

1 **How many cubs can a mum nurse? Maternal age and size influence litter size in polar
2 bears**

3

4 Dorinda Marie Folio¹, Jon Aars², Olivier Gimenez¹, Andrew E. Derocher³, Øystein Wiig⁴,
5 Sarah Cubaynes^{5,1}

6

7

8 ¹CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier,
9 France

10 ²Norwegian Polar Institute, Fram Centre, Tromsø, Norway

11 ³Department of Biological Sciences, University of Alberta, Edmonton, Canada

12 ⁴Natural History Museum, University of Oslo, Oslo, Norway

13 ⁵MMDN, INSERM U1198, EPHE/PSL & University of Montpellier, France

14

15 **Abstract.** Life history theory predicts that females' age and size affect the level of maternal
16 investment in current reproduction, balanced against future reproductive effort, maintenance
17 and survival. Using long-term (30 years) individual data on 193 female polar bears (*Ursus*
18 *maritimus*), we assessed age- and size-specific variation on litter size. Litter size varied with
19 maternal age, younger females had higher chances of losing a cub during their first months of
20 life. Results suggest an improvement of reproductive abilities early in life due to experience
21 with subsequent reproductive senescence. Litter size increased with maternal size, indicating
22 that size may reflect individual quality. We also found an optimum in the probability of
23 having twins, suggesting stabilizing selection on female body size. Heterogeneity was
24 observed among the largest females, suggesting that large size comes at a cost.

25

26

27 **1. Introduction**

28 Life history theory predicts that an optimal level of parental investment should
29 maximize current reproductive success (RS) balanced against maintenance, survival, and
30 future reproduction [1,2]. Among mammals, capital breeders are characterized by high
31 maternal investment [10]. Lactation imposes high energetics demands on mothers [10]
32 whereas energy is stored before breeding when foraging is constrained during reproduction
33 [2]. Mothers' traits, namely age and body condition, should influence their ability to provide
34 for their young, therefore influencing RS.

35 RS should increase with age due to an increase in maternal allocation to reproduction
36 as residual reproductive value decreases ("terminal investment" hypothesis [1]). However,
37 recent studies suggest a decline in RS with old age in wild vertebrates because of fewer
38 resources to allocate to reproduction ("reproductive senescence" hypothesis [5]). An increase
39 in RS has also been observed early in life due to increasing breeding abilities with experience
40 ("constraint hypothesis" [6]). Moreover, irrespective of age, RS can vary with female body
41 size and mass [3,4]. Larger size might benefit reproduction by improving or reflecting
42 foraging abilities [7] and lactation [8]. RS might therefore increase until an optimal maternal
43 size or age and then potentially decrease or level off because maintenance costs exceed the
44 benefits associated with higher size or experience of older females [3,9]. However, to date,
45 the influence of maternal traits on reproductive outputs in mammalian capital breeders has
46 received little attention [3].

47 Using long-term individual data, we assessed age- and size-specific variation in female
48 polar bears (*Ursus maritimus*) relative to litter sizes, which vary from one to three young, in
49 the Svalbard population. We assumed high maternal investment because polar bears i) live in
50 an extreme environment, ii) rely only on stored fat reserves during pregnancy and for the first
51 four months of lactation, and iii) continue to care for and feed young during two and a half

52 years [11]. We expected litter size to increase until an optimal age and size, due to experience
53 and individual quality, and then decline for the largest, and for senescent, individuals.

54

55 **2. Materials and methods**

56

57 (a) Data collection

58

59 We live-captured polar bears from 1992 to 2017 at Svalbard, Norway, from late March
60 to beginning of May – just after females have emerged from maternity dens with their cubs
61 [11] – using methods described in Stirling et al. 1989 [12]. The age of first reproduction for
62 Svalbard females is usually six years of age [11]. Age was estimated using a premolar tooth
63 extracted from sub-adult and adult bears (cubs were of known age based on size) [13]. Body
64 straight length (cm), hereafter size, was measured as the dorsal straight-line made from the tip
65 of the nose to the caudal end of the tail bone with bears laying sternally recumbent. Litter size
66 (one to three) was recorded upon capture as the number of cubs-of-the-year a mother had
67 reared to that time.

