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Abstract

Neuroinflammation is a key part of the etio-pathogenesis of Alzheimer’s disease. We test the
relationship between neuroinflammation and the disruption of functional connectivity in
large-scale networks, and their joint influence on cognitive impairment.

We combined [''C]PK11195 positron emission tomography (PET) and resting-state
functional magnetic resonance imaging (rs-fMRI) in 28 humans (13 females/15 males) with
clinical diagnosis of probable Alzheimer’s disease or mild cognitive impairment with positive
PET biomarker for amyloid, and 14 age-, sex-, and education-matched healthy humans (8
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females/6 males). Source-based ‘inflammetry’ was used to extract principal components of
[*1C]PK11195 PET signal variance across all participants. rs-fMRI data were pre-processed via
independent component analyses to classify neuronal and non-neuronal signals. Multiple
linear regression models identified sources of signal co-variance between neuroinflammation
and brain connectivity profiles, in relation to group and cognitive status.

Patients showed significantly higher [!C]PK11195 binding relative to controls, in a
distributed spatial pattern including the hippocampus, medial, and inferior temporal cortex.
Patients with enhanced loading on this [*!C]PK11195 binding distribution displayed diffuse
abnormal functional connectivity. The expression of a stronger association between such
abnormal connectivity and higher levels of neuroinflammation correlated with worse
cognitive deficits.

Our study suggests that neuroinflammation relates to the pathophysiological changes
in  network function that underlie cognitive deficits in Alzheimer’'s disease.
Neuroinflammation, and its association with functionally-relevant reorganisation of brain
networks, is proposed as a target for emerging immuno-therapeutic strategies aimed at
preventing or slowing the emergence of dementia.

Significance Statement

Neuroinflammation is an important aspect of Alzheimer’s disease (AD), but it was not known
whether the influence of neuroinflammation on brain network function in humans was
important for cognitive deficit.

Our study provides clear evidence that in vivo neuroinflammation in AD impairs large-
scale network connectivity; and that the link between inflammation and functional network
connectivity is relevant to cognitive impairment.

We suggest that future studies should address how neuroinflammation relates to
network function as AD progresses; and whether the neuroinflammation in AD is reversible,
as the basis of immunotherapeutic strategies to slow the progression of AD.
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Introduction

Neuroinflammation plays a key role in the etio-pathogenesis of Alzheimer’s disease and other
neurodegenerative disorders (Edison et al., 2008; Fernandez-Botran et al., 2011; Fan et al.,
2015b; Stefaniak and O'Brien, 2016). Pre-clinical models (Heppner et al., 2015; Hoeijmakers
et al,, 2016; Villegas-Llerena et al., 2016; Li et al., 2018; Wang et al., 2018), and research in
humans (Fernandez-Botran et al., 2011; Edison et al., 2013; Fan et al., 2015b; Stefaniak and
O'Brien, 2016), demonstrate that microglia of the brain’s innate immune system are activated
in Alzheimer’s and related diseases. In addition, genetic association studies have
demonstrated a link between Alzheimer’s disease and polymorphisms and mutations of
genes linked to immune responses (Villegas-Llerena et al., 2016). Although the mechanisms
and mediators of inflammatory risk in Alzheimer’s disease are not fully understood, synaptic
and neuronal injury may arise from the release of cytokines and pro-inflammatory molecules
such as interleukin-18 and TGF-B (Fernandez-Botran et al., 2011), or direct microglial injury
to synapses (Hong et al.,, 2016; Hong and Stevens, 2016). These, in turn, impair synaptic
function, network communication, and may accelerate neurodegeneration and synaptic loss
(Heppner et al., 2015; Hoeijmakers et al., 2016; Villegas-Llerena et al., 2016; Li et al., 2018;
Wang et al., 2018).

Clinical studies of neuroinflammation in dementia have exploited positron emission
tomography (PET) ligands that bind to the mitochondrial translocator protein (TSPO) in
activated microglia (Cagnin et al., 2001; Gerhard et al., 2006b; Gerhard et al., 2006a; Edison
et al., 2008; Edison et al., 2013; Fan et al., 2015b; Fan et al., 2015a; Passamonti et al., In Press).
For example, relative to controls, patients with Alzheimer’s disease have higher [*!C]PK11195

binding in the hippocampus, other medial-temporal lobe regions, and posterior cortices such
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as the pre-cuneus, which in turn correlates with cognitive severity (Passamonti et al., In
Press).

These findings raise the possibility of immunotherapeutic strategies to prevent or slow
the progression of Alzheimer’s disease. Nevertheless, key issues remain to be resolved before
such therapeutic strategies can be realised. For example, it is necessary to show how
neuroinflammation is linked to cognitive deficits. A critical and unanswered question is
whether regional neuroinflammation changes the functional connectivity of large-scale
networks. Such large-scale neural networks represent an intermediate phenotypic expression
of pathology in many diseases, that can be non-invasively quantified with resting-state
functional magnetic resonance imaging. A challenge is that neither the anatomical substrates
of cognition nor the targets of neurodegenerative disease are mediated by single brain
regions: they are in contrast distributed across multi-variate and interactive networks.

We thus undertook a multi-modal and multi-variate neuroimaging study to combine
[*1C]PK11195 quantification of distributed neuroinflammation with resting-state functional
imaging in patients at different stages of Alzheimer’s disease. We used “source-based
inflammetry” (analogous to ‘volumetry’) to reduce the dimensionality (i.e., complexity) of the
neuroinflammation signal, and employed multiple linear regression models to associate
neuroinflammation, functional network connectivity components, and cognition.

We tested two key hypotheses:

1) that spatially distributed neuroinflammation related to significant changes in large-scale
functional connectivity in patients with Alzheimer’s disease, relative to controls.
2) that the relationship between neuroinflammation and abnormal functional connectivity

determines cognitive deficit in Alzheimer’s disease.
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Participants & Methods

Participants
The study was conducted in the context of the Neuroimaging of Inflammation in MemoRy
and Other Disorders (NIMROD) study (Bevan-Jones et al., 2017). We included 14 patients
meeting clinical diagnostic criteria for probable Alzheimer’s disease (McKhann et al., 2011),
and 14 patients with mild cognitive (MCIl) patients (15 males and 13 females in total) defined
by: i) a mini-mental score examination >24/30; ii) memory impