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Abstract: Transcriptome-wide association studies integrate gene expression data with common 
risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the 
functional importance of genetic variation on gene expression, we improve the accuracy of 
transcriptome prediction and the power to detect significant expression-trait associations. Joint 5 
analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant 
expression-trait associations that converge to biological processes and relevant phenotypes in 
human and mouse phenotype databases. We perform drug repurposing analysis and identify 
known and novel compounds that mimic or reverse trait-specific changes. We identify genes that 
exhibit agonistic pleiotropy for genetically correlated traits that converge on shared biological 10 
pathways and elucidate distinct processes in disease etiopathogenesis. Overall, this 
comprehensive analysis provides insight into the specificity and convergence of gene expression 
on susceptibility to complex traits. 
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Despite the recent success of genome-wide association studies (GWASs) in cataloguing risk 
genetic variation, our understanding of the mechanisms through which they act remain largely 
unknown1. Risk variants are highly enriched in cis regulatory elements (CREs), including 
promoters and enhancers2,3 and affect the regulation of gene expression2–10. Multiple 
computational methods have been developed to link risk variants with differential gene 5 
expression11–15. PrediXcan16 performs transcriptome-wide association study (TWAS) by gene 
expression imputation, and so far it outperforms similar methods17. Briefly, PrediXcan uses 
elastic net (ENet) regression models, trained in a reference transcriptome, to impute gene 
expression. The models use a set of cis-SNPs (SNPs in proximity to the transcription start site) as 
linear predictors of gene expression. The imputed expressions are then correlated with the 10 
phenotype of interest to identify gene-trait associations (GTAs).  
 
Here we present EpiXcan, a novel method that increases prediction accuracy in transcriptome 
imputation by integrating epigenetic data to model the prior probability that a SNP affects 
transcription. EpiXcan specifically leverages annotations derived from the Roadmap 15 
Epigenomics Mapping Consortium (REMC) that integrates multiple epigenetic assays, including 
DNA methylation, histone modification and chromatin accessibility18. The rationale of our 
approach is that SNPs within CREs are more likely to be functionally relevant19. We then utilize 
14 large-scale transcriptome datasets of genotyped individuals to train prediction models and 
integrate with 58 complex traits and diseases to define significant GTAs. GTAs exhibit 20 
significant enrichment for relevant biological pathways and known genes linked to trait-related 
phenotypes in humans and mice. Imputed transcriptomic changes are used to identify known 
compounds that can normalize genetically driven expression perturbations. Pairwise trait 
analysis identifies genes that exhibit agonistic pleiotropy for genetically correlated traits that 
converge on shared biological pathways. Finally, bi-directional regression analysis identifies 25 
putative causal relationships among traits. Overall, our analysis provides insight into the 
specificity and convergence of gene expression mediating the genetic risk architecture 
underlying susceptibility of complex traits and diseases. 
 

Results 30 

EpiXcan outperforms PrediXcan  
 
Since TWAS is limited to genes that can be accurately predicted from genotype data, increasing 
prediction accuracy can increase the scope and power of analyses. Here, we integrate 
biologically relevant data in a single framework to improve performance of gene expression 35 
prediction. The overall schematic of EpiXcan is shown in Supplementary Fig. 1. Briefly, 
EpiXcan leverages epigenetic annotation to inform transcriptomic imputation by employing a 
three-step process (Online methods and Supplementary Methods): (1) estimate SNP priors 
that reflect the likelihood of a SNP having a regulatory role in gene expression  based on a 
Bayesian hierarchical model20 that integrates epigenomic annotation18 and eQTL summary 40 
statistics for cis-SNPs (SNPs located ± 1 Mb from the transcription start site of the gene); (2) 
rescale the SNP priors to penalty factors by employing a novel adaptive mapping approach; and 
(3) use the genotypes and penalty factors in weighted elastic net to perform gene expression 
prediction.  
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Using simulated data, we apply EpiXcan and PrediXcan to train prediction models and estimate 
the adjusted cross-validation R-squared (R2

CV), which is the correlation between the predicted 
and observed expression levels during the nested cross validation. In all simulated scenarios, 
EpiXcan improves the average R2

CV
 compared to PrediXcan models (all p values ≤ 7 × 10-10 5 

based on one-sample sign test; Supplementary Fig. 2). We then train prediction models by 
applying EpiXcan and PrediXcan in 14 RNAseq datasets, derived from dorsolateral prefrontal 
cortex (DLPFC) from the CommonMind Consortium (CMC)21, seven tissues from Stockholm-
Tartu Atherosclerosis Reverse Network Engineering Task (STARNET)22 and six tissues from 
GTEx23 (Supplementary Table 1). We compare the performance of EpiXcan with PrediXcan 10 
models, by considering the delta value (EpiXcan minus PrediXcan) of two metrics: (1) cross-
validation R2 (R2

CV) within each tissue and (2) predictive performance R2 (R2
PP) estimated based 

on Pearson’s correlation between predicted and observed expression in an independent dataset of 
a relevant tissue. Positive delta values indicate that EpiXcan has higher prediction performance 
compared to PrediXcan. 15 
 
Across all datasets, EpiXcan improves the average R2

CV compared to PrediXcan (all p values ≤ 9 
× 10-16 based on one-sample sign test; Fig. 1; Supplementary Fig. 3; Supplementary Table 2). 
We predict 4.6% more genes (pairwise Wilcoxon test p value = 6.10 × 10-5) with R2

CV > 0.01 
using EpiXcan (average number of genes across tissues is 10,181) compared to PrediXcan 20 
(average number of genes across tissues is 9,760). To obtain the second metric, R2

PP, we train 
prediction models in the training dataset, which are then used to predict expressions in the test 
dataset. Across all datasets, EpiXcan improves the average R2