68

69 (b) Statistical analyses

70

71 We analysed litter size as a function of mother's traits using multinomial regression
72 [14] that extends standard logistic regression to more than two outcomes. Litters of one were
73 chosen as the reference category. We did not consider whole litter loss here, and we included
74 only females that were observed with at least one young in the analyses. Separate odd-ratios
75 (OR) were determined for the relative risk of a litter size of “two” *versus* “one”, and the
76 relative risk of a litter size of “three” *versus* “one”, as a function of the covariates. Parameters

77 α and γ respectively represent the OR of twins and triplets, and will give an estimated
78 probability of having one, two or three cubs as a function of the covariates. We tested for
79 linear and quadratic effects of maternal age and size. Because fieldwork was spread over
80 more than a month and that mortality rates for cubs within their first year can be high [11], we
81 considered capture date (as an ordinal date with 1st January being 1 in normal years and 0 in
82 leap years) to account for a possible loss of young between den emergence and observation. A
83 yearly random effect was included on α and γ to account for environmental variation. Twenty-
84 seven models (Table 1) were fitted with a Bayesian approach using Markov Chain Monte
85 Carlo (MCMC) techniques in JAGS [15]. We used non-informative normal prior distributions
86 for the regression coefficients and a uniform prior distribution for the standard deviation of
87 the random effect. We ran two MCMC in parallel with different initial values, 200,000
88 iterations each and an initial burn-in of 40,000 iterations. One out of ten values were kept. We
89 assessed convergence by visual inspection and by using the Gelman and Rubin R-hat
90 diagnostic ($R\text{-hat} < 1.1$ [16]). For model comparison, we used the Deviance Information
91 Criteria (DIC [17]) and considered the model with lowest DIC as being best supported by the
92 data. Model selection consisted of 5 steps. In step 1, we compared different model structures
93 for the intercept (same or different intercept on α and γ). In step 2 (respectively 3 and 4) we
94 tested for the effect of maternal age (respectively maternal size and capture date). Each tested
95 variable could influence differently both OR (1: one common coefficient, 2: two distinct ones,
96 3: one for α or 4: one for γ). In step 5, we compared models with additive effects and
97 interactions between the previously selected variables. For ease of interpretation, we
98 considered young females to be aged between 6 and 9 years old because this should be age at
99 their first reproduction; passed 15 years old, we considered females as being old because
100 previous studies suggested reproductive and body senescence around that age [18]; last, we
101 considered prime-aged females as being aged from 10 to 15 years old. Using these cut-offs,

102 we fitted an additional model including age as a factor in the model best supported by the data
103 to assess differences in each age class (Table 2).

104

105 **3. Results**

106 The best model (model 5.2, Table 1) included an interaction between a quadratic effect
107 of age and capture date within the field season on the probability of having a litter of two over
108 one cub.

109

110 **Table 1:** List of all models considered with comparison based on Deviance Information
111 Criteria (DIC) values, with Δ DIC for the difference between the model with two intercepts
112 only and the model under investigation. Parameters α and γ represent the odds ratio (OR) of
113 twins and triplets, respectively, while # par. is for the number of model parameters. For each
114 step, the model best supported by the data is in bold.

115

116 Maternal size influenced both the probability of having two over one cub, and three
117 over one cub. Concerning age, the probability of having twins increased and then decreased
118 after mid-season (day 105) (Figure 1, ESM Figure 1).

119

120 **Figure 1:** Estimated probability of having 1, 2 or 3 cubs as a function of capture date (in days
121 from March 21st) for (a) young (6 years old), (b) prime-aged (12 years old) and (c) old (18
122 years old) mothers and for a mean maternal size (194.8 cm). Predictions were obtained from
123 the best model (model 5.2 in Table 1). Solid lines are posterior means while dotted lines are
124 95% credible intervals.

