

1 **Primary Studies on the Effect of Microbially Coalbed Methane**
2 **Enhancement in Suit in the Qinshui Basin**

3 Dong Xiao^{1*}, Cong Zhang², Enyuan Wang³, Hailun He⁴, Yidong Zhang¹,
4 Junyong Wu¹, Liuping Deng², Meng Wang⁴

5 ¹ State Key Laboratory of Coal Resources and Safe Mining, China University of
6 Mining and Technology, Xuzhou, Jiangsu province, 221116 China.

7 ² Shanxi Coal Bed Methane Company of Petrochina, Jincheng, Shanxi province,
8 048000, China.

9 ³ Key Laboratory of Gas and Fire Control for Coal Mines, China University of
10 Mining and Technology, Xuzhou, Jiangsu province, 221116 China.

11 ⁴ School of life science, Central South University, Changsha, Hunan, 410083 China

12 * Corresponding author: Dong Xiao

13 Email: xd@cumt.edu.cn

14 **Abstract**

15 Methods used to yield bio-methane with coal to increase coalbed methane reserves
16 had researched, thus providing a means for improving gas drainage efficiency. One
17 such method utilized to convert coal into gas involves coal biodegradation technology.
18 In order to confirm the practical application of this technology, the experiments were
19 conducted in wells, Z-159, Z-163, Z-167, and Z-7H, in the Qinshui Basin in China, and
20 the duration of the experiments was 32 months. Cl⁻ ion tracer, number changes of
21 *Methanogen* sp., and coal bed biome evolution indicated that the culture medium

22 diffused in the Z-159 and Z-7H wells. These wells resumed gas production separately.
23 Gasification of coal lasted 635 and 799 days, and yielded 74817 m³ and 251754 m³
24 coalbed methane in Z-159 and Z-7H wells, respectively. Results demonstrate that
25 coalbed methane enhancement with biogasification of coal is a potential technical to
26 achieve the productivity improvement of coalbed methane wells.

27 **Keywords:** coal bed methane; biogasification; bioenergy; coal; *methanogen sp.*; biome.

28 **Abbreviations:**

29 CBM, Coal bed methane; TCD, Thermal Conductivity Detector.

30 **1. INTRODUCTION**

31 Coal bed methane (CBM) is a type of associated gas resulting from coal production.
32 The main component of this gas is methane. CBM is a valuable energy resource,
33 meanwhile, it is a dangerous source for mining [1]. Gas drainage represents a widely
34 used technique that not only controls CBM operations but improves the comprehensive
35 utilization efficiency of fossil energy. Therefore, research involving gas drainage
36 mechanisms, applications and coal gasification methods, which service to increase
37 CBM reserves and improve gas well productivity has gradually deepened. [2–4].

38 Biogasification of coal is one of the methods of coal gasification [5]. The coal
39 components are complex. It contains organic compounds and inorganic components.
40 The methanogenic bacteria could degrade a part of biodegradable organics to convert
41 coal into methane. Activating characteristics of *Methanogen sp.* in coal of the Qinshui
42 basin, and the biodegradability of coal have been preliminary studied in previous

43 research [5]. The in-situ efficiency of this technical requires further research.

44 The Qinshui basin, located in the southern region of the Shanxi province, has an

45 abundance of CBM and constitutes one of the most important CBM reservoirs and gas

46 development regions in China (Figure. 1). The CBM reserves are estimated at 3.95

47 trillion m³ within this 27137 Km² area [6]. As defined by the Chinese petroleum and

48 natural gas reserves standard, this basin represents a massive gas field. The geologic

49 structure of the Qinshui basin is comprised of the compound syncline, which warps the

50 seams of the southern and northern basins and supplies the fundamental symmetry-

51 bearing portion of the eastern and western regions. The geologic structure in the middle

52 of this basin is flat and contains few faults. The Fm 3[#], Fm 9[#] and Fm 15[#] coal beds are

53 the main gas bearing layers with good permeability conditions [7].

54

55 Figure 1 here

56 Figure 1. The Qinshui Basin geographical location map. The Qinshui Basin is located

57 in the southern part of Shanxi Province. Neighboring provinces of Herbei and Henan.

58 Anze, Changzhi, Qinshui, Gaoping, and Jincheng are the main coal bed gas

59 development areas. The test location was in Qinshui, where marked with a pentagram

60 symbol in the figure.

61

62 Methane productivity of some wells is quite low, and even did not produce gas in

63 a part wells, which like Z-7H, Z-159, and Z-163 wells in experiment. Nitrogen foam

64 fracturing have been used in these wells to expansion crack and improve coal
65 permeability. However, the effect was not satisfying. In this case, the CBM
66 development cost was prohibitive[1]. In previous research, methanogenic bacteria,
67 which include hydrolytic fermentation bacteria, fermenting bacteria, and *Methanogen*
68 *sp.*, etc. had been found in Fm 3[#], Fm 9[#] coal bed in Qinshui basin, and the microbe
69 culture method had been studied also[5,8]. If the coal biogasification technology can
70 be applied on site, it would prove a potential technical to improve gas wells production
71 efficiency and control the cost of CBM development.

72 **2. Materials and methods**

73 **2.1 Experiment Wells and Control Wells Survey**

74 This experiment was carried out in a horizontal multiple branching well and a
75 vertical well. The horizontal well identified as Z-7H (GPS coordinates: 38.716117,
76 106.475351) and Z-159(GPS coordinates: 35.710277, 112.472500). Z-163, Z-167wells,
77 which were located beside the test wells, were selected as control wells.

78 Total drill footage of Z-7H well was 5472 m, pure drilling footage in coal was
79 4405 m and a well control area consisted of 0.371 Km². The connection point depth
80 was 797.5 m, and the deflection point depth was 508 m. The well diameter was 6 inches.
81 The Z-7H well has 2 main well bores and 9 branches. The gently sloping coal seam
82 provides for a favorable geographical condition (Figure. 2). The well was completed on
83 October 15, 2012. The desorption pressure gradually increased and achieved a value of
84 2.5 MPa and began to product gas on February 23, 2013. However, Z-7H stopped gas

85 production after 644 m³ of gas were produced from February to March. The average
86 gas production over the production period was only 64.37 m³/day from its initial
87 commissioning until the end of 2014.