PP
 compared to PrediXcan (all p 

values < 9 × 10-16 based on one-sample sign test; Fig. 1; Supplementary Fig. 4; 
Supplementary Table 3). Importantly, the ratios of genes predicted more effectively by 25 
EpiXcan than PrediXcan are higher in the independent dataset evaluation (R2

PP) than in the 
cross-validation (unpaired t-test, p value = 3.3 × 10-17) (Fig. 1), suggesting that the adaptive 
rescaling of the penalty factors during model training does not result in significant overfitting 
that could affect the external validity of the models. Overall, compared to PrediXcan, EpiXcan 
has improved predictive performance and identifies more genes that can be used for TWAS.  30 
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Figure 1. Comparison of prediction performance between EpiXcan and PrediXcan. EpiXcan and 
PrediXcan models are trained across multiple tissues that include: brain, aorta, mammary artery, 
subcutaneous fat, visceral fat, liver, skeletal muscle and blood by leveraging 14 datasets from CMC, 
STARNET and GTEx. The difference in training performance between EpiXcan and PrediXcan models is 5 
compared using the adjusted cross validation R2 (R2

CV) metric. The 14 models are further assessed by 
estimating the predictive performance (R2

PP) in independent datasets; the training dataset is shown before 
the arrow and the test dataset after the arrow (G = GTEx and S = STARNET). For a given dataset, we 
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compare the R2
CV and R2

PP by estimating the delta value of EpiXcan minus PrediXcan for each gene. 
Positive and negative delta values indicate genes with higher predictive performance in EpiXcan and 
PrediXcan, respectively. These genes are assigned as “EpiXcan” and “PrediXcan” and counts are shown 
as barplots. The number on the right indicates the ratio of “EpiXcan” assigned gene counts divided by 
“PrediXcan” counts. Across all datasets, the ratios are higher than 1 indicating that EpiXcan outperforms 5 
PrediXcan. p value from one-sample sign test indicates that the shift of the delta R2

CV and R2
PP values is 

greater than zero (All p values < 9 × 10-16).  
 

EpiXcan informs better gene-trait associations than PrediXcan 
 10 
We apply EpiXcan and PrediXcan prediction models from 14 tissues (Supplementary Table 1) 
in 58 complex traits (Supplementary Table 4) and examine their performance based on four 
criteria: the number of GTAs that are: (1) significant after multiple testing correction, (2) novel 
(significantly associated genes that lie outside the GWAS loci) (3) unique (i.e., genes identified 
only by one method), and (4) enriched for clinically relevant genes.  15 
 
EpiXcan has more power to detect GTAs than PrediXcan (Kolmogorov-Smirnov p value is 3.3 × 
10-16; Fig. 2a). We observe a 9.6% increase (n = 1,202) in the significant GTAs at 0.01 false 
discovery rate (FDR)24 using EpiXcan (n=13,724) compared to PrediXcan (n=12,522). One 
advantage of PrediXcan/EpiXcan methods is that they identify “novel genes” within loci that did 20 
not reach genome-wide significance (p < 5 × 10-8) in GWASs. We detect an 18.3% increase (one 
sample sign test p value = 3.6 × 10-6) in the novel GTAs using EpiXcan (mean of 25.4) 
compared to PrediXcan (mean of 21.5) (Supplementary Fig. 5). The largest difference is 
observed for height (EpiXcan = 168, PrediXcan = 134), followed by schizophrenia (EpiXcan = 
119, PrediXcan = 104) (Supplementary Fig. 6).  25 
 
For any given tissue and trait, we find high correlation of GTA z-scores between EpiXcan and 
PrediXcan (Pearson’s correlation r = 0.92) (Fig. 2b) but overall, we observe unique associations 
for each method. We identify 79.9% (n=327) more unique genes in EpiXcan (n=788) than 
PrediXcan (n=461) (Supplementary Fig. 7), due to either a lack of a prediction model for a 30 
specific gene and/or tissue or insufficient statistical power using PrediXcan models. For 
example, using the waist-adjusted BMI trait and prediction models from STARNET 
subcutaneous adipose tissue, overall, we observe high correlation between EpiXcan and 
PrediXcan genes (Pearson’s r = 0.83) (Supplementary Fig. 8). Interestingly, EpiXcan identifies 
7 genes (PPP2R5A, ALAS1, HOXC8, PIEZO1, SCD, PARP3, EYA1) that are not detected by 35 
PrediXcan even if we test across all tissue-specific models. SCD (stearoyl–CoA desaturase) is of 
particular interest as it codes for an enzyme that catalyzes a rate-limiting step in the synthesis of 
unsaturated fatty acids (mainly oleate and palmitoleate); knocking out the SCD mouse ortholog 
gene results in reduced body adiposity and resistance to diet-induced weight gain25. Accordingly, 
EpiXcan predicts that up-regulated SCD gene expression is associated with increased waist-40 
adjusted BMI.  
 

EpiXcan uncovers more clinically relevant genes and molecular pathways 
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We perform a series of gene set enrichment analyses (GSEA) to determine how well EpiXcan 
can uncover clinically relevant genes and molecular pathways compared to PrediXcan. For this, 
we employ five categories of datasets: (1) ExAC gene pLI (probability of loss-of-function 
intolerance) dataset26, (2) ClinVar dataset - pathogenic or likely pathogenic genes in the ClinVar 
database27, (3) OMIM CS dataset - genes in OMIM with phenotypes in the clinical synopsis (CS) 5 
section28, (4) SoftPanel dataset - custom gene panels for our traits created with SoftPanel29 based 
on ICD-10 classification and keyword queries (underlying knowledge base is OMIM but gene 
panel creation is more integrative), and (5) MGD dataset - ortholog human genes of mouse genes 
associated with mouse strain-specific phenotypes30. GTAs from both PrediXcan and EpiXcan 
exhibit enrichment for genes that are associated with the traits in above datasets 10 
(Supplementary Fig. 9). 
 
Transcripts identified by EpiXcan (q value = 0.029), but not by PrediXcan (q value = 0.096), are 
enriched for genes that are extremely loss-of-function intolerant (pLI ≥ 0.9) (Fig. 2c). More 
specifically, we find significant enrichment of pLI genes with neuropsychiatric (q value = 0.012, 15 
known association31,32) and anthropometric/development (q value = 0.032) related traits 
(Supplementary Table 5). Unlike pLI, for all other gene sets (ClinVar, OMIC CS, SoftPanel, 
MGD), we define and test for enrichment only for that specific trait. For example, for autism, we 
generate a gene list from the significant autism-specific GTAs from all tissues for each method 
and perform GSEA for genes in the ClinVar database that are reported to be associated with 20 
autism. In so doing, we find that, overall, EpiXcan has more power than PrediXcan to identify 
clinically relevant genes (Fig. 2d) including those that are more likely to belong to more than 
one dataset (pLI, ClinVar, OMIC CS, SoftPanel, MGD) (Supplementary Fig. 10). 
 

 25 
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Figure 2. Comparison of gene-trait associations between EpiXcan and PrediXcan. (a) EpiXcan and 
PrediXcan p value distributions for all gene-trait associations. Quantile-quantile (QQ) plot of the p values 
for all gene-trait associations show a shift to the left. The genomic inflation factor (λ) is slightly higher for 5 
EpiXcan than PrediXcan (1.17 and 1.16). The two distributions are significantly different (Kolmogorov-
Smirnov test p value is 3.3 × 10-16). (b)  EpiXcan and PrediXcan have a high correlation of gene-trait 
association z-scores. Scatter plot of EpiXcan and PrediXcan Z values, Pearson r = 0.92 and Spearman ρ = 
0.91, p value < 2.22 × 10-16 for both. Only z values between -10 and 10 are plotted. The dotted blue line 
corresponds to y = x. (c) Gene set enrichment analysis (GSEA) for extremely loss-of-function intolerant 10 

(pLI ≥ 0.9) genes. Odds ratio with 95% CI are plotted for combined gene-trait associations from all traits 

and trait categories for enrichment in genes with pLI ≥ 0.9 (* for q value <0.05). For all pLI decile bins 
enrichment refer to Supplementary Table 5. (d) EpiXcan has more power than PrediXcan to detect 
expression changes of trait-specific, clinically significant genes. These density plots depict the 

distribution of the Δ[z] (EpiXcan – PrediXcan) values for all gene-trait associations that are significant 15 

from either EpiXcan or PrediXcan. P value is from one sample sign test. Ratio is the number of Δ[z] 
measurements in favor of EpiXcan to that of PrediXcan. The red lines correspond to the mean of each 
distribution. 
 
In conclusion, TWAS across 58 traits shows that, compared to PrediXcan, EpiXcan has more 20 
power to detect significant genes, including novel and unique associations, which are 
indispensable for life and clinically significant. In the following section, we further explore the 
EpiXcan-derived GTAs, in terms of: (1) per-tissue contribution of significant genes, (2) gene-set 
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enrichment analysis, (3) computational drug repurposing analysis, and (4) genes shared within 
and across different disease categories. 

 

Contribution of Tissues to the Identification of Associated Genes 
 5 
In this study we employ 3 different training cohorts to generate 14 predictive models for 8 tissue 
homogenate types and use the predictive models to impute tissue-specific transcriptomes across 
58 GWASs. We first determine the robustness of our method, by examining the z-score 
correlation for similar tissues within and across cohorts by pooling together imputed 
transcriptomes for each tissue from all traits. As expected, predictions are highly correlated when 10 
EpiXcan models are trained in (1) different cohorts (GTEx and STARNET) predicting the same 
tissue (Spearman’s ρ: 0.89-0.93) and (2) the same cohort predicting similar tissues (Spearman’s 
ρ: 0.89 when comparing aorta with mammary artery, and 0.92-0.95 when comparing visceral 
with subcutaneous adipose tissues) (Fig. 3a). In contrast, unrelated tissues such as blood and 
brain only exhibit moderate correlation (Spearman’s ρ 0.38 - 0.42). 15 

 
Figure 3. Contribution of GWAS and tissues to gene-trait associations. (a) Correlation of genetically 
regulated expression imputed for different tissues (pooled GTAs for all traits). Correlation is calculated 
for significant imputed expression changes with the Spearman method. Dendrogram on the right edge is 
shown from Ward hierarchical clustering. (b) Gene contribution and enrichment of each tissue prediction 20 
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model for each trait. Digits in the matrix correspond to the number of genes that exhibit significant 
association with the trait for a given tissue prediction model. The color indicates enrichment (red) or 
depletion (blue) of correlations for a given trait per tissue. Numbers in parentheses alongside labels 
denote how many unique genes are identified from each dataset (row annotation on the left) or how many 
unique genes are associated with each of the traits (column annotation on the bottom). 5 

 
Overall, per tissue, the numbers are largely comparable between consortia (Supplementary Fig. 
11). However, trait-relevant tissue models contribute disproportionately more gene-trait 
associations than non-relevant tissues (Fig. 3b). For example, we find a higher number of 
contributions than the average of other tissues from brain tissue in schizophrenia, from arterial 10 
tissues in cardiovascular disease, and from liver in lipid traits, respectively, which is concordant 
with previous Summary-data-based Mendelian Randomization analysis6. For 48 of the traits, 
more than 50% of the associated genes are only found in one tissue (Supplementary Fig. 12) 
and a large proportion (32.98% ± 17.36%; mean ± SD) of these unique GTAs come from the 
highest contributing tissue type (Supplementary Fig. 13). A few examples of top tissue type 15 
contributors for unique GTAs are as follows; schizophrenia: brain tissue (30.34%, CMC), 
myocardial infarction & coronary artery disease: arterial tissue (33.33% & 31.88% respectively, 
STARNET aorta and mammary artery and GTEx aorta), systemic lupus erythematosus: blood 
(38.89%, STARNET and GTEx blood), most lipid traits: liver (24.06% - 26.43%, STARNET 
and GTEx liver). Besides tissue relevance, cohort size and tissue dissimilarity explain 52% of the 20 
variation in the number of unique GTAs contributed by different tissues (Supplementary Fig. 
14, multiple linear regression model, p value = 0.007), indicating that additional GTAs will be 
uncovered with increased sample size of gene expression datasets in disease-relevant tissues. 

