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Abstract

The use of antimicrobials in aquaculture is a common practice. Chile is second larger
producer of salmon worldwide, but unfortunately is the first consumer of antibiotics.
Tonnes of florfenicol and oxytetracycline yearly are used in the Chilean salmoniculture
to control the pathogens that threaten the sustainability of the industry. This excessive
use of antibiotics have selected populations of resistant bacteria from the sediments and
the water column that sorround the fish farms. In a recent work, our lab described the
high prevalence of multiresistant bacteria and Antibiotic Resistance Genes (ARGs) in
the gut microbiota of Antlactic salmon (Salmo salar) treated with high doses of
antibiotics. In this work, we revisited the analysis of the previously described gut
multiresistant bacteria grouped in banks of florfenicol resistant isolates (FB) and
oxytetracycline resistant isolates (OB) looking for the presence of integron-integrase
elements. These elements have been described as an important players in the
Antimicrobial Resistance (AMR) phenomenon and they are considered a good markers
of the anthopogenic activities pollution. The results showed that the 100% of the
multiresistant isolates present the class 1 intagrase. Despite this result, no isolate from
FB showed the typical structure of class 1 integrons: the presence in 3’-CS of
qacEA1/sull genes. While in OB, only 23% of the isolates showed this characteristic
structure. Additionally, only four isolates of OB and none of FB showed recognisable
gene cassettes and no genes of resistance to florfenicol and oxytetacycline appeared in
them. Of these four isolates, three of them showed a single gene cassette containing the
dfrA-14 gene, which confers resistance to trimethoprim. Whilst the other isolate showed
the aac(6’)31-gqacH-bla,,,, genes, which confers resistance to aminoglycosides,
quaternary ammonium compounds and beta-lactams, respectively. Finally, it was

possible to demonstrate that the described integrons probably come from anthropogenic
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51 activities like clinical settings and/or industrial animal husbandry, since they show
52 integrases proteins identical to those carried by human pathogens.
53
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76 Introduction

77 According to the FAO report, Chile is the second largest producer of farmed
78  salmon after Norway, but at the same time, it is the country that consumes the greatest
79  amount of antimicrobials in this activity [1]. This is because the constant infectious
80  diseases that lead to the death of millions of fish. The main disease affecting the three
81  salmonid species farmed in Chile, Atlantic salmon (Salmo salar); Coho salmon
82  (Oncorhynchus kisutch); and Rainbow trout (Oncorhynchus mykiss), is the Salmon
83  Rickettsial Syndrome (SRS), caused by the facultative intracellular bacterium
84  Piscirickettsia salmonis [2]. Although this pathogen has been described in all major
85  salmon producing countries, such as Norway, Canada, Scotland, Ireland and Australia
86  [3-5], both the genetic conditions of the Chilean isolates and the particular
87  environmental conditions of the fjords of southern Chile make it much more aggressive
88  than those described in other countries [2]. In addition to the extreme aggressiveness
89  shown by this bacterium in Chile, none of the 40 vaccines available provide sufficient
90  protection to prevent the development of the disease [6—8]. All of the above have led to
91  the use of antibiotics as the main way to control this bacterium.

92 Between 2007 and 2017, almost 5500 tonnes of antibiotics have been used as an
93  active substance, reaching an average of 500 g of antibiotic per tonne of salmon
94  produced [9]. According to the latest report on the use of antimicrobials by the Servicio
95  Nacional de Pesca y Acuicultura (National Fisheries and Aquaculture Service) (Spanish
96  acronym: Sernapesca), 393 tonnes of antibiotics were used in 2017, of which 92.2%
97  corresponded to florfenicol, 6.7% to oxytetracycline and 1% to flumequine [9]. The
98  main route of administration of these antibiotics is through medicated food [10,11]. The
99  administration of medicated food fundamentally affects the gut microbiota of the fish

100  [12], since the constant exposure to antimicrobials leads to the selection of resistant
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101  bacteria and the increase of horizontal gene transfer (HGT) of those elements containing
102  Antibiotic Resistance Genes (ARGs) [13]. In a recent article published by our
103  laboratory, we have described that subsequent treatments with antibiotics select
104  multiresistant bacteria with a high prevalence in ARGs both to florfenicol and
105  oxytetracycline in the gut microbiota of fish [14].

