two competing syllable
24 streams simulated at roughly +30° and -30° azimuth. The competing streams consisted of syllables from
25 two different-sex talkers. Spatialization was based on natural spatial cues (individualized HRTFs),
26 individualized IIDs, or generic ITDs. We measured behavioral performance as well as
27 electroencephalographic markers of selective attention. Behaviorally, subjects recalled target streams
28 most accurately with natural cues. Neurally, spatial attention significantly modulated early evoked
29 sensory response magnitudes only for natural cues, not in conditions using only ITDs or IIDs. Consistent
30 with this, parietal oscillatory power in the alpha band (8-14 Hz; associated with filtering out distracting
31 events from unattended directions) showed significantly less attentional modulation with isolated spatial
32 cues than with natural cues. Our findings support the hypothesis that spatial selective attention networks
33 are only partially engaged by impoverished spatial auditory cues. These results not only suggest that
34 studies using unnatural spatial cues underestimate the neural effects of spatial auditory attention, they also
35 illustrate the importance of preserving natural spatial cues in assistive listening devices to support robust
36 attentional control.

37 **Keywords:** auditory spatial selective attention, head-related transfer functions, electroencephalography

38 **1 Introduction**

39 Spatial hearing is crucial to selectively attend to sounds of interest in everyday social settings. The
40 remarkable ability of normal-hearing listeners to focus on a sound source within a complex acoustic scene
41 is often referred to as “the cocktail party phenomenon,” and has a rich history (Cherry, 1953).
42 Nevertheless, the mechanisms controlling spatial selective attention are still poorly understood.
43 Acoustically, in everyday situations, the two ears provide the listener with a listener-specific combination
44 of spatial cues that include interaural time and intensity differences (ITDs and IIDs, respectively), as well
45 as spectral cues caused by acoustical filtering of the pinnae (Blauert, 1997a). Together, these cues,
46 captured by individualized head-related transfer functions (HRTFs), allow the brain to create a clear,
47 punctate internal representation of the location of sound sources in the environment (Majdak et al., 2019;
48 Middlebrooks, 2015).

49 When only isolated or impoverished spatial cues are present, auditory localization performance degrades
50 and the natural perception of external auditory objects may even collapse into the listener’s head
51 (Baumgartner et al., 2017; Callan et al., 2013; Cubick et al., 2018; Hartmann and Wittenberg, 1996).
52 Nevertheless, degraded or isolated ITDs and IIDs still create a strong sense of lateralization within the
53 head; moreover, even highly impoverished spatial cues can be used to achieve spatial release from
54 speech-on-speech masking, behaviorally (Cubick et al., 2018; Culling et al., 2004; Ellinger et al., 2017;
55 Glyde et al., 2013; Kidd et al., 2010; Loiselle et al., 2016). The relative importance of ITDs and IIDs in
56 spatial release from masking remains unclear, with past studies reporting conflicting results when directly
57 comparing different binaural conditions (Ellinger et al., 2017; Glyde et al., 2013; Higgins et al., 2017;
58 Shinn-Cunningham et al., 2005). More importantly, it is a puzzle as to why realistic and degraded spatial
59 cues yield at best small behavioral differences in masking release even though spatial perception is clearly
60 degraded when cues are impoverished.

61 Previous electroencephalography (EEG) and magnetoencephalography (MEG) studies have demonstrated
62 that rich spatial cues in sound stimuli lead to different cortical activity compared to using isolated cues

63 during sound localization (Callan et al., 2013; Palomäki et al., 2005) and auditory motion processing
64 (Getzmann and Lewald, 2010). However, the apparently minor behavioral consequences of using
65 unnatural, non-individualized spatial cues on spatial release from masking, combined with the ease of
66 implementing studies with simple, non-individualized spatial cues, led to their wide usage in auditory
67 neuroscience studies (Cusack et al., 2001; Dahmen et al., 2010; Dai et al., 2018; Itoh et al., 2000; Kong et
68 al., 2014; Sach et al., 2000). Indeed, in the auditory neuroscience literature, many studies did not even
69 present true binaural signals, but instead studied “spatial” attention by using dichotic signals, with one
70 sound presented monaurally to one ear and a competing sound presented monaurally to the other ear
71 (Ahveninen et al., 2011; Alho et al., 1999b; Das et al., 2016; Wöstmann et al., 2016). These studies
72 implicitly assumed that because listeners were able to use impoverished spatial cues to listen to one sound
73 from a particular (relative) direction, the cognitive networks responsible for controlling spatial attention
74 must be engaged just as they are when listening to rich, natural spatial cues. Nonetheless, it is unclear
75 whether and how engagement of higher-order cognitive processes such as deployment of selective
76 attention is affected by the use of unnatural or impoverished spatial cues.

77 Modulation of neural signatures, such as event-related potentials (ERPs) and induced oscillatory activity,
78 is often taken as evidence of effective attentional control (Herrmann and Knight, 2001; Siegel et al.,
79 2012). In particular, auditory spatial attention is known to modulate early sensory ERPs in the N1 time
80 range (processing latencies of 100 to 150 ms; see Choi et al., 2013; Röder et al., 1999), whereas
81 modulation of P1 ERPs (50 to 100 ms) has only recently been demonstrated in a free field experiment
82 (Giuliano et al., 2014). Induced alpha oscillation (8 to 14 Hz) has been hypothesized to function as an
83 information gating mechanism (Klimesch et al., 2007). During auditory spatial attention, parietal alpha
84 power often decreases in the contralateral hemisphere of attended stimuli and/or increases in the
85 ipsilateral hemisphere (Banerjee et al., 2011; Lim et al., 2015; Wöstmann et al., 2016). These neural
86 modulations constitute objective metrics of the efficacy of attentional control.

87 Here, we test listeners in a selective attention paradigm with simultaneous, spatially separated talkers. We
88 use the aforementioned EEG measures to compare both perceptual ability and the neural signatures of
89 attentional control for simulations with impoverished vs. natural spatial cues. Eighteen subjects performed
90 an auditory spatial attention task with two competing streams located at roughly +30° and -30° azimuth
91 (Figure 1). On every trial, listeners were cued by an auditory cue to attend to either the left or right stream
92 and report the content of the cued stream. The competing streams consisted of syllables (/ba/, /da/ or /ga/)
93 from two different-sex talkers. Sound stimuli (including the cuing sound) were spatialized using three
94 different levels of naturalness and richness: 1) generic ITDs only, 2) individualized IIDs, or 3)
95 individualized HRTFs containing all of the naturally occurring spatial cues a listener experiences in the
96 everyday world. We show that behavioral performance is better when listeners hear natural,
97 individualized spatial cues than when they hear impoverished cues. Importantly, only natural spatial cues
98 yield significant attentional modulation of P1 amplitudes. Moreover, induced alpha activity is less robust
99 and poorly lateralized with isolated spatial cues compared to rich, natural spatial cues.

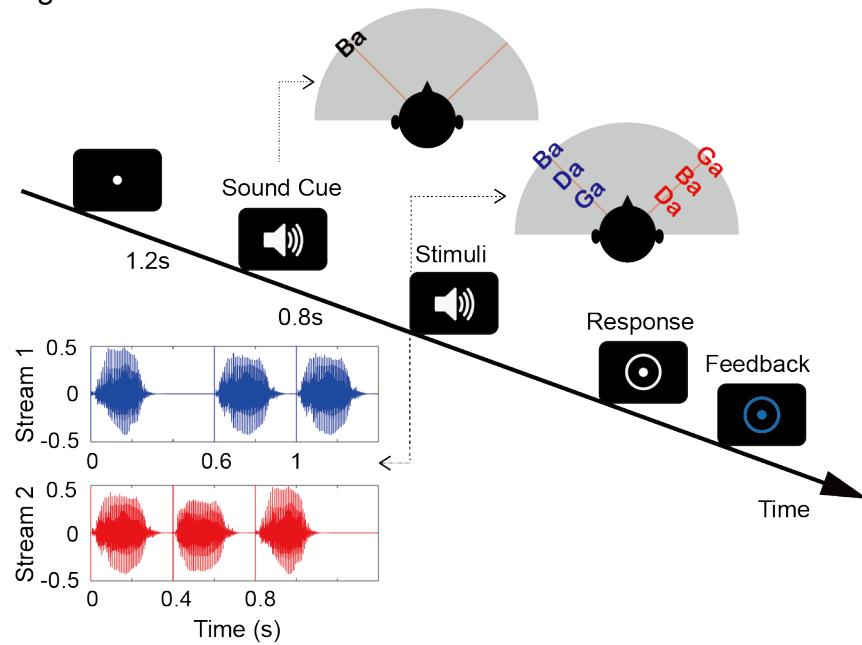
100 **2 Materials and Methods**

101 *2.1 Subjects*

102 Twenty-one paid volunteers and one author within the age of 18-42 years ($M = 22.9$, $SD = 5.5$;
103 12 females, 10 males) participated in this study. None of the subjects had audiometric thresholds greater
104 than 20 dB for frequencies from 250 Hz to 8 kHz. All participants gave informed consent as approved by
105 the Boston University Institutional Review Board. Two subjects were withdrawn from the study due to
106 the inability to perform the task (percentage of correct response less than 30% after training), and two
107 subjects were removed during EEG data preprocessing due to excessive artifacts. Therefore 18 subjects
108 remained for further analysis ($N = 18$).

