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Abstract: Transcriptome-wide association studies integrate gene expression data with common
risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the
functional importance of genetic variation on gene expression, we improve the accuracy of
transcriptome prediction and the power to detect sgnificant expression-trait associations. Joint
analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant
expression-trait associations that converge to biological processes and relevant phenotypes in
human and mouse phenotype databases. We perform drug repurposing analysis and identify
known and novel compounds that mimic or reverse trait-specific changes. We identify genes that
exhibit agonistic pleiotropy for genetically correlated traits that converge on shared biological
pathways and e€lucidate distinct processes in disease etiopathogenesis. Oveal, this
comprehensive analysis provides insight into the specificity and convergence of gene expression
on susceptibility to complex traits.
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Despite the recent success of genome-wide association studies (GWASS) in cataloguing risk
genetic variation, our understanding of the mechanisms through which they act remain largely
unknown®. Risk variants are highly enriched in cis regulatory elements (CRESs), including
promoters and enhancers®® and affect the regulation of gene expression®®. Multiple
computational methods have been developed to link risk variants with differential gene
expression™ ™. PrediXcan®® performs transcriptome-wide association study (TWAS) by gene
expression imputation, and so far it outperforms similar methods'’. Briefly, PrediXcan uses
elastic net (ENet) regresson models, trained in a reference transcriptome, to impute gene
expression. The models use a set of cis-SNPs (SNPsin proximity to the transcription start site) as
linear predictors of gene expression. The imputed expressions are then correlated with the
phenotype of interest to identify gene-trait associations (GTAS).

Here we present EpiXcan, a novel method that increases prediction accuracy in transcriptome
imputation by integrating epigenetic data to model the prior probability that a SNP affects
transcription.  EpiXcan specifically leverages annotations derived from the Roadmap
Epigenomics Mapping Consortium (REMC) that integrates multiple epigenetic assays, including
DNA methylation, histone modification and chromatin accessibility’®. The rationale of our
approach is that SNPs within CREs are more likely to be functionally relevant™. We then utilize
14 large-scale transcriptome datasets of genotyped individuals to train prediction models and
integrate with 58 complex traits and diseases to define significant GTAs. GTAs exhibit
significant enrichment for relevant biological pathways and known genes linked to trait-related
phenotypes in humans and mice. Imputed transcriptomic changes are used to identify known
compounds that can normalize genetically driven expression perturbations. Pairwise trait
analysis identifies genes that exhibit agonistic pleiotropy for genetically correlated traits that
converge on shared biological pathways. Finally, bi-directional regression analysis identifies
putative causal relationships among traits. Overall, our analysis provides insight into the
specificity and convergence of gene expression mediating the genetic risk architecture
underlying susceptibility of complex traits and diseases.

Results

EpiXcan outperforms PrediXcan

Since TWAS is limited to genes that can be accurately predicted from genotype data, increasing
prediction accuracy can increase the scope and power of analyses. Here, we integrate
biologically relevant data in a single framework to improve performance of gene expression
prediction. The overall schematic of EpiXcan is shown in Supplementary Fig. 1. Briefly,
EpiXcan leverages epigenetic annotation to inform transcriptomic imputation by employing a
three-step process (Online methods and Supplementary Methods): (1) estimate SNP priors
that reflect the likelihood of a SNP having a regulatory role in gene expression based on a
Bayesian hierarchical model®® that integrates epigenomic annotation®® and eQTL summary
statistics for cis-SNPs (SNPs located + 1 Mb from the transcription start site of the gene); (2)
rescale the SNP priors to penalty factors by employing a novel adaptive mapping approach; and
(3) use the genotypes and penalty factors in weighted elastic net to perform gene expression
prediction.


https://doi.org/10.1101/532929
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

30

bioRxiv preprint doi: https://doi.org/10.1101/532929; this version posted January 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Using simulated data, we apply EpiXcan and PrediXcan to train prediction models and estimate
the adjusted cross-validation R-squared (RPcy), which is the correlation between the predicted
and observed expression levels during the nested cross validation. In al simulated scenarios,
EpiXcan improves the average Recv compared to PrediXcan modes (al p values < 7 x 10%°
based on one-sample sign test; Supplementary Fig. 2). We then train prediction models by
applying EpiXcan and PrediXcan in 14 RNAseq datasets, derived from dorsolateral prefrontal
cortex (DLPFC) from the CommonMind Consortium (CMC)?, seven tissues from Stockholm-
Tartu Atherosclerosis Reverse Network Engineering Task (STARNET)? and six tissues from
GTEx® (Supplementary Table 1). We compare the performance of EpiXcan with PrediXcan
models, by considering the delta value (EpiXcan minus PrediXcan) of two metrics: (1) cross-
validation R? (RPcy) within each tissue and (2) predictive performance R? (Repp) estimated based
on Pearson’s correlation between predicted and observed expression in an independent dataset of
a relevant tissue. Positive delta values indicate that EpiXcan has higher prediction performance
compared to PrediXcan.