106 One of the most important elements in the dispersal capacity of the ARGs are
107  the Integron-integrases systems [15]. These elements are bacterial genetic platforms that
108 allow the acquisition, storage, cleavage and rearrangement of genes located in
109  mobilizable elements called gene cassettes [16]. The integron structure is formed by; 1)
110  an integrase, whose function is recombine circularized DNA known as gene cassettes;
111  i1) a recombination site called a#t/ and; iii) a promoter, PC, that control the genetic
112 expression of the captured genes [17,18]. Integrons participate actively in the bacterial
113 evolution and they are vehicles of gene exchange between the environmental resistome
114  and commensal and pathogenic bacteria [19]. According to the amino acid sequence of
115 integrase proteins, the integrons have been classified into 5 classes [15], however, only
116  the class 1, 2 and 3 integrons are highly associated with the successful dispersion of the
117  ARGs [20]. Even more the class 1 integrons are, precisely, the most described in
118  pathogenic bacteria from humans and animals and, in turn, they are the most abundant
119  integrases in the clinical environment since most of them show ARGs giving resistance
120  to a wide variety of antimicrobials [19]. Thanks to these characteristics, class 1
121  integron-integrases elements have recently been proposed as indicators of pollution by
122 Antibiotic Resistance Bacteria (ARB), ARGs, and other anthropogenic pollutants [21]
123 Taking into account the above mentioned facts, the main objective of this work
124 is to determine the prevalence of class 1, 2 and 3 integron-intagrases in banks of

125  bacteria resistant to florfenicol and oxytetracycline, which were obtained from the gut
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126  microbiota of fish coming from four fish farms subjected to treatments with high doses
127  of antibiotics. Moreover, we have been able to demonstrate that these class 1 integron-
128  integrases come from the other anthropogenic activities like clinical settings or lan
129  industrial animal husbandry different to the aquaculture and that the constant exposure
130  to antibiotics allows them to remain in the salmon farming system in Chile. The
131  presence of these elements, indicators of contamination by human activities, in the gut
132 microbiota of fish, make this system a perfect environment for the exchange of ARGs
133 between environmental bacterial and fish commensal bacteria. Finally, these genetic
134  elements could be easily released to the environment through the faeces of the fish.

135

136  Materials and Methods

137  Banks of resistant bacteria to florfenicol and oxytetracycline

138 For this study, characterized banks of resistant bacteria to florfenicol and
139  oxytetracycline isolated in our lab were used [14]. Shortly, four Atlantic salmon (Salmo
140  salar) fish farms were chosen, located in the Aysén Region, North Patagonia, Chile.
141  The farms were selected because at the time of the sample all of them had applied more
142 than one medicated food treatment with antibiotics. Bacteria were isolated from the
143 faeces and the intestine of the fish and they were plated in TSA medium and incubated
144  at 15, 25 and 37 °C. Minimal Inhibitory Concentration (MIC) to florfenicol and
145  oxytetracycline for all isolates were estimated. Those isolated showing a MIC >128
146  pg/mL for florfenicol and >32 pg/mL for oxytetracycline were considered to be
147  resistant bacteria, according to EUCAST clinical standards for enterobacteria group.
148  Both banks were taxonomically characterized by amplification and sequencing of the
149 16S gene. The bank of bacteria resistant to florfenicol (FB) consists of 47 isolates, while

150  the bank of bacteria resistant to oxytetracycline (OB) consists of 44 isolates [14]. This
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151  study was carried out in accordance with law 20,380 regarding animal welfare, as set
152  out by the Chilean Health Ministry in the use of wild or protected animal species in
153  biomedical research and approved by the National Fisheries Service (SERNAPESCA)
154  and the Pontificia Universidad Catdlica de Valparaiso Bioethical Committee.

155

156  DNA extraction and manipulation

157  Total DNA of all isolates was extracted using the AxyPrep™ Bacterial Genomic DNA
158  Miniprep Kit (Axygen Biosciencies, USA) following the manufacturer's instructions.
159  All PCR products were purified from the gel using the UltraClean® GelSpin® DNA
160  extraction kit (MoBio, USA). All PCR products were cloned using the pCR2.1 TOPO™
161 TA plasmid (Invitrogen, USA). All plasmids were extracted with the E.Z.N.A.™

162 Pasmid mini kit Omega Bio-Tek, USA).

163

164  Detection of class 1, 2 and 3 integrases in resistant banks of bacteria

165 In order to determine and characterize the presence of integron-integrase
166  elements in the banks of bacteria resistant to florfenicol and oxytetracycline, partial
167  sequences of the genes which encode for integrase proteins intl, int2 and int3 were
168  amplified. With this purpose, the primers Int1F-Int1R [22], Int2F-Int2R and Int3F-Int3R
169  [23]were used. Primer used in this study are collected in table 1.

170
171  Characterization of class 1 integrons

172 In order to characterize the complete structure of the class 1 integrons, the su//
173 and gacEAl (3°-CS) genes were amplified, using specific primers in the class 1

174  integrase positive isolates. Hence, the primers SullF-SullR [24] and qacEAIF-
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175 qacEAI1R [25] were used. Furthermore, and in order to amplify gene cassettes contained
176  in the variable region, the primers Hep58 and Hep59 were used according to White et
177  al 2000 [26]. The sequence of the primers and the PCR conditions are collected in Table
178 1. All PCR products were cloned in the pCR2.1 TOPO™ TA (Invitrogen, USA) plasmid
179  and sequenced. All sequences were analysed using the BLAST program [27] and the
180  variable regions were assembled using the CLC Genomics Workbench 10 (QIAGEN).
181  The complete sequence of the integrons were deposited in the GenBank database.