88 Z-159, Z-163, Z-167 wells were open vertical boreholes, located adjacent to the
89 horizontal pinnate branch well of Z-7H (Figure. 2) and had similar geological
90 conditions to that of Z-7H. The wells diameter were 6 inches, were completed on
91 September to December, 2012, and drilling depth of each borehole were 572.5 m, 591.9
92 m, 607.9 m respectively. No gas was obtained in Z-159 and Z-163 wells before the
93 experiment performed. Many nitrogen foam fracturing and flushing operations were
94 carried out in Z-7H, Z-159 and Z-163 wells to expansion crack and improve coal
95 permeability, but failed. Well Z-167 had gas productivity of 460 m³/day on average
96 before the experiment performed.

97 Figure 2 here

98 Figure 2. Well Z-7H trajectory stereogram and contour map. Relative geographic
99 locations next to Z-7H well. Wells Z-159, Z-163, and Z-167 are located in south of Z-
100 7H well.

101

102 **2.2 Condition of the Fm 3# Coal Seam**

103 Fm 3# coal in Qinshui is a high rank coal with a value of $R_{o,max} > 3.0$. This coal
104 seam is formed of semibright coal and glance coal, and a small amount of semidull coal.
105 The porosity of FM 3# coal averages 4.88–6.14 %. The main structure in this coal seam

106 is formed by an initial fissure; fissure nondevelopment. The fissure number is 6-11 per
107 5.0 cm, length is 0.5-10.0 cm, and width is 2.0-120.0 μm . The connectivity of these
108 fissures is low, and is influenced by a calcite film in the coal. The average permeability
109 of Fm 3[#] coal is 0.02 mD, which was tested using the injection-falloff method in this
110 zone. The reservoir pressure for coal bed gas is 5.0-7.0 MPa, the fluid pressure gradient
111 is 0.07-0.09 MPa/m, and the desorption pressure is 2.0-2.5 MPa. Blockages form easily
112 in this coal seam with a nondevelopment fissure.

113 **2.3 Medium Preparation and Injection**

114 A standard medium was used to provide acclimation and culture the *Methanogen*
115 *sp.* in the coal bed. The final concentrations of the compounds (kg/m³) were: yeast
116 extract, 0.50; NaHCO₃, 0.05; NH₄Cl, 2.30; KH₂PO₄, 1.30; K₂HPO₄, 0.70; NaCl, 0.05;
117 MgSO₄•7H₂O, 0.20; CaCl₂•2H₂O, 0.05. The final pH was 6.80, and the Cl⁻ ion
118 concentration was 44.59 mmol/L [9].

119 100 m³ medium were prepared for Z-7H well, and 30 m³ medium was prepared
120 for Z-159 well. The medium prepared with a 50 m³ tank car, and injection performed
121 with a fracturing truck (4150 8X8, Benz, Germany). The injection pressure was
122 adjusted and maintained at less than 4.00 MPa. The Z-159 well and Z-7H well were
123 sealed in March 11 and 26, 2015. And the wellhead pressure was monitored no less
124 than 2 months (Figure 3).

125 **2.4 Medium Diffusion Monitors**

126 Medium diffusion in coal seam was monitored by Cl⁻ concentration changes

127 within the underground water [9]. Concentrations of Cl⁻ were identified using an ICS-
128 1100 ion chromatography system (Thermo Scientific Dionex, Bannockburn, United
129 States). The underground water sample was collected in wells Z-159, Z-163, Z-167 and
130 Z-7H and used aseptic, anaerobic 50 ml tubes. High-speed multifunction centrifugation
131 (J2-MC, Beckman Instruments, Fullerton, United States) and 0.22um filter membrane
132 were utilized to separate the suspended particles and microbes in underground water
133 samples. Purified samples were stored at -80 °C in a refrigerator (DW-86L728J, Haier,
134 Qingdao, China).

135 **2.5 Microbial observation**

136 Observations of microbe formation, fluorescence detection and microbial counting
137 were performed using an Olympus BX41 (Olympus, Tokyo, Japan) fluorescence
138 microscope at 400 \times and 1000 \times magnification with a blood cell counting plate. The
139 F420 fluorescence method was used to test for the presence of methanogenic bacteria
140 (McInerney and Beaty, 1988,).

141 **2.6 CBM wells productivity monitor**

142 CBM production; methane, carbon dioxide, and nitrogen concentrations were the
143 parameters used to analyze gas productivity and identify the effects of biological coal
144 gasification. Gas production rates in each well were monitored using a gas roots flow
145 meter (model: FLLQ, Fuma, Wenzhou, China). Measurement accuracy of the FLLQ
146 gas roots flow meter was class 1.0, and flow range of this meter was 0.6-400 m³/h.
147 Methane and carbon dioxide analyses were performced using Agilent 7890A gas

148 chromatograph (Agilent, Tokyo, Japan). The nitrogen (carrier gas) flow rate was fixed
149 at 1 ml/min. The injection port was maintained at 150 °C, the oven temperature was 25
150 °C and the TCD was operated at 200 °C. Retention time for methane was 3.76 minutes
151 and 5.0 minutes for carbon dioxide. Calibration standards consisting of 40% methane,
152 20% carbon dioxide, 10% hydrogen and 30% nitrogen were injected at atmospheric
153 pressure to provide the calibration plot.

154 **2.7 DNA extraction and PCR**

155 100 mL of underground water in the Z-7H well was collected at the initial and
156 termination stages of this experiment. Bacteria was concentrated to 1 mL by
157 centrifugation (J2-MC, Beckman Instruments, Fullerton, United States) and stored in
158 cryovials at -80 °C (refrigerator type: DW-86L728J, Haier, Qingdao, China) until DNA
159 was extracted. The centrifugal force was set to 13000 × g, and centrifuged for 10
160 minutes. Total genomic DNA was extracted from 1 mL concentrated underground
161 water samples using E.A.N.A. Soil DNA Kit (OMEGA, Georgia, GA, USA) following
162 the manufacturer's instructions.