Across all datasets, EpiXcan improves the average R:cv compared to PrediXcan (all p values< 9
x 10"° based on one-sample sign test; Fig. 1; Supplementary Fig. 3; Supplementary Table 2).
We predict 4.6% more genes (pairwise Wilcoxon test p value = 6.10 x 10°) with R%cy > 0.01
using EpiXcan (average number of genes across tissues is 10,181) compared to PrediXcan
(average number of genes across tissues is 9,760). To obtain the second metric, Repp, We train
prediction models in the training dataset, which are then used to predict expressions in the test
dataset. Across all datasets, EpiXcan improves the average Rsp compared to PrediXcan (all p
values < 9 x 10" based on onesample sign test; Fig. 1; Supplementary Fig. 4;
Supplementary Table 3). Importantly, the ratios of genes predicted more effectively by
EpiXcan than PrediXcan are higher in the independent dataset evaluation (R%p) than in the
cross-validation (unpaired t-test, p value = 3.3 x 10™) (Fig. 1), suggesting that the adaptive
rescaling of the penalty factors during model training does not result in significant overfitting
that could affect the external validity of the models. Overall, compared to PrediXcan, EpiXcan
has improved predictive performance and identifies more genes that can be used for TWAS.
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Figure 1. Comparison of prediction performance between EpiXcan and PrediXcan. EpiXcan and
PrediXcan models are trained across multiple tissues that include: brain, aorta, mammary artery,
subcutaneous fat, viscera fat, liver, skeletal muscle and blood by leveraging 14 datasets from CMC,
STARNET and GTEXx. The difference in training performance between EpiXcan and PrediXcan modelsis
compared using the adjusted cross validation R® (Recy) metric. The 14 models are further assessed by
estimating the predictive performance (RP) in independent datasets; the training dataset is shown before
the arrow and the test dataset after the arrow (G = GTEx and S = STARNET). For a given dataset, we
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compare the Recy and Reep by estimating the delta value of EpiXcan minus PrediXcan for each gene.
Positive and negative delta values indicate genes with higher predictive performance in EpiXcan and
PrediX can, respectively. These genes are assigned as “EpiXcan” and “PrediXcan” and counts are shown
as barplots. The number on the right indicates the ratio of “EpiXcan” assigned gene counts divided by
“PrediXcan” counts. Across all datasets, the ratios are higher than 1 indicating that EpiXcan outperforms
PrediXcan. p value from one-sample sign test indicates that the shift of the delta R’y and Repp values is
greater than zero (All p values< 9 x 10™°).

EpiXcan informs better gene-trait associationsthan PrediXcan

We apply EpiXcan and PrediXcan prediction models from 14 tissues (Supplementary Table 1)
in 58 complex traits (Supplementary Table 4) and examine their performance based on four
criteriac the number of GTAs that are: (1) significant after multiple testing correction, (2) novel
(significantly associated genes that lie outside the GWAS loci) (3) unique (i.e., genes identified
only by one method), and (4) enriched for clinically relevant genes.

EpiXcan has more power to detect GTAS than Predi X can (Kolmogorov-Smirnov p valueis 3.3 x
10%; Fig. 2a). We observe a 9.6% increase (n = 1,202) in the significant GTAs at 0.01 false
discovery rate (FDR)** using EpiXcan (n=13,724) compared to PrediXcan (n=12,522). One
advantage of PrediX can/EpiXcan methods is that they identify “novel genes’ within loci that did
not reach genome-wide significance (p < 5 x 10®) in GWASs. We detect an 18.3% increase (one
sample sign test p value = 3.6 x 10°) in the novel GTAs using EpiXcan (mean of 25.4)
compared to PrediXcan (mean of 21.5) (Supplementary Fig. 5). The largest difference is
observed for height (EpiXcan = 168, PrediXcan = 134), followed by schizophrenia (EpiXcan =
119, PrediXcan = 104) (Supplementary Fig. 6).

For any given tissue and trait, we find high correlation of GTA z-scores between EpiXcan and
PrediXcan (Pearson’s correlation r = 0.92) (Fig. 2b) but overall, we observe unique associations
for each method. We identify 79.9% (n=327) more unique genes in EpiXcan (n=788) than
PrediXcan (n=461) (Supplementary Fig. 7), due to either a lack of a prediction mode for a
specific gene and/or tissue or insufficient statistical power using PrediXcan models. For
example, using the waist-adjusted BMI trait and prediction models from STARNET
subcutaneous adipose tissue, overall, we observe high correlation between EpiXcan and
PrediXcan genes (Pearson’sr = 0.83) (Supplementary Fig. 8). Interestingly, EpiXcan identifies
7 genes (PPP2R5A, ALASL, HOXCS8, PIEZO1, SCD, PARP3, EYAL) that are not detected by
PrediXcan even if we test across all tissue-specific models. SCD (stearoyl-CoA desaturase) is of
particular interest as it codes for an enzyme that catalyzes a rate-limiting step in the synthesis of
unsaturated fatty acids (mainly oleate and palmitoleate); knocking out the SCD mouse ortholog
gene results in reduced body adiposity and resistance to diet-induced weight gain®. Accordingly,
EpiXcan predicts that up-regulated SCD gene expression is associated with increased waist-
adjusted BMI.

EpiXcan uncovers more clinically relevant genes and molecular pathways
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We perform a series of gene set enrichment analyses (GSEA) to determine how well EpiXcan
can uncover clinically relevant genes and molecular pathways compared to PrediXcan. For this,
we employ five categories of datasets. (1) EXAC gene pLI (probability of loss-of-function
intolerance) dataset®, (2) ClinVar dataset - pathogenic or likely pathogenic genes in the ClinVar
database®’, (3) OMIM CS dataset - genesin OMIM with phenotypesin the clinical synopsis (CS)
section®, (4) SoftPanel dataset - custom gene panels for our traits created with SoftPanel® based
on ICD-10 classification and keyword queries (underlying knowledge base is OMIM but gene
panel creation is more integrative), and (5) MGD dataset - ortholog human genes of mouse genes
associated with mouse strain-specific phenotypes®. GTAs from both PrediXcan and EpiXcan
exhibit enrichment for genes that are associated with the traits in above datasets
(Supplementary Fig. 9).