182  Accession numbers of the complete class 1 integrons described are collected in table 4

Primer . Annealing Fragment
name Primer sequence Product temp (°C) size (pb) Reference
intlF 5-CAGTGGACATAAGCCTGTTC-3' .
intIR 5'-CCCGAGGCATAGACTGTA-3' Class 1 integrase gene 59 160 (22]
int2F 5'-GTAGCAAACGAGTGACGAAATG-3' .
int2R 5'-CACGGATATGCGACAAAAAGGT-3' Class 2 integrase gene 59 788 (23]
int3F 5-GCCTCCGGCAGCGACTTTCAG-3'. .
int3R 5'-ACGGATCTGCCAAACCTGACT-3' Class 3 integrase gene 59 o7 23]
sullF 5-CTTCGATGAGACCCGGCGGC-3'
sullR 3-GCAAGGCGGAAACCCGCGCC-3' Sulfonamide resistance gene 65 436 [24]
qacEIF | 5-ATCGCAATAGTTGGCGAAGT-3' Quaternary ammonium o 150 25
qacEIR | 5-CAAGCTTTTGCCCATGAAGC-3 compounds resistance gene
hep58 5-TCATGGCTTGTTATGACTGT-3' Variable region of class 1 .
hep39 5-GTAGGGCTTATTATGCACGC-3' integrons 59 Variable (26]
int0l-F | 5-CTACCTCTCACTAGTGAGG 3'
int01-R 5-ACAGTCATAACAAGCCATGA 3' Complete class 1 integrase gene 58 1014 This study
183  Tablel: Primers used in this study
184
185  Phylogenetic relationship of the class 1 integrase proteins
186 In order to identify the origin of class 1 integrase proteins, the full sequence was

187  amplified using the primers intO1-F and intO1-R (Table 1). Furthermore, an extensive
188  search for class 1 integrase proteins from different environments such as soil, fresh
189  water, sea water and human pathogens were performed using the INTEGRALL
190  database [28], with the purpose of identifying the phylogenetic origin of the integrase

191  proteins from the banks of oxytetracycline and florfenicol. For the construction of the
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phylogenetic tree, the amino acid sequences from integrase proteins were used. The
analysis of these sequences was performed using MEGA7 applying the maximum
likelihood methods with 1,000 bootstraps. Accession number for the complete sequence

of the integrases are collected in the supplementary table 1 (Table S1)

Results

Prevalence of integron-integrase elements in florfenicol and

oxytetracicline isolate-banks

In order to determine the prevalence of the three types of integron-integrases
elements, the search was carried out by PCR in both banks of resistant bacteria. We
were able to identify that 100% of the isolates from both banks was positive for class 1
integrases (Tables 2 and 3). However, we were not able to find class 2 and 3 integrases.
Furthermore, a search for the conserved elements of class 1 integrons of genes su/l and
qgacEA1 was made. One of the most important findings is that, despite all isolates of FB
were positive for the class 1 intagrase, none of them was a carrier for the genes su/l and
qacEA1 (Table 2). Likewise, 57% of the isolates showed the gene sul/l in OB, while
only 27% showed the gene gacEA1. Similarly, 23% showed both genes, which is the
typical structure of a class 1 integron. Without a doubt, the most important feature of an
integron is its variable region. Out of the 44 isolates of OB, only four were positive for
the variable region (Table 3) and two isolates were found in different isolates of the
same species Serratia proteomaculans. In the same way, another variable region was

found in one of the important pathogens of salmon farming: Aeromonas salmonicida.

Source Florfenicol Bank Strain | intl | sull | qacEAl Vrzlgﬁ)l;le Resistance phenotype Origin
- Pseudomonas fragi 13H4 + - - - AMP, CHL, ERY FLO, OTC F

