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Highlights
e Neural responses are weak or even absent with impoverished spatial auditory cues.
e Spatial cue realism affects parietal alpha activity and early evoked cortical responses.
e Differences due to cue realism disappear by the next level of neural processing.

e Robust engagement of spatial attention mechanisms requires realistic spatial cues.
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Abstract

Spatial selective attention enables listeners to process a signal of interest in natural settings. However,
most past studies on auditory spatial attention used impoverished spatial cues: presenting competing
sounds to different ears, using only interaural differences in time (ITDs) and/or intensity (IIDs), or using
non-individualized head-related transfer functions (HRTFs). Here we tested the hypothesis that
impoverished spatial cues impair spatial auditory attention by only weakly engaging relevant cortical
networks. Eighteen normal-hearing listeners reported the content of one of two competing syllable
streams simulated at roughly +30 ° and -30° azimuth. The competing streams consisted of syllables from
two different-sex talkers. Spatialization was based on natural spatial cues (individualized HRTFs),
individualized IIDs, or generic ITDs. We measured behavioral performance as well as
electroencephalographic markers of selective attention. Behaviorally, subjects recalled target streams
most accurately with natural cues. Neurally, spatial attention significantly modulated early evoked
sensory response magnitudes only for natural cues, not in conditions using only ITDs or IIDs. Consistent
with this, parietal oscillatory power in the alpha band (8-14 Hz; associated with filtering out distracting
events from unattended directions) showed significantly less attentional modulation with isolated spatial
cues than with natural cues. Our findings support the hypothesis that spatial selective attention networks
are only partially engaged by impoverished spatial auditory cues. These results not only suggest that
studies using unnatural spatial cues underestimate the neural effects of spatial auditory attention, they also
illustrate the importance of preserving natural spatial cues in assistive listening devices to support robust

attentional control.

Keywords: auditory spatial selective attention, head-related transfer functions, electroencephalography
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1 Introduction

Spatial hearing is crucial to selectively attend to sounds of interest in everyday social settings. The
remarkable ability of normal-hearing listeners to focus on a sound source within a complex acoustic scene
is often referred to as “the cocktail party phenomenon,” and has a rich history (Cherry, 1953).
Nevertheless, the mechanisms controlling spatial selective attention are still poorly understood.
Acoustically, in everyday situations, the two ears provide the listener with a listener-specific combination
of spatial cues that include interaural time and intensity differences (ITDs and IIDs, respectively), as well
as spectral cues caused by acoustical filtering of the pinnae (Blauert, 1997a). Together, these cues,
captured by individualized head-related transfer functions (HRTFs), allow the brain to create a clear,
punctate internal representation of the location of sound sources in the environment (Majdak et al., 2019;

Middlebrooks, 2015).

When only isolated or impoverished spatial cues are present, auditory localization performance degrades
and the natural perception of external auditory objects may even collapse into the listener’s head
(Baumgartner et al., 2017; Callan et al., 2013; Cubick et al., 2018; Hartmann and Wittenberg, 1996).
Nevertheless, degraded or isolated ITDs and IIDs still create a strong sense of lateralization within the
head; moreover, even highly impoverished spatial cues can be used to achieve spatial release from
speech-on-speech masking, behaviorally (Cubick et al., 2018; Culling et al., 2004; Ellinger et al., 2017,
Glyde et al., 2013; Kidd et al., 2010; Loiselle et al., 2016). The relative importance of ITDs and IIDs in
spatial release from masking remains unclear, with past studies reporting conflicting results when directly
comparing different binaural conditions (Ellinger et al., 2017; Glyde et al., 2013; Higgins et al., 2017,
Shinn-Cunningham et al., 2005). More importantly, it is a puzzle as to why realistic and degraded spatial
cues yield at best small behavioral differences in masking release even though spatial perception is clearly

degraded when cues are impoverished.

Previous electroencephalography (EEG) and magnetoencephalography (MEG) studies have demonstrated

that rich spatial cues in sound stimuli lead to different cortical activity compared to using isolated cues
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during sound localization (Callan et al., 2013; Palomaki et al., 2005) and auditory motion processing
(Getzmann and Lewald, 2010). However, the apparently minor behavioral consequences of using
unnatural, non-individualized spatial cues on spatial release from masking, combined with the ease of
implementing studies with simple, non-individualized spatial cues, led to their wide usage in auditory
neuroscience studies (Cusack et al., 2001; Dahmen et al., 2010; Dai et al., 2018; Itoh et al., 2000; Kong et
al., 2014; Sach et al., 2000). Indeed, in the auditory neuroscience literature, many studies did not even
present true binaural signals, but instead studied “spatial” attention by using dichotic signals, with one
sound presented monaurally to one ear and a competing sound presented monaurally to the other ear
(Ahveninen et al., 2011; Alho et al., 1999b; Das et al., 2016; Wéstmann et al., 2016). These studies
implicitly assumed that because listeners were able to use impoverished spatial cues to listen to one sound
from a particular (relative) direction, the cognitive networks responsible for controlling spatial attention
must be engaged just as they are when listening to rich, natural spatial cues. Nonetheless, it is unclear
whether and how engagement of higher-order cognitive processes such as deployment of selective

attention is affected by the use of unnatural or impoverished spatial cues.