 

Biological relevance of gene-trait associations 25 
 
GTAs for a given trait are enriched for genes implicated in diseases with more severe trait-
specific phenotypes driven by larger effect mutations in those genes (ClinVar: λ = 1.83, p value = 
7.07 × 10-14; SoftPanel: λ = 1.36, p value < 2.22 × 10-16; OMIM CS: λ = 1.29, p value = 6.17 × 
10-14; Supplementary Fig. 15). We also observe enrichment (λ = 1.21, p value = 1.69 × 10-13) 30 
for genes that produce mouse phenotypes in the same phenotypic category of the human trait 
when the mouse ortholog gene is disrupted. 
 
We perform gene-set enrichment analysis for the traits with more than 10 significant GTAs (43 
out of 58 traits) to determine if the associated genes can be mapped to biological processes 35 
(Supplementary Table 6). After FDR adjustment, 74 highly enriched pathways are obtained 
with p values < 1.70 × 10-5 (corresponds to q < 0.05). Significantly associated genes are enriched 
for biological processes relevant to trait pathophysiology. For instance, the enriched pathways 
for elevated total cholesterol and triglycerides are involved in sterol and lipid homeostasis as 
well as lipoprotein digestion, mobilization, and transport. Similarly, for atopic dermatitis, the 40 
significantly enriched pathway modulates the rate or extent of water loss from an organism via 
the skin. Genes associated with mineral density of the femoral bone demonstrate a high 
enrichment for a pathway that positively regulates cartilage development.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 28, 2019. ; https://doi.org/10.1101/532929doi: bioRxiv preprint 

https://doi.org/10.1101/532929
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Leveraging gene-trait associations for computational drug repurposing 
 
Computational drug repurposing offers a systematic approach for relating disease and drug-
induced states towards the goal of identifying novel indications for existing therapeutics33. We 
perform a computational screen against a library of 1,309 drug-induced transcriptional profiles34 5 
to identify small molecules capable of perturbing the expression of our identified trait-associated 
genes (Fig. 4a). For each trait /compound pair, we calculate a signed “connectivity score”34, 
which summarizes the transcriptional relationship between each trait and drug signature, thus 
identifying drugs that might be predicted to “normalize” the gene-trait signature, as well as those 
expected to induce a “disease-like” state (Fig. 4b-d, Supplementary Table 7). Fig. 4e provides 10 
example compounds predicted to regulate the expression of genes associated with the “Hip 
circumference adjusted BMI” trait. This list includes drugs under investigation for treatment of 
obesity, including ursolic acid, which is reported to increase skeletal muscle and brown fat while 
reducing diet induced obesity35. 
To explore the higher-level biological context for trait/compound associations, we perform a 15 
chemogenomic enrichment analysis to determine whether drugs that regulate particular sets of 
trait-associated genes might share pharmacological features, such as drug targets, drug classes 
and side-effects (Fig. 4b). We find multiple significant (FDR < 0.1) chemogenomic trends, 
including enrichments with phenotypically related side-effects (Fig. 4f), supporting the potential 
for these compounds to perturb trait-related molecular networks. 20 

 
Figure 4. Leveraging gene-trait associations for computational drug repurposing. (a) Trait-
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associated genes are used to sort a library of drug induced gene expression signatures according to their 
connectivity with the trait. GReX: genetically regulated expression (b) A secondary enrichment analysis 
on this drug list identifies pharmacological features that are over-represented at the extreme ends of the 
sorted list, thus presenting a chemogenomic view of the trait. (c) Drug targets linked with each trait (FDR 
< 0.1) are then (d) compared with risk loci genes for a range of diseases or phenotypes (FDR < 0.1). (e) 5 
Top 10 compounds predicted to normalize the expression of “Hip adjusted BMI” associated genes. (f) 
Subset of side-effect enrichments for phenotypically related traits. (g) Subset of traits with associated 
drug targets that are enriched for risk associated genes sets with phenotypically related traits.  
 
We hypothesized that, in general, trait-associated drug targets would connect to risk-associated 10 
genes for phenotypically related diseases36. To evaluate this, we identify referenced37 and 
predicted38 drug targets that are enriched (FDR < 0.1) among compounds that modulate the 
signature of each trait. We identify ≥ 1 drug target enrichment, for 53 of the traits considered, 
and ≥ 3 drug targets for 40 traits (Supplementary Table 7). We then perform a further gene set 
analysis on the targets associated with each trait, focusing on disease risk genetic resources that 15 
might implicate phenotypes that could then be related to the traits considered within this study. 
We identify several significant overlaps (FDR < 0.1) between trait associated targets and 
phenotypically related disease risk gene sets (Fig. 4g, Supplementary Table 7). For example, 
drug targets enriched among compounds that perturb genes associated with “Hip circumference 
adjusted BMI” are enriched for risk genes for weight gain, nausea, and psychological stress, and 20 
drug targets enriched among compounds that perturb “Coronary Artery Disease” associated 
genes are enriched for risk genes for heart disease, hypercholesterolemia, abdominal obesity, and 
myocardial infarction. 
Taken together, these chemogenomic enrichments illustrate the potential for the approach 
described in this study to inform drug discovery and drug development efforts. The identification 25 
of side-effect and drug target enrichments linked to known or plausible trait biology supports the 
veracity of the repurposing predictions, and, more broadly, the power of integrative genomics 
approaches to identify novel molecular networks that underpin disease. 
 
 30 

Trait-trait correlations and gene-trait associations  
To further understand the trait relatedness, we construct a network based on pairwise trait 
comparison of genetically regulated expression (GReX) (including traits with more than 50 
significant associations). By using a broad categorization of traits (Supplementary Table 4), we 
identify 245 pairs of shared gene associations across trait categories and 66 pairs within trait 35 
categories (Fig. 5a, Supplementary Table 8). Higher numbers of genes are shared between 
traits that belong to the same trait category than traits belonging to different trait categories; the 
highest number of genes are shared between low density lipoprotein and total cholesterol in the 
“lipids” category. Previous studies have shown significant genetic correlation among common 
traits39,40. Pairwise trait GReX correlation shows a positive association with genetic co-40 
heritability39,40 (Pearson’s r = 0.8, p value < 2.79 × 10-126) (Fig. 5b), extending the genetic 
similarity among traits to specific genes.  
 
We then apply bi-directional regression analyses41 on the GReX of different traits across all 
tissues to infer causal relationships among pairs of traits with significant genetic and GReX 45 
correlation (Fig. 5c for CAD and Supplementary Fig. 16 for all the traits in our study). We find 
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evidence that CAD is a complex trait whose predicted gene expression changes can be partly, but 
directly, explained by predicted expression changes found in individuals with elevated 
triglycerides, elevated LDL, and increased waist/ hip ratio. On the other hand, predicted 
expression changes in individuals with increased HDL, or those suffering from ulcerative colitis 
(UC), are expected to normalize expression changes in individuals with CAD. By expanding the 5 
causal network to include more upstream traits, we can see that another 6 traits (waist and hip 
circumference, years of education, age at menarche, birth weight, and BMI), which are 
correlated, or anti-correlated, with CAD may cause, or protect, from the predicted expression 
changes through effects on intermediate traits. For example, waist circumference acts via a 
causal relationship with triglycerides; other traits follow multiple pathways such as age at 10 
menarche, which opposes predicted transcriptomic changes of the increased triglycerides group 
while promoting imputed transcriptomic changes for individuals with high HDL. We then 
leverage these causal networks to dissect the pathogenesis of CAD by identifying the molecular 
pathways shared among all the involved trait pairs. For each trait that can cause or protect from 
CAD, we identify the “agonistic” genes - genes whose predicted expression is changing towards 15 
the same or opposite direction for causal (e.g. triglycerides) and protective (e.g. HDL) traits, 
respectively. Gene set enrichment analysis of agonistic genes for biological pathways point 
towards biologically relevant processes for CAD (Fig. 5d). For example, a subset of CAD genes 
(n= 256 out of 2806 genes with p value ≤ 0.05) is shared with triglycerides and affects biological 
processes related to apolipoprotein binding and lipid digestion, mobilization and transport.  20 
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Figure 5. Trait-trait correlations and gene-trait associations (a) Network indicating shared genes 
within/across trait categories. Only traits that have more than 50 associated genes are showcased. Edge 
width denotes number of shared genes for each trait pair. The node size indicates number of gene-trait 
associations for a given trait. Green edges denote within-category trait associations and orange edges 5 
denote across-category trait associations. The analysis is based on significantly associated genes with 
FDR � 1 %. (b) Scatter plot of genetic correlation (rg) and genetically regulated gene expression (rGReX) 
for each pairwise trait combination. Standard error is shown with grey lines, rg and rGReX are highly 
correlated (Pearson’s r = 0.8, p value < 2.79 × 10-126). (c) Causal trait network of CAD. CAD and up to 
two traits upstream are plotted in this network graph to demonstrate causal (arrows) and protective (bar-10 
headed lines) relationships as estimated by bi-directional regression analysis. The trait nodes are colored 
based on the parent causal trait network of all the traits of the study (Supplementary Fig. 16); nodes that 
are more times parent and child nodes are a darker shade of red and blue, respectively. In edges, width 
denotes absolute beta, redder color denotes lower p value, and the 2x or 3x labels denote that the 
relationship is identified in 2 or 3 tissues, respectively. The analysis is based on genes with FDR � 1 %, 15 
and only the relationships with p value � 0.05 are shown. (d) Graph depicting the odds ratio of pathway 
enrichment for CAD agonistic genes shared with traits involved in the causal network. Briefly, for causal 
traits, a list of genes (with unadjusted p value � 0.05) that are predicted to change to the same direction 
(or the opposite direction for protective traits) is used for GSEA for common pathways. In this graph only 
the top 15 (based on q value) results are shown and are ranked based on odds ratio; an asterisk (*) 20 
indicates results that have q value � 0.05. Error bars represent 95% CI for each enrichment. 
 
Taken together, the pairwise GReX trait correlations illustrate the potential to identify genes that 
are shared among genetically correlated traits. Agonistic versus antagonistic pleiotropy among 
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two traits can be differentiated by leveraging the directionality of gene expression association in 
each trait. For traits, such as CAD, this analysis can be applied to dissect the complex phenotype, 
to identify genes and pathways that are shared with another trait, and potentially identify and 
develop therapeutic strategies to reverse those perturbations. 
 5 

Discussion 
 
The maps of gene expression and regulatory annotations, generated by projects such as REMC18, 
CommonMind21, GTEx23, and STARNET22 hold the potential to further our understanding of 
non-coding risk genetic variation. Here we describe EpiXcan which, compared to PrediXcan, 10 
integrate biologically relevant data in a single framework to improve predictive performance of 
transcriptome imputation. EpiXcan is also better powered to identify clinically significant results 
such as enrichment for loss-of-function intolerant genes in neuropsychiatric traits31,32 and can 
detect more robust gene expression changes in genes associated with severe forms of the trait. 
We apply EpiXcan prediction models from 14 tissues in 58 common and complex traits and 15 
examine properties of those associations. 
 
First, gene associations are predominantly identified in pathophysiologically relevant tissues and 
most associations are only identified in one tissue. Considering that the average correlation 
between genetically regulated gene expression of unrelated tissues such as blood and brain 20 
across 58 traits is 0.38 - 0.42 (Spearman’s ρ), we highlight the need for trait-relevant tissue 
datasets for such studies to be more effective. Second, among genes associated with the traits in 
this study, we observe significant enrichment for biological pathways involved in trait 
pathophysiology. Moreover, gene-trait associations are significantly enriched for: (1) pathogenic 
(or likely pathogenic) genes for the given trait (clinVar), (2) genes associated with trait-relevant 25 
phenotypes (SoftPanel), (3) genes that have been associated with clinical signs relevant to the 
trait (OMIM CS), and (4) ortholog mouse genes with phenotypes that belong to the same 
phenotypic category as the given trait. This suggests that common variants partly act via smaller 
effect size perturbations in genes that lead to more severe forms of the phenotype when subject 
to larger effect size disruptions, as recently similarly suggested42. 30 
 
Third, by leveraging trait-specific transcriptomic changes, we identify known and novel 
compounds that can reverse trait-specific changes, pointing to potential drug repurposing 
candidates. To our knowledge, there is only one recent study43 that applied a similar approach 
but it was much more limited in scope (brain tissue – 10 regions - transcriptomic imputation with 35 
S-PrediXcan for psychiatric traits) and did not yield any statistically significant results for 
schizophrenia. In contrast, our study identifies one statistically significant result (phenformin, 
Supplementary Table 7) that is a very potent antidiabetic agent (no longer FDA-approved due 
to safety concerns) which is not surprising given that glucose homeostasis is altered from illness 
onset in schizophrenia44. Within the top 10 results for schizophrenia we also identify a potent 40 
antipsychotic (prochlorperazine), a voltage-gated sodium channel45 inhibitor (pramocaine) and 
guanfacine which was trialed for cognitive impairment in schizophrenia and found to be worthy 
of further investigation in order to target spatial working memory and continuous performance 
test reaction time for patients on atypical neuroleptics46. It is hard to directly compare the results 
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of the two studies since our approaches differ on many levels: we use EpiXcan, train models on 
different tissues and more tissue types, and employ a different drug repurposing pipeline. 
Towards validating our approach, chemogenomic enrichment analysis reveals trait-specific, 
phenotypically related, side-effects and drug target enrichment for risk associated genes of 
phenotypically related traits. 5 
 
Finally, we use bi-directional regression analysis41 to construct putative causal trait networks. 
Causal trait networks built on top of EpiXcan are sufficiently powered to provide valuable 
insight into the development of complex traits such as CAD. For example, we find that high BMI 
can influence CAD by two distinct pathways; (a) by positively influencing triglycerides (TG) 10 
which would positively influence CAD, and, conversely, (b) by negatively influencing HDL 
which would negatively influence CAD. The independent effect of BMI on TG and HDL has 
been shown in a population with a broad spectrum of BMI values47 which – as in our study – 
found no effect of BMI on LDL levels. Downstream, there is genetic evidence to suggest a 
causal influence of TG on CAD48. In addition, a negative correlation of HDL with CAD has been 15 
established in observational epidemiology, although a link between genetic loci causal for high 
levels of HDL and protective for CAD is, at present, elusive49. The construction of these causal 
trait networks allows us to identify genes, among causally-linked traits, that exhibit agonistic 
pleiotropy participating in shared pathways. Such information could potentially be used to 
develop distinct therapeutic strategies based on individual comorbidities. 20 
 
Overall, the described method utilizes epigenomic information to further improve prediction of 
transcriptomes and it provides a framework for TWASs, improved interrogation of trait-
associated biological pathway involvement, and a platform for drug repurposing and treatment 
development.  25 
 
To facilitate interpretation, we provide the EpiXcan pipeline, trained models and resulting data 
tables as an online resource. 
 

Online methods 30 

Genotype and expression data  
Genotype datasets (CMC, GTEx and STARNET) are uniformly processed for quality control (QC) steps before 
imputation. We restrict to samples with European ancestry (Supplementary methods). Genotypes are imputed 
using the University of Michigan server50 with Haplotype Reference Consortium (HRC) reference panel51. RNAseq 
gene level counts are adjusted for known and hidden confounds, followed by quantile normalization. For CMC gene 35 
expression, we use the gene level counts generated from DLPFC RNAseq data21 (http://commonmind.org/). For 
GTEx52, we use publicly available quality-controlled gene expression datasets from GTEx consortium 
(http://www.gtexportal.org/). RNAseq data for STARNET were generated as described in Franzén, et al22. 
Additional information for CMC, STARNET and GTEx tissues (for both predictors and observed datasets) including 
sample sizes is shown in Supplementary Table 1. To compare the prediction accuracy of the CMC-trained 40 
predictors, we utilize expression data from the HBCC (n = 280 samples21) as well as 13 brain areas from GTEx52 
(Supplementary Table 1). 
  

SNP priors calculation and rescaling to WENet penalty factors  
To leverage epigenomic information, we incorporate rescaled SNP priors as penalty factors into a weighted elastic 45 
net model. First, we compute eQTLs using MatrixEQTL53. Then, epigenome annotations from REMC18 are 
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integrated to obtain SNP priors using qtlBHM20 (top panel in Supplementary Fig. 1; Supplementary Materials 
and Methods; Supplementary Table 9). Lastly, the SNP priors are rescaled to penalty factors used in WENet by a 
data-driven rescaling equation. The optimal rescaling equation is approximated by the best performing quadratic 
Bézier function, providing both the curve of the rescaling function and the minimum value of the penalty factors. 
Briefly, to determine the best performing rescaling equation, we simulate genotypes (n=500 samples) using 5 
HAPGEN254 and haplotypes from the 1000 Genomes Project55. For each gene under consideration, we utilize a 
shifting window policy to generate quadratic Bézier rescaling equations. In each separate window, we define a 
minimal penalty factor (Supplementary Fig. 17) and within that window we evaluate possible intermediate Bézier 
curve control point locations to test for a wide range of curves for our rescaling equation (Supplementary Fig. 18). 
The equation that exhibits the highest improvement of R2

CV when compared to not assigning penalty factors to the 10 
SNPs (as in PrediXcan) is selected. The process to evaluate and select the optimal rescaling equation is described in 
greater detail in Supplementary Methods. 
 