g Pseudomonas sp. 13G1 + - - - AMP, CHL, ERY, FLO, OTC, TET F

= Pseudomonas fragi 7C5 + - - - AMP, CHL, ERY, FLO, OTC, TET F
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Pseudomonas fragi 5B1 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
Pseudomonas fluorescens TA3 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
Pseudomonas sp. 4B2 + - - - AMP, CHL, ERY, FLO, OTC, TET F
Serratia sp. 4D1 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
Pseudomonas sp. 9A1 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
aP Zss;’o”;gr’””‘l’;fg 8c2 | + - - - AMP, CHL, ERY, FLO, OTC, TET F
Serratia sp. 9A2 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
Serratia sp. 1B4 + - - - AMP, CHL, ERY, FLO, OTC, TET F
Pseudomonas fragi 1E2 + - - - AMP, CHL, ERY, FLO, OTC, TET F
Pseudomonas fluorescens 2B4 + - - - AMP, CHL, ERY, FLO, OTC, TET F
Pseudomonas sp. 1D2 + - - - AMP, CHL, ERY, FLO, OTC, TET I
Pseudomonas fragi 6A4 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
Pseudomonas sp. 6C5 + - - - ?E/,[FP’ CHL, ERY, FLO, KM, OTC, F
_ Pseudomonas sp. 5B8 + - - - AMP, CHL, ERY, FLO, OTC 1
g Pseudomonas fluorescens 6H4 + - - - ?%P’ CHL, ERY, FLO, KM, OTC, 1
= Pseudomonas sp. 5C8 + - - - AMP, CHL, ERY, FLO, KM 1
Pseudomonas fluorescens 7B8 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
Pseudomonas fluorescens 6D3 + - - - FLO, OTC, TET F
5 ;yi”hdr"o n;%f 6A5 | + - - - FLO, KM, OTC, TET I
5 Ssye[’j;’r”o’;%f 467 | o+ | - - - AMP, CHL, ERY, FLO, OTC 1
Pseudomonas sp. 6H3 + - - - AMP, CHL, ERY, FLO, KM, TET F
Pseudomonas sp. 4D7 + - - - AMP, CHL, ERY, FLO, OTC, TET F
Pseudomonas sp. 1A8 + - - - AMP, CHL, ERY, FLO, KM 1
Pseudomonas sp. 1C7 + - - - AMP, CHL, ERY, FLO, KM F
Pseudomonas migulae 3C4 + - - - AMP, CHL, ERY, FLO F
Pseudomonas fluorescens | 4A11 + - - - AMP, CHL, ERY, FLO, OTC, TET F
= Pseudomonas migulae 7F11 + - - - AMP, CHL, ERY, FLO, TET 1
E Hafnia sp. 6B1 + - - - AMP, CHL, ERY, FLO, OTC, TET F
= Pseudomonas fragi 8B12 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
Pseudomonas fluorescens | 8F12 + - - - AMP, CHL, ERY, FLO, OTC, TET F
Pseudomonas fluorescens | 11H8 + - - - AMP, CHL, ERY, FLO, KM F
Pseudomonas sp. 9F10 + - - - AMP, CHL, ERY, FLO, KM 1
Aeromonas molluscorum 9E11 + - - - AMP, CHL, ERY, FLO 1
Pseudomonas jessenii 1G10 + - - - AMP, CHL, ERY, FLO 1
Pseudomonas sp. 1H11 + - - - AMP, CHL, ERY, FLO, OTC, TET F
Pseudomonas sp. 1F11 + - - - AMP, CHL, ERY, FLO, OTC, TET F
Pseudomonas sp. 3A8 + - - - AMP, CHL, ERY, FLO F
E Pseudomonas fragi SB4 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
E‘ Pseudomonas sp. 4C3 + ) ) ) ?E{[ﬁ, CHL, ERY, FLO, KM, OTC, F
Pseudomonas sp. 10G1 + - - - AMP, CHL, ERY, FLO F
Pseudomonas sp. 8A7 + - - - AMP, CHL, ERY, FLO, OTC 1
Pseudomonas sp. 9B4 + - - - AMP, CHL, ERY, FLO 1
Pseudomonas sp. 9C6 + - - - AMP, CHL, ERY, FLO F
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Table 2: Florfenicol bank, antibiotic resistance profile and detection of class 1
integron elements Antibiotics used, AMP (ampiciline), CHL (chloramphenicol), CIP
(ciprofloxacin), ERY (erythromycin), FLO (florfenicol), KAN (kanamycin), TET
(tetracycline). Resistance levels was defined by the EUCAST values for any antibiotic
for enterobacteria group. AMP >64 ng/ml, CHL >32 pg/ml, CIP >4, ERY >16 pg/ml,
FLO >128 pg/ml, TET >32 pg/ml. Origin: F= Fecal matter; I= Intestine.