163 The V4 region of 16S rRNA gene was amplified with polymerase chain reaction
164 (PCR) using primers 515F (5'- GTG CCA GCM GCC GCG GTAA - 3') and 806R (5'-
165 GGA CTA CHV GGG TWT CTA AT - 3') [11]. The primer pair was reported to
166 generate an optimal community clustering with the sequence length in the V4 region
167 [12]. Each 20 µL PCR reaction was composed of 2 ng of template DNA, 0.2 µM primers,
168 0.2 mM dNTP, 2 µL 10×Pfu Buffer with MgSO₄ (Applied Thermo, California, CA,

169 USA), with H₂O up to 20 µL. The DNA amplification was performed under the
170 following cycling conditions: 1 cycle of 2 min at 95 °C, followed by 30 cycles with 30
171 s at 95 °C, 30 s at 55 °C and 1 min at 72 °C, then a final extension period of 5 min at 72
172 °C. Before sequencing on the Illumina MiSeq sequencing platform, we would amplify
173 the V4 region by adding sample-specific 10-base barcodes and universal sequencing
174 tags by Sample-Specific PCR protocol. The PCR procedure was as following: 1 cycle
175 of 95 °C at 2 min, 15 cycles of 95 °C at 15 s, 60 °C at 30 s, 68 °C at 1 min, the final step
176 was 1 cycle of 68 °C at 3 min. Equal volume of each barcoded product was pooled into
177 amplicon libraries and purified using Agencourt AMPure XP system (Beckman Coulter,
178 CA, USA) then examined on Agilent Bioanalyzer 2100 for product size distribution.
179 The purified libraries were quantified with Qubit® dsDNA HS Assay Kit (Life
180 Technologies, CA, USA) and used for sequencing.

181 **2.8 Sequencing and Data Analysis**

182 16S rRNA gene libraries were sequenced using an Illumina MiSeq (San Diego,
183 CA, USA) platform and the sequencing data were base-called and demultiplexed using
184 MiSeq Reporter v.1.8.1 (Illumina, SanDiego, CA, USA) with default parameters. The
185 adapter sequences and low quality reads were trimmed away from the raw reads with
186 Trimmomatic v.0.32 [13]. Then the clean reads were analyzed using the Uparse [14]
187 and Mothur pipeline [15] to generate operational taxonomic units (OTUs). The OTUs
188 were picked out at 97% similarity [16]. The resulting representative sequence set was
189 aligned against the core sequence database of the SILVA 123 release with the Mothur

190 script (www.mothur.org/) and given a taxonomic classification using RDP at the 80%
191 confidence level [17]. The richness estimators (ACE and Chao1) and diversity indices
192 (Shannon and Simpson) were calculated using the Mothur program. OTUs'
193 comparisons were performed using the Venn diagram package. Neighbor-joining
194 phylogenetic tree was used to investigate the similarity of species abundance using the
195 Unweighted Pair Group Method with Arithmetic mean (UPGMA) clustering method
196 [18].

197 **3. Results and Discussion**

198 **3.1 Medium Diffusion in Coal Bed**

199 The key factor needed to enhance the biodegradation of coal is nutrient distribution
200 in coal. Z-159 and Z-7H were the medium injection wells in the experiments. And the
201 medium was injected on March 10 and 25, 2015 respectively. Meanwhile, the Z-163
202 and Z-167 wells were the contrast wells. The coal bed water samples were collected
203 before the medium was injected, and on 7 February, 2016, after the Z-159 and Z-7H
204 wells resumed gas production. The change in of Cl⁻ ion concentration was served as an
205 indicator to assess whether the medium had diffused in surrounding wells field.

206 Chloride, in the form of the Cl⁻ ion, constitutes one of the major inorganic anions
207 in the underground water [19,20]. It originates from the dissociation of salts, such as
208 sodium chloride or calcium chloride, in underground water [21]. These salts, and their
209 resulting chloride ions, come from coal seam minerals. Medium diffusion in coal
210 changed the Cl⁻ ion concentration in the underground water, and as a result of

211 anthropogenic impacts [22]. The concentration of Cl⁻ in the underground water of wells
212 Z-7H and Z-159 was altered following nutrition medium injection, showing significant
213 variations in Cl⁻ concentrations due to the effects of nutrition distribution. Cl⁻
214 concentrations would increase in other wells if there was nutrition seepage flow into
215 the control area of neighboring wells.

216 Baseline Cl⁻ concentrations for the Z-159, Z-163, Z-167, and Z-7H wells were
217 considered to be stable at 100~110 mg/L. This value increased two to three times in 70
218 days, after the experiments were performed for the Z-159 and Z-7H wells. In contrast,
219 the Cl⁻ concentration within the Z-163 and Z-167 wells was maintained at about the
220 same level over the experimental period (shown in Table 1). These findings confirmed
221 that the distribution of the culture medium and the coal biogasification were active in
222 the Z-159 and Z-7H wells, and did not spread to the Z-163 and Z-167 wells.

223

224 Table 1 here

225 Table 1. Cl⁻ concentration, *Methanogen* sp. number, and gas concentrations changes,
226 before and during the experiments.

227

228 **3.2 Changes in the number of *Methanogen* sp.**

229 The biogasification of coal is performed through the collaboration of different
230 microorganisms. They include hydrolytic fermentation bacteria, fermenting bacteria,
231 and *Methanogen* sp., etc [19]. And these bacteria had been found in Fm 3[#], Fm 9[#] coal

232 bed in Qinshui basin [5,8]. As the terminal bacteria of coal biogasification process,

233 *Methanogen* sp. can indicate the development of methanogenic consortia for coal

234 biodegradation in coal bed [10]. The number of *Methanogen* sp. in the sample could be

235 observed by fluorescence microscopy, because of *Methanogen* sp. has a fluorescent

236 effect in 420 nm light[5,20]. On this condition, it has a positive correction between

237 biogasification of coal with the number of *Methanogen* sp.. Quantitative analyses of

238 *Methanogen* sp. were performed before the medium was injected, and on 7 February,

239 2016 when the Z-159 and Z-7H wells resumed gas production. Initial levels of

240 *Methanogen* sp. were lower than 1.25×10^5 per ml on average in the experimental and

241 contrast wells. The *Methanogen* sp. numbers increased from less than 1.25×10^5 to

242 5.60×10^7 and 7.60×10^7 per ml in the Z-159 and Z-7H wells with the medium diffusing

243 in the coal bed (shown in Table 1). Meanwhile, the number was stable at the original

244 level in the Z-163 and Z-167 wells. These findings confirmed that the methanogenic

245 consortia developed with intervention, and created biological conditions for

246 biogasification of coal.