125

126 Young females (6-9 years old (y.o.)) had a high probability of having twins shortly
127 after denning (day 90, $P(y=2) \approx 0.9$), but it declined within the field season, leading to a higher
128 probability of having just one cub alive towards the end of it (after day 125, $P(y=1) \approx 0.9$,
129 Figure 1a). Early in the season, prime-aged females (10-15 y.o.) also had a higher probability
130 of having two over one cub ($P(y=2) = 0.7$ and $P(y=1) = 0.3$, Figure 1b) while older females (> 15
131 y.o.) had similar probabilities of having singletons or twins ($P(y=2) \approx P(y=1) \approx 0.5$, Figure 1c).
132 In contrast to the marked drop in spring litter size with time for young females, little variation
133 was observed for prime-aged ($0.7 < P(y=2) < 0.8$ and $0.2 < P(y=1) < 0.3$, Figure 1b) and old
134 females ($P(y=2) \approx P(y=1) \approx 0.5$, Figure 1c). Examining parameter estimates confirmed that the
135 interaction term between age and date was only significant for young mothers and not for
136 older ones (Table 2).

137

138 **Table 2:** Parameter estimates of the multinomial regression model derived from the model
139 best supported by the data (see Table 1) using age as a factor. Posterior mean, standard
140 deviation (SD) and 95% credible intervals are provided for the odds ratios (fixed effects) as
141 well as the variance of the random effect year. Rhat is the potential scale reduction factor (at
142 convergence, $Rhat < 1.2$).

143

144 Litter size globally increased with the size of a mother (Figure 2). A higher probability
145 of having singletons was found for smaller females ($size < 183\text{cm}$, $0.5 < P(y=1) < 0.8$,
146 $0.2 < P(y=2) < 0.5$, $P(y=3) = 0$), of having twins for medium-sized females ($190\text{cm} < size < 200\text{cm}$,
147 $P(y=1) = 0.3$, $P(y=2) = 0.7$, $P(y=3) = 0$), and of having singletons or triplets for larger females
148 ($size > 210\text{ cm}$, $P(y=1) \approx 0.5$, $0 < P(y=2) < 0.2$, $0.2 < P(y=3) < 0.5$). However, sample size was very
149 low for triplets ($n=8$).

150

151 **Figure 2:** Estimated probability of having 1, 2, or 3 cubs as a function of maternal size for a
152 mean value of mother's age (11.4 years) and capture date (day 105 ~ 16th of April).
153 Predictions were obtained from the best model (model 5.2 in Table 1). Solid lines are
154 posterior means while dotted lines are 95% credible intervals.

155

156 **4. Discussion**

157 Our results showed an influence of maternal traits on litter size, an index of
158 reproductive success, suggesting that a mothers' ability to invest in reproduction and care for
159 their offspring varied with their age and size. The quadratic pattern of variation in litter size
160 observed with age supported the hypothesis of a benefit of gaining experience early in life [6]
161 until 12 y.o. and of reproductive senescence [5] starting from 15 y.o. These results contradict
162 the terminal investment hypothesis [1], and support results on Canadian polar bears showing a
163 decrease in litter size and maternal body senescence after 16 years [18].

164 Under the experience hypothesis, an improvement of female's hunting skills might
165 explain the improvement of reproductive investment early in reproductive life [19]. Other
166 studies on mammals [3,18] suggest that an age-related increase in reproductive success could
167 be linked to mass gain and hence resource availability. Further supporting the experience
168 hypothesis, we found that younger females (< 10 y.o.) had about the same probability as
169 prime-aged females to produce two cubs, but higher chances to lose one during the capture
170 spring season.

171 Under the senescence hypothesis, degradation of physiological functions with aging
172 [20] might impair females' fat stores accumulation, causing a simultaneous decrease in
173 females' mass and reproductive outcomes [18]. Older mothers might therefore acquire less
174 energy, and might have higher energy allocation needs toward self-maintenance, reducing
175 energy allocated toward reproduction [1]. Reproductive senescence has been documented in

176 many wild populations for several reproductive parameters such as litter size [4,18], offspring
177 mass [3,5,18], and survival [4].

178 We showed that, on average, litter size increased with maternal size. The probability
179 of having triplets was only shown to depend on mother's size, although the sample size for
180 triplets was small. Large size might therefore be an index of individual quality, like in wolves
181 (*Canis lupus*) [4]. The increase in the probability of having twins, and decrease in probability
182 of having singletons, for females up to an optimum size, support this idea. Other traits
183 highlighting foraging capacities have been related to RS – e.g. body mass and condition in
184 bears and other species [3,18]. Among the largest females, the chances of having a singleton
185 or triplets were almost equal and increased, while that of having twins was low and
186 decreasing. Considering the decrease in the probability of having twins, and the increase in
187 the probability of singletons, stabilizing selection on adult female body size is likely to
188 happen: increased investment in growth likely comes at a cost in terms of somatic
189 maintenance.