109 *2.2 Stimuli and Procedure*

110 The sound stimuli consisted of consonant-vowel syllables (/ba/, /da/, & /ga/), each 0.4 s in duration. These
111 syllables were recorded from three talkers that naturally differed in fundamental frequency (F0). Details
112 on stimulus are provided in Stimulus Presentation. Cue and stimuli were presented via earphones (ER-2,
113 Etymotic Research, Inc.) and spatialized to approximately $\pm 30^\circ$ azimuth (0° elevation). Three different
114 spatialization conditions were used: HRTF, IID, and ITD. In the HRTF condition, individualized HRTFs,
115 providing natural combinations of ITDs, IIDs, and spectral cues, were used.


116 Individualized HRTFs were measured using procedures identical to those described in a previous study
117 (Baumgartner et al., 2017). In short, loudspeakers were positioned at the desired angles and 1.5 m
118 distance from the subject's head in a sound-treated chamber. A pair of miniature microphones placed at
119 the entrances of the subject's blocked left and right ear canals measured the pseudo noise signal emitted
120 by each loudspeaker. These measurements were used to compute the impulse responses of the acoustic
121 transmission paths. Room reflections were removed via temporal windowing (0.5-ms cosine ramps)
122 limiting the impulse responses to the initial 3 ms. Finally, those listener-specific impulse responses were

123 equalized by reference measurements obtained by placing the microphones at the radial center of the
124 loudspeaker setup.

125 In the IID condition, ITDs were removed from the individualized HRTFs by computing minimum-phase
126 representations of the filters (computed by removing the non-causal part of the cepstrum). Hence, the IID
127 and HRTF conditions provided the same monaural magnitude spectra and thus the same energetic
128 advantage of the ear ipsilateral to the target, although the IID condition removed the naturally occurring
129 group delay between the signals at the two ears present in the individualized HRTFs. In the ITD
130 condition, spatialization was based on simply delaying the signal presented to the contralateral ear by
131 300 μ s (roughly the magnitude of the ITD present in the natural HRTFs for the sources used), thus
132 providing no energetic advantage to the ipsilateral ear or spectral cues present in the natural HRTFs. This
133 spatialization method was tested due to its popularity in auditory neuroscience.

134 The auditory cue was a single syllable /ba/ spoken by a low-pitched male voice ($F_0 = 91$ Hz, estimated by
135 Praat software; Boersma, 2001). The subsequent target and distractor streams each consisted of three
136 syllables randomly chosen out of the set of three syllables (with replacement). The target stream was
137 spoken by either a female ($F_0 = 189$ Hz) or a high-pitched male talker ($F_0 = 125$ Hz), and the distractor
138 stream was spoken by the other talker. The first syllable of the target and distractor sound overlapped in
139 time, while the latter two syllables were separated by 200 ms, onset to onset (Figure 1). To avoid
140 engagement of temporal attention rather than spatial attention, the target stream was equally likely to be
141 leading or lagging, randomly chosen on each trial. In the leading stream, the onsets of all three syllables
142 were separated by 400 ms; in the lagging stream, the onsets of the first and the second syllable were
143 separated by 600 ms, whereas those of the second and the third syllable were separated by 400 ms. All
144 sound stimuli were presented at a sound pressure level of approximately 75 dB.

Figure 1

145

146 **Fig. 1.** Auditory spatial attention task with two competing streams was used to assess the
147 consequence of impoverished auditory spatial cues on neural proxies of attention control. An
148 auditory cue was presented first from the location of the upcoming target stream, processed by the
149 same spatialization scheme as the upcoming mixture. Following the cue, the competing streams
150 began, one from around +30° the other from around -30° azimuth. Listeners were asked to recall
151 the syllable sequence presented from the cued side. The first syllables of both streams were
152 temporally aligned; however, the latter two syllables in the competing streams were staggered,
153 enabling us to isolate neural responses to each. Feedback was provided after every trial.

154 **2.3 Task**

155 Subjects performed a spatial attention task using a Posner paradigm (Figure 1) (Posner et al., 1980) while
156 listening to sounds over headphones in a sound-treated booth (Eckel Industries, Inc.). Sound spatialization
157 was realized by one of the three spatialization conditions fixed within trials but pseudo-randomized across
158 trials. Subjects were instructed to fixate on a dot at the center of the screen at the beginning of each trial.

159 The fixation dot lasted 1.2 s before an auditory cue was presented. The auditory cue came from either left
160 or right, indicating the direction from which the target sound would come. A target sound started 0.8 s
161 later from the cued location. At the same time a distractor sound started from the opposite location of the
162 target sound. After the sounds finished, a response cue appeared on the computer screen, signaling to the
163 subjects to report the syllable sequence of the target sound using a number keypad. The syllables /ba/, /da/
164 and /ga/ corresponded to number keys 1, 2, and 3, respectively. The keys were labelled with their
165 corresponding syllables. Feedback about whether or not the subject correctly reported the syllables was
166 given at the end of every trial.

167 Each subject performed 450 randomized trials of this task, divided into 9 blocks each consisting of 50
168 trials. In total, every subject performed 150 trials for each of the three sound spatialization conditions (75
169 trials attending left and 75 trials attending right; half target leading and half target lagging). Prior to the
170 test sessions, all participants received a practice session to get familiarized with the task. Participants with
171 a percentage of correct response below 30% after 3 blocks of training (50 trials per block) were excluded
172 from the study.

173 *2.4 EEG Acquisition and Preprocessing*

174 32-channel scalp EEG data was recorded (Activetwo system with Activeview acquisition software,
175 Biosemi B.V.) while subjects were performing the task. Two additional reference electrodes were placed
176 on the earlobes. Horizontal eye movements were recorded by two electrooculography (EOG) electrodes
177 placed on the outer canthi of each eye. Vertical eye movement was recorded by one EOG electrode placed
178 below the right eye. The timing of stimulus was controlled by Matlab (Mathworks) with Psychtoolbox
179 (extension 3; Brainard, 1997).

180 EEG preprocessing was conducted in Matlab with Eeglab toolbox (Delorme and Makeig, 2004). EEG
181 data were corrected against the average of the two reference channels. Bad channels were marked by
182 manual selection during recording and automatically detected based on joint probability measures of

183 Eeglab. EEG signals were then down-sampled to 256 Hz and epochs containing responses to individual
184 trials were extracted. Each epoch was baseline corrected against 100 ms prior to the cue onset by
185 removing the mean of the baseline period from the whole trial. ICA artifact rejection was performed with
186 Eeglab to remove components of eye movements, blinks, and muscle artifacts. The maximum number of
187 independent components rejected for each subject was five. After ICA rejection, bad channels were
188 removed and interpolated. Trials with a maximum absolute value over 80 μ V were rejected (Delorme et
189 al., 2007). Two subjects with excessive artifacts were removed from further EEG analysis because less
190 than 50% of trials remained after thresholding. For the rest of the 18 subjects, at least about two thirds of
191 the trials (minimum was 48 out of 75 trials) remained for each condition after artifact rejection. Trial
192 numbers were equalized within and across subjects by randomly selecting the minimum number of
193 available trials ($N = 48$) for each condition across the whole recording session.

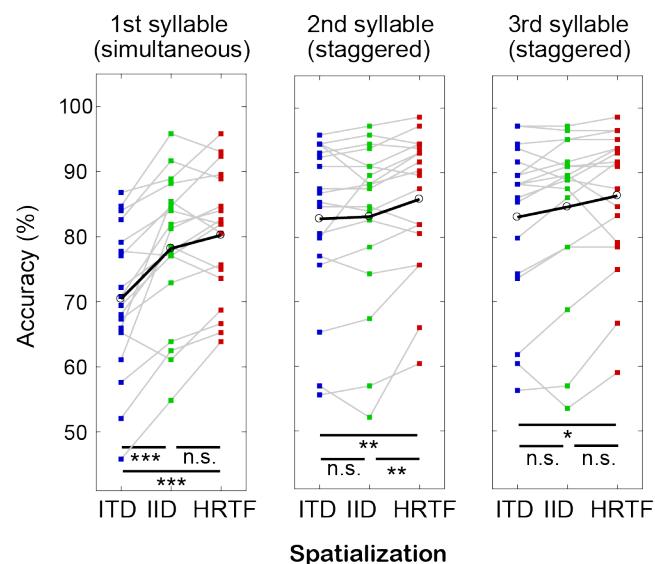
194 *2.5 Data analysis*

195 Behavioral performance was quantified by the percentage of correct responses for each one of the three
196 syllables in the target stream and each spatialization condition. Behavioral results were collapsed across
197 the attend-left and attend-right trials. The percentages of correct response were then normalized by logit
198 transformation before parametric statistical testing was performed on the resulting data.

199 ERP responses were evaluated for the second syllable of the target sound and distractor sound,
200 respectively. The reason we looked at the second syllable only is that 1) the first syllable of the target and
201 distractor aligned in time and therefore the ERPs were not separable, and 2) the ERP amplitude in
202 response to the third syllable was small, and therefore more contaminated by noise. ERP components
203 were then extracted from the time series data. The preprocessed data (details see EEG Preprocessing
204 Procedures) was bandpass filtered from 0.5 to 20 Hz by a finite impulse response filter with Kaiser
205 window design ($\beta = 7.2$, $n = 1178$). Data from four fronto-central channels (Cz, Fz, FC1, and FC2) were
206 averaged to get the auditory ERP response. We picked these four channels a priori because auditory ERP
207 responses in sensor space are largest in the fronto-central area of the scalp. To quantify the amplitudes of

208 ERP components, the maximum value within the window of 50 to 100 ms after the second syllable onset
209 was taken to be the P1 amplitude; the minimum value within the window of 100 to 180 ms after the
210 second syllable onset was calculated to be the N1 amplitude. The values extracted from the selected
211 windows were calculated for each channel and plotted onto a 2D scalp map to generate topography plots.
212 The values of the ERP components from the four selected channels were then averaged and compared
213 across different spatialization conditions.

214 To get the amplitude of alpha oscillations, the preprocessed EEG data was bandpass filtered to the alpha
215 range (8 to 14 Hz) before a Hilbert transform was applied. The magnitude of the resulting data was taken
216 as the extracted alpha power envelope. To get induced alpha power, the alpha power was calculated for
217 single trials first and then averaged across trials (Snyder and Large, 2005). The time course of alpha
218 power was baseline corrected against 700 ms before the auditory cue onset. GFP (Murray et al., 2008;
219 Skrandies, 1990) constitutes the spatial standard deviation across all scalp electrodes; it has been used as a
220 measurement to quantify the amount of alpha variation across the scalp (Lim et al., 2015). We calculated
221 the time courses of alpha GFP by taking the standard deviation of alpha power over all electrodes. To
222 quantify the degree of alpha modulation based on direction of attention, we calculated the Attentional
223 Modulation Index (AMI) of alpha power, defined as the alpha power difference between attended left and
224 attended right trials divided by the overall alpha power (Wöstmann et al., 2016). The AMI of alpha was
225 calculated for each time point, yielding the time course of AMI for each spatialization condition. We then
226 averaged the alpha AMI of each spatialization condition over the 800 ms immediately before stimulus
227 onset (-800 ms to 0 ms, re: onset). This is the period in which the cue has already signaled to the subjects
228 where to orient their spatial attention in preparation for the target sound, but before the speech streams
229 begin. Scalp topographies of the preparatory alpha AMI were plotted for each condition. Hemispheric
230 lateralization of alpha AMI was further compared across spatialization conditions and evaluated as the
231 difference between the left hemisphere and the right hemisphere. Calculated in this way, the AMI is
232 expected to be positive in left and negative in right parietal channels.


233 For testing the significance of different means across conditions, we conducted repeated measures
234 ANOVAs followed by post-hoc analyses for all significant main effects and interactions using Fisher's
235 least significant difference procedure. We separately tested whether condition means differed
236 significantly from zero using Bonferroni-corrected t-tests (P_{adj}). The Lilliefors test was performed prior to
237 statistical testing to check normality of the data. Data was considered normally distributed at $P > 0.05$.
238 Prior to statistical analysis of behavioral performance, the percentages of correctly reported syllable were
239 logit transformed in order to obtain normally distributed data.
240 Raw data and analysis scripts are publicly available (Deng et al., 2019).

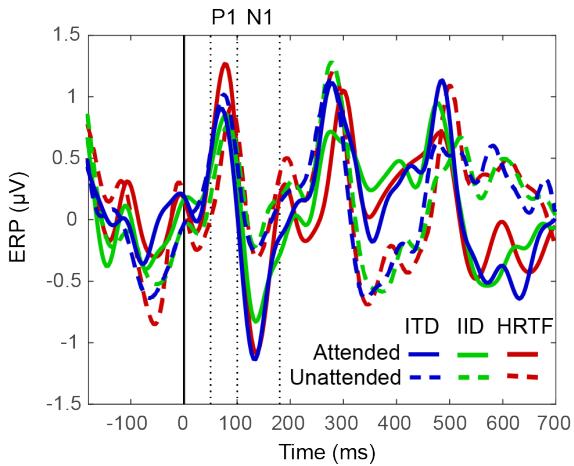
241 **3 Results**

242 *3.1 Natural spatial cues facilitate behavioral performance*

243 Percentages of correctly recalling each syllable of the target stream differed across the three spatialization
244 conditions (Figure 2; 1st syllable: $F_{(2,34)} = 25.25, P < 0.001$; 2nd syllable: $F_{(2,34)} = 6.27, P = 0.005$; 3rd
245 syllable: $F_{(2,34)} = 5.60, P = 0.008$). For the first syllable, where the target and distractor sounds overlapped
246 in time, subjects were least accurate in the ITD condition; performance in the ITD condition differed
247 significantly from both the IID ($t_{(34)} = 5.31, P < 0.001$) and HRTF conditions ($t_{(34)} = 6.74, P < 0.001$).
248 However, no statistically significant difference was observed between IID and HRTF conditions for that
249 syllable ($t_{(34)} = 1.43, P = 0.16$). For the second and the third syllable, where target and distractor streams
250 occurred staggered in time, subjects performed significantly better in the HRTF condition than in both the
251 ITD condition (2nd syllable: $t_{(34)} = 3.27, P = 0.002$; 3rd syllable: $t_{(34)} = 3.33, P = 0.002$) and the IID
252 condition (2nd syllable: $t_{(34)} = 2.81, P = 0.008$; 3rd syllable: $t_{(34)} = 1.94, P = 0.06$). There was no significant
253 difference in performance between the ITD and IID conditions for the two staggered syllables (2nd
254 syllable: $t_{(34)} = 1.41, P = 0.17$; 3rd syllable: $t_{(34)} = 1.39, P = 0.17$).

Figure 2

255


256 **Fig. 2.** Listeners' ($N = 18$) recall performance was evaluated for every syllable and every
257 spatialization condition. Sounds were spatialized either based on generic ITDs, individualized
258 IIDs, or the natural combination of ITDs, IIDs, and spectral cues in individualized HRTFs.
259 Behavioral advantages of having more consistent spatial information were statistically
260 significant but small in absolute terms. * $P < .05$; ** $P < .001$; *** $P < .0001$

261 **3.2 Impoverished spatial cues affect attentional modulation of ERPs**

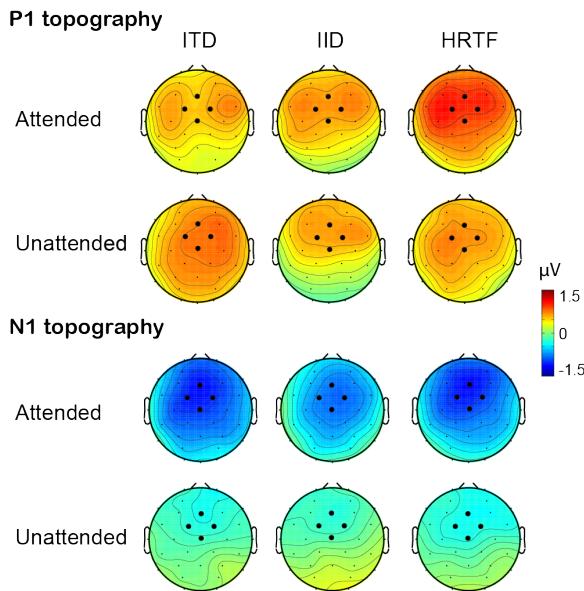
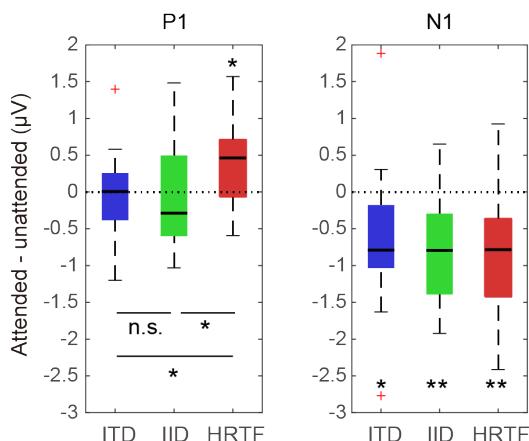

262 Figure 3A shows the ERPs evoked by the onset of the second syllable of the attended target sound and the
263 unattended distractor sound, aligning the onsets of the target and distractor syllables to 0 s to allow direct
264 comparison. Stimulus onsets elicited a fronto-central positivity (P1) between 50 to 100 ms followed by a
265 negativity (N1) between 100 to 180 ms (Figure 3A-B). The amplitudes of these two components were
266 extracted and the difference between attended stimuli (target sound) and unattended stimuli (distractor
267 sound) was calculated in order to quantify attentional modulation for both the P1 and N1 components
268 (Figure 3C).