Transcripts identified by EpiXcan (g value = 0.029), but not by PrediXcan (q value = 0.096), are
enriched for genes that are extremely loss-of-function intolerant (pL1 > 0.9) (Fig. 2c). More
specifically, we find significant enrichment of pLI genes with neuropsychiatric (q value = 0.012,
known association®*) and anthropometric/development (q value = 0.032) related traits
(Supplementary Table 5). Unlike pLI, for al other gene sets (ClinvVar, OMIC CS, SoftPanel,
MGD), we define and test for enrichment only for that specific trait. For example, for autism, we
generate a gene list from the significant autism-specific GTAs from all tissues for each method
and perform GSEA for genes in the ClinVar database that are reported to be associated with
autism. In so doing, we find that, overall, EpiXcan has more power than PrediXcan to identify
clinically relevant genes (Fig. 2d) including those that are more likely to belong to more than
one dataset (pLI, ClinVar, OMIC CS, SoftPanel, MGD) (Supplementary Fig. 10).
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Figure 2. Comparison of gene-trait associations between EpiXcan and PrediXcan. (a) EpiXcan and
PrediXcan p value distributions for all gene-trait associations. Quantile-quantile (QQ) plot of the p values
for all gene-trait associations show a shift to the left. The genomic inflation factor (A) is slightly higher for
EpiXcan than PrediXcan (1.17 and 1.16). The two distributions are significantly different (Kolmogorov-
Smirnov test p value is 3.3 x 10™). (b) EpiXcan and PrediXcan have a high correlation of gene-trait
association z-scores. Scatter plot of EpiXcan and PrediXcan Z values, Pearson r = 0.92 and Spearman p =
0.91, p value < 2.22 x 10™ for both. Only z values between -10 and 10 are plotted. The dotted blue line
corresponds to y = x. (c) Gene set enrichment analysis (GSEA) for extremely loss-of-function intolerant

(pL1 = 0.9) genes. Odds ratio with 95% CI are plotted for combined gene-trait associations from all traits

and trait categories for enrichment in genes with pLI = 0.9 (* for g value <0.05). For all pLI decile bins
enrichment refer to Supplementary Table 5. (d) EpiXcan has more power than PrediXcan to detect
expression changes of trait-specific, clinicaly significant genes. These density plots depict the
distribution of the A[Z] (EpiXcan — PrediXcan) values for all gene-trait associations that are significant

from either EpiXcan or PrediXcan. P vaue is from one sample sign test. Ratio is the number of A[z]

measurements in favor of EpiXcan to that of PrediXcan. The red lines correspond to the mean of each
distribution.

In conclusion, TWAS across 58 traits shows that, compared to PrediXcan, EpiXcan has more
power to detect significant genes, including novel and unique associations, which are
indispensable for life and clinically significant. In the following section, we further explore the
EpiXcan-derived GTAS, in terms of: (1) per-tissue contribution of significant genes, (2) gene-set
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enrichment analysis, (3) computational drug repurposing analysis, and (4) genes shared within
and across different disease categories.

Contribution of Tissuesto the I dentification of Associated Genes

In this study we employ 3 different training cohorts to generate 14 predictive models for 8 tissue
homogenate types and use the predictive models to impute tissue-specific transcriptomes across
58 GWASs. We first determine the robustness of our method, by examining the z-score
correlation for similar tissues within and across cohorts by pooling together imputed
transcriptomes for each tissue from all traits. As expected, predictions are highly correlated when
EpiXcan models are trained in (1) different cohorts (GTEx and STARNET) predicting the same
tissue (Spearman’s p: 0.89-0.93) and (2) the same cohort predicting smilar tissues (Spearman’s
p: 0.89 when comparing aorta with mammary artery, and 0.92-0.95 when comparing visceral
with subcutaneous adipose tissues) (Fig. 3a). In contrast, unrelated tissues such as blood and
brain only exhibit moderate correlation (Spearman’s p 0.38 - 0.42).
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Figure 3. Contribution of GWAS and tissues to gene-trait associations. (a) Correlation of genetically
regulated expression imputed for different tissues (pooled GTAs for al traits). Correlation is calculated
for significant imputed expression changes with the Spearman method. Dendrogram on the right edge is
shown from Ward hierarchical clustering. (b) Gene contribution and enrichment of each tissue prediction


https://doi.org/10.1101/532929
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

30

35

40

bioRxiv preprint doi: https://doi.org/10.1101/532929; this version posted January 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

model for each trait. Digits in the matrix correspond to the number of genes that exhibit significant
association with the trait for a given tissue prediction model. The color indicates enrichment (red) or
depletion (blue) of correlations for a given trait per tissue. Numbers in parentheses alongside labels
denaote how many unique genes are identified from each dataset (row annotation on the left) or how many
unigue genes are associated with each of the traits (column annotation on the bottom).

Overall, per tissue, the numbers are largely comparable between consortia (Supplementary Fig.
11). However, trait-relevant tissue models contribute disproportionately more gene-trait
associations than non-relevant tissues (Fig. 3b). For example, we find a higher number of
contributions than the average of other tissues from brain tissue in schizophrenia, from arterial
tissues in cardiovascular disease, and from liver in lipid traits, respectively, which is concordant
with previous Summary-data-based Mendelian Randomization analysis’. For 48 of the traits,
more than 50% of the associated genes are only found in one tissue (Supplementary Fig. 12)
and a large proportion (32.98% + 17.36%; mean £ SD) of these uniqgue GTAs come from the
highest contributing tissue type (Supplementary Fig. 13). A few examples of top tissue type
contributors for uniqgue GTAs are as follows; schizophrenia: brain tissue (30.34%, CMC),
myocardial infarction & coronary artery disease: arterial tissue (33.33% & 31.88% respectively,
STARNET aorta and mammary artery and GTEXx aorta), systemic lupus erythematosus. blood
(38.89%, STARNET and GTEx blood), most lipid traits: liver (24.06% - 26.43%, STARNET
and GTEX liver). Besides tissue relevance, cohort size and tissue dissimilarity explain 52% of the
variation in the number of unique GTAs contributed by different tissues (Supplementary Fig.
14, multiple linear regression model, p value = 0.007), indicating that additional GTAs will be
uncovered with increased sample size of gene expression datasets in disease-rel evant tissues.