Source Oxitetracycline Bank Strain intl | sull | qacEAl Vrirgiii:)l:lle Resistance phenotype Origin
Serratia proteamaculans P151C9 + + - - AMP, CHL, ERY, FLO, OTC, TET 1
Serratia proteamaculans P151E2 + + - - AMP, CHL, ERY, FLO, OTC, TET 1
Serratia proteamaculans 25P1E12 + + - - AMP, CHL, ERY, FLO, OTC, TET F
Serratia proteamaculans 30P1XC9 + + - - %2/_11,[)’ CHL, ERY, FLO,KM, OTC, 1
Serratia proteamaculans 30P1XC8 + + - + CHL, ERY, FLO, OTC, TET 1
Serratia proteamaculans 30P1XD3 + + - + AMP, CHL, ERY, FLO, OTC, TET 1
Serratia proteamaculans 30PF8 + + + - CHL, ERY, FLO, OTC, TET F
Serratia proteamaculans 30PF10 + + - - AMP, CHL, ERY, FLO, OTC, TET 1
E Serratia proteamaculans 30PF11 + + - - CHL, ERY, FLO, OTC, TET 1
E Serratia proteamaculans 30P1XEIO | + + - - AMP, CHL, ERY, FLO, OTC, TET 1
Pseudomonas fragi 30P1XB10 + + + - CHL, FLO, OTC, TET F
Pseudomonas fragi 25P1H2 + + + - CHL, ERY, FLO,KM, OTC, TET 1
Pseudomonas fragi P30F12 + - - - CHL, ERY, FLO, OTC 1
Pseudomonas fragi 25P1D4 + + + - %2/_11,[)’ CHL, ERY, FLO,KM, OTC, 1
Pseudomonas fragi 30P1XE12 | + - - - AMP, CHL, ERY, FLO, OTC, TET F
Shewanella baltica 30P1XB8 + + + - CHL, FLO, OTC, TET F
Hafnia alvei 25P3D1 + - - - AMP, CHL, ERY, FLO, OTC, TET 1
Rouxiella chamberiensis 30PXG6 + + - - AMP, CHL, FLO, OTC, TET 1
Rouxiella chamberiensis 154F5 + - - - AMP, CHL, FLO, OTC, TET F
Zzt"aori‘;;;ffc’zz 25P2A9 | + - - - AMP, CHL, ERY, FLO, OTC, TET, F
Brochothrix thermosphacta P30XA10 + + - - ?E{IFP’ CHL, ERY, FLO,KM, OTC, F
Brochothrix thermosphacta P30XB10 + - - - AMP, CHL, FLO, OTC, TET 1
= Rouxiella chamberiensis 30PXB9 + + + - AMP, CHL, FLO, OTC, TET F
E Rahnella sp. 30PXF7 + - - - AMP, CHL, FLO, OTC, TET I
Rouxiella chamberiensis P30XB3 + - - - AMP, CHL, ERY, FLO, OTC, TET F
;Z?:’a"ri‘:nc;jfc’m P30XD4 | + . + - AMP, CHL, ERY, FLO, OTC, TET F
ZZ;Z:Z%ZCZZZ P30XD5 | + - - - AMP, CHL, ERY, FLO, OTC, TET I
zaa;;’:rifnc;jfc’zz P30XG8 | + - - - AMP, CHL, FLO, KM, OTC, TET F
Serratia proteamaculans 25P1F12 + + - - AMP, CHL, ERY, FLO, OTC, TET F
= Brochothrix thermosphacta 25P3C5 + - - - FLO, OTC, TET 1
E Brochothrix thermosphacta 30P1XG3 + + - - CHL, ERY, FLO, OTC, TET F
= Brochothrix thermosphacta P30C3 + - - - CHL, FLO, OTC, TET 1
Brochothrix thermosphacta P30C4 + + - - AMP, CHL, ERY, FLO, OTC, TET 1
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Brochothrix thermosphacta P30C5 + - CHL, FLO, OTC, TET 1
Shewanella hafniensis 30PF3 + + CHL, FLO, OTC, TET F
Shewnella vesiculosa 15P2G11 + + + CHL, ERY, FLO, OTC F
Shewanella putrefaciens 25P3F1 + - ERY, FLO, OTC,TET, STR 1
Shewanella putrefaciens 15P3A4 + - AMP, CHL, ERY, FLO, OTC, TET F
> Kluyvera intermedia 15P2D11 + - AMP, CHL, ERY, FLO, OTC, TET F
E Kluyvera intermedia 15P2G8 + - AMP, CHL, ERY, FLO, OTC, TET 1
= Psychrobacter nivimaris 15P2H7 + + + - CHL, ERY, FLO, OTC F
Pseudomonas baetica 25P2F9 + + + + AMP.ERY, FLO, OTC 1
Pseudomonas fragi 25P2F4 + + - - CHL,ERY, FLO, OTC, TET F
Aeromonas salmonicida 30PB8 + + + + ERY, FLO, OTC, TET F

Table 3: Oxytetracycline bank, antibiotic resistance profile and detection of class 1
integron elements Antibiotics used, AMP (ampiciline), CHL (chloramphenicol), CIP
(ciprofloxacin), ERY (erythromycin), FLO (florfenicol), KAN (kanamycin), TET
(tetracycline). Resistance levels was defined by the EUCAST values for any antibiotic
for enterobacteria group. AMP >64 pg/ml, CHL >32 pg/ml, CIP >4, ERY >16 pg/ml,
FLO >128 pg/ml, TET >32 pg/ml. Origin: F= Fecal matter; I= Intestine.