Modulation of neural signatures, such as event-related potentials (ERPs) and induced oscillatory activity,
is often taken as evidence of effective attentional control (Herrmann and Knight, 2001; Siegel et al.,
2012). In particular, auditory spatial attention is known to modulate early sensory ERPs in the N1 time
range (processing latencies of 100 to 150 ms; see Choi et al., 2013; Rdder et al., 1999), whereas
modulation of P1 ERPs (50 to 100 ms) has only recently been demonstrated in a free field experiment
(Giuliano et al., 2014). Induced alpha oscillation (8 to 14 Hz) has been hypothesized to function as an
information gating mechanism (Klimesch et al., 2007). During auditory spatial attention, parietal alpha
power often decreases in the contralateral hemisphere of attended stimuli and/or increases in the
ipsilateral hemisphere (Banerjee et al., 2011; Lim et al., 2015; Wostmann et al., 2016). These neural

modulations constitute objective metrics of the efficacy of attentional control.
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Here, we test listeners in a selective attention paradigm with simultaneous, spatially separated talkers. We
use the aforementioned EEG measures to compare both perceptual ability and the neural signatures of
attentional control for simulations with impoverished vs. natural spatial cues. Eighteen subjects performed
an auditory spatial attention task with two competing streams located at roughly +30 ° and -30° azimuth
(Figure 1). On every trial, listeners were cued by an auditory cue to attend to either the left or right stream
and report the content of the cued stream. The competing streams consisted of syllables (/ba/, /da/ or /ga/)
from two different-sex talkers. Sound stimuli (including the cuing sound) were spatialized using three
different levels of naturalness and richness: 1) generic ITDs only, 2) individualized IIDs, or 3)
individualized HRTFs containing all of the naturally occurring spatial cues a listener experiences in the
everyday world. We show that behavioral performance is better when listeners hear natural,
individualized spatial cues than when they hear impoverished cues. Importantly, only natural spatial cues
yield significant attentional modulation of P1 amplitudes. Moreover, induced alpha activity is less robust

and poorly lateralized with isolated spatial cues compared to rich, natural spatial cues.
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2 Materials and Methods

2.1 Subjects

Twenty-one paid volunteers and one author within the age of 18-42 years (M =22.9, SD =5.5;

12 females, 10 males) participated in this study. None of the subjects had audiometric thresholds greater
than 20 dB for frequencies from 250 Hz to 8 kHz. All participants gave informed consent as approved by
the Boston University Institutional Review Board. Two subjects were withdrawn from the study due to
the inability to perform the task (percentage of correct response less than 30% after training), and two
subjects were removed during EEG data preprocessing due to excessive artifacts. Therefore 18 subjects

remained for further analysis (N = 18).

2.2 Stimuli and Procedure

The sound stimuli consisted of consonant-vowel syllables (/ba/, /da/, & /ga/), each 0.4 s in duration. These
syllables were recorded from three talkers that naturally differed in fundamental frequency (F0). Details
on stimulus are provided in Stimulus Presentation. Cue and stimuli were presented via earphones (ER-2,
Etymotic Research, Inc.) and spatialized to approximately +30° azimuth (0° elevation). Three different
spatialization conditions were used: HRTF, 1ID, and ITD. In the HRTF condition, individualized HRTFs,

providing natural combinations of ITDs, [IDs, and spectral cues, were used.

Individualized HRTFs were measured using procedures identical to those described in a previous study
(Baumgartner et al., 2017). In short, loudspeakers were positioned at the desired angles and 1.5 m
distance from the subject’s head in a sound-treated chamber. A pair of miniature microphones placed at
the entrances of the subject’s blocked left and right ear canals measured the pseudo noise signal emitted
by each loudspeaker. These measurements were used to compute the impulse responses of the acoustic
transmission paths. Room reflections were removed via temporal windowing (0.5-ms cosine ramps)

limiting the impulse responses to the initial 3 ms. Finally, those listener-specific impulse responses were
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equalized by reference measurements obtained by placing the microphones at the radial center of the

loudspeaker setup.

In the IID condition, ITDs were removed from the individualized HRTFs by computing minimum-phase
representations of the filters (computed by removing the non-causal part of the cepstrum). Hence, the 11D
and HRTF conditions provided the same monaural magnitude spectra and thus the same energetic
advantage of the ear ipsilateral to the target, although the IID condition removed the naturally occurring
group delay between the signals at the two ears present in the individualized HRTFs. In the ITD
condition, spatialization was based on simply delaying the signal presented to the contralateral ear by
300 us (roughly the magnitude of the ITD present in the natural HRTFs for the sources used), thus
providing no energetic advantage to the ipsilateral ear or spectral cues present in the natural HRTFs. This

spatialization method was tested due to its popularity in auditory neuroscience.