Figure 3


A.

B.

C.

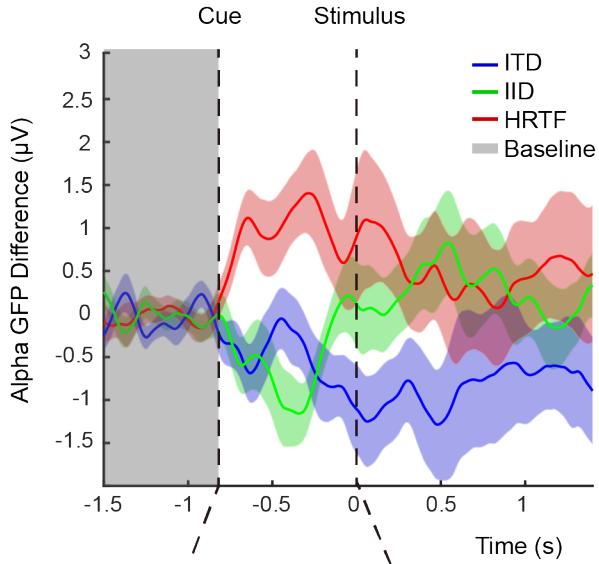
270

271 *Fig. 3. P1 amplitudes were only modulated by the attended direction in the HRTF condition,*
272 *whereas N1 amplitudes were modulated equally strongly across spatialization conditions (N = 18).*

273 *A. ERP waveforms at fronto-central electrodes were compared between the attended target stream*
274 *and the unattended distractor stream for every spatialization condition. The P1 time range was*
275 *defined as 50 ms to 100 ms, and the N1 time range as 100 ms to 180 ms. B. Most topographies of*
276 *both ERP components show maxima at the fronto-central sites (black dots) used for evaluation. C.*
277 *The modulation strength of ERP components was assessed by the amplitude differences between*
278 *attended and unattended streams. * P < .05; ** P < .01*

279 We tested whether P1 responses were significantly larger to attended stimuli than to unattended stimuli
280 separately for each of the three spatialization conditions. Only the HRTF condition showed a significant
281 P1 modulation ($t_{(17)} = 3.12, P_{adj} = 0.017$); no significant attentional modulation was found in either the
282 ITD ($t_{(17)} = 0.50, P_{adj} = 1$) or IID conditions ($t_{(17)} = 0.06, P_{adj} = 1$). Across conditions we found a
283 statistically significant main effect of spatial cue on P1 amplitude modulation ($F_{(2,34)} = 3.34, P = 0.047$).
284 Post hoc tests showed that attentional modulation was significantly larger in the HRTF condition than in
285 the ITD ($t_{(34)} = 2.38, P = 0.023$) and IID conditions ($t_{(34)} = 2.07, P = 0.046$); however, modulation did not
286 differ significantly between the ITD and IID conditions ($t_{(34)} = 0.31, P = 0.76$) (Figure 3C).

287 In all three spatialization conditions, the N1 amplitude was modulated significantly by spatial attention,
288 that is, attended sounds evoked larger N1 amplitudes than unattended sounds (ITD: $t_{(17)} = 3.01, P_{adj}$
289 $= 0.024$; IID: $t_{(17)} = 4.12, P_{adj} = 0.002$; HRTF: $t_{(17)} = 3.56, P_{adj} = 0.007$). Across the three spatialization
290 conditions the magnitude of N1 modulation did not differ significantly ($F_{(2,34)} = 0.060, P = 0.94$; Figure
291 3C).


292 *3.3 Alpha oscillation power shows less attentional modulation with impoverished spatial cues*

293 To investigate the effect of spatialization on attentional control, we analyzed the power in alpha
294 oscillations during the attentional preparation period (-800 ms to 0 ms), a time period in which listeners
295 knew where to orient spatial attention based on the preceding acoustic cue, but before the sound mixture
296 of competing streams began. We averaged the power in alpha across all trials for each spatialization
297 condition, regardless of where spatial attention was focused, to get a measure of the total engagement of
298 alpha activity. We then compared relative power for different attentional directions. On average across
299 directions of attentional focus, we calculated the time courses of alpha global field power (GFP, Figure
300 4A) and compared within-subject differences of the temporal average within the preparatory time period
301 across spatialization conditions (Figure 4B).

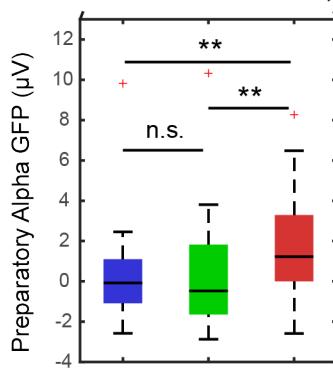
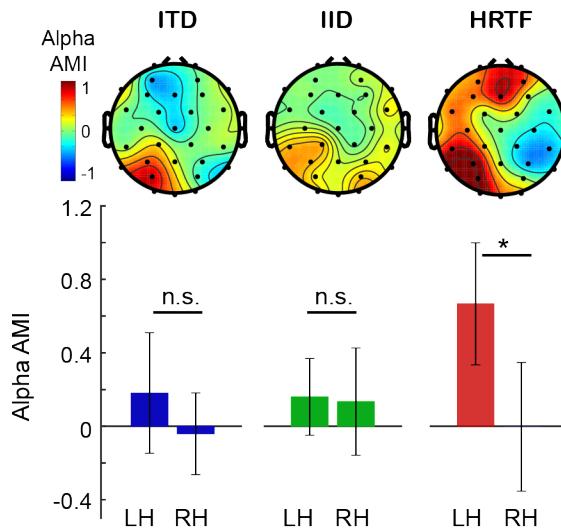

302 Alpha GFP was not significantly modulated in either the ITD or IID conditions (ITD: $t_{(17)} = 0.44$, $P_{adj} = 1$;
303 IID: $t_{(17)} = 0.43$, $P_{adj} = 1$), while in the HRTF condition, the GFP tended to be greater than zero (HRTF:
304 $t_{(17)} = 2.56$, $P_{adj} = 0.061$). In a direct comparison, spatialization conditions differed significantly in alpha
305 GFP ($F_{(2,34)} = 5.26$, $P = 0.010$). In particular, alpha GFP in the HRTF condition was significantly larger
306 than in each of the other two conditions (HRTF vs ITD: $t_{(34)} = 2.80$, $P = 0.008$; HRTF vs IID: $t_{(34)} = 2.82$,
307 $P = 0.008$). No significant difference was found between the ITD and IID conditions ($t_{(34)} = 0.019$, P
308 = 0.99).

Figure 4

A.

B.


309

310 **Fig. 4.** Within-subject differences in alpha-band GFP are larger in the HRTF condition, especially
311 during the preparatory time window (after the sound cue but before the first syllables of the
312 competing streams). **A.** Waveforms of the average (\pm SEM) GFP differences are shown during the
313 baseline period, preparatory phase, and stimulus phase with stream competition. **B.** The temporal
314 average of the preparatory alpha GFP difference is larger for the HRTF condition. ** $P < .01$

315 We next assessed the lateralization of alpha power with the spatial focus of attention by comparing AMI
316 differences across hemispheres (Figure 5). In general, the scalp topographies of AMIs show the expected
317 hemispheric differences. However, statistically significant hemispheric differences were found only in the

318 HRTF condition ($t_{(17)} = 3.09, P_{adj} = 0.020$), not in either the ITD ($t_{(17)} = 1.29, P_{adj} = 0.64$) or the IID
319 condition ($t_{(17)} = 0.15, P_{adj} = 1$). A direct comparison of these hemisphere differences across conditions
320 revealed a trend in which the HRTF condition had larger differences in AMI across hemispheres ($F_{(2,34)} =$
321 $2.98, P = 0.064$).

Figure 5

322

323 **Fig. 5.** Attentional modulation of alpha activity was lateralized to the hemisphere ipsilateral to the
324 target stream only in the HRTF condition. AMI topographies and hemispheric averages are shown
325 for every spatialization condition ($N = 18$). * $P < .05$

326 In summary, impoverished spatial cues lead to worse behavioral performance, smaller P1 modulation,
327 reduced modulation of preparatory alpha power GFP, and reduced lateralization of alpha power with
328 attentional focus, confirming our hypothesis that impoverished spatial cues impaired engagement of
329 spatial attention.

330 3.4 Relationships between Attentional Modulation Metrics

331 Given these consistent effects of spatialization on performance and neural metrics, we explored, post hoc,
332 whether there were ordered relationships in the individual measures of attentional control, including P1
333 modulation, preparatory alpha GFP, and alpha power lateralization. To investigate the relationship

334 between evoked response modulation and alpha oscillatory activity, we first calculated the regression
335 slope relating P1 amplitude to preparatory alpha GFP for each subject, and then performed a paired t-test
336 on the coefficients obtained. No consistent relationship between alpha GFP and P1 amplitudes was
337 observed ($t_{(17)} = 0.90, P = 0.38$). Correlation analysis was also conducted comparing behavioral accuracy
338 to P1 modulation, defined as the attended P1 amplitude minus unattended P1 amplitude. No consistent
339 relationships between P1 modulation and behavioral performance were observed for any syllable (1st
340 syllable: $t_{(17)} = 0.54, P = 0.59$; 2nd syllable: $t_{(17)} = 0.31, P = 0.76$; 3rd syllable: $t_{(17)} = 0.69, P = 0.50$).
341 Similarly, we did not observe consistent relationships between alpha AMI lateralization and response
342 accuracy for any syllable (1st syllable: $t_{(17)} = 0.19, P = 0.85$; 2nd syllable: $t_{(17)} = 1.39, P = 0.18$; 3rd
343 syllable: $t_{(17)} = 0.11, P = 0.91$). In addition, no consistent relationship was found between alpha GFP and
344 response accuracy for any syllable (1st syllable: $t_{(17)} = 0.65, P = 0.52$; 2nd syllable: $t_{(17)} = 1.27, P = 0.22$;
345 3rd syllable: $t_{(17)} = 1.16, P = 0.26$). Thus, although there were significant differences in engagement of
346 attention across spatial conditions as measured both behaviorally and neurally, the individual subject
347 differences in these metrics were not closely related.

348 **4 Discussion**

349 Behaviorally, we found that impoverished spatial cues impair performance on an auditory spatial attention
350 task in a multi-talker scene. We used objective electrophysiological measures to assess whether the
351 naturalness and richness of spatial cues also impacts how strongly auditory spatial attention modulates
352 brain responses. We found that impoverished spatial cues reduce the strength of the evoked and induced
353 neural signatures of attentional control. Specifically, evoked P1 amplitudes and induced alpha oscillatory
354 power showed less attentional modulation for sound stimuli with impoverished spatial cues compared to
355 when spatial cues were tailored to recreate the natural, rich experience of individual listeners.

356 *4.1 Impoverished spatial cues result in less neural modulation during selective attention*

357 We investigated attentional modulation of four established neural signatures of selective attention: evoked
358 P1 and N1 amplitudes and induced power and lateralization of alpha oscillation. While attentional
359 modulation of N1 amplitude was observed in all conditions, attentional modulation of the earlier P1
360 amplitude was not observed or was significantly weaker in the impoverished cue conditions compared to
361 the natural cue condition. Similarly, we found less preparatory alpha power activity in the impoverished
362 spatial cue conditions than in the natural cue condition, reflected by two indexes quantifying the amount
363 of spatial variability of alpha power: alpha GFP (Figure 4) and AMI (Figure 5). In the ITD and IID
364 conditions, although there was a hint of preparatory alpha lateralization over parietal sensors, the amount
365 of lateralization was significantly smaller than in the HRTF condition and did not reach statistical
366 significance.

367 Preparatory alpha activity during spatial attention tasks has been well documented to form a specific
368 lateralization pattern in both vision and audition (Banerjee et al., 2011; Kelly, 2006; Sauseng et al., 2005;
369 Worden et al., 2018), which is thought to be evidence of a preparatory information-gating mechanism
370 (Foxe and Snyder, 2011; Jensen and Mazaheri, 2010; Klimesch, 2012; Klimesch et al., 2007). In vision,
371 alpha lateralization has been observed to increase with the laterality of attention focus (Rihs et al., 2007;
372 Samaha et al., 2015), reflecting an inhibition pattern topographically specific to attention focus.

373 Moreover, evidence for active top-down control of the phase of alpha oscillation during visual spatial
374 attention suggests that alpha oscillatory activity represents active engagement and disengagement of the
375 attentional network (Samaha et al., 2016). In addition, a previous somatosensory study revealed that the
376 alpha lateralization is positively correlated to pre-stimulus cue reliability, further suggesting that alpha
377 lateralization reflects top-down control that optimizes the processing of upcoming stimuli (Haegens et al.,
378 2011). Although relatively few studies have investigated alpha activity in audition, studies suggest that
379 alpha control mechanisms are supra-modal rather than sensory specific (Banerjee et al., 2011).

380 In the current experiment, a pre-stimulus auditory cue directed listeners where to focus attention in an
381 upcoming sound mixture. The cue was spatialized using the same auditory features used to spatialize the
382 stream mixture. Our results thus suggest that compared to stimuli with natural spatial cues, stimuli
383 featuring only ITDs or only IIDs are less reliable in directing attentional focus, producing weaker
384 engagement of spatial attention and reduced attentional modulation of neural responses.

385 Consistent with the idea that impoverished spatial cues lead to weaker engagement of spatial attention, we
386 found that the P1 ERP component was modulated by attention only with natural spatial cues, not with
387 impoverished cues; this result is consistent with a weak spatial representation failing to engage attentional
388 modulation of early sensory responses (Figure 3). Our finding that attentional focus leads to a modulation
389 of P1 amplitude for natural spatial cues is consistent with reported effects of attention on the P1 amplitude
390 observed in previous spatial attention studies across sensory modalities [auditory: (Giuliano et al., 2014);
391 visual: (Hillyard and Anllo-Vento, 1998; Hopfinger et al., 2004)]. Past studies agree that P1 modulation
392 reflects an early sensory inhibition mechanism related to suppression of task-irrelevant stimuli. Although
393 debates remain as to whether P1 modulation results from bottom-up sensory gain control (Hillyard and
394 Anllo-Vento, 1998; Luck, 1995; Slagter et al., 2016) or some top-down inhibitory process (Freunberger et
395 al., 2008; Klimesch, 2011), it is generally accepted in visual spatial studies that greater P1 amplitude
396 modulation is associated with greater inhibition of to-be-ignored stimuli (Couperus and Mangun, 2010;
397 Hillyard and Anllo-Vento, 1998; Klimesch, 2012).

398 Interestingly, attentional modulation of auditory P1 has been found to be positively correlated with visual
399 working memory capacity, a result that was used to argue that stronger P1 modulation reflects better
400 attentional control of the flow of sensory information into working memory (Fukuda and Vogel, 2009;
401 Giuliano et al., 2014). Our result is consistent with the hypothesis that P1 modulation directly reflects
402 attentional control. Specifically, impoverished spatial cues likely produce a “muddy” representation of
403 auditory space that supports only imprecise, poorly focused top-down spatial attention. The resulting lack
404 of control and specificity of spatial auditory attention results in early P1 responses that are unmodulated
405 by attentional focus.

406 N1 modulation is well documented as a neural index of attentional control (Choi et al., 2013; Hillyard et
407 al., 1998; Stevens et al., 2008; Wyart et al., 2012). The attentional modulation of N1 is thought to reflect
408 attentional facilitation rather than inhibition (Couperus and Mangun, 2010; Marzecová et al., 2018;
409 Slagter et al., 2016). In contrast to preparatory alpha and P1, we found that the later N1 evoked response
410 was modulated similarly, regardless of the richness and naturalness of spatial cues.

411 Due to the robustness and relatively large amount of modulation, changes in auditory N1 amplitude have
412 been used as a biomarker and a primary feature for classification of attentional focus (Blankertz et al.,
413 2011; Schreuder et al., 2011); see also recent work on decoding attentional focus for running speech using
414 the correlation between neural responses and the power envelope of the speech streams: (Chait et al.,
415 2010; Mesgarani and Chang, 2012; Rimmeli et al., 2015). However, there is little known about how N1
416 amplitudes reflect the processing of different spatial cues during auditory spatial attention. Previous
417 studies have revealed different N1 topographies during ITD and IID processing, leading to the conclusion
418 that ITD and IID are processed by different neural populations in the auditory cortex (Johnson and
419 Hautus, 2010; Tardif et al., 2006; Ungan et al., 2001). However, debates remain about whether this
420 difference in topography depends on perceived laterality, instead of different neural populations
421 specialized for processing different spatial cues. Results from a more recent study show that auditory N1
422 modulation does not differ across spatial cue conditions, indicating integrated processing of sound

423 locations in auditory cortex regardless of cues (Salminen et al., 2015). In the current study, N1
424 modulation did not differ across the three spatialization conditions. Thus, our results support the idea that
425 the same cortical neural population is responsible for processing different binaural spatial cues.