247 **3.3 Effect Analysis of biogasification of coal**

248 Biogasification of coal was performed through the bio-fermentation of organic

249 compounds in the coal. 100 m³ and 30 m³ of medium were injected into the Z-7H and

250 Z-159 wells, and were used to provide main nutrients for microbial growth in the coal.

251 The Z-159 well resumed gas production on May 23, 2015 and terminated on February

252 16, 2017. And the Z-7H wells resumed gas production on June 7, 2015 and terminated

253 on August 14, 2017. The gasification of coal lasted 635 and 799 days, and yielded
254 74817 m³ and 251754 m³ CBM in Z-159 and Z-7H wells, respectively. The gas
255 production of contrast wells maintained the original characteristics during the
256 experiment (Figure 3). Especially, the Z-163 well maintained at non-gas productive
257 state during gas productivity has resumed in experimental wells.

258

259 Figure 3 here

260 Figure 3. Gas production (Qg) changes in experiment wells and in contrast wells
261 during experiment. The Z-7H and Z-159 were experiment wells. And Z-163 and Z-
262 167 were contrast wells. The Z-159 well resumed gas production on May 23, 2015
263 and terminated on February 16, 2017. And the Z-7H wells resumed gas production on
264 June 7, 2015 and terminated on August 14, 2017.

265

266 Ion tracers indicate that the nutrition diffused in the Z-159 and Z-7H wells in
267 experiments. With the effect of nutrition control, *Methanogen* sp. numbers increased,
268 from lower than 1.25×10^5 to more than 5.60×10^7 per ml, in nutrition injected wells.
269 These data were found to have a positive correlation with the changes in gas
270 productivity in certain wells.

271 In this experiment, gas concentrations showed certain changes, which were
272 influenced by the bio fermentation of coal. The yield of carbon dioxide, which as by-
273 products of coal biogasification, would influenced the CBM composition. Therefore,

274 the increase in the CO₂ content of the CBM could be another indication of the
275 biogasification phenomenon of the coal (indicated in Table 1). The gas components of
276 CBM in Z-167, which without influence of medium injection, were maintained at a
277 stable level.

278 **3.4 Analyses of changes in microbial community structure**

279

280 Figure 4 here

281 Figure 4 Coalbed microbial community structures before and after experiment. SHR
282 is microbial in raw coal bed before experiment. And SHC is coal bed microbial after
283 cultured.

284

285 Different microbial populations and coal constitute a coal bed ecological
286 community. Microbial community ecology evolution is closely related to changes of
287 coal bed environment factors. These factors include gas composition, nutrition, and
288 specific surface area of coal [8]. Biodiversity testing before and after the experiment in
289 Z-7H well had confirmed this evolution. Data indicated that microbial species have
290 significant changes with medium injection in coal.

291 There were 105 strains detected in high-throughput sequencing of the original coal
292 bed microbial community before the experiment. High relatively abundant genus was
293 as follows: *Propionibacterium* sp., *Balneimonas* sp., *Anoxybacillus* sp., *Cupriavidus*
294 sp., *Schlegelella* sp., *Clostridium* sp., *Clostridium* sp., *Pseudoalteromonas* sp.,

295 *Pseudoalteromonas* sp. etc. After cultured, meanwhile, the detected strains value in
296 High-throughput sequencing of the Z-7H well biome decreased to 85. And compare the
297 microbial community structure before and after experiment, only 11 species were the
298 common specie. And the number of common species with a relative abundance higher
299 than 0.5% is only four, which include: *Anoxybacillus_kestanbolensis* sp.,
300 *Escherichia_coli* sp., *Cupriavidus* sp., *Schlegelella* sp.. Analysis of the response of coal
301 bed biome to environmental changes and community evolution showed that two groups
302 of microorganisms were the most obvious. First of all was *Methanoculleus* sp. and
303 *Methanosarcina* sp., both of them belong to the family *Methanomicrobia* sp.. Most
304 *methanogen* sp. make methane from CO₂ and H₂. Others utilize acetate in the
305 acetoclastic pathway. In addition to these two pathways, species of *Methanosarcina* sp.
306 can also metabolize methylated one-carbon compounds through methylotrophic
307 methanogenesis. Such one-carbon compounds include methylamines, methanol, and
308 methyl thiols [21]. Only *Methanosarcina* sp. species possess all three known pathways
309 for methanogenesis, and are capable of utilizing no less than nine methanogenic
310 substrates, including acetate [22]. *Methanoculleus* sp. is differ from other methanogens,
311 it can use ethanol and some secondary alcohols as electron donors as they produce
312 methane [23]. And followed by *Anaerolinea* sp. and some species from *Clostridiales*
313 sp.. *Anaerolinea* sp. has a fermentative metabolism, utilizing carbohydrates as well as
314 proteinaceous carbon sources [24]. It produces acetate, lactate and hydrogen as by-
315 products of glucose fermentation [25]. For *Clostridiales* sp., *Peptococcaceae* sp. and

316 *Clostridiales* sp., they could produce butyric acid with organic fermentation. Varying
317 concentrations of acetic acid, lactic acid and/or ethanol, propanol or butanol are also
318 formed as fermentation products [26]. They provided nutrients for methanogens and
319 played an important roles in the new biome. The relative abundance of these microbe
320 was very low in original coal bed microbial community. The evolution of this coal bed
321 ecological community demonstrates the critical role of this experimental methods in
322 improving the gas production capacity in situ.

323 **4. Discussion**

324 Results from this research have demonstrated that biogasification of coal could be
325 utilized to enhance gas well productivity. The factor of Cl⁻ concentration changes had
326 been tested to assess the medium diffusion in coal. The baseline of this factor was stable
327 at 100-110 mg/L in original coal seam. This value increased two to three times after
328 experiment performed for 70 days in both experimental wells. This conclusion
329 confirmed that the injected medium was maintained within the experimental wells and
330 not diffused to the periphery. Furthermore, the range of nutrition influence was
331 controlled in the scope of Z-159 and Z-7H wells.