The auditory cue was a single syllable /ba/ spoken by a low-pitched male voice (FO = 91 Hz, estimated by
Praat software; Boersma, 2001). The subsequent target and distractor streams each consisted of three
syllables randomly chosen out of the set of three syllables (with replacement). The target stream was
spoken by either a female (FO = 189 Hz) or a high-pitched male talker (FO = 125 Hz), and the distractor
stream was spoken by the other talker. The first syllable of the target and distractor sound overlapped in
time, while the latter two syllables were separated by 200 ms, onset to onset (Figure 1). To avoid
engagement of temporal attention rather than spatial attention, the target stream was equally likely to be
leading or lagging, randomly chosen on each trial. In the leading stream, the onsets of all three syllables
were separated by 400 ms; in the lagging stream, the onsets of the first and the second syllable were
separated by 600 ms, whereas those of the second and the third syllable were separated by 400 ms. All

sound stimuli were presented at a sound pressure level of approximately 75 dB.
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Fig. 1. Auditory spatial attention task with two competing streams was used to assess the
consequence of impoverished auditory spatial cues on neural proxies of attention control. An
auditory cue was presented first from the location of the upcoming target stream, processed by the
same spatialization scheme as the upcoming mixture. Following the cue, the competing streams
began, one from around +30° the other from around -30° azimuth. Listeners were asked to recall
the syllable sequence presented from the cued side. The first syllables of both streams were
temporally aligned; however, the latter two syllables in the competing streams were staggered,

enabling us to isolate neural responses to each. Feedback was provided after every trial.

2.3 Task

Subjects performed a spatial attention task using a Posner paradigm (Figure 1) (Posner et al., 1980) while
listening to sounds over headphones in a sound-treated booth (Eckel Industries, Inc.). Sound spatialization
was realized by one of the three spatialization conditions fixed within trials but pseudo-randomized across

trials. Subjects were instructed to fixate on a dot at the center of the screen at the beginning of each trial.
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159  The fixation dot lasted 1.2 s before an auditory cue was presented. The auditory cue came from either left
160  or right, indicating the direction from which the target sound would come. A target sound started 0.8 s

161  later from the cued location. At the same time a distractor sound started from the opposite location of the
162  target sound. After the sounds finished, a response cue appeared on the computer screen, signaling to the
163  subjects to report the syllable sequence of the target sound using a number keypad. The syllables /ba/, /da/
164  and /ga/ corresponded to number keys 1, 2, and 3, respectively. The keys were labelled with their

165  corresponding syllables. Feedback about whether or not the subject correctly reported the syllables was

166  given at the end of every trial.

167  Each subject performed 450 randomized trials of this task, divided into 9 blocks each consisting of 50
168 trials. In total, every subject performed 150 trials for each of the three sound spatialization conditions (75
169  trials attending left and 75 trials attending right; half target leading and half target lagging). Prior to the
170  test sessions, all participants received a practice session to get familiarized with the task. Participants with
171  apercentage of correct response below 30% after 3 blocks of training (50 trials per block) were excluded

172 from the study.

173 2.4 EEG Acquisition and Preprocessing

174  32-channel scalp EEG data was recorded (Activetwo system with Activeview acquisition software,

175  Biosemi B.V.) while subjects were performing the task. Two additional reference electrodes were placed
176  on the earlobes. Horizontal eye movements were recorded by two electrooculography (EOG) electrodes
177  placed on the outer canthi of each eye. Vertical eye movement was recorded by one EOG electrode placed
178  below the right eye. The timing of stimulus was controlled by Matlab (Mathworks) with Psychtoolbox

179  (extension 3; Brainard, 1997).

180  EEG preprocessing was conducted in Matlab with Eeglab toolbox (Delorme and Makeig, 2004). EEG
181  data were corrected against the average of the two reference channels. Bad channels were marked by

182  manual selection during recording and automatically detected based on joint probability measures of
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183  Eeglab. EEG signals were then down-sampled to 256 Hz and epochs containing responses to individual
184  trials were extracted. Each epoch was baseline corrected against 100 ms prior to the cue onset by

185  removing the mean of the baseline period from the whole trial. ICA artifact rejection was performed with
186  Eeglab to remove components of eye movements, blinks, and muscle artifacts. The maximum number of
187  independent components rejected for each subject was five. After ICA rejection, bad channels were

188  removed and interpolated. Trials with a maximum absolute value over 80 uV were rejected (Delorme et
189  al., 2007). Two subjects with excessive artifacts were removed from further EEG analysis because less
190  than 50% of trials remained after thresholding. For the rest of the 18 subjects, at least about two thirds of
191  the trials (minimum was 48 out of 75 trials) remained for each condition after artifact rejection. Trial

192  numbers were equalized within and across subjects by randomly selecting the minimum number of

193 available trials (N = 48) for each condition across the whole recording session.