Simulation analysis to compare EpiXcan and PrediXcan predictive performance 
500 samples are simulated to verify the model performance. For specific gene, suppose � is the matrix containing 15 
genotypes of all cis-SNPs included in the gene. For the i-th SNP, we choose an effect estimate ��, so we have vector 
of estimated effects � for all the SNPs of the gene. Gene expression values are simulated by  
                           � � � � � � �	
	� � 
                                               (1) 

Here ‘�’ denotes matrix-vector product and � is normally distributed noise with given standard deviation (SD=0.3). 
We select ten levels (Level from 0.1 to 1) of noise to simulate expression values for given genes. The CMC eQTL 20 
beta values are used as the effects in the simulation. We use 1,000 genes with the highest significance from CMC 
eQTL studies to perform the simulations. For each gene, we simulate 50 times and take the mean value to evaluate 
the closeness between simulated and real-world gene expressions. 
 

Large scale gene-trait association analysis  25 

We train predictors of gene expression by applying EpiXcan and PrediXcan to genotype and RNAseq datasets 
across 14 tissues (Supplementary Table 1). For each tissue, we keep genes with pred.perf q value of the correlation 
between cross-validated prediction and observed expression (pred.perf16) �  0.01. We identify gene-trait 
associations, by jointly analyzing summary statistics from 58 complex traits (Supplementary Table 4) and gene 
expression predictors using S-PrediXcan42. SNPs in the broad major histocompatibility complex (MHC) region 30 
(chromosome 6: 25~35 Mb) are removed. P values are adjusted using the Benjamini-Hochberg method of 
controlling the false discovery rate at �  0.01. The gene-trait associations that remain after this filtering are 
considered “significant”. 
 
Enrichment score: We use an enrichment score6 to indicate enrichment or depletion of the trait in a given tissue. For 35 
each tissue-trait combination, we count the number of genes that are significantly associated with the trait in that 
tissue (ntissue,trait) and divide them by the number of all the genes that had a prediction either significant or not 
(ttissue,trait): Ntissue,trait=

�������,�����

�������,�����
. To scale the normalized count Ntissue,trait we first subtract the mean normalized count 

for all tissues for the given trait Ntrait and then divide the result by the standard deviation (SD) of the normalized 

count for all tissues for the given trait: etissue,trait=
�������,����������	������


��	������

. In Fig. 3b, etissue,trait is used as the enrichment 40 

score for depicted by the color scale.  
 
Unique associations: Uniquely identified genes by EpiXcan (or PrediXcan) are genes that are identified in 
significant gene-trait associations with one method but not the other. For gene-trait associations found in multiple 
tissues, we categorize genes as up- (or down-) regulated in the trait if there are more tissues in which the effects are 45 
towards the indicated direction. If there are equivalent numbers of tissues in which the gene is positively and 
negatively correlated with a given trait, we categorize the gene regulation as ambiguous. Transcriptomic imputation 
yields approximately the same number of genes predicted to be up- or downregulated (z-scores) across each trait 
(Supplementary Fig. 19). To construct the shared gene network in Fig. 5a: (1) we filter genes so that those with 
pred.perf q values � 0.5% and FDR-adjusted p values � 0.5% are retained, (2) specifically for shared genes across 50 
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traits of the same category, we only include genes with high effects (e.g. |z � score| � mean
|z � score|
, � is 
number of genes) to limit network density. 
 
Novel genes: For identification of novel genes outside of GWAS loci, we define index SNPs based on LD clumped 
regions using Plink software (v1.9)56. The following settings are used: (a) significance threshold for index SNPs is 5 5 
× 10-8, (b) significance threshold for clumped SNPs is 5 × 10-8, (c) clumping window size is 250 Kb and (d) LD 
threshold for clumping is 0.1. The coordinates of the GWAS loci are defined as 1 Mb on either side of the index 
SNP in each clump. The genomic coordinates of the significant genes are then extracted from GENCODE (build 
GRCh37, release 19) and overlapped with the coordinates of GWAS loci. Those genes that lie outside the overlaps 
are defined as novel genes. The difference in the number of novel genes identified between the two methods is 10 
calculated by subtracting the number of genes identified by PrediXcan from the number of genes identified by 
EpiXcan. The statistical significance is tested with the null hypothesis that mean difference is not different from zero 
using one sample t-test (H0: μ=0).  
 

Gene set enrichment analyses and phenotypic datasets 15 

To investigate whether the genes associated with a given trait exhibit enrichment for biological pathways, we use 
gene sets from MsigDB 5.157 and filter out non-protein coding genes as well as genes that do not have eQTL. For 
the enrichment analysis we only consider traits with >10 genes identified in significant gene-trait associations; this 
condition is met for 43 traits in our study. Statistical significance is evaluated with one-sided Fisher’s exact test and 
the adjusted p values are obtained by the Benjamini-Hochberg method. Similarly, for Fig. 2c, we perform gene set 20 
enrichment analysis for all decile bins of pLI from ExAC26 (all results can be found in Supplementary Table 5). 
The phenotypic datasets: ClinVar, OMIM CS, SoftPanel, and MGD are prepared as described in Supplementary 
Methods and contain genes that are associated with one or multiple traits. The approximation of known gene-
phenotype associations from these datasets allows us to (1) compare the power of EpiXcan vs. PrediXcan in 
identifying known gene-trait associations (as in Fig. 2d) and (2) evaluate the extent to which common risk variants 25 
confer trait risk by affecting gene expression levels of genes associated with monogenic forms of the trait or genes 
associated with similar-to-the-trait phenotypes in humans and mice. 
 