332 Quantitative analyses of *Methanogen* sp. were performed before and after
333 experiment with 420 nm fluorescence counting. The *Methanogen* sp. numbers
334 increased from less than 1.25×10^5 to 5.60×10^7 and 7.60×10^7 per ml in the Z-159 and Z-
335 7H wells with medium diffusing in the coal bed. The number changes of *methanogen*
336 sp. confirmed that the methanogenic consortia developed with intervention, and created

337 biological conditions for biogasification of coal. The resumption of gas production in
338 wells Z-159 and Z-7H confirmed the effect of CBM enhancement with biogasification
339 of coal. The gasification of coal lasted 635 and 799 days, and yielded 74817 m³ and
340 251754 m³ CBM in Z-159 and Z-7H wells, respectively.

341 High-throughput sequencing had been used to analysis the coalbed ecological
342 community evolution in experiment. The proliferation of *Methanomicrobia* sp.,
343 *Anaerolinea* sp. and *Clostridiales* sp. reflected the coalbed microbial community
344 changes with medium diffusion in coal. And the biome indicated that the
345 methanogenesis mechanism of the Sihe coalbed had a composite character.

346 **5. Acknowledgements**

347 The authors' acknowledge the contributions of the following companies for
348 allowing access to coal samples and other information used in this paper: Huabei Oil
349 Field, Fenghuangshan mining, J&D Technology Company. We thank Dr. Aikuan Wang
350 and Jiang He, China University of Mining and Technology, for instructions on data
351 analyses. This work was supported by the State Key Laboratory of Coal Resources and
352 Safe Mining Subject (grant number SKLCRSM17KFA08 and SKLCRSM19X012), the
353 Fundamental Research Funds for Central Universities (grant number 2014QNB41).

354 **References**

355 1. Wang H, Cheng Y, Wang W, Xu R. Research on comprehensive CBM extraction technology
356 and its applications in China's coal mines. *J Nat Gas Sci Eng.* 2014; doi:10.1016/j.jngse.2014.05.025
357 2. Liu Q, Cheng Y, Zhou H, Guo P, An F, Chen H. A Mathematical Model of Coupled Gas

358 Flow and Coal Deformation with Gas Diffusion and Klinkenberg Effects. *Rock Mech Rock Eng.* 2015;

359 doi:10.1007/s00603-014-0594-9

360 3. Yang TH, Xu T, Liu HY, Tang CA, Shi BM, Yu QX. Stress-damage-flow coupling model

361 and its application to pressure relief coal bed methane in deep coal seam. *Int J Coal Geol.* 2011;

362 doi:10.1016/j.coal.2011.04.002

363 4. Meng J, Nie B, Zhao B, Ma Y. Study on law of raw coal seepage during loading process at

364 different gas pressures. *Int J Min Sci Technol.* 2015; doi:10.1016/j.ijmst.2014.12.005

365 5. Xiao D, Peng SP, Wang BY, Yan XX. Anthracite bio-degradation by methanogenic

366 consortia in Qinshui basin. *Int J Coal Geol.* 2013;116–117: 46–52. doi:10.1016/j.coal.2013.06.008

367 6. Zhang Z, Qin Y, Bai J, Li G, Zhuang X, Wang X. Hydrogeochemistry characteristics of

368 produced waters from CBM wells in Southern Qinshui Basin and implications for CBM commingled

369 development. *J Nat Gas Sci Eng.* 2018; doi:10.1016/j.jngse.2018.06.024

370 7. Liang Y. Theory and practice of integrated coal production and gas extraction. *Int J Coal Sci*

371 *Technol.* 2015;2: 3–11.

372 8. Xiao D, Wang E-Y, Peng S-P, Wu J-Y. Responses of coal anaerobic fermentation fractures

373 development. *Meitan Xuebao/Journal China Coal Soc.* 2017;42. doi:10.13225/j.cnki.jccs.2016.1109

374 9. Xiao D, Peng SP, Wang EY. Fermentation enhancement of methanogenic archaea consortia

375 from an Illinois basin coalbed via DOL emulsion nutrition. *PLoS One.* 2015;10.

376 doi:10.1371/journal.pone.0124386

377 10. Barnhart EP, De León KB, Ramsay BD, Cunningham AB, Fields MW. Investigation of coal-

378 associated bacterial and archaeal populations from a diffusive microbial sampler (DMS). *Int J Coal*

379 Geol. 2013; doi:10.1016/j.coal.2013.03.006

380 11. Green MS, Flanagan KC, Gilcrease PC. Characterization of a methanogenic consortium

381 enriched from a coalbed methane well in the Powder River Basin, U.S.A. Int J Coal Geol. 2008;76: 34–

382 45. doi:10.1016/j.coal.2008.05.001

383 12. Schloss PD, Jenior ML, Koumpouras CC, Westcott SL, Highlander SK. Sequencing 16S

384 rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ. 2016;

385 doi:10.7717/peerj.1869

386 13. Xie XT, Kropinski AM, Tapscott B, Weese JS, Turner P V. Prevalence of fecal viruses and

387 bacteriophage in Canadian farmed mink (Neovison vison). MicrobiologyOpen. 2018.

388 doi:10.1002/mbo3.622

389 14. Allali I, Arnold JW, Roach J, Cadenas MB, Butz N, Hassan HM, et al. A comparison of

390 sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome.

391 BMC Microbiol. 2017; doi:10.1186/s12866-017-1101-8

392 15. Fosso B, Santamaria M, Marzano M, Alonso-Alemany D, Valiente G, Donvito G, et al.

393 BioMaS: A modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS. BMC

394 Bioinformatics. 2015; doi:10.1186/s12859-015-0595-z

395 16. Neves ALA, Li F, Ghoshal B, McAllister T, Guan LL. Enhancing the resolution of rumen

396 microbial classification from metatranscriptomic data using Kraken and Mothur. Front Microbiol.