194 2.5 Data analysis

195  Behavioral performance was quantified by the percentage of correct responses for each one of the three
196  syllables in the target stream and each spatialization condition. Behavioral results were collapsed across
197  the attend-left and attend-right trials. The percentages of correct response were then normalized by logit

198  transformation before parametric statistical testing was performed on the resulting data.

199  ERP responses were evaluated for the second syllable of the target sound and distractor sound,

200  respectively. The reason we looked at the second syllable only is that 1) the first syllable of the target and
201  distractor aligned in time and therefore the ERPs were not separable, and 2) the ERP amplitude in

202  response to the third syllable was small, and therefore more contaminated by noise. ERP components
203  were then extracted from the time series data. The preprocessed data (details see EEG Preprocessing

204  Procedures) was bandpass filtered from 0.5 to 20 Hz by a finite impulse response filter with Kaiser

205  window design (p = 7.2, n=1178). Data from four fronto-central channels (Cz, Fz, FC1, and FC2) were
206  averaged to get the auditory ERP response. We picked these four channels a priori because auditory ERP

207  responses in sensor space are largest in the fronto-central area of the scalp. To quantify the amplitudes of
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208  ERP components, the maximum value within the window of 50 to 100 ms after the second syllable onset
209  was taken to be the P1 amplitude; the minimum value within the window of 100 to 180 ms after the

210  second syllable onset was calculated to be the N1 amplitude. The values extracted from the selected

211  windows were calculated for each channel and plotted onto a 2D scalp map to generate topography plots.
212 The values of the ERP components from the four selected channels were then averaged and compared

213 across different spatialization conditions.

214  To get the amplitude of alpha oscillations, the preprocessed EEG data was bandpass filtered to the alpha
215  range (8 to 14 Hz) before a Hilbert transform was applied. The magnitude of the resulting data was taken
216  as the extracted alpha power envelope. To get induced alpha power, the alpha power was calculated for
217  single trials first and then averaged across trials (Snyder and Large, 2005). The time course of alpha

218  power was baseline corrected against 700 ms before the auditory cue onset. GFP (Murray et al., 2008;
219  Skrandies, 1990) constitutes the spatial standard deviation across all scalp electrodes; it has been used as a
220  measurement to quantify the amount of alpha variation across the scalp (Lim et al., 2015). We calculated
221  the time courses of alpha GFP by taking the standard deviation of alpha power over all electrodes. To
222 quantify the degree of alpha modulation based on direction of attention, we calculated the Attentional
223 Modulation Index (AMI) of alpha power, defined as the alpha power difference between attended left and
224 attended right trials divided by the overall alpha power (Wdstmann et al., 2016). The AMI of alpha was
225  calculated for each time point, yielding the time course of AMI for each spatialization condition. We then
226  averaged the alpha AMI of each spatialization condition over the 800 ms immediately before stimulus
227  onset (-800 ms to 0 ms, re: onset). This is the period in which the cue has already signaled to the subjects
228  where to orient their spatial attention in preparation for the target sound, but before the speech streams
229  begin. Scalp topographies of the preparatory alpha AMI were plotted for each condition. Hemispheric
230  lateralization of alpha AMI was further compared across spatialization conditions and evaluated as the
231  difference between the left hemisphere and the right hemisphere. Calculated in this way, the AMI is

232 expected to be positive in left and negative in right parietal channels.
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233 For testing the significance of different means across conditions, we conducted repeated measures

234  ANOVAs followed by post-hoc analyses for all significant main effects and interactions using Fisher’s
235  least significant difference procedure. We separately tested whether condition means differed

236  significantly from zero using Bonferroni-corrected t-tests (P.q). The Lilliefors test was performed prior to
237  statistical testing to check normality of the data. Data was considered normally distributed at P > 0.05.
238  Prior to statistical analysis of behavioral performance, the percentages of correctly reported syllable were
239  logit transformed in order to obtain normally distributed data.

240  Raw data and analysis scripts are publicly available (Deng et al., 2019).
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241 3 Results

242 3.1 Natural spatial cues facilitate behavioral performance

243 Percentages of correctly recalling each syllable of the target stream differed across the three spatialization
244  conditions (Figure 2; 1% syllable: F234 = 25.25, P < 0.001; 2™ syllable: Fo34 = 6.27, P = 0.005; 3

245  syllable: F(234 = 5.60, P = 0.008). For the first syllable, where the target and distractor sounds overlapped
246  in time, subjects were least accurate in the ITD condition; performance in the ITD condition differed

247  significantly from both the IID (t34) = 5.31, P < 0.001) and HRTF conditions (tz4) = 6.74, P < 0.001).