Biological relevance of gene-trait associations

GTAs for a given trait are enriched for genes implicated in diseases with more severe trait-
specific phenotypes driven by larger effect mutations in those genes (ClinVar: 41 = 1.83, p value =
7.07 x 10 SoftPanel: /1 = 1.36, p value < 2.22 x 10'%; OMIM CS: 1 = 1.29, p value = 6.17 x
10™: Supplementary Fig. 15). We also observe enrichment (1 = 1.21, p value = 1.69 x 10
for genes that produce mouse phenotypes in the same phenotypic category of the human trait
when the mouse ortholog gene is disrupted.

We perform gene-set enrichment analysis for the traits with more than 10 significant GTAS (43
out of 58 traits) to determine if the associated genes can be mapped to biological processes
(Supplementary Table 6). After FDR adjustment, 74 highly enriched pathways are obtained
with p values < 1.70 x 10 (corresponds to q < 0.05). Significantly associated genes are enriched
for biological processes relevant to trait pathophysiology. For instance, the enriched pathways
for elevated total cholesterol and triglycerides are involved in sterol and lipid homeostasis as
well as lipoprotein digestion, mobilization, and transport. Similarly, for atopic dermatitis, the
significantly enriched pathway modulates the rate or extent of water loss from an organism via
the skin. Genes associated with mineral density of the femoral bone demonstrate a high
enrichment for a pathway that positively regulates cartilage development.
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L everaging gene-trait associationsfor computational drug repur posing

Computational drug repurposing offers a systematic approach for relating disease and drug-
induced states towards the goal of identifying novel indications for existing therapeutics™. We
perform a computational screen against a library of 1,309 drug-induced transcriptional profiles®
to identify small molecules capable of perturbing the expression of our identified trait-associated
genes (Fig. 4a). For each trait /compound pair, we calculate a signed “connectivity score”®,
which summarizes the transcriptional relationship between each trait and drug signature, thus
identifying drugs that might be predicted to “normalize” the gene-trait signature, as well as those
expected to induce a “disease-like” state (Fig. 4b-d, Supplementary Table 7). Fig. 4e provides
example compounds predicted to regulate the expression of genes associated with the “Hip
circumference adjusted BMI” trait. This list includes drugs under investigation for treatment of
obesity, including ursolic acid, which is reported to increase skeletal muscle and brown fat while
reducing diet induced obesity™.

To explore the higher-level biological context for trait/compound associations, we perform a
chemogenomic enrichment analysis to determine whether drugs that regulate particular sets of
trait-associated genes might share pharmacological features, such as drug targets, drug classes
and side-effects (Fig. 4b). We find multiple significant (FDR < 0.1) chemogenomic trends,
including enrichments with phenotypically related side-effects (Fig. 4f), supporting the potential
1:or these compounds to perturb trait-related molecular networks.
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Figure 4. Leveraging genetrait associations for computational drug repurposing. (a) Trait-
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associated genes are used to sort a library of drug induced gene expression signatures according to their
connectivity with the trait. GReX: genetically regulated expression (b) A secondary enrichment analysis
on this drug list identifies pharmacological features that are over-represented at the extreme ends of the
sorted list, thus presenting a chemogenomic view of the trait. (c) Drug targets linked with each trait (FDR
< 0.1) are then (d) compared with risk loci genes for a range of diseases or phenotypes (FDR < 0.1). (e)
Top 10 compounds predicted to normalize the expression of “Hip adjusted BMI” associated genes. (f)
Subset of side-effect enrichments for phenotypicaly related traits. (g) Subset of traits with associated
drug targets that are enriched for risk associated genes sets with phenotypically related traits.

We hypothesized that, in general, trait-associated drug targets would connect to risk-associated
genes for phenotypicaly related diseases®. To evaluate this, we identify referenced® and
predicted® drug targets that are enriched (FDR < 0.1) among compounds that modulate the
signature of each trait. We identify > 1 drug target enrichment, for 53 of the traits considered,
and > 3 drug targets for 40 traits (Supplementary Table 7). We then perform a further gene set
analysis on the targets associated with each trait, focusing on disease risk genetic resources that
might implicate phenotypes that could then be related to the traits considered within this study.
We identify several significant overlaps (FDR < 0.1) between trait associated targets and
phenotypically related disease risk gene sets (Fig. 4g, Supplementary Table 7). For example,
drug targets enriched among compounds that perturb genes associated with “Hip circumference
adjusted BMI” are enriched for risk genes for weight gain, nausea, and psychological stress, and
drug targets enriched among compounds that perturb “Coronary Artery Disease’ associated
genes are enriched for risk genes for heart disease, hypercholesterolemia, abdominal obesity, and
myocardial infarction.

Taken together, these chemogenomic enrichments illustrate the potential for the approach
described in this study to inform drug discovery and drug development efforts. The identification
of side-effect and drug target enrichments linked to known or plausible trait biology supports the
veracity of the repurposing predictions, and, more broadly, the power of integrative genomics
approaches to identify novel molecular networks that underpin disease.