397 2017; doi:10.3389/fmicb.2017.02445

398 17. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of

399 rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;

400 doi:10.1128/AEM.00062-07

401 18. McNeil NM, Alibali MW. You'll see what you mean: Students encode equations based on
402 their knowledge of arithmetic. *Cogn Sci*. 2004; doi:10.1016/j.cogsci.2003.11.002

403 19. Green MS, Flanagan KC, Gilcrease PC. Characterization of a methanogenic consortium
404 enriched from a coalbed methane well in the Powder River Basin, U.S.A. *Int J Coal Geol*. 2008;

405 doi:10.1016/j.coal.2008.05.001

406 20. Strapoć D, Picardal FW, Turich C, Schaperdorff I, Macalady JL, Lipp JS, et al. Methane-
407 producing microbial community in a coal bed of the Illinois Basin. *Appl Environ Microbiol*. 2008;74:

408 2424–2432. doi:10.1128/AEM.02341-07

409 21. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, Fitzhugh W, et al. The
410 genome of *M. acetivorans* reveals extensive metabolic and physiological diversity. *Genome Res*. 2002;

411 doi:10.1101/gr.223902

412 22. Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, et al. The *Methanosarcina*
413 *barkeri* genome: Comparative analysis with *Methanosarcina acetivorans* and *Methanosarcina mazei*
414 reveals extensive rearrangement within methanosarcinal genomes. *J Bacteriol*. 2006;

415 doi:10.1128/JB.00810-06

416 23. Asakawa S, Nagaoka K. *Methanoculleus bourgensis*, *Methanoculleus olentangyi* and
417 *Methanoculleus oldenburgensis* are subjective synonyms. *Int J Syst Evol Microbiol*. 2003;

418 doi:10.1099/ijss.0.02508-0

419 24. Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, et al. *Anaerolinea*
420 *thermolimosa* sp. nov., *Levilinea saccharolytica* gen. nov., sp. nov. and *Leptolinea tardivitalis* gen.

421 nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis

422 nov. and Caldilineae classis nov. in the . Int J Syst Evol Microbiol. 2006; doi:10.1099/ij.s.0.64169-0

423 25. Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y. Anaerolinea

424 thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous

425 thermophiles that represent a previously uncultured lineage of the domain bacteria at the subphylum

426 level. Int J Syst Evol Microbiol. 2003; doi:10.1099/ij.s.0.02699-0

427 26. Wiegel J, Tanner R, Rainey FA. An Introduction to the Family Clostridiaceae. The

428 Prokaryotes. 2006. doi:10.1007/0-387-30744-3_20

429

430 **Table**

431 Table 1. Cl⁻ concentration, *Methanogen sp.* number, and gas concentrations changes,
432 before and during the experiments.

	Well	Cl ⁻	<i>Methanogen sp.</i>	Gas Concentrations		
		Concentration	Number	% Vol		
				mmol/L	Per ml	CH ₄
Before the experiment	Z-159	1.92	<1.25 × 10 ⁵	97.21%	2.65%	0.14%
	Z-163	1.98	<1.25 × 10 ⁵	98.02%	1.95%	0.03%
	Z-167	1.96	<1.25 × 10 ⁵	97.52%	2.36%	0.12%
	Z-7H	2.03	<1.25 × 10 ⁵	97.82%	2.11%	0.07%
After the experiment	Z-159	5.40	5.60 × 10 ⁷	87.00%	12.88%	0.12%
	Z-163	2.01	<1.25 × 10 ⁵	97.45%	2.44%	0.11%
	Z-167	2.04	<1.25 × 10 ⁵	97.82%	2.03%	0.14%
	Z-7H	4.01	7.60 × 10 ⁷	79.95%	19.97%	0.08%

433

434

Legend

Basin boundary

Road

Province boundary

Qinshui

Linfen

Houma

Shanxi Province

Qinshui Basin

Anze

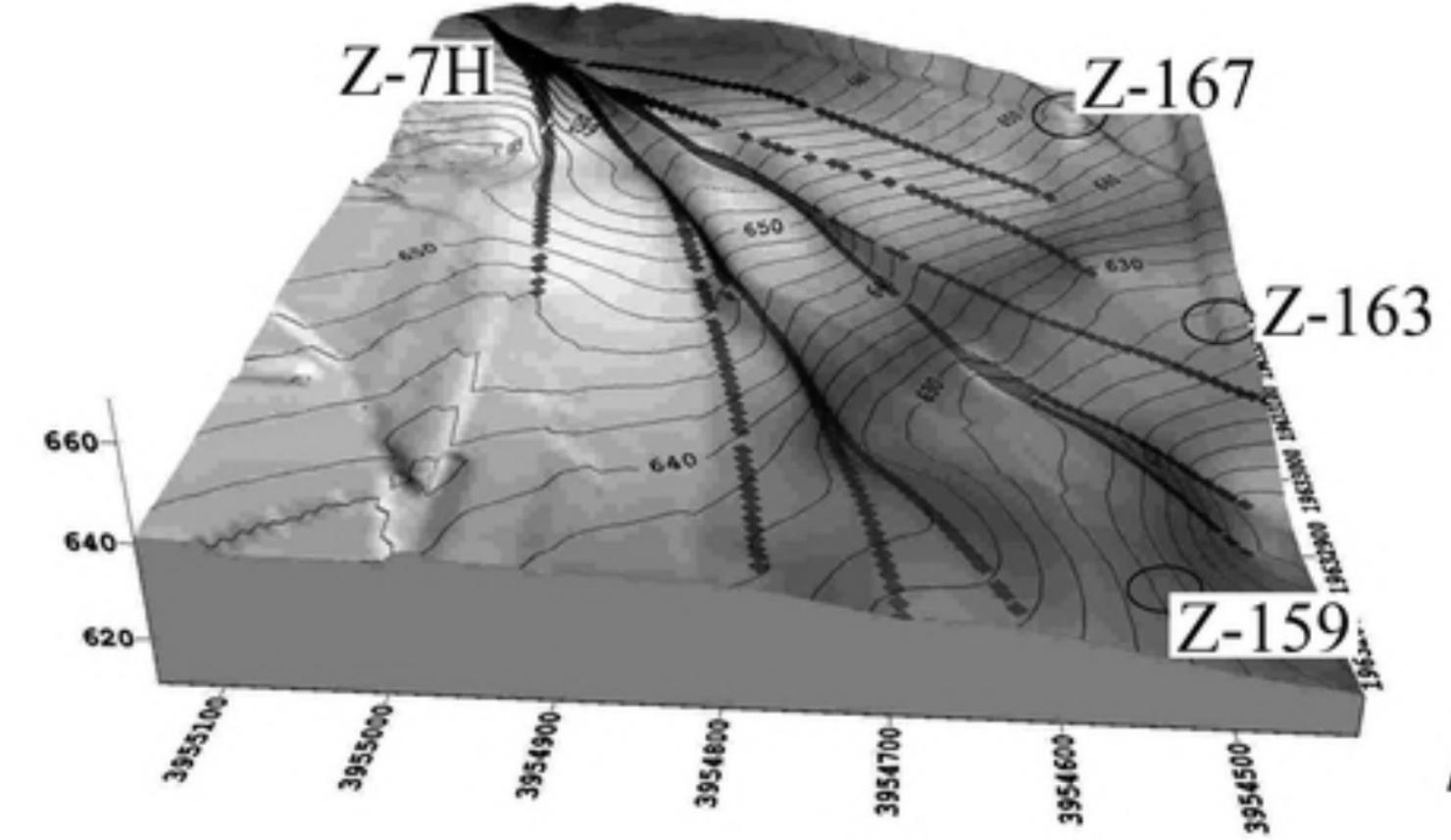
Changzhi

Gaoping

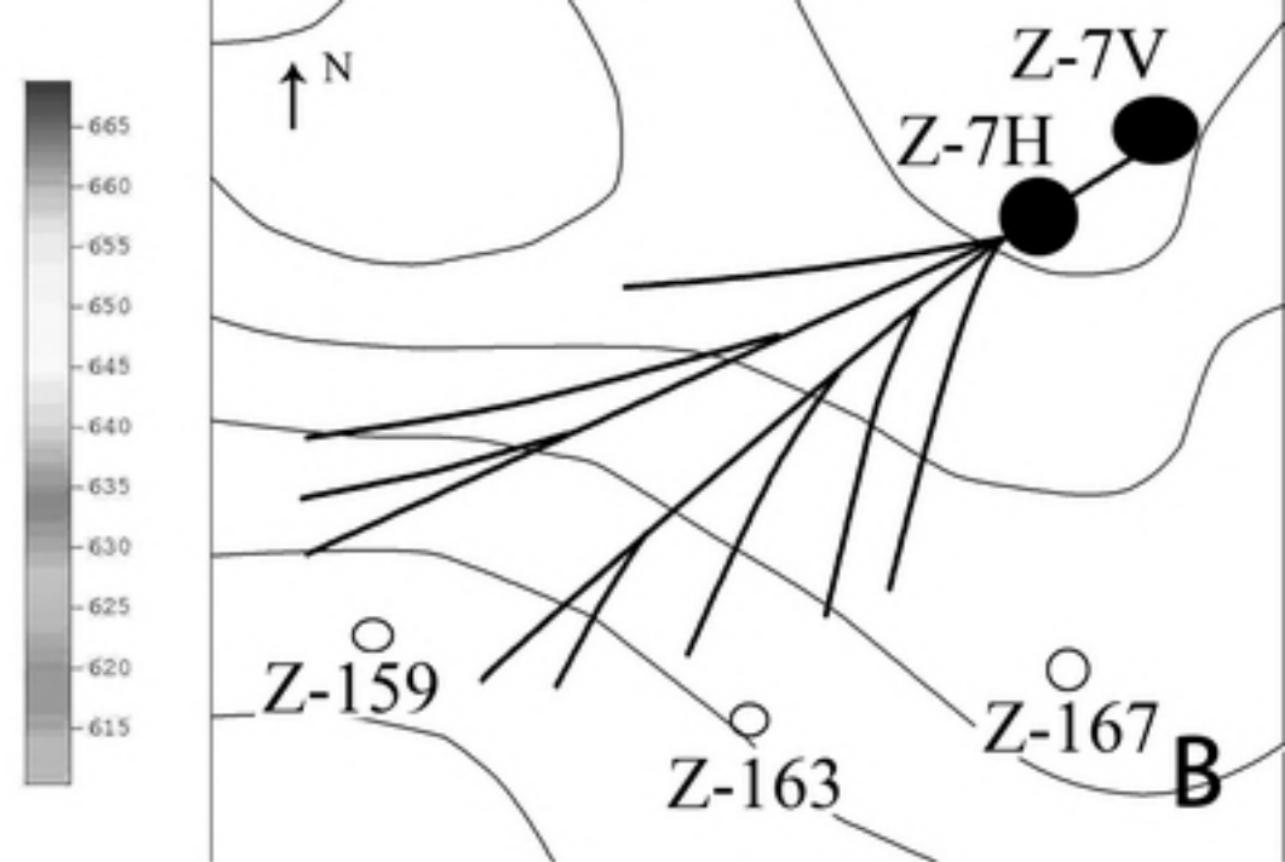