248  However, no statistically significant difference was observed between 11D and HRTF conditions for that
249  sgyllable (tz4)=1.43, P =0.16). For the second and the third syllable, where target and distractor streams
250  occurred staggered in time, subjects performed significantly better in the HRTF condition than in both the
251 ITD condition (2" syllable: tz4) = 3.27, P = 0.002; 3™ syllable: tz4) = 3.33, P = 0.002) and the IID

252 condition (2™ syllable: tz4 = 2.81, P = 0.008; 3™ syllable: tz4) = 1.94, P = 0.06). There was no significant
253 difference in performance between the ITD and IID conditions for the two staggered syllables (2™

254 syllable: tasy=1.41, P=0.17, 3 syllable: tz4y=1.39, P=0.17).

Figure 2
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256 Fig. 2. Listeners’ (N = 18) recall performance was evaluated for every syllable and every
257 spatialization condition. Sounds were spatialized either based on generic ITDs, individualized
258 1IDs, or the natural combination of ITDs, IIDs, and spectral cues in individualized HRTF's.
259 Behavioral advantages of having more consistent spatial information were statistically
260 significant but small in absolute terms. * P < .05; ** P < .001; *** P <.0001

261 3.2 Impoverished spatial cues affect attentional modulation of ERPs

262  Figure 3A shows the ERPs evoked by the onset of the second syllable of the attended target sound and the
263  unattended distractor sound, aligning the onsets of the target and distractor syllables to 0 s to allow direct
264  comparison. Stimulus onsets elicited a fronto-central positivity (P1) between 50 to 100 ms followed by a
265  negativity (N1) between 100 to 180 ms (Figure 3A-B). The amplitudes of these two components were
266  extracted and the difference between attended stimuli (target sound) and unattended stimuli (distractor
267  sound) was calculated in order to quantify attentional modulation for both the P1 and N1 components

268  (Figure 3C).
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270

271 Fig. 3. Pl amplitudes were only modulated by the attended direction in the HRTF condition,
272 whereas NI amplitudes were modulated equally strongly across spatialization conditions (N = 18).
273 A. ERP waveforms at fronto-central electrodes were compared between the attended target stream
274 and the unattended distractor stream for every spatialization condition. The Pl time range was
275 defined as 50 ms to 100 ms, and the N1 time range as 100 ms to 180 ms. B. Most topographies of
276 both ERP components show maxima at the fronto-central sites (black dots) used for evaluation. C.
277 The modulation strength of ERP components was assessed by the amplitude differences between
278 attended and unattended streams. * P < .05; ** P < .01

279  We tested whether P1 responses were significantly larger to attended stimuli than to unattended stimuli
280  separately for each of the three spatialization conditions. Only the HRTF condition showed a significant
281  P1 modulation (tu7) = 3.12, P.g = 0.017); no significant attentional modulation was found in either the
282 ITD (ta7 = 0.50, Pag; = 1) or IID conditions (tu7) = 0.06, Pag = 1). Across conditions we found a

283  statistically significant main effect of spatial cue on P1 amplitude modulation (F(234) = 3.34, P = 0.047).
284  Post hoc tests showed that attentional modulation was significantly larger in the HRTF condition than in
285  the ITD (t34)=2.38, P=10.023) and IID conditions (tz4) = 2.07, P = 0.046); however, modulation did not

286  differ significantly between the ITD and IID conditions (tz4) = 0.31, P = 0.76) (Figure 3C).

287  In all three spatialization conditions, the N1 amplitude was modulated significantly by spatial attention,
288  that is, attended sounds evoked larger N1 amplitudes than unattended sounds (ITD: t7) = 3.01, P.q
289  =0.024; IID: ta7) = 4.12, Pag; = 0.002; HRTF: tq7) = 3.56, P.q = 0.007). Across the three spatialization
290  conditions the magnitude of N1 modulation did not differ significantly (F2;34 = 0.060, P = 0.94; Figure

291 30Q).
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292 3.3 Alpha oscillation power shows less attentional modulation with impoverished spatial cues
293  To investigate the effect of spatialization on attentional control, we analyzed the power in alpha

294  oscillations during the attentional preparation period (-800 ms to 0 ms), a time period in which listeners
295  knew where to orient spatial attention based on the preceding acoustic cue, but before the sound mixture
296  of competing streams began. We averaged the power in alpha across all trials for each spatialization

297  condition, regardless of where spatial attention was focused, to get a measure of the total engagement of
298  alpha activity. We then compared relative power for different attentional directions. On average across
299  directions of attentional focus, we calculated the time courses of alpha global field power (GFP, Figure
300 4A) and compared within-subject differences of the temporal average within the preparatory time period

301  across spatialization conditions (Figure 4B).