426 *4.2 Behavioral disadvantages associated with impoverished spatial cues are modest and depend
427 on sound stimulus characteristics*

428 Despite the influence of spatial cue richness on neural metrics, our behavioral results showed only small
429 (albeit significant) behavioral differences between impoverished spatial cues and natural, individualized
430 spatial cues (Figure 2). In line with previous studies that observed greater spatial release from masking
431 with combined spatial cues compared to with isolated cues (Culling et al., 2004; Ellinger et al., 2017),
432 accuracy was best in the HRTF condition. The small accuracy improvement over using impoverished
433 cues is seen consistently across subjects. In the first syllable where the target and distractor streams
434 overlap in time, the HRTF condition yielded a 13% increase in accuracy over the ITD condition, but is
435 comparable to performance in the IID condition. In the two staggered syllables, accuracy in the HRTF
436 condition is greater than in the ITD and IID conditions by only about 6% and 1%, respectively. These
437 differences in behavioral performance across syllables suggest that the characteristics of sound stimuli
438 influence the difficulty of the task and may affect the behavioral advantages of having richer, more robust
439 spatial cues (Kidd et al., 2010). Concordantly, a previous study with complex tone stimuli has shown
440 much larger differences in behavioral performance, up to 20% (Schröger, 1996), whereas studies
441 presenting speech stimuli in a multi-talker environment yielded no behavioral advantage of having
442 combined cues compared to impoverished cues (Glyde et al., 2013). These behavioral discrepancies, in
443 combination with our neural findings, indicate that behavioral performance alone is not a sensitive metric
444 for determining whether cortical networks controlling spatial selective attention are fully engaged.

445 Non-individualized or generic HRTFs such as from another listener or a mannikin have also been used
446 widely for sound spatialization in auditory neuroscience studies (e.g., Choi et al., 2013; Klatt et al., 2018;
447 Warren and Griffiths, 2003). Early psychoacoustic investigations (Middlebrooks, 1999; Wenzel et al.,

448 1993) as well as a more recent EEG study (Wisniewski et al., 2016) demonstrated large inter-individual
449 differences in the deteriorating effect of using generic HRTFs on localization abilities, mainly along the
450 up-down and front-back dimensions. Although these ad-hoc degradations are predictable based on
451 spectral comparisons with the listener-specific HRTFs (Baumgartner et al., 2016, 2014), it is poorly
452 understood why some listeners adapt much faster than others to generic HRTFs, also without providing
453 explicit feedback (e.g., Stitt et al., 2019). Because our study was not targeted to investigate such inter-
454 individual differences, we aimed to reduce inter-subject variability by individualized HRTFs and did not
455 include a spatialization condition using generic HRTFs. If individual HRTF measurements are not
456 feasible it is advisable to individually select HRTFs from a database (e.g., Stitt et al., 2019; Warren and
457 Griffiths, 2003).

458 **Conclusions**

459 Our results indicate that although impoverished spatial cues can support spatial segregation of speech in a
460 multi-talker environment, they do not fully engage the brain networks controlling spatial attention and
461 lead to weak attentional control. Previous auditory studies have provided evidence that impoverished
462 spatial cues do not evoke the same neural processing mechanisms as natural cue combinations during
463 localization tasks with single sounds (Callan et al., 2013; Getzmann and Lewald, 2010; Palomäki et al.,
464 2005). The current study extends these findings, demonstrating that the efficacy of higher-level cognitive
465 processing, such as deployment of auditory selective attention, also depends on the naturalness of spatial
466 cues. Poor attentional control was reflected in limited modulation of neural biomarkers of attentional
467 processes. These findings suggest that the many past auditory attention studies using impoverished spatial
468 cues may have underestimated the robust changes in cortical activity associated with deployment of
469 spatial auditory attention in natural settings. Although impoverished auditory spatial cues can allow
470 listeners to deploy spatial attention effectively enough to perform well in simple acoustic scenes, noisy,
471 complex listening environments like those encountered in everyday environments pose greater challenges
472 to attentional processing. In natural settings, spatial attention may fail unless attentional control networks
473 are fully engaged. Thus, these results demonstrate the importance of preserving rich, natural spatial cues
474 in hearing aids and other assistive listening devices.

475 **Acknowledgements**

476 We thank Ashvini Meltoke for collecting part of the data, Gerald Kidd Jr. for providing the facilities for
477 individualized HRTF measurements, and Virginia Best for fruitful discussions. This work was supported
478 by the Austrian Science Fund (grant J3803-N30 to R.B.), European Commission (grant 691229 to R.B.),
479 and NIDCD (grant DC013825 to B.S.-C.).

480 **References**

481 Ahveninen, J., Hämäläinen, M., Jääskeläinen, I.P., Ahlfors, S.P., Huang, S., Lin, F.-H., Raji, T., Sams, M., Vasios, C.E., Belliveau, J.W., 2011. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise. *Proceedings of the National Academy of Sciences* 108, 4182–4187. <https://doi.org/10.1073/pnas.1016134108>

485 Alho, K., Medvedev, S.V., Pakhomov, S.V., Roudas, M.S., Tervaniemi, M., Reinikainen, K., Zeffiro, T., Nääätänen, R., 1999a. Selective tuning of the left and right auditory cortices during spatially directed attention. *Cognitive Brain Research* 7, 335–341. [https://doi.org/10.1016/S0926-6410\(98\)00036-6](https://doi.org/10.1016/S0926-6410(98)00036-6)

488 Banerjee, S., Snyder, A.C., Molholm, S., Foxe, J.J., 2011. Oscillatory Alpha-Band Mechanisms and the Deployment of Spatial Attention to Anticipated Auditory and Visual Target Locations: Supramodal or Sensory-Specific Control Mechanisms? *Journal of Neuroscience* 31, 9923–9932. <https://doi.org/10.1523/JNEUROSCI.4660-10.2011>

492 Baumgartner, R., Majdak, P., Laback, B., 2016. Modeling the Effects of Sensorineural Hearing Loss on Sound Localization in the Median Plane. *Trends in Hearing* 20, 1–11. <https://doi.org/10.1177/2331216516662003>

495 Baumgartner, R., Majdak, P., Laback, B., 2014. Modeling sound-source localization in sagittal planes for human listeners. *The Journal of the Acoustical Society of America* 136, 791–802. <https://doi.org/10.1121/1.4887447>

498 Baumgartner, R., Reed, D.K., Tóth, B., Best, V., Majdak, P., Colburn, H.S., Shinn-Cunningham, B., 2017. Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. *Proceedings of the National Academy of Sciences* 114, 9743–9748. <https://doi.org/10.1073/pnas.1703247114>

502 Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.-R., 2011. Single-trial analysis and classification of ERP components — A tutorial. *NeuroImage* 56, 814–825. <https://doi.org/10.1016/J.NEUROIMAGE.2010.06.048>

505 Blauert, J., 1997b. Spatial hearing. *The Psychophysics of Human Sound Localization*, 2nd edition. ed. MIT-Press, Cambridge, MA.

507 Boersma, P., 2001. Praat, a system for doing phonetics by computer. *Glot International* 5, 341–345.

508 Brainard, D.H., 1997. The psychophysics toolbox. *Spatial vision* 10, 433–436.

509 Callan, A., Callan, D.E., Ando, H., 2013. Neural correlates of sound externalization. *NeuroImage* 66, 22–27. <https://doi.org/10.1016/j.neuroimage.2012.10.057>

511 Chait, M., de Cheveigné, A., Poeppel, D., Simon, J.Z., 2010. Neural dynamics of attending and ignoring in human auditory cortex. *Neuropsychologia* 48, 3262–3271. <https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.07.007>

514 Cherry, E.C., 1953. Some Experiments on the Recognition of Speech, with One and with Two Ears. *The Journal of the Acoustical Society of America* 25, 975–979. <https://doi.org/10.1121/1.1907229>

516 Choi, I., Rajaram, S., Varghese, L.A., Shinn-Cunningham, B.G., 2013. Quantifying attentional modulation of auditory-evoked cortical responses from single-trial electroencephalography. *Frontiers in*

518 Human Neuroscience 7, 115. <https://doi.org/10.3389/fnhum.2013.00115>

519 Couperus, J.W., Mangun, G.R., 2010. Signal enhancement and suppression during visual–spatial selective
520 attention. Brain Research 1359, 155–177. <https://doi.org/10.1016/j.brainres.2010.08.076>

521 Cubick, J., Buchholz, J.M., Best, V., Lavandier, M., Dau, T., 2018. Listening through hearing aids affects
522 spatial perception and speech intelligibility in normal-hearing listeners. The Journal of the Acoustical
523 Society of America 144, 2896–2905. <https://doi.org/10.1121/1.5078582>

524 Culling, J.F., Hawley, M.L., Litovsky, R.Y., 2004. The role of head-induced interaural time and level
525 differences in the speech reception threshold for multiple interfering sound sources. The Journal of the
526 Acoustical Society of America 116, 1057–1065. <https://doi.org/10.1121/1.1772396>

527 Cusack, R., Carlyon, R.P., Robertson, I.H., 2001. Auditory Midline and Spatial Discrimination in Patients
528 with Unilateral Neglect. Cortex 37, 706–709. [https://doi.org/10.1016/S0010-9452\(08\)70620-8](https://doi.org/10.1016/S0010-9452(08)70620-8)

529 Dahmen, J.C., Keating, P., Nodal, F.R., Schulz, A.L., King, A.J., 2010. Adaptation to Stimulus Statistics
530 in the Perception and Neural Representation of Auditory Space. Neuron 66, 937–948.
531 <https://doi.org/10.1016/J.NEURON.2010.05.018>