Trait-trait correlationsand gene-trait associations

To further understand the trait relatedness, we construct a network based on pairwise trait
comparison of genetically regulated expression (GReX) (including traits with more than 50
significant associations). By using a broad categorization of traits (Supplementary Table 4), we
identify 245 pairs of shared gene associations across trait categories and 66 pairs within trait
categories (Fig. 5a, Supplementary Table 8). Higher numbers of genes are shared between
traits that belong to the same trait category than traits belonging to different trait categories; the
highest number of genes are shared between low density lipoprotein and total cholesterol in the
“lipids’ category. Previous studies have shown significant genetic correlation among common
traits™*. Pairwise trait GReX correlation shows a positive association with genetic co-
heritability*** (Pearson’s r = 0.8, p value < 2.79 x 10'®) (Fig. 5b), extending the genetic
similarity among traits to specific genes.

We then apply bi-directional regression analyses™ on the GReX of different traits across all

tissues to infer causal relationships among pairs of traits with significant genetic and GReX
correlation (Fig. 5¢ for CAD and Supplementary Fig. 16 for all the traits in our study). We find
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evidence that CAD isacomplex trait whose predicted gene expression changes can be partly, but
directly, explained by predicted expression changes found in individuals with elevated
triglycerides, elevated LDL, and increased waist/ hip ratio. On the other hand, predicted
expression changes in individuals with increased HDL, or those suffering from ulcerative colitis
(UC), are expected to normalize expression changes in individuals with CAD. By expanding the
causal network to include more upstream traits, we can see that another 6 traits (waist and hip
circumference, years of education, age at menarche, birth weight, and BMI), which are
correlated, or anti-correlated, with CAD may cause, or protect, from the predicted expression
changes through effects on intermediate traits. For example, waist circumference acts via a
causal relationship with triglycerides; other traits follow multiple pathways such as age at
menarche, which opposes predicted transcriptomic changes of the increased triglycerides group
while promoting imputed transcriptomic changes for individuals with high HDL. We then
leverage these causal networks to dissect the pathogenesis of CAD by identifying the molecular
pathways shared among all the involved trait pairs. For each trait that can cause or protect from
CAD, we identify the “agonistic” genes - genes whose predicted expression is changing towards
the same or opposite direction for causal (e.g. triglycerides) and protective (e.g. HDL) traits,
respectively. Gene set enrichment analysis of agonistic genes for biological pathways point
towards biologically relevant processes for CAD (Fig. 5d). For example, a subset of CAD genes
(n= 256 out of 2806 genes with p value < 0.05) is shared with triglycerides and affects biological
processes related to apolipoprotein binding and lipid digestion, mobilization and transport.
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Figure 5. Trait-trait correlations and gene-trait associations (a) Network indicating shared genes
within/across trait categories. Only traits that have more than 50 associated genes are showcased. Edge
width denotes number of shared genes for each trait pair. The node size indicates number of gene-trait
5 associations for a given trait. Green edges dencte within-category trait associations and orange edges
denote across-category trait associations. The analysis is based on significantly associated genes with
FDR < 1 %. (b) Scatter plot of genetic correlation (rg) and genetically regulated gene expression (I'crex)
for each pairwise trait combination. Standard error is shown with grey lines, ry and rerex are highly
correlated (Pearson’s r = 0.8, p value < 2.79 x 10™%). (c) Causal trait network of CAD. CAD and up to
10 two traits upstream are plotted in this network graph to demonstrate causal (arrows) and protective (bar-
headed lines) relationships as estimated by bi-directional regression analysis. The trait nodes are colored
based on the parent causal trait network of all the traits of the study (Supplementary Fig. 16); nodes that
are more times parent and child nodes are a darker shade of red and blue, respectively. In edges, width
denotes absolute beta, redder color denotes lower p value, and the 2x or 3x labels denote that the
15 relationship isidentified in 2 or 3 tissues, respectively. The analysis is based on genes with FDR < 1 %,
and only the relationships with p value < 0.05 are shown. (d) Graph depicting the odds ratio of pathway
enrichment for CAD agonistic genes shared with traits involved in the causal network. Briefly, for causal
traits, a list of genes (with unadjusted p value < 0.05) that are predicted to change to the same direction
(or the opposite direction for protective traits) is used for GSEA for common pathways. In this graph only
20 the top 15 (based on g value) results are shown and are ranked based on odds ratio; an asterisk (*)
indicates results that have q value < 0.05. Error bars represent 95% CI for each enrichment.

Taken together, the pairwise GReX trait correlations illustrate the potential to identify genes that
are shared among genetically correlated traits. Agonistic versus antagonistic pleiotropy among
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two traits can be differentiated by leveraging the directionality of gene expression association in
each trait. For traits, such as CAD, this analysis can be applied to dissect the complex phenotype,
to identify genes and pathways that are shared with another trait, and potentially identify and
devel op therapeutic strategies to reverse those perturbations.

Discussion

The maps of gene expression and regulatory annotations, generated by projects such as REMC™,
CommonMind®, GTEx®, and STARNET* hold the potential to further our understanding of
non-coding risk genetic variation. Here we describe EpiXcan which, compared to PrediXcan,
integrate biologically relevant data in a single framework to improve predictive performance of
transcriptome imputation. EpiXcan is also better powered to identify clinically significant results
such as enrichment for loss-of-function intolerant genes in neuropsychiatric traits™** and can
detect more robust gene expression changes in genes associated with severe forms of the trait.
We apply EpiXcan prediction models from 14 tissues in 58 common and complex traits and
examine properties of those associations.