190 Considering results on triplets, we suspect higher individual heterogeneity among the
191 largest females compared to smaller and medium sized ones. With a larger sample size, this
192 could be tested by assessing variance in litter size probability. Results on litter size probability
193 suggest that there is one group of 'good quality females' having triplets and another group of
194 'low quality females' having singletons. For the latter group, larger size could be associated
195 with a cost that may depend on other factors, such as body condition and environmental
196 quality. Large individuals occupying resource-poor habitats, or experiencing a year of
197 reduced resource availability, might not have enough resources to allocate to both their own
198 maintenance and care for triplets. Heterogeneity in individual quality may override
199 reproductive cost [22], and costs may be restricted to resource-limited contexts [23].

200 Overall, we found that litter size in polar bears increased with age of mothers early in
201 life until a plateau, followed by a decrease for old females. Because population growth mostly
202 depends on female's RS, itself influenced by maternal traits, our findings highlight the
203 importance of accounting for individual heterogeneity to understand the species response to
204 environmental perturbations. Future research will aim at understanding the determinants of
205 female polar bears' reproductive tactics by accounting for environmental conditions.
206 Influence of climate variability has been shown to affect reproductive parameters in several
207 populations, including Svalbard [24].

208

209

210 **Table 1.**

211

Steps	Models	α twins OR	γ triplets OR	# par.	DIC	Δ DIC
1: Intercept	1.1	Intercept	Intercept'	2	365.8	0
	1.2	Intercept	Intercept	1	515.7	150.5
2: Age	2.1	Age²	β_0'	4	353.5	-12.3
	2.2	Age ²	Age ² '	6	356.5	-9.3
	2.3	Age ²	Age ²	4	359.4	-6.4
	2.4	β_0	Age'	3	364.7	-1.1
	2.5	Age	Age'	4	365.5	-0.3
	2.6	Age	β_0'	3	365.5	-0.3
	2.7	β_0	Age ² '	4	366.4	0.6
	2.8	Age	Age	3	367	1.2
3: Size	3.1	Size²	Size'	5	360.3	-5.5
	3.2	β_0	Size'	3	361.4	-4.4
	3.3	Size ²	Size ² '	6	362	-3.8
	3.4	β_0	Size ² '	4	362.1	-3.7
	3.5	Size ²	β_0'	4	362.9	-2.9
	3.6	Size	Size'	4	363.2	-2.6
	3.7	Size	β_0'	3	366.8	1
	3.8	Size ²	Size ²	4	367.5	1.7
	3.9	Size	Size	3	367.9	2.1
4: Date	4.1	Date	β_0'	3	363.7	-2.1
	4.2	Date	Date	3	364.6	-1.2
	4.3	Date	Date'	4	365.8	0
	4.4	β_0	Date'	3	367.4	1.6
5: Additive	5.1	Age ² + Date + Size ²	Size'	8	346.9	0
effects and	5.2	Age² x Date + Size²	Size'	10	342.8	-4.1
interactions	5.3	Age ² + Date * Size ²	Size'	10	348.6	1.7
	5.4	Age ² x Size ² + Date	Size'	12	354.1	7.2

212 **Table 2.**
213

	Parameter	Mean	SD	95% credible interval	Rhat
Fixed effects					
α	Intercept	1.399	0.275	[0.881; 1.962]	1.001
	Age (young)	-0.653	0.350	[-1.352; 0.023]	1.001
	Age (old)	-1.183	0.421	[-2.015; -0.356]	1.001
	Date	-0.047	0.207	[-0.451; 0.357]	1.001
	Size	-0.005	0.158	[-0.312; 0.312]	1.001
	Size ²	-0.279	0.112	[-0.505; -0.062]	1.001
	Age (young) x Date	-0.760	0.390	[-1.550; -0.017]	1.001
	Age (old) x Date	-0.149	0.404	[-0.946; 0.638]	1.001
Year random effect					
	Variance	0.398	0.246	[0.024; 0.936]	1.001

214

215 **References**

216

217 1. Williams G. 1966 Natural selection, the costs of reproduction, and a refinement of Lack's
218 principle. *Am. Nat.* **100**, 687-690. (doi:10.1086/282461)

219 2. Stearns SC. 1992 *The evolution of life histories*. New York, NY: Oxford University Press.