 

Computational drug repurposing 30 
We iterated over each trait considered in this study, retaining trait/gene associations with an FDR < 0.1, and 
converting HGNC gene symbols to NCBI entrez gene identifiers. If a gene is linked with a trait via an association 
detected in multiple tissues, the associations are summarized as the mean z-score. There are 58 traits with a 
minimum of 5 positively, and negatively, associated genes and each of these are used as the basis for drug 
repurposing. For each of these traits, and for each unique compound, we calculate a “connectivity score” based on a 35 
modified Kolmogorov-Smirnov score34, which summarizes the transcriptional relationship to the trait-associated 
genes. We estimate statistical significance by generating an empirical Kolmogorov-Smirnov score distribution from 
the query signature against 1,000 permuted drug signatures. Compound profiles are sourced from Connectivity 
map34. We download and merge the 6,100 individual experiments into a single representative signature for the 1,309 
unique small molecule compounds according to the prototype-ranked list method58.  40 
 
Chemogenomic enrichment analysis: For each trait, connectivity scores are then used to sort the list of 1,309 
compounds and used as the basis for a chemogenomic enrichment analysis. For each compound in the drug 
signature library, we collect diverse chemogenomic annotations, such as drug target information, side-effect, and 
therapeutic class associations. Side-effect associations are downloaded from Offsides59 and SIDER59 and connected 45 
to compounds in Connectivity map via Stitch identifiers. Drug target associations include targets referenced in 
DrugBank37, and also an augmented set of associations, based on predictions generated using the Similarity 
Ensemble Approach38. For each of these features, we calculate a signed running sum enrichment score, which 
reflects whether that feature is over-represented at the extreme ends of the drug list that has been ordered according 
to trait. Statistical significance of enrichment scores is based on comparison to a large distribution of permuted null 50 
scores, generated by calculating scores from randomized chemogenomic sets that contain an equivalent number of 
compounds to the true set being evaluated. p values are adjusted using the Benjamini-Hochberg method of 
controlling the false discovery rate. 
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Disease risk gene enrichment analysis of trait associated drug targets: We compile disease and trait risk associations 
from multiple sources, including HGMD60, ClinVar27, dbGAP61, Genetic Associations Disease62, GWAS catalog63, 
GWASdb64, Human Phenotype Ontology65, HuGE66, and OMIM67. Many of these are accessed through 
Harmonizome68. We use a Fisher’s exact test to compare each set of trait-associated drug targets (that contain at 
least 3 targets), with each disease risk gene set. The analysis is performed against a background of 2,802 genes, 5 
representing the unique set of human drug targets in the combined set of referenced and predicted targets associated 
with the 1,309 compounds. Two-sided p values are adjusted using the Benjamini-Hochberg method of controlling 
the FDR. 

 
Trait co-heritability analysis 10 

 
Tissue clustering: To calculate the genetically regulated gene expression correlation (rGReX), as shown in Fig. 3a, we 
keep the significant imputed gene expression change (z score) values with q value � 0.01 and perform pairwise 
tissue Spearman correlation analysis of the complete cases of z scores. To cluster the tissues together for plotting, we 
use hierarchical agglomerative clustering analysis with Ward’s method. 15 
 
Genetically regulated gene expression correlation (rGReX): Pairwise genetic correlation (rg), as shown in Fig. 5b, 
among traits analyzed by GWAS is taken from previously published reports39,40. For trait comparisons that appear in 
both studies we use the more recent study40. We consider the genetic correlation between traits significant if q 
value � 0.05. To calculate rGReX, we keep the imputed gene expression values with unadjusted p value � 0.05 and 20 
perform pairwise trait Spearman’s correlation analysis with Holm’s adjustment for multiple comparisons. To 
estimate the correlation of rg and rGReX for the trait pairs in our study we perform Pearson’s correlation analysis with 
Holm’s adjustment for multiple comparisons.  
 
Bi-directional regression and exploratory pathway analyses for putatively causally linked traits: We identify all the 25 
significantly correlated trait-pairs (rg and rGReX, q value � 0.05 as above) and perform bi-directional regression 
analyses41 to identify causal relationships among the traits of our study (Supplementary Fig. 16). Then taking as an 
example the coronary artery disease (CAD), we graph all the putative causal and protective relationships up to 2 
nodes upstream in Fig. 5c (when the causal relationship is bi-directional between 2 traits, the relationship with the 
higher degrees of freedom is kept) and perform pathway enrichment analysis of shared agonistic genes for this 30 
causal network in Fig. 5d. For each causal or protective trait in the network, we generate a list of genes whose 
expression changes are predicted towards the same direction (or the opposite direction for protective traits) in CAD. 
These lists of shared “agonistic” genes are used for GSEA for common pathways. In Fig. 5d. only the top 15 (based 
on q value) results are shown and are ranked based on odds ratio. 

  35 
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URLs 
CMC: http://commonmind.org/ 
Synapse for CMC data: https://www.synapse.org/cmc 
GTEx portal: http://www.gtexportal.org/ 
MSigDB: http://software.broadinstitute.org/gsea/msigdb 5 
EpiXcan website and repository: http://icahn.mssm.edu/EpiXcan 
EpiXcan source code: https://bitbucket.org/roussoslab/epixcan 
qtlBHM package: https://github.com/rajanil/qtlBHM 
RHOGE package: https://github.com/bogdanlab/RHOGE 
PrediXcan pipeline: https://github.com/hakyim/PrediXcan 10 
PredictDB resource: https://github.com/hakyimlab/PredictDB_Pipeline_GTEx_v7 
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