Identification of gene cassettes in class 1 integrons

In order to identify possible resistance genes contained in the positive variable
regions found in the bank of oxytetracycline resistant bacteria, the potential gene
cassettes, amplified from the variable region, were sequenced and identified (Table 4).
It was possible to identify gene cassettes in the strains Pseudomonas baetica 25P2F9
and Aeromonas salmonicida 30PB8, both isolated from fish farm IV. The gene cassette
found in the isolate of Pseudomonas baetica contained the genes aac(6’)31-gqacH-bla,y,.
> which encodes for both aminoglycoside adenylyltransferase - a protein resistant to
quaternary ammoniums-, and for oxacillin-hydrolyzing class D beta-lactamase,
respectively. With regard to Aeromonas salmonicida 30PB8, it was possible to identify
the gene dfrAl4 which encodes for a trimethoprim resistance determinant, a
dihydrofolate reductase enzyme. Finally, both isolates from the species Serratia
proteomaculans showed the same gene cassette with the gene dfr414 (Figure 1). The

other strains containing the genes sull and gacAE, in the typical structure of a class 1
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integron, showed no gene cassettes in the variable region, which implies that the system
has a great potential to incorporate and express new antibiotic resistance genes.
Nonetheless, it is important to note that none of the antibiotic resistance genes to
florfenicol and oxytetracycline described in both banks by Higuera-Llanten et al 2018
[14] are found in the integrons of the isolated bacteria. Currently, a complete
metagenomic analysis is being carried out to find the relationship between these
resistance determinants and these genetic elements that could probably be established in

non-culturable bacteria.

Oxitetracycline Bank Strain Source intl gittt: Gene cassettes® Size (bp) Integron (1;:1[111[1);::( Accesion
Serratia proteamaculans 30P1XC8 Farm I + + dfrA14 483 MG738686
Serratia proteamaculans 30P1XD3 Farm I + + dfr414 483 MG738687
Pseudomonas baetica 25P2F9 Farm IV + + aac(6')-31 : qacH, | 547/333/828 MG738684
oxa-
Aeromonas salmonicida 30PB8 Farm IV + + dfrA14 483 MG738685

Table 3: Gene cassette composition in positive Class 1 integrase variable region
strains. Genes found: 1) dfr4/4 (Trimethoprim-resistant dihydrofolate reductase),
resistance to trimethoprim; ii) aac(6')-31 (Aminoglycoside adenylyltransferase),
resistance to aminoglycosides; iii) gacH (Quaternary ammonium protein), resistance to
quaternary ammonium compounds and; iv) oxa-2 (Oxacillin-hydrolyzing class D beta-

lactamase), resistance to beta-lactam antibiotics.

Figure 1. Scheme of Class 1 integrons. A) Basic class 1 integrons platform.5” CS:
5’- conserved segment consists of int/ (gene which encodes for integrase), Pc
(promotor), attl (recombination site). Structured gene cassettes formed by the
recombination site at##C. 3’ CS: 3’-conserved segment consists of the genes: 1) gacEAI

(resistance to quaternary ammonium); ii) su// (resistance to sulfonamides) and; iii) orf3,
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265  whose function is completely unknown. B) Integrones found in the microbiota of
266  Salmo salar.

267

268  Class 1 integrases isolated from gut microbiota of Salmo salar show a

269  close phylogenetic relationship with clinical important bacteria

270 In order to evaluate the phylogenetic relationship and, therefore, the possible
271  origin of class 1 integrases identified in the gut microbiota of Salmo salar, the complete
272 ORF of 23 genes of the class 1 integrase from both banks was obtained, which were
273  translated into their amino acid sequence. It is worth noting that it was not possible to
274  obtain the gene int/l in all the isolates with the primers used. Despite this, a
275  phylogenetic analysis was carried out with the 23 integrases of the isolates from both
276  banks of resistant bacteria, along with various integrases obtained from different
277  environments such as sea water, soil, fresh water and human pathogens. In the obtained
278  phylogenetic tree (Figure 2), 3 differential clades are clearly shown, where integrases
279  from marine environment, soil, fresh water, and from human pathogens are identified.
280  The 23 integrases from the isolates of gut microbiota of Salmo salar are grouped in the
281  clade corresponding to human pathogens of clinical importance, such as Acinetobacter
282  baumannii, Salmonella enterica, Enterobacter cloacae, Pseudomonas aeruginosa and
283  Klebsiella pneumoniae. These data suggest that there is an important contribution
284  component from land anthropogenic activities like clinical settings and/or animal
285  husbandry to the gut microbiota of salmon, and the antibiotics used in this productive
286  activity select indirectly these elements keeping them and dispersing them in the marine
287  environment.

288
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289  Figure 2. Phylogenetic relationship of class 1 integrases from the salmon industry
290 in Chile. The phylogenetic tree shows class 1 integrases from diverse environments
291  such as seawater, soil, fresh water and human pathogens. It is clearly observed that the
292  integrases from the salmon farming in Chile are grouped together with integrases of
293  pathogens of clinical importance and marked with the A symbol. XerC proteins from
294 Escherichia coli and Thiobacillus denitrificans were used as outgroup. The results were
295  obtained using the maximum likelihood methods after 1,000 bootstraps.