220 3. Boltnev AI, York AE. 2001 Maternal investment in northern fur seals (*Callorhinus*
221 *ursinus*): interrelationships among mothers' age, size, parturition date, offspring size and sex
222 ratios. *J. Zool.* **254**, 219-228. (doi:10.1017/S0952836901000735)

223 4. Stahler DR, MacNulty DR, Wayne RK, VonHoldt B, Smith DW. 2013 The adaptive value
224 of morphological, behavioural and life-history traits in reproductive female wolves. *J. Anim.*
225 *Ecol.* **82**, 222-234. (doi:10.1111/j.1365-2656.2012.02039.x)

226 5. Nussey DH, Kruuk LEB, Donald A, Fowlie M, Clutton-Brock TH. 2006 The rate of
227 senescence in maternal performance increases with early-life fecundity in red deer. *Ecol.*
228 *Lett.* **9**, 1342-1350. (doi:10.1111/j.1461-0248.2006.00989.x)

229 6. Desprez M, Pradel R, Cam E, Monnat JY, Gimenez O. 2011 Now you see him, now you
230 don't: experience, not age, is related to reproduction in kittiwakes. *P. Roy. Soc. Lond. B Bio.*
231 **278**, 3060-3066. (doi:10.1098/rspb.2011.0189)

232 7. MacNulty DR, Smith DW, Mech LD, Eberly LE. 2009 Body size and predatory
233 performance in wolves: is bigger better? *J. Anim. Ecol.* **78**, 532-539. (doi:10.1111/j.1365-
234 2656.2008.01517.x)

235 8. Bowen WD, Iverson SJ, Boness DJ, Oftedal OT. 2001 Foraging effort, food intake and
236 lactation performance depend on maternal mass in a small phocid seal. *Funct. Ecol.* **15**, 325-
237 334. (doi:10.1046/j.1365-2435.2001.00530.x)

238 9. Houston AI, Stephens PA, Boyd IL, Harding KC, McNamara JM. 2006 Capital or income
239 breeding? A theoretical model of female reproductive strategies. *Behav. Ecol.* **18**, 241-250.
240 (doi:10.1093/beheco/arl080)

241 10. Langer P. 2008 The phases of maternal investment in eutherian mammals. *Zoology* **111**,
242 148-162. (doi:10.1016/j.zool.2007.06.007)

243 11. Wiig Ø. 1998 Survival and reproductive rates for polar bears at Svalbard. *Ursus* **10**, 25-
244 32. <https://www.jstor.org/stable/3873105>

245 12. Stirling I, Spencer C, Andriashuk D. 1989 Immobilization of polar bears (*Ursus*
246 *maritimus*) with Telazol® in the Canadian Arctic. *J. Wildlife Dis.* **25**, 159-168.
247 (doi:10.7589/0090-3558-25.2.159)

248 13. Calvert W, Ramsay MA. 1998 Evaluation of age determination of polar bears by counts of
249 cementum growth layer groups. *Ursus*. **10**, 449-453. <https://www.jstor.org/stable/3873156>

250 14. Engel J. 1988 Polytomous logistic regression. *Stat. Neerl.* **42**, 233-252.
251 (doi:10.1111/j.1467-9574.1988.tb01238.x)

252 15. Plummer M. 2003 JAGS: A program for analysis of Bayesian graphical models using
253 Gibbs sampling. In *Proceedings of the 3rd international workshop on distributed statistical*
254 *computing* (Vol. 124, p. 125). Vienna.