532 Dai, L., Best, V., Shinn-Cunningham, B.G., 2018. Sensorineural hearing loss degrades behavioral and
533 physiological measures of human spatial selective auditory attention. Proceedings of the National
534 Academy of Sciences 201721226. <https://doi.org/10.1073/pnas.1721226115>

535 Das, N., Biesmans, W., Bertrand, A., Francart, T., 2016. The effect of head-related filtering and ear-
536 specific decoding bias on auditory attention detection. Journal of Neural Engineering 13, 056014.
537 <https://doi.org/10.1088/1741-2560/13/5/056014>

538 Delorme, A., Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG
539 dynamics including independent component analysis. Journal of Neuroscience Methods 134, 9–21.
540 <https://doi.org/10.1016/j.jneumeth.2003.10.009>

541 Delorme, A., Sejnowski, T., Makeig, S., 2007. Enhanced detection of artifacts in EEG data using higher-
542 order statistics and independent component analysis. NeuroImage 34, 1443–1449.
543 <https://doi.org/10.1016/j.neuroimage.2006.11.004>

544 Deng, Y., Choi, I., Shinn-Cunningham, B., Baumgartner, R., 2019. Impoverished auditory cues limit
545 engagement of brain networks controlling spatial selective attention.
546 <https://doi.org/10.5281/zenodo.3357164>

547 Ellinger, R.L., Jakien, K.M., Gallun, F.J., 2017. The role of interaural differences on speech intelligibility
548 in complex multi-talker environmentsa). The Journal of the Acoustical Society of America 141, EL170–
549 EL176. <https://doi.org/10.1121/1.4976113>

550 Foxe, J.J., Snyder, A.C., 2011. The Role of Alpha-Band Brain Oscillations as a Sensory Suppression
551 Mechanism during Selective Attention. Frontiers in Psychology 2, 154.
552 <https://doi.org/10.3389/fpsyg.2011.00154>

553 Freunberger, R., Höller, Y., Griesmayr, B., Gruber, W., Sauseng, P., Klimesch, W., 2008. Functional
554 similarities between the P1 component and alpha oscillations. European Journal of Neuroscience 27,
555 2330–2340. <https://doi.org/10.1111/j.1460-9568.2008.06190.x>

556 Fukuda, K., Vogel, E.K., 2009. Human Variation in Overriding Attentional Capture. Journal of

557 Neuroscience 29, 8726–8733. <https://doi.org/10.1523/jneurosci.2145-09.2009>

558 Getzmann, S., Lewald, J., 2010. Effects of natural versus artificial spatial cues on electrophysiological
559 correlates of auditory motion. Hearing Research 259, 44–54. <https://doi.org/10.1016/j.heares.2009.09.021>

560 Giuliano, R.J., Karns, C.M., Neville, H.J., Hillyard, S.A., 2014. Early Auditory Evoked Potential Is
561 Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory
562 Capacity. Journal of Cognitive Neuroscience. https://doi.org/10.1162/jocn_a_00684

563 Glyde, H., Buchholz, J.M., Dillon, H., Cameron, S., Hickson, L., 2013. The importance of interaural time
564 differences and level differences in spatial release from masking. The Journal of the Acoustical Society of
565 America 134, EL147–EL152. <https://doi.org/10.1121/1.4812441>

566 Haegens, S., Handel, B.F., Jensen, O., 2011. Top-Down Controlled Alpha Band Activity in
567 Somatosensory Areas Determines Behavioral Performance in a Discrimination Task. Journal of
568 Neuroscience 31, 5197–5204. <https://doi.org/10.1523/jneurosci.5199-10.2011>

569 Hartmann, W.M., Wittenberg, A., 1996. On the externalization of sound images. J Acoust Soc Am 99,
570 3678–88.

571 Herrmann, C.S., Knight, R.T., 2001. Mechanisms of human attention: event-related potentials and
572 oscillations. Neuroscience & Biobehavioral Reviews 25, 465–476. [https://doi.org/10.1016/S0149-7634\(01\)00027-6](https://doi.org/10.1016/S0149-7634(01)00027-6)

574 Higgins, N.C., McLaughlin, S.A., Rinne, T., Stecker, G.C., 2017. Evidence for cue-independent spatial
575 representation in the human auditory cortex during active listening. Proceedings of the National Academy
576 of Sciences 114, E7602–E7611. <https://doi.org/10.1073/pnas.1707522114>

577 Hillyard, S.A., Anllo-Vento, L., 1998. Event-related brain potentials in the study of visual selective
578 attention. Proceedings of the National Academy of Sciences 95, 781–787.
579 <https://doi.org/10.1073/pnas.95.3.781>

580 Hillyard, S.A., Vogel, E.K., Luck, S.J., 1998. Sensory gain control (amplification) as a mechanism of
581 selective attention: electrophysiological and neuroimaging evidence. Philosophical transactions of the
582 Royal Society of London. Series B, Biological sciences 353, 1257–70.
583 <https://doi.org/10.1098/rstb.1998.0281>

584 Hopfinger, J., Luck, S., Hillyard, S., 2004. Selective attention: Electrophysiological and neuromagnetic
585 studies. The cognitive neurosciences III 561–574.

586 Itoh, K., Yumoto, M., Uno, A., Kurauchi, T., Kaga, K., 2000. Temporal stream of cortical representation
587 for auditory spatial localization in human hemispheres. Neuroscience Letters 292, 215–219.
588 [https://doi.org/10.1016/S0304-3940\(00\)01465-8](https://doi.org/10.1016/S0304-3940(00)01465-8)

589 Jensen, O., Mazaheri, A., 2010. Shaping Functional Architecture by Oscillatory Alpha Activity: Gating
590 by Inhibition. Frontiers in Human Neuroscience 4, 186. <https://doi.org/10.3389/fnhum.2010.00186>

591 Johnson, B.W., Hautus, M.J., 2010. Processing of binaural spatial information in human auditory cortex:
592 {Neuromagnetic} responses to interaural timing and level differences. Neuropsychologia 48, 2610–2619.
593 <https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.05.008>

594 Kelly, S.P., 2006. Increases in Alpha Oscillatory Power Reflect an Active Retinotopic Mechanism for
595 Distracter Suppression During Sustained Visuospatial Attention. Journal of Neurophysiology 95, 3844–

596 3851. <https://doi.org/10.1152/jn.01234.2005>

597 Kidd, G., Mason, C.R., Best, V., Marrone, N., Marrone, N., 2010. Stimulus factors influencing spatial
598 release from speech-on-speech masking. *The Journal of the Acoustical Society of America* 128, 1965–78.
599 <https://doi.org/10.1121/1.3478781>

600 Klatt, L.-I., Getzmann, S., Wascher, E., Schneider, D., 2018. The contribution of selective spatial
601 attention to sound detection and sound localization: Evidence from event-related potentials and lateralized
602 alpha oscillations. *Biological Psychology* 138, 133–145. <https://doi.org/10.1016/j.biopsych.2018.08.019>

603 Klimesch, W., 2012. Alpha-band oscillations, attention, and controlled access to stored information.
604 *Trends in Cognitive Sciences* 16, 606–617. <https://doi.org/10.1016/J.TICS.2012.10.007>

605 Klimesch, W., 2011. Evoked alpha and early access to the knowledge system: The P1 inhibition timing
606 hypothesis. *Brain Research*. <https://doi.org/10.1016/j.brainres.2011.06.003>

607 Klimesch, W., Sauseng, P., Hanslmayr, S., 2007. EEG alpha oscillations: The inhibition-timing
608 hypothesis. *Brain Research Reviews* 53, 63–88. <https://doi.org/10.1016/j.brainresrev.2006.06.003>

609 Kong, L., Michalka, S.W., Rosen, M.L., Sheremata, S.L., Swisher, J.D., Shinn-Cunningham, B.G.,
610 Somers, D.C., 2014. Auditory Spatial Attention Representations in the Human Cerebral Cortex. *Cerebral
611 Cortex* 24, 773–784. <https://doi.org/10.1093/cercor/bhs359>

612 Lim, S.-J., Wöstmann, M., Obleser, J., 2015. Selective Attention to Auditory Memory Neurally Enhances
613 Perceptual Precision. *Journal of Neuroscience* 35, 16094–16104.
614 <https://doi.org/10.1523/JNEUROSCI.2674-15.2015>

615 Loiselle, L.H., Dorman, M.F., Yost, W.A., Cook, S.J., Gifford, R.H., 2016. Using ILD or ITD Cues for
616 Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners
617 With Bilateral and With Hearing-Preservation Cochlear Implants. *Journal of speech, language, and
618 hearing research : JSLHR* 59, 810–8. https://doi.org/10.1044/2015_JSLHR-H-14-0355

619 Luck, S.J., 1995. Multiple mechanisms of visual-spatial attention: recent evidence from human
620 electrophysiology. *Behavioural Brain Research* 71, 113–123. [4328\(95\)00041-0](https://doi.org/10.1016/0166-
621 4328(95)00041-0)

622 Majdak, P., Baumgartner, R., Jenny, C., 2019. Formation of three-dimensional auditory space.
623 arXiv:1901.03990 [q-bio].