Jincheng

Henan Province

Jiaozuo


Luoyang

Zhengzhou


Hebei Province

Shexian Handan

Figure 1

A

B

Figure 2

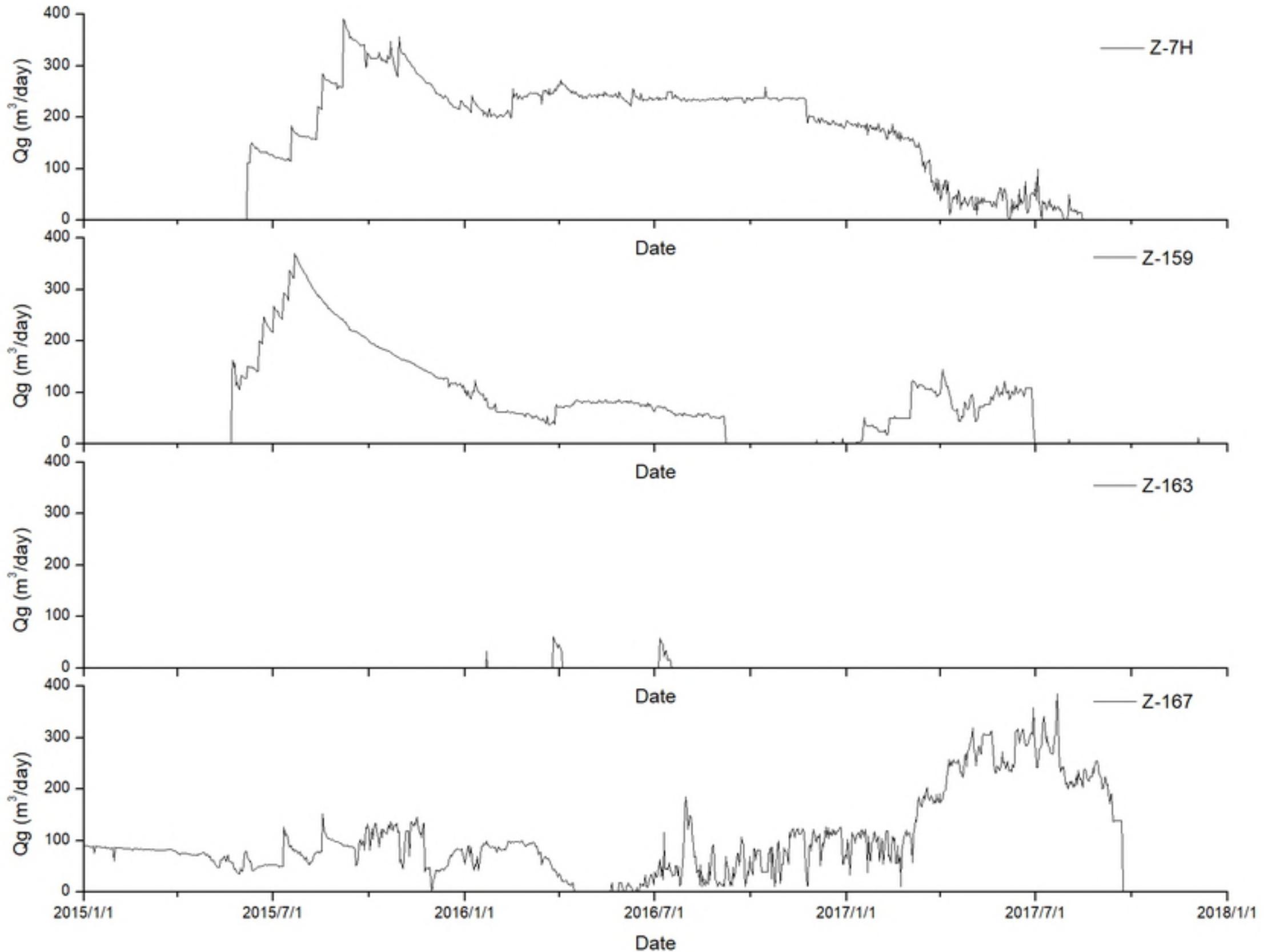


Figure 3

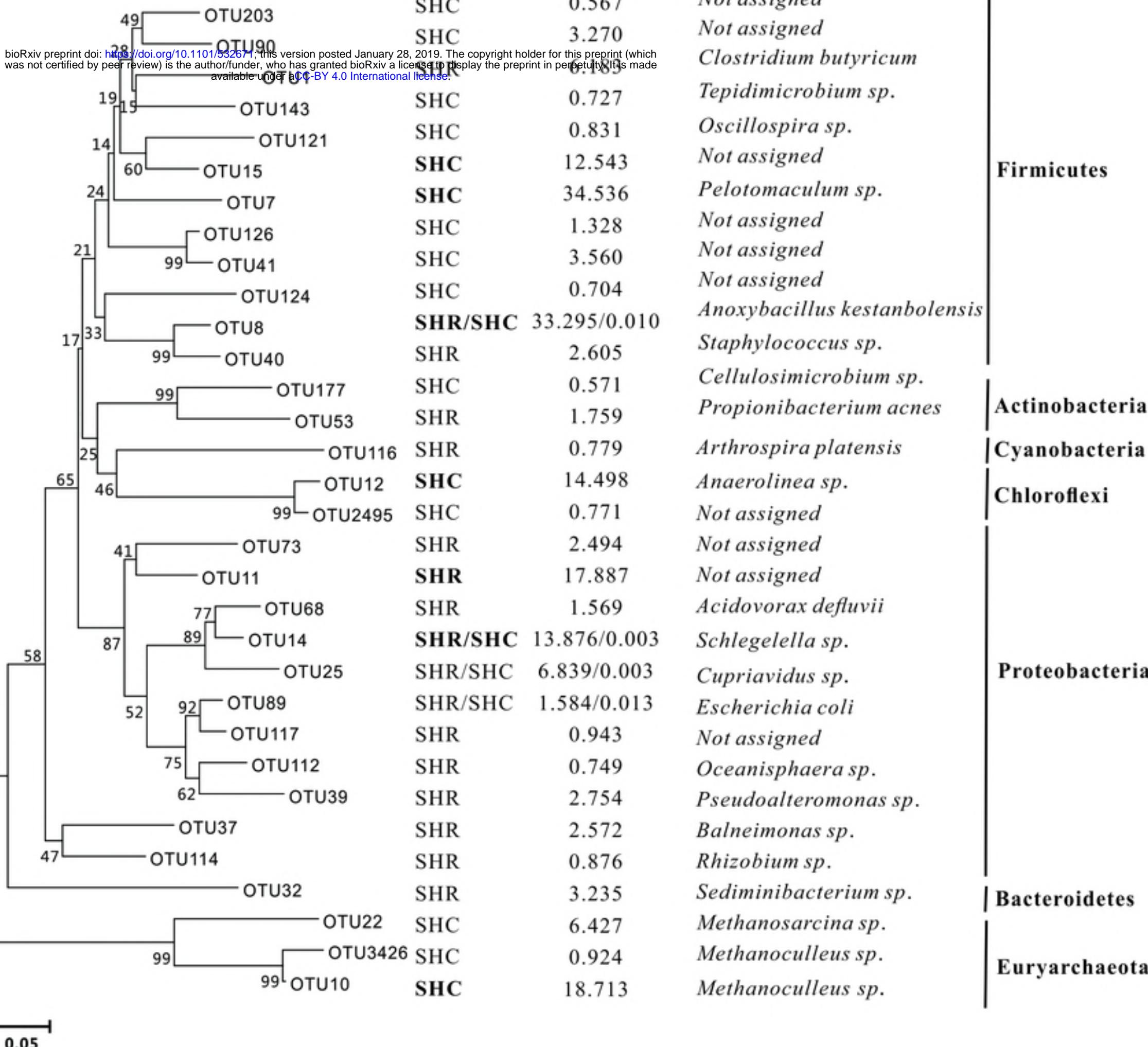


Figure 4