302  Alpha GFP was not significantly modulated in either the ITD or IID conditions (ITD: t(7) = 0.44, Pug = 1;
303  ID: tus = 0.43, P,y = 1), while in the HRTF condition, the GFP tended to be greater than zero (HRTF:
304 ta7) =2.56, P =0.061). In a direct comparison, spatialization conditions differed significantly in alpha
305  GFP (Fz34=5.26, P=0.010). In particular, alpha GFP in the HRTF condition was significantly larger
306  than in each of the other two conditions (HRTF vs ITD: tas) = 2.80, P =0.008; HRTF vs IID: t34)=2.82,
307 P =0.008). No significant difference was found between the ITD and IID conditions (tz4 = 0.019, P

308 =0.99).
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310 Fig. 4. Within-subject differences in alpha-band GFP are larger in the HRTF condition, especially
311 during the preparatory time window (after the sound cue but before the first syllables of the
312 competing streams). A. Waveforms of the average (+ SEM) GFP differences are shown during the
313 baseline period, preparatory phase, and stimulus phase with stream competition. B. The temporal
314 average of the preparatory alpha GFP difference is larger for the HRTF condition. ** P < .01

315  We next assessed the lateralization of alpha power with the spatial focus of attention by comparing AMI
316  differences across hemispheres (Figure 5). In general, the scalp topographies of AMIs show the expected

317  hemispheric differences. However, statistically significant hemispheric differences were found only in the
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318  HRTF condition (tu7) = 3.09, P.g = 0.020), not in either the ITD (tu7 = 1.29, Pag; = 0.64) or the 11D
319  condition (t7) = 0.15, P.g = 1). A direct comparison of these hemisphere differences across conditions

320  revealed a trend in which the HRTF condition had larger differences in AMI across hemispheres (F(2,34) =

321 298, P=0.064).

Figure 5
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323 Fig. 5. Attentional modulation of alpha activity was lateralized to the hemisphere ipsilateral to the
324 target stream only in the HRTF condition. AMI topographies and hemispheric averages are shown
325 for every spatialization condition (N = 18). * P <.05

326  In summary, impoverished spatial cues lead to worse behavioral performance, smaller P1 modulation,
327  reduced modulation of preparatory alpha power GFP, and reduced lateralization of alpha power with
328  attentional focus, confirming our hypothesis that impoverished spatial cues impaired engagement of

329  spatial attention.

330 3.4 Relationships between Attentional Modulation Metrics
331  Given these consistent effects of spatialization on performance and neural metrics, we explored, post hoc,
332 whether there were ordered relationships in the individual measures of attentional control, including P1

333  modulation, preparatory alpha GFP, and alpha power lateralization. To investigate the relationship
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334  Dbetween evoked response modulation and alpha oscillatory activity, we first calculated the regression
335  slope relating P1 amplitude to preparatory alpha GFP for each subject, and then performed a paired t-test
336  on the coefficients obtained. No consistent relationship between alpha GFP and P1 amplitudes was

337  observed (ta7= 0.90, P = 0.38). Correlation analysis was also conducted comparing behavioral accuracy
338  to P1 modulation, defined as the attended P1 amplitude minus unattended P1 amplitude. No consistent
339  relationships between P1 modulation and behavioral performance were observed for any syllable (1st
340  syllable: tg7 = 0.54, P =0.59; 2nd syllable: t;7 = 0.31, P = 0.76; 3rd syllable: tq7) = 0.69, P = 0.50).

341  Similarly, we did not observe consistent relationships between alpha AMI lateralization and response
342 accuracy for any syllable (1st syllable: tq7 = 0.19, P = 0.85; 2nd syllable: tq7 = 1.39, P =0.18; 3rd

343  gyllable: tu7y=0.11, P =0.91). In addition, no consistent relationship was found between alpha GFP and
344  response accuracy for any syllable (1st syllable: tg7 = 0.65, P = 0.52; 2nd syllable: tq7y = 1.27, P =0.22;
345  3rd syllable: tg7 = 1.16, P = 0.26). Thus, although there were significant differences in engagement of
346  attention across spatial conditions as measured both behaviorally and neurally, the individual subject

347  differences in these metrics were not closely related.
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348 4 Discussion

349  Behaviorally, we found that impoverished spatial cues impair performance on an auditory spatial attention
350 task in a multi-talker scene. We used objective electrophysiological measures to assess whether the

351  naturalness and richness of spatial cues also impacts how strongly auditory spatial attention modulates
352  brain responses. We found that impoverished spatial cues reduce the strength of the evoked and induced
353  neural signatures of attentional control. Specifically, evoked P1 amplitudes and induced alpha oscillatory
354  power showed less attentional modulation for sound stimuli with impoverished spatial cues compared to

355  when spatial cues were tailored to recreate the natural, rich experience of individual listeners.

356 4.1 Impoverished spatial cues result in less neural modulation during selective attention

357  We investigated attentional modulation of four established neural signatures of selective attention: evoked
358 Pl and N1 amplitudes and induced power and lateralization of alpha oscillation. While attentional

359  modulation of N1 amplitude was observed in all conditions, attentional modulation of the earlier P1

360  amplitude was not observed or was significantly weaker in the impoverished cue conditions compared to
361  the natural cue condition. Similarly, we found less preparatory alpha power activity in the impoverished
362  spatial cue conditions than in the natural cue condition, reflected by two indexes quantifying the amount
363  of spatial variability of alpha power: alpha GFP (Figure 4) and AMI (Figure 5). In the ITD and IID

364  conditions, although there was a hint of preparatory alpha lateralization over parietal sensors, the amount
365  of lateralization was significantly smaller than in the HRTF condition and did not reach statistical

366  significance.