255 16. Gelman A, Rubin DB. 1992 Inference from iterative simulation using multiple
256 sequences. *Stat. Sci.* **7**, 457-472. (doi:10.1214/ss/1177011136)

257 17. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. 2002 Bayesian measures of
258 model complexity and fit. *J. Roy. Stat. Soc. B.* **64**, 583-639. (doi:10.1111/1467-9868.00353)

259 18. Derocher AE, Stirling I. 1994 Age-specific reproductive performance of female polar
260 bears (*Ursus maritimus*). *J. Zool.* **234**, 527-536. (doi:10.1111/j.1469-7998.1994.tb04863.x)

261 19. Derocher AE, Stirling I. 1992 The population dynamics of polar bears in western Hudson
262 Bay. *Wildlife 2001: Populations*, 1150-0059. (doi:10.1007/978-94-011-2868-1_88)

263 20. Mysterud A, Yoccoz NG, Stenseth NC, Langvatn R. 2001 Effects of age, sex and density
264 on body weight of Norwegian red deer: evidence of density-dependent senescence. *P. Roy.*
265 *Soc. Lond. B Bio.* **268**, 911-919. (doi:10.1098/rspb.2001.1585)

266 22. Hamel S, Cote SD, Gaillard JM, Festa-Bianchet M. 2009 Individual variation in
267 reproductive costs of reproduction: high-quality females always do better. *J. Anim. Ecol.* **78**,
268 143-151. (doi:10.1111/j.1365-2656.2008.01459.x)

269 23. Clutton-Brock TH, Stevenson IR, Marrow P, MacColl AD, Houston AI, McNamara JM.
270 1996 Population Fluctuations, Reproductive Costs and Life-History Tactics in Female Soay
271 Sheep. *J. Anim. Ecol.* **65**, 675-689. (doi:10.2307/5667)

272 24. Derocher AE 2005 Population ecology of polar bears at Svalbard, Norway. *Pop. Ecol.* **47**,
273 267-275. (doi: 10.1007/s10144-005-0231-2)

274

275

276

277 **Acknowledgements.** We thank Magnus Andersen for his participation in fieldwork, and Thor
278 Larsen for initiating the monitoring.