296

297 Discussion

298 In this work, the high prevalence of class 1 integron-integrase elements in banks
299  of bacteria resistant to florfenicol and oxytetracycline, isolated from the gut microbiota
300 of the Atlantic salmon (Salmo salar) treated with high doses of antibiotics in salmon
301  farms has been reported. In a previous laboratory work, it was demonstrated that the
302  high use of antimicrobials brings with it a high abundance of multiresistant bacteria
303  with a high presence of ARGs to both florfenicol and oxitetrecycline. More than 50% of
304 the isolates, counting both banks, showed resistance against at least 4 of the seven
305 antibiotics tested. Despite the fact that an extensive work was performed, in this last
306  work, the presence of integron-like elements was not measured. These genetic elements
307  have been considered of great importance in the antimicrobial resistance phenomenon,
308  since they could play a fundamental role in the transfer of genes between the clinical
309 and the natural environment [16,19]; hence, it has even been estimated that its role in
310  the marine environment is much more important than in the terrestrial environment
311 [29].

312 The occurrence of the three classes of integrons-integrases in the environment

313  has been studied in different works, especially the abundance of class 1 integrons-
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314  integrases and the composition of their respective gene cassettes. In this study, the
315  presence of the three classes of integrons-integrases so far described Classes 1, 2 and 3
316 was measured, and it was found that 100% of the isolates from both banks showed class
317 1 integrons; however, no isolate showed class 2 and class 3 integrons. This type of
318  result had already been described in salmonid production systems. In salmon farms of
319 rainbow trout in Australia, 31% of the isolates of Aeromonas spp. showed class 1
320 integrons. Nevertheless, class 2 and class 3 integrons were not detected [30]. The same
321  result was obtained with isolates from Pseudomonas spp., where 23% was positive for
322 class 1 integrons, while class 2 and class 3 integrons were not detected either [31]. The
323  same was found in catfish farming , where 33% of the isolates from Pseudomonas and
324 28% of the isolates from Aeromonas showed class 1 integrases, but all of them were
325 negative for class 2 and class 3 intregrases [32]. Only in confined eel farming, in China,
326  the presence of the three classes of integrons in systems related to aquaculture has been
327  demonstrated [33]. Although class 2 integrons-integrases have been detected frequently
328 in different types of environments, class 3 integrons-integrases have rarely been
329  detected outside the clinical setting [16,33]. The high frequency of the appearance of
330 class 1 integrons lacking the typical structure of the 3’-CS is another interesting result
331  of this work, since only 23% of OC showed the genes gacEA1/sull, while none of the
332 isolates of FB, showed these genes in its structure.

333 But without a doubt, the most important result of this work is that despite the
334  fact that all bacteria showed a high prevalence of antibiotic resistance genes to
335 florfenicol and oxytetracycline, none of these genes were part of these genetic elements.
336  Although tetracycline resistance genes are found with a high frequency in all
337  environments impacted by human activity [34], their presence in class 1 integrons is

338  very scarce. Only sometimes the genes tetC and fetE have been found to be associated
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339  with class 1 integrons [35]. However, due to the high amount of antibiotics used in this
340 industry and the high volume of resistance genes present in the obtained resistant
341  isolates, there is a tendency to think that the incorporation of these genes in this type of
342  gene elements could be favoured, but it seems that the dynamics of the integron-
343  integrases elements in this system is not so evident. A similar case occurs with the
344  genes resistant to florfenicol, floR and fexA. Up to now, the gene fexA has never been
345  described in integrons, while the gene floR has rarely been found in class 1 integrons.
346  This is mainly because they are more directly related to horizontal transfer elements
347  such as plasmids and transposons [33]. This fully confirms that despite a high incidence
348  of the genes floR and fexA in the resistant bacteria isolated from the fish's microbiota,
349  none of these genes could be found as a part of the integrons.

350 Although the 91 resistant isolates present in both banks were positive for the
351  presence of class 1 integrase, only four of them showed recognisable gene cassette
352 structures. In all isolates, it was possible to find genes that appear with high frequency
353 in class 1 integrons. Such is the case of the cassette array found in the species
354  Pseudomonas baetica, where the genes aac(6')-31, gqacH and bla,,,., are found. The
355  first encodes for aminoglycoside adenylyltransferase; these genes appear with a very
356  high frequency in class 1 integrons [16] since it has been described that more than 80%
357  of these elements contain these types of enzymes in their structures [36]. Thus, it has
358  even been described that genes resistant to aminoglycosides are permanent elements in
359  integrons described in the marine environment [29,37] which gives even more
360 dynamism to the antibiotic resistance phenomenon in aquatic environments [38].
361 Regarding the gene gacH, which encodes for a quaternary ammonium resistance
362  mechanism, it was first described in members of the genus Staphylococcus [39] but,

363 nowadays, it is frequently found in Gram-negative bacteria, giving them resistance to a
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364  broad spectrum of quaternary ammonium compounds, unlike for other genes gac
365 [40,41]. Another characteristic of this gene is that it appears relatively often in the food
366 contaminating species Listeria monocytogenes, which is associated with resistance to
367 disinfectants derived from benzalkonium chloride [42,43]. This element of resistance
368  has also been found in other bacteria that are frequent food contaminants, such as the
369 members of the genus Salmonella [44] and Staphylococcus aureus, which contaminates
370  milk [45]. Considering that salmon meat is intended for human consumption, the
371  presence of this element of resistance could represent a risk for eliminating this type of
372  bacteria from the processing plant.