367  Preparatory alpha activity during spatial attention tasks has been well documented to form a specific

368 lateralization pattern in both vision and audition (Banerjee et al., 2011; Kelly, 2006; Sauseng et al., 2005;
369  Worden et al., 2018), which is thought to be evidence of a preparatory information-gating mechanism
370  (Foxe and Snyder, 2011; Jensen and Mazaheri, 2010; Klimesch, 2012; Klimesch et al., 2007). In vision,
371  alpha lateralization has been observed to increase with the laterality of attention focus (Rihs et al., 2007;

372  Samaha et al., 2015), reflecting an inhibition pattern topographically specific to attention focus.
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Moreover, evidence for active top-down control of the phase of alpha oscillation during visual spatial
attention suggests that alpha oscillatory activity represents active engagement and disengagement of the
attentional network (Samaha et al., 2016). In addition, a previous somatosensory study revealed that the
alpha lateralization is positively correlated to pre-stimulus cue reliability, further suggesting that alpha
lateralization reflects top-down control that optimizes the processing of upcoming stimuli (Haegens et al.,
2011). Although relatively few studies have investigated alpha activity in audition, studies suggest that

alpha control mechanisms are supra-modal rather than sensory specific (Banerjee et al., 2011).

In the current experiment, a pre-stimulus auditory cue directed listeners where to focus attention in an
upcoming sound mixture. The cue was spatialized using the same auditory features used to spatialize the
stream mixture. Our results thus suggest that compared to stimuli with natural spatial cues, stimuli
featuring only ITDs or only IIDs are less reliable in directing attentional focus, producing weaker

engagement of spatial attention and reduced attentional modulation of neural responses.

Consistent with the idea that impoverished spatial cues lead to weaker engagement of spatial attention, we
found that the P1 ERP component was modulated by attention only with natural spatial cues, not with
impoverished cues; this result is consistent with a weak spatial representation failing to engage attentional
modulation of early sensory responses (Figure 3). Our finding that attentional focus leads to a modulation
of P1 amplitude for natural spatial cues is consistent with reported effects of attention on the P1 amplitude
observed in previous spatial attention studies across sensory modalities [auditory: (Giuliano et al., 2014);
visual: (Hillyard and Anllo-Vento, 1998; Hopfinger et al., 2004)]. Past studies agree that P1 modulation
reflects an early sensory inhibition mechanism related to suppression of task-irrelevant stimuli. Although
debates remain as to whether P1 modulation results from bottom-up sensory gain control (Hillyard and
Anllo-Vento, 1998; Luck, 1995; Slagter et al., 2016) or some top-down inhibitory process (Freunberger et
al., 2008; Klimesch, 2011), it is generally accepted in visual spatial studies that greater P1 amplitude
modulation is associated with greater inhibition of to-be-ignored stimuli (Couperus and Mangun, 2010;

Hillyard and Anllo-Vento, 1998; Klimesch, 2012).
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398 Interestingly, attentional modulation of auditory P1 has been found to be positively correlated with visual
399  working memory capacity, a result that was used to argue that stronger P1 modulation reflects better

400  attentional control of the flow of sensory information into working memory (Fukuda and Vogel, 2009;
401  Giuliano et al., 2014). Our result is consistent with the hypothesis that P1 modulation directly reflects
402  attentional control. Specifically, impoverished spatial cues likely produce a “muddy” representation of
403  auditory space that supports only imprecise, poorly focused top-down spatial attention. The resulting lack
404  of control and specificity of spatial auditory attention results in early P1 responses that are unmodulated

405 by attentional focus.

406 N1 modulation is well documented as a neural index of attentional control (Choi et al., 2013; Hillyard et
407  al., 1998; Stevens et al., 2008; Wyart et al., 2012). The attentional modulation of N1 is thought to reflect
408 attentional facilitation rather than inhibition (Couperus and Mangun, 2010; Marzecova et al., 2018;

409  Slagter et al., 2016). In contrast to preparatory alpha and P1, we found that the later N1 evoked response

410  was modulated similarly, regardless of the richness and naturalness of spatial cues.