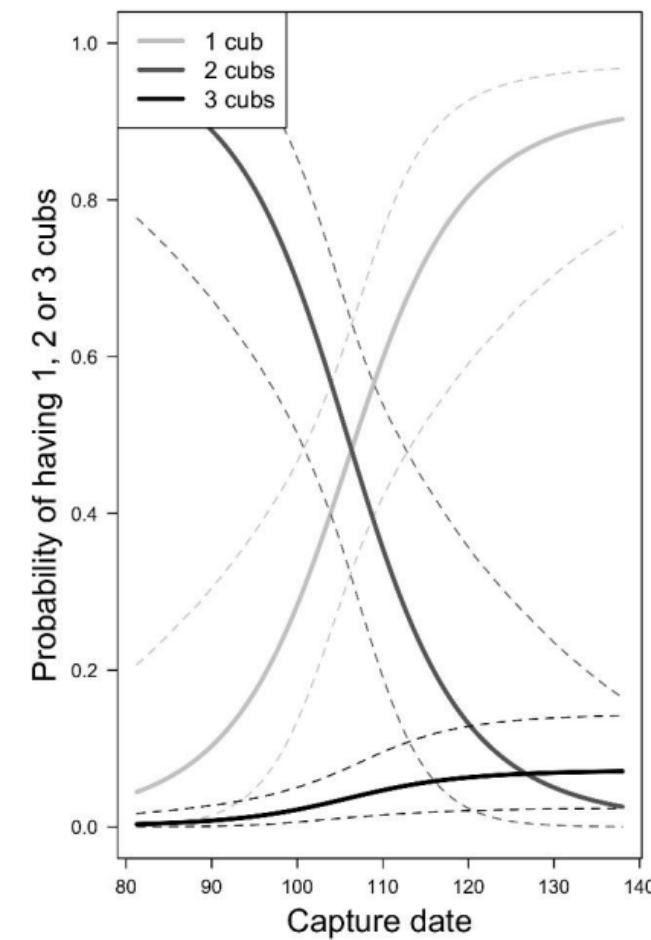
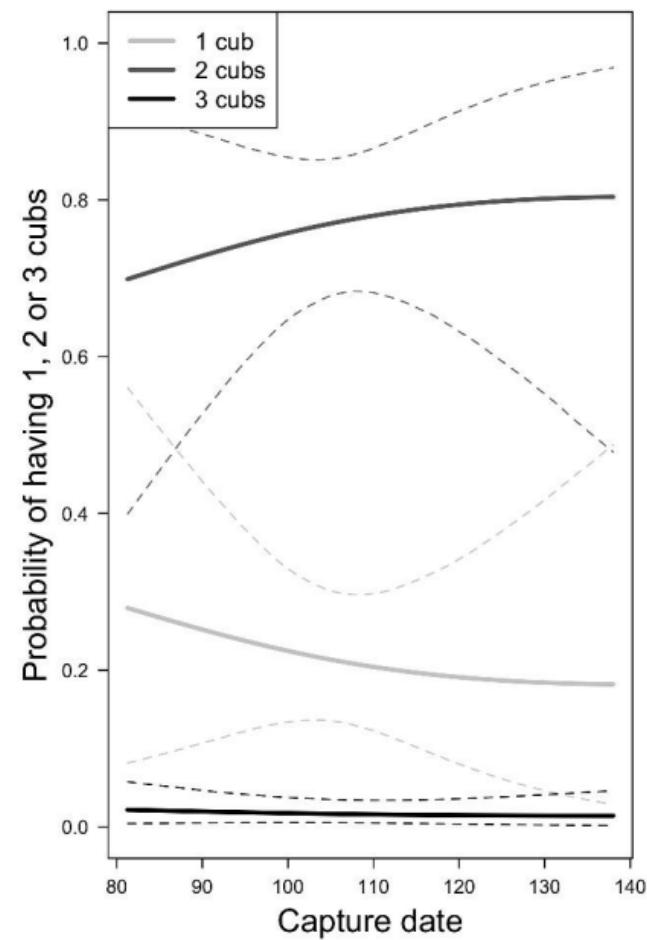
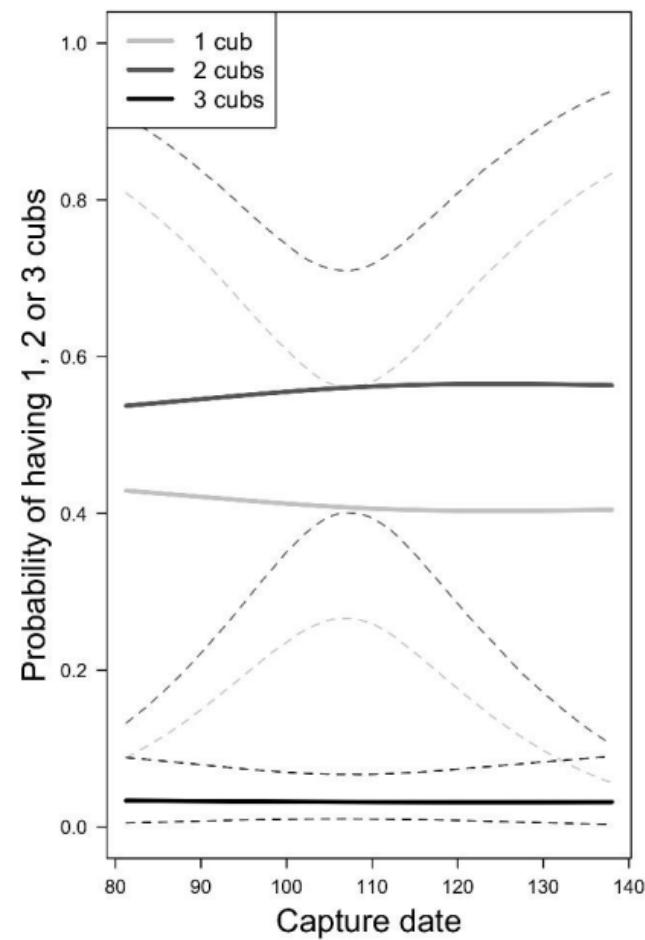
279