First, gene associations are predominantly identified in pathophysiologically relevant tissues and
most associations are only identified in one tissue. Considering that the average correlation
between genetically regulated gene expression of unrelated tissues such as blood and brain
across 58 traits is 0.38 - 0.42 (Spearman’s p), we highlight the need for trait-relevant tissue
datasets for such studies to be more effective. Second, among genes associated with the traitsin
this study, we observe significant enrichment for biological pathways involved in trait
pathophysiology. Moreover, gene-trait associations are significantly enriched for: (1) pathogenic
(or likely pathogenic) genes for the given trait (clinVar), (2) genes associated with trait-relevant
phenotypes (SoftPanel), (3) genes that have been associated with clinical signs relevant to the
trait (OMIM CS), and (4) ortholog mouse genes with phenotypes that belong to the same
phenotypic category as the given trait. This suggests that common variants partly act via smaller
effect size perturbations in genes that lead to more severe forms of the phenotype when subject
to larger effect size disruptions, as recently similarly suggested*.

Third, by leveraging trait-specific transcriptomic changes, we identify known and nove
compounds that can reverse trait-specific changes, pointi n% to potential drug repurposing
candidates. To our knowledge, there is only one recent study™ that applied a similar approach
but it was much more limited in scope (brain tissue — 10 regions - transcriptomic imputation with
S-PrediXcan for psychiatric traits) and did not yield any statistically significant results for
schizophrenia. In contrast, our study identifies one statistically significant result (phenformin,
Supplementary Table 7) that is a very potent antidiabetic agent (no longer FDA-approved due
to safety concerns) which is not surprising given that glucose homeostasis is atered from illness
onset in schizophrenia™. Within the top 10 results for schizophrenia we also identify a potent
antipsychotic (prochlorperazine), a voltage-gated sodium channel® inhibitor (pramocaine) and
guanfacine which was trialed for cognitive impairment in schizophrenia and found to be worthy
of further investigation in order to target spatial working memory and continuous performance
test reaction time for patients on atypical neuroleptics®. It is hard to directly compare the results
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of the two studies since our approaches differ on many levels: we use EpiXcan, train models on
different tissues and more tissue types, and employ a different drug repurposing pipeline.
Towards validating our approach, chemogenomic enrichment analysis reveals trait-specific,
phenotypically related, side-effects and drug target enrichment for risk associated genes of
phenotypically related traits.

Finally, we use bi-directional regression analysis™ to construct putative causal trait networks.
Causal trait networks built on top of EpiXcan are sufficiently powered to provide valuable
insight into the development of complex traits such as CAD. For example, we find that high BM|
can influence CAD by two distinct pathways, (a) by positively influencing triglycerides (TG)
which would positively influence CAD, and, conversely, (b) by negatively influencing HDL
which would negatively influence CAD. The independent effect of BMI on TG and HDL has
been shown in a population with a broad spectrum of BMI values’” which — as in our study —
found no effect of BMI on LDL levels. Downstream, there is genetic evidence to suggest a
causal influence of TG on CAD™. In addition, a negative correlation of HDL with CAD has been
established in observational epidemiology, although a link between genetic loci causal for high
levels of HDL and protective for CAD is, at present, elusive™. The construction of these causal
trait networks allows us to identify genes, among causally-linked traits, that exhibit agonistic
pleiotropy participating in shared pathways. Such information could potentially be used to
devel op distinct therapeutic strategies based on individual comorbidities.

Overal, the described method utilizes epigenomic information to further improve prediction of
transcriptomes and it provides a framework for TWASs, improved interrogation of trait-
associated biological pathway involvement, and a platform for drug repurposing and treatment
development.

To facilitate interpretation, we provide the EpiXcan pipeline, trained models and resulting data
tables as an online resource.

Online methods

Genotype and expression data

Genotype datasets (CMC, GTEx and STARNET) are uniformly processed for quality control (QC) steps before
imputation. We restrict to samples with European ancestry (Supplementary methods). Genotypes are imputed
using the University of Michigan server® with Haplotype Reference Consortium (HRC) reference panel®. RNAseq
gene level counts are adjusted for known and hidden confounds, followed by quantile normalization. For CMC gene
expression, we use the gene level counts generated from DLPFC RNAseq data® (http://commonmind.org/). For
GTEx®, we use publicly available quality-controlled gene expression datasets from GTEx consortium
(http://www.gtexportal.org/). RNAseq data for STARNET were generated as described in Franzén, et al®.
Additional information for CMC, STARNET and GTEx tissues (for both predictors and observed datasets) including
sample sizes is shown in Supplementary Table 1. To compare the prediction accuracy of the CMC-trained
predictors, we utilize expression data from the HBCC (n = 280 samples?) as well as 13 brain areas from GTEx*
(Supplementary Table 1).

SNP priors calculation and rescaling to WENet penalty factors

To leverage epigenomic information, we incorporate rescaled SNP priors as penalty factors into a weighted elastic
net model. First, we compute eQTLs using MatrixEQTL®. Then, epigenome annotations from REMC®™ are
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integrated to obtain SNP priors using qtIBHM? (top panel in Supplementary Fig. 1; Supplementary Materials
and M ethods, Supplementary Table 9). Lastly, the SNP priors are rescaled to penalty factors used in WENEet by a
data-driven rescaling equation. The optimal rescaling equation is approximated by the best performing quadratic
Bézier function, providing both the curve of the rescaling function and the minimum value of the penalty factors.
Briefly, to determine the best performing rescaling equation, we simulate genotypes (=500 samples) using
HAPGEN2>* and haplotypes from the 1000 Genomes Project™. For each gene under consideration, we utilize a
shifting window policy to generate quadratic Bézier rescaling equations. In each separate window, we define a
minimal penalty factor (Supplementary Fig. 17) and within that window we evaluate possible intermediate Bézier
curve control point locations to test for a wide range of curves for our rescaling equation (Supplementary Fig. 18).
The equation that exhibits the highest improvement of R?., when compared to not assigning penalty factors to the
SNPs (asin PrediXcan) is selected. The process to evaluate and select the optimal rescaling equation is described in
greater detail in Supplementary M ethods.