411  Due to the robustness and relatively large amount of modulation, changes in auditory N1 amplitude have
412 been used as a biomarker and a primary feature for classification of attentional focus (Blankertz et al.,
413 2011; Schreuder et al., 2011); see also recent work on decoding attentional focus for running speech using
414  the correlation between neural responses and the power envelope of the speech streams: (Chait et al.,

415  2010; Mesgarani and Chang, 2012; Rimmele et al., 2015). However, there is little known about how N1
416  amplitudes reflect the processing of different spatial cues during auditory spatial attention. Previous

417  studies have revealed different N1 topographies during ITD and IID processing, leading to the conclusion
418  that ITD and IID are processed by different neural populations in the auditory cortex (Johnson and

419  Hautus, 2010; Tardif et al., 2006; Ungan et al., 2001). However, debates remain about whether this

420  difference in topography depends on perceived laterality, instead of different neural populations

421  specialized for processing different spatial cues. Results from a more recent study show that auditory N1

422 modulation does not differ across spatial cue conditions, indicating integrated processing of sound
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locations in auditory cortex regardless of cues (Salminen et al., 2015). In the current study, N1
modulation did not differ across the three spatialization conditions. Thus, our results support the idea that

the same cortical neural population is responsible for processing different binaural spatial cues.

4.2 Behavioral disadvantages associated with impoverished spatial cues are modest and depend
on sound stimulus characteristics

Despite the influence of spatial cue richness on neural metrics, our behavioral results showed only small
(albeit significant) behavioral differences between impoverished spatial cues and natural, individualized
spatial cues (Figure 2). In line with previous studies that observed greater spatial release from masking
with combined spatial cues compared to with isolated cues (Culling et al., 2004; Ellinger et al., 2017),
accuracy was best in the HRTF condition. The small accuracy improvement over using impoverished
cues is seen consistently across subjects. In the first syllable where the target and distractor streams
overlap in time, the HRTF condition yielded a 13% increase in accuracy over the ITD condition, but is
comparable to performance in the IID condition. In the two staggered syllables, accuracy in the HRTF
condition is greater than in the ITD and IID conditions by only about 6% and 1%, respectively. These
differences in behavioral performance across syllables suggest that the characteristics of sound stimuli
influence the difficulty of the task and may affect the behavioral advantages of having richer, more robust
spatial cues (Kidd et al., 2010). Concordantly, a previous study with complex tone stimuli has shown
much larger differences in behavioral performance, up to 20% (Schroger, 1996), whereas studies
presenting speech stimuli in a multi-talker environment yielded no behavioral advantage of having
combined cues compared to impoverished cues (Glyde et al., 2013). These behavioral discrepancies, in
combination with our neural findings, indicate that behavioral performance alone is not a sensitive metric

for determining whether cortical networks controlling spatial selective attention are fully engaged.

Non-individualized or generic HRTFs such as from another listener or a mannikin have also been used
widely for sound spatialization in auditory neuroscience studies (e.g., Choi et al., 2013; Klatt et al., 2018;

Warren and Griffiths, 2003). Early psychoacoustic investigations (Middlebrooks, 1999; Wenzel et al.,
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448  1993) as well as a more recent EEG study (Wisniewski et al., 2016) demonstrated large inter-individual
449  differences in the deteriorating effect of using generic HRTFs on localization abilities, mainly along the
450  up-down and front-back dimensions. Although these ad-hoc degradations are predictable based on

451  spectral comparisons with the listener-specific HRTFs (Baumgartner et al., 2016, 2014), it is poorly

452  understood why some listeners adapt much faster than others to generic HRTFs, also without providing
453  explicit feedback (e.g., Stitt et al., 2019). Because our study was not targeted to investigate such inter-
454  individual differences, we aimed to reduce inter-subject variability by individualized HRTFs and did not
455  include a spatialization condition using generic HRTFs. If individual HRTF measurements are not

456  feasible it is advisable to individually select HRTFs from a database (e.g., Stitt et al., 2019; Warren and

457  Griffiths, 2003).
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458  Conclusions

459  Our results indicate that although impoverished spatial cues can support spatial segregation of speech in a
460  multi-talker environment, they do not fully engage the brain networks controlling spatial attention and
461  lead to weak attentional control. Previous auditory studies have provided evidence that impoverished

462  spatial cues do not evoke the same neural processing mechanisms as natural cue combinations during

463  localization tasks with single sounds (Callan et al., 2013; Getzmann and Lewald, 2010; Paloméki et al.,
464  2005). The current study extends these findings, demonstrating that the efficacy of higher-level cognitive
465  processing, such as deployment of auditory selective attention, also depends on the naturalness of spatial
466  cues. Poor attentional control was reflected in limited modulation of neural biomarkers of attentional

467  processes. These findings suggest that the many past auditory attention studies using impoverished spatial
468  cues may have underestimated the robust changes in cortical activity associated with deployment of

469  spatial auditory attention in natural settings. Although impoverished auditory spatial cues can allow

470  listeners to deploy spatial attention effectively enough to perform well in simple acoustic scenes, noisy,
471  complex listening environments like those encountered in everyday environments pose greater challenges
472 to attentional processing. In natural settings, spatial attention may fail unless attentional control networks
473  are fully engaged. Thus, these results demonstrate the importance of preserving rich, natural spatial cues

474  in hearing aids and other assistive listening devices.
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