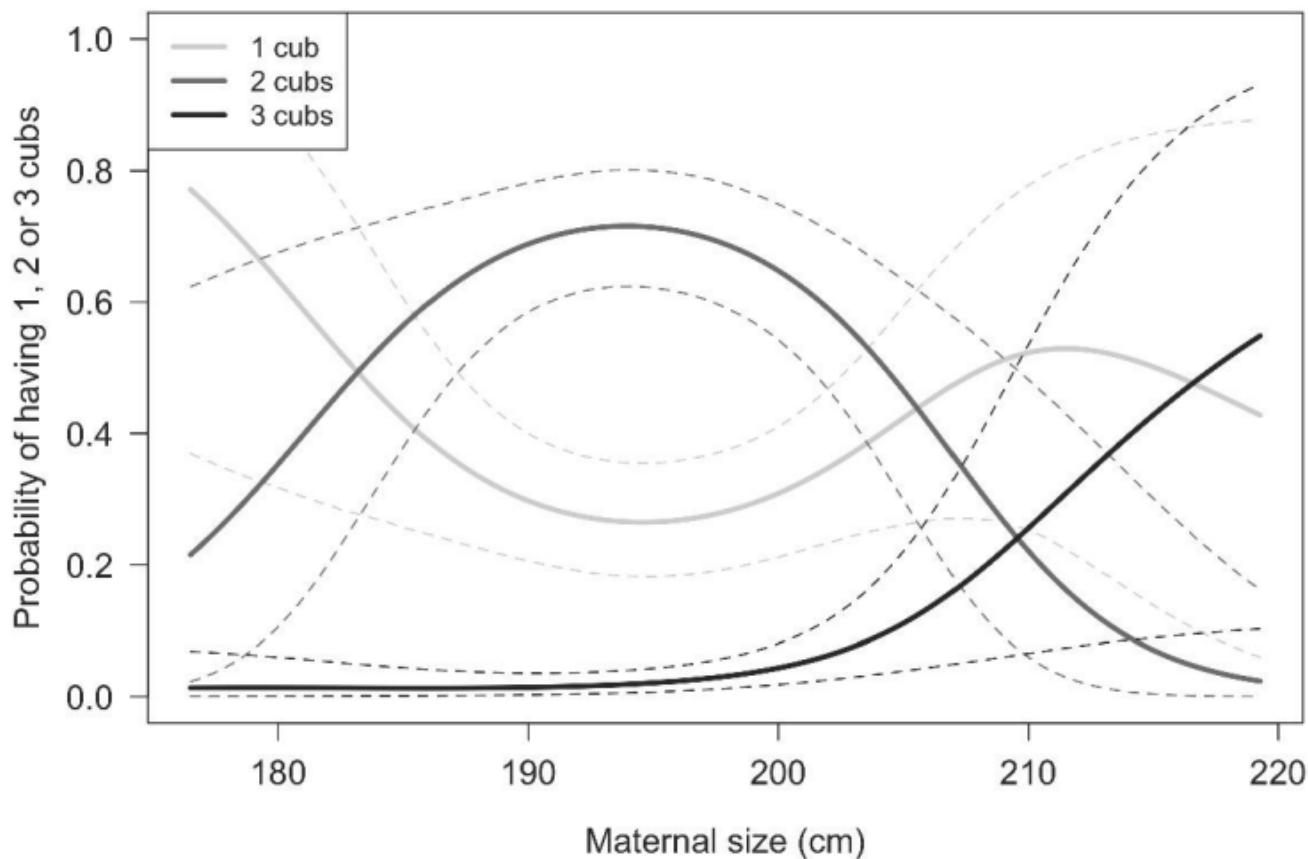
280 **Authors' contributions.** S.C., J.A. and O.G. conceived the analysis. J.A., AED and ØW
281 collected the data. D.F. carried out the analyses, and S.C., O.G., J.A. advised the analysis.
282 D.F. drafted the manuscript. All authors revised the manuscript critically, gave final approval
283 for publication and agreed to be accountable for all aspects of the work.

284

285 **Data accessibility.** Data are archived in the Dryad Digital Repository at
286 <https://datadryad.org/review?doi=doi:10.5061/dryad.mb2d353>.

287




288 **Funding.** WWF.


289

290 **Competing interests.** We have no competing interests.

291

292 **Ethical statement.** Animal handling methods were approved by the National Animal
293 Research Authority (<http://www.mattilsynet.no/fdu>).

Young**Prime-Aged****Old**