Simulation analysisto compar e EpiXcan and PrediXcan predictive performance

500 samples are simulated to verify the model performance. For specific gene, suppose X is the matrix containing
genotypes of all cis-SNPs included in the gene. For the i-th SNP, we choose an effect estimate B;, so we have vector
of estimated effects 8 for all the SNPs of the gene. Gene expression values are simulated by

y=XXB + Level € (D)

Here ‘X’ denotes matrix-vector product and € is normally distributed noise with given standard deviation (SD=0.3).
We select ten levels (Level from 0.1 to 1) of noise to simulate expression values for given genes. The CMC eQTL
beta values are used as the effects in the simulation. We use 1,000 genes with the highest significance from CMC
eQTL studies to perform the simulations. For each gene, we simulate 50 times and take the mean value to evaluate
the closeness between simulated and real-world gene expressions.

Large scale gene-trait association analysis

We train predictors of gene expression by applying EpiXcan and PrediXcan to genotype and RNAseq datasets
across 14 tissues (Supplementary Table 1). For each tissue, we keep genes with pred.perf q value of the correlation
between cross-validated prediction and observed expression (pred.perf’®) < 0.01. We identify gene-trait
associations, by jointly analyzing summary statistics from 58 complex traits (Supplementary Table 4) and gene
expression predictors using S-PrediXcan®. SNPs in the broad major histocompatibility complex (MHC) region
(chromosome 6: 25~35 Mb) are removed. P values are adjusted using the Benjamini-Hochberg method of
controlling the false discovery rate at < 0.01. The gene-trait associations that remain after this filtering are
considered “significant”.

Enrichment score: We use an enrichment score® to indicate enrichment or depletion of the trait in a given tissue. For
each tissue-trait combination, we count the number of genes that are significantly associated with the trait in that
tissue (Nissietrait) @Nd divide them by the number of al the genes that had a prediction either significant or not

(tissuetrait): Ntissue,traﬁm. To scale the normalized count Nyegetrait We first subtract the mean normalized count

ttissue,’crait
for al tissues for the given trait Ny4: and then divide the result by the standard deviation (SD) of the normalized

_Niissue,trait—mean(Nerait)

count for all tissues for the given trait: &jssyetrait= DN . InFig. 3b, &jetrat IS Used as the enrichment
trait
score for depicted by the color scale.

Unique associations: Uniquely identified genes by EpiXcan (or PrediXcan) are genes that are identified in
significant gene-trait associations with one method but not the other. For gene-trait associations found in multiple
tissues, we categorize genes as up- (or down-) regulated in the trait if there are more tissues in which the effects are
towards the indicated direction. If there are equivalent numbers of tissues in which the gene is positively and
negatively correlated with a given trait, we categorize the gene regulation as ambiguous. Transcriptomic imputation
yields approximately the same number of genes predicted to be up- or downregulated (z-scores) across each trait
(Supplementary Fig. 19). To construct the shared gene network in Fig. 5a: (1) we filter genes so that those with
pred.perf g values < 0.5% and FDR-adjusted p values < 0.5% are retained, (2) specifically for shared genes across
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traits of the same category, we only include genes with high effects (e.g. |z — score| = mean;|z — score|;, i iS
number of genes) to limit network density.

Novel genes: For identification of novel genes outside of GWAS loci, we define index SNPs based on LD clumped
regions using Plink software (v1.9)*. The following settings are used: (a) significance threshold for index SNPsis 5
x 10%, (b) significance threshold for clumped SNPs is 5 x 10®, (c) clumping window size is 250 Kb and (d) LD
threshold for clumping is 0.1. The coordinates of the GWAS loci are defined as 1 Mb on either side of the index
SNP in each clump. The genomic coordinates of the significant genes are then extracted from GENCODE (build
GRCh37, release 19) and overlapped with the coordinates of GWAS loci. Those genes that lie outside the overlaps
are defined as novel genes. The difference in the number of novel genes identified between the two methods is
calculated by subtracting the number of genes identified by PrediXcan from the number of genes identified by
EpiXcan. The statistical significance istested with the null hypothesis that mean difference is not different from zero
using one samplet-test (Ho: ©=0).

Gene set enrichment analyses and phenotypic datasets

To investigate whether the genes associated with a given trait exhibit enrichment for biological pathways, we use
gene sets from MsigDB 5.1°" and filter out non-protein coding genes as well as genes that do not have eQTL. For
the enrichment analysis we only consider traits with >10 genes identified in significant gene-trait associations; this
condition is met for 43 traits in our study. Statistical significance is evaluated with one-sided Fisher’s exact test and
the adjusted p values are obtained by the Benjamini-Hochberg method. Similarly, for Fig. 2c, we perform gene set
enrichment analysis for all decile bins of pLI from EXAC? (all results can be found in Supplementary Table 5).
The phenotypic datasets: ClinvVar, OMIM CS, SoftPanel, and MGD are prepared as described in Supplementary
Methods and contain genes that are associated with one or multiple traits. The approximation of known gene-
phenotype associations from these datasets allows us to (1) compare the power of EpiXcan vs. PrediXcan in
identifying known gene-trait associations (asin Fig. 2d) and (2) evaluate the extent to which common risk variants
confer trait risk by affecting gene expression levels of genes associated with monogenic forms of the trait or genes
associated with similar-to-the-trait phenotypes in humans and mice.