624 Marzecová, A., Schettino, A., Widmann, A., SanMiguel, I., Kotz, S.A., Schröger, E., 2018. Attentional
625 gain is modulated by probabilistic feature expectations in a spatial cueing task: ERP evidence. *Scientific
626 Reports* 8. <https://doi.org/10.1038/s41598-017-18347-1>

627 Mesgarani, N., Chang, E.F., 2012. Selective cortical representation of attended speaker in multi-talker
628 speech perception. *Nature* 485, 233–236. <https://doi.org/10.1038/nature11020>

629 Middlebrooks, J.C., 2015. Sound localization. *Handbook of Clinical Neurology, The Human Auditory
630 System* 129, 99–116. <https://doi.org/10.1016/B978-0-444-62630-1.00006-8>

631 Middlebrooks, J.C., 1999. Individual differences in external-ear transfer functions reduced by scaling in
632 frequency. *J. Acoust. Soc. Am.* 106 (3), 1480–1492.

633 Murray, M.M., Brunet, D., Michel, C.M., 2008. Topographic ERP Analyses: A Step-by-Step Tutorial

634 Review. *Brain Topography* 20, 249–264. <https://doi.org/10.1007/s10548-008-0054-5>

635 Palomäki, K.J., Tiitinen, H., Mäkinen, V., May, P.J.C., Alku, P., 2005. Spatial processing in human
636 auditory cortex: The effects of 3D, ITD, and ILD stimulation techniques. *Cognitive Brain Research* 24,
637 364–379. <https://doi.org/10.1016/j.cogbrainres.2005.02.013>

638 Posner, M.I., Snyder, C.R., Davidson, B.J., 1980. Attention and the detection of signals. *Journal of*
639 *Experimental Psychology: General* 109, 160–174. <https://doi.org/10.1037/0096-3445.109.2.160>

640 Rihs, T.A., Michel, C.M., Thut, G., 2007. Mechanisms of selective inhibition in visual spatial attention
641 are indexed by ?-band EEG synchronization. *European Journal of Neuroscience* 25, 603–610.
642 <https://doi.org/10.1111/j.1460-9568.2007.05278.x>

643 Rimmele, J.M., Zion Golumbic, E., Schröger, E., Poeppel, D., 2015. The effects of selective attention and
644 speech acoustics on neural speech-tracking in a multi-talker scene. *Cortex* 68, 144–154.
645 <https://doi.org/10.1016/J.CORTEX.2014.12.014>

646 Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S.A., Neville, H.J., 1999. Improved
647 auditory spatial tuning in blind humans. *Nature* 400, 162–166. <https://doi.org/10.1038/22106>

648 Sach, A.J., Hill, N.I., Bailey, P.J., 2000. Auditory spatial attention using interaural time differences.
649 *Journal of Experimental Psychology: Human Perception and Performance* 26, 717–729.
650 <https://doi.org/10.1037/0096-1523.26.2.717>

651 Salminen, N.H., Takanen, M., Santala, O., Lamminsalo, J., Altoè, A., Pulkki, V., 2015. Integrated
652 processing of spatial cues in human auditory cortex. *Hearing Research* 327, 143–152.
653 <https://doi.org/10.1016/J.HEARES.2015.06.006>

654 Samaha, J., Bauer, P., Cimaroli, S., Postle, B.R., 2015. Top-down control of the phase of alpha-band
655 oscillations as a mechanism for temporal prediction. *Proceedings of the National Academy of Sciences of*
656 *the United States of America* 112, 8439–8444. <https://doi.org/10.1073/pnas.1503686112>

657 Samaha, J., Sprague, T.C., Postle, B.R., 2016. Decoding and Reconstructing the Focus of Spatial
658 Attention from the Topography of Alpha-band Oscillations. *Journal of Cognitive Neuroscience* 28, 1090–
659 1097. https://doi.org/10.1162/jocn_a_00955

660 Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., Hanslmayr, S., 2005.
661 EEG alpha synchronization and functional coupling during top-down processing in a working memory
662 task. *Human Brain Mapping* 26, 148–155. <https://doi.org/10.1002/hbm.20150>

663 Schreuder, M., Rost, T., Tangermann, M., 2011. Listen, You are Writing! Speeding up Online Spelling
664 with a Dynamic Auditory BCI. *Frontiers in Neuroscience* 5, 112.
665 <https://doi.org/10.3389/fnins.2011.00112>

666 Schröger, E., 1996. Interaural time and level differences: {Integrated} or separated processing? *Hearing*
667 *Research* 96, 191–198. [https://doi.org/10.1016/0378-5955\(96\)00066-4](https://doi.org/10.1016/0378-5955(96)00066-4)

668 Shinn-Cunningham, B.G., Kopco, N., Martin, T.J., 2005. Localizing nearby sound sources in a classroom:
669 Binaural room impulse responses. *The Journal of the Acoustical Society of America* 117, 3100–3115.
670 <https://doi.org/10.1121/1.1872572>

671 Siegel, M., Donner, T.H., Engel, A.K., 2012. Spectral fingerprints of large-scale neuronal interactions.
672 *Nature Reviews Neuroscience* 13, 121–134. <https://doi.org/10.1038/nrn3137>

673 Skrandies, W., 1990. Global field power and topographic similarity. *Brain Topography* 3, 137–141.

674 Snyder, J.S., Large, E.W., 2005. Gamma-band activity reflects the metric structure of rhythmic tone
675 sequences. *Cognitive Brain Research* 24, 117–126. <https://doi.org/10.1016/j.cogbrainres.2004.12.014>

676 Stevens, C., Fanning, J., Coch, D., Sanders, L., Neville, H., 2008. Neural mechanisms of selective
677 auditory attention are enhanced by computerized training: Electrophysiological evidence from language-
678 impaired and typically developing children. *Brain Research* 1205, 55–69.
679 <https://doi.org/10.1016/J.BRAINRES.2007.10.108>

680 Stitt, P., Picinali, L., Katz, B.F.G., 2019. Auditory Accommodation to Poorly Matched Non-Individual
681 Spectral Localization Cues Through Active Learning. *Scientific Reports* 9.
682 <https://doi.org/10.1038/s41598-018-37873-0>

683 Tardif, E., Murray, M.M., Meylan, R., Spierer, L., Clarke, S., 2006. The spatio-temporal brain dynamics
684 of processing and integrating sound localization cues in humans. *Brain Research* 1092, 161–176.
685 <https://doi.org/10.1016/J.BRAINRES.2006.03.095>

686 Ungan, P., Yagcioglu, S., Goksoy, C., 2001. Differences between the N1 waves of the responses to
687 interaural time and intensity disparities: scalp topography and dipole sources. *Clinical Neurophysiology*
688 112, 485–498. [https://doi.org/10.1016/S1388-2457\(00\)00550-2](https://doi.org/10.1016/S1388-2457(00)00550-2)

689 Warren, J.D., Griffiths, T.D., 2003. Distinct Mechanisms for Processing Spatial Sequences and Pitch
690 Sequences in the Human Auditory Brain. *J. Neurosci.* 23, 5799–5804.
691 <https://doi.org/10.1523/JNEUROSCI.23-13-05799.2003>

692 Wenzel, E.M., Arruda, M., Kistler, D.J., Wightman, F.L., 1993. Localization using nonindividualized
693 head-related transfer functions. *The Journal of the Acoustical Society of America* 94, 111–123.
694 <https://doi.org/10.1121/1.407089>

695 Wisniewski, M.G., Romigh, G.D., Kenzig, S.M., Iyer, N., Thompson, E.R., Simpson, B.D., Rothwell,
696 C.D., 2016. Enhanced auditory spatial performance using individualized head-related transfer functions:
697 An event-related potential study. *The Journal of the Acoustical Society of America* 139, 1993–1994.
698 <https://doi.org/10.1121/1.4949839>

699 Worden, M.S., Foxe, J.J., Wang, N., Simpson, G. V., 2018. Anticipatory Biasing of Visuospatial
700 Attention Indexed by Retinotopically Specific α -Bank Electroencephalography Increases over Occipital
701 Cortex. *The Journal of Neuroscience* 20, RC63–RC63. <https://doi.org/10.1523/jneurosci.20-06-j0002.2000>

703 Wöstmann, M., Herrmann, B., Maess, B., Obleser, J., 2016. Spatiotemporal dynamics of auditory
704 attention synchronize with speech. *Proceedings of the National Academy of Sciences* 113, 3873–3878.
705 <https://doi.org/10.1073/pnas.1523357113>

706 Wyart, V., Dehaene, S., Tallon-Baudry, C., 2012. Early dissociation between neural signatures of
707 endogenous spatial attention and perceptual awareness during visual masking. *Frontiers in Human
708 Neuroscience* 6, 16. <https://doi.org/10.3389/fnhum.2012.00016>

709