373 Unquestionably, beta-lactamases are the most studied elements in the antibiotics
374  resistance phenomenon, since they represent the biggest problem for human health.
375  OXA-type beta-lactamases have been widely characterised and more than 350 different
376 alleles have been described worldwide [46]. OXA-type beta-lactamases confer
377  resistance to any type of penicillin and some of them can extend their spectrum of
378  activity to cephalosporins [47]. Most of them are part of plasmids in Gram-negative
379  bacteria and they appear relatively often in class 1 integrons, exclusively in human
380  pathogens such as Pseudomonas aeruginosa [48], Salmonella tiphymurium [49],
381  Escherichia coli [50], and Acinetobacter baumanii [51]. Those, that have been detected
382  outside the clinical environment, have always been detected in pathogenic bacteria or
383  human commensals [52,53]. Therefore, this is the first time that an OXA-type beta-
384 lactamases betalactamasa, taking part of a class 1 integron associated with aquaculture
385  bacteria, is described.

386 Regarding the integrons found in Aeromonas salmonicida and Serratia
387  proteomaculans, in both cases, the resistance gene to trimethoprim dfrA14 has been

388  found, which encodes for one of the most distributed alleles of a dihydrofolate
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389  reductase. The association of integrons with genes which encode for dihydrofolate-
390  reductases has been widely documented in aquaculture [30,33,54], it has even been
391  possible to demonstrate the presence of these elements in marine sediments associated
392  with the production of salmon in Chile [55,56].

393 Integrons are widely distributed elements in all environments; however, based
394  on the in the Intl Integrase protein sequence, a classification that has allowed them to be
395 classified into different types has been established, and it has been demonstrated that
396  some of them are much more frequent depending on the environment in which they are
397  found [16]. This is how integrases typical of soil bacteria and fresh water, marine
398  bacteria and pathogenic bacteria, both veterinary and human, have been classified [17].
399 It was expected that the bacteria present in the fish's microbiota would be rich in
400 integrons, either from freshwater, from its initial breeding, or from seawater bacteria.
401  Nevertheless, all sequenced integrases are those normally found in human pathogens.
402  This suggests that these elements have come from the land anthropogenic activities like
403  clinical settings and/or animal husbandry and have been highly successful in the salmon
404  farming environment, which could be dangerous due to the probability of exchange of
405  ARGs between land and marine systems.

406 The high presence of integron-integrases elements in aquaculture has been
407  described in several papers [30,33,57,58], even further, the presence of integrons in
408  resistant bacteria isolated from the sediment of salmon farms in Chile has been
409  described in a recently published paper by [56] which has even reached clinical isolates
410  of the bacteria E. coli. Among the gene cassettes described in this work, the high
411  abundance of genes dfrA12 and dfrAl17, which confer resistance to trimethoprim, as
412  well as genes resistant to aminoglycosides aadA2 and aadA5, can be observed. These

413  genes appear with high frequency in the integron-integrases elements; however, none of


https://doi.org/10.1101/532663
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/532663; this version posted January 28, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

414  them contained genes for resistance to florfenicol or oxytetracycline either, which are
415 the most used antimicrobials in salmon farming in Chile. These results are fully
416  validated in this work.

417 With the data obtained in the present study, we can conclude that the presence of
418  integron-integrase elements is highly abundant in the gut microbiota in farmed Atlantic
419  salmon subjected to treatments with high doses of antimicrobials florfenicol and
420  oxytetracycline. In addition to this, we can say that these elements apparently come
421  from land human activities like clinical settings and/or animal husbandry, since the class
422 1 integrase gene is identical to that found in human pathogenic bacteria of clinical
423  importance such as P. aeruginosa or A. baumanii. Thus, the contribution of the human
424  activity is could be the main cause of dispersion and dissemination of ARGs in natural
425  environments; also, the large amount of antimicrobials used in aquaculture only favours
426  the maintenance and perpetuation of these elements in the environment. This becomes
427  even more delicate since, if we consider the gut microbiota of fish as a "semi-isolated"
428  system from the environment and due to its direct contact ability with the used
429  antibiotics, it could become the perfect place for genetic exchange to occur between
430  bacteria from different environments. Hence, the gut microbiota of fish treated with
431  high doses of antibiotics could become an ideal reservoir for ARGs, which have a high
432  probability of being dispersed through the faeces, loading the marine environment with
433  these types of genetic elements. The high use of antimicrobials requires a quick
434  solution, consequently, the different production companies are already beginning to take
435  measures to reduce the use of antimicrobials, in the hope that by the year 2020, the use
436  of these drugs is reduced by at least 50%.

437
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