Computational drug repurposing

We iterated over each trait considered in this study, retaining trait/gene associations with an FDR < 0.1, and
converting HGNC gene symbols to NCBI entrez gene identifiers. If a gene is linked with a trait via an association
detected in multiple tissues, the associations are summarized as the mean z-score. There are 58 traits with a
minimum of 5 positively, and negatively, associated genes and each of these are used as the basis for drug
repurposing. For each of these traits, and for each unique compound, we calculate a “ connectivity score” based on a
modified Kolmogorov-Smirnov score®, which summarizes the transcriptional relationship to the trait-associated
genes. We estimate statistical significance by generating an empirical Kolmogorov-Smirnov score distribution from
the query signature against 1,000 permuted drug signatures. Compound profiles are sourced from Connectivity
map>. We download and merge the 6,100 individual experiments into a single representative signature for the 1,309
unique small molecule compounds according to the prototype-ranked list method®®.

Chemogenomic enrichment analysis: For each trait, connectivity scores are then used to sort the list of 1,309
compounds and used as the basis for a chemogenomic enrichment analysis. For each compound in the drug
signature library, we collect diverse chemogenomic annotations, such as drug target information, side-effect, and
therapeutic class associations. Side-effect associations are downloaded from Offsides™ and SIDER™ and connected
to compounds in Connectivity map via Stitch identifiers. Drug target associations include targets referenced in
DrugBank®, and also an augmented set of associations, based on predictions generated using the Similarity
Ensemble Approach®. For each of these features, we calculate a signed running sum enrichment score, which
reflects whether that feature is over-represented at the extreme ends of the drug list that has been ordered according
to trait. Statistical significance of enrichment scores is based on comparison to a large distribution of permuted null
scores, generated by calculating scores from randomized chemogenomic sets that contain an equivalent number of
compounds to the true set being evaluated. p values are adjusted using the Benjamini-Hochberg method of
controlling the false discovery rate.
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Disease risk gene enrichment analysis of trait associated drug targets. We compile disease and trait risk associations
from multiple sources, including HGMD®, ClinVar®’, dbGAP™, Genetic Associations Disease®™, GWAS catalog™,
GWASdb®, Human Phenotype Ontology®™, HUGE®, and OMIM®. Many of these are accessed through
Harmonizome®®. We use a Fisher's exact test to compare each set of trait-associated drug targets (that contain at
least 3 targets), with each disease risk gene set. The analysis is performed against a background of 2,802 genes,
representing the unique set of human drug targets in the combined set of referenced and predicted targets associated
with the 1,309 compounds. Two-sided p values are adjusted using the Benjamini-Hochberg method of controlling
the FDR.

Trait co-heritability analysis

Tissue clustering: To calculate the genetically regulated gene expression correlation (rgrex), 8 shown in Fig. 3a, we
keep the significant imputed gene expression change (z score) values with g value < 0.01 and perform pairwise
tissue Spearman correlation analysis of the complete cases of z scores. To cluster the tissues together for plotting, we
use hierarchical agglomerative clustering analysis with Ward' s method.

Genetically regulated gene expression correlation (rerex): Pairwise genetic correlation (rg), as shown in Fig. 5b,
among traits analyzed by GWAS is taken from previously published reports®*“. For trait comparisons that appear in
both studies we use the more recent study®. We consider the genetic correlation between traits significant if g
value < 0.05. To calculate rgrex, We keep the imputed gene expression values with unadjusted p value < 0.05 and
perform pairwise trait Spearman’s correlation analysis with Holm’s adjustment for multiple comparisons. To
estimate the correlation of ry and rerex for the trait pairsin our study we perform Pearson’s correlation analysis with
Holm’ s adjustment for multiple comparisons.

Bi-directional regression and exploratory pathway analyses for putatively causaly linked traits. We identify all the
significantly correlated trait-pairs (rq and rerex, 0 value < 0.05 as above) and perform bi-directional regression
analyses™ to identify causal relationships among the traits of our study (Supplementary Fig. 16). Then taking as an
example the coronary artery disease (CAD), we graph all the putative causal and protective relationships up to 2
nodes upstream in Fig. 5¢c (when the causal relationship is bi-directional between 2 traits, the relationship with the
higher degrees of freedom is kept) and perform pathway enrichment analysis of shared agonistic genes for this
causal network in Fig. 5d. For each causal or protective trait in the network, we generate a list of genes whose
expression changes are predicted towards the same direction (or the opposite direction for protective traits) in CAD.
These lists of shared “agonistic” genes are used for GSEA for common pathways. In Fig. 5d. only the top 15 (based
on g value) results are shown and are ranked based on odds ratio.
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URLs

CMC: http://commonmind.org/

Synapse for CMC data: https://www.synapse.org/cmc

GTEX portal: http://www.gtexportal .org/

MSigDB: http://software.broadinstitute.org/gsea/msigdb

EpiXcan website and repository: http://icahn.mssm.edu/EpiX can

EpiXcan source code: https://bitbucket.org/roussoslab/epixcan

gtIBHM package: https://github.com/rajanil/gtlBHM

RHOGE package: https.//github.com/bogdanlab/RHOGE

PrediX can pipeline: https://github.com/hakyim/PrediX can

PredictDB resource: https.//github.com/hakyimlab/PredictDB_Pipeline GTEX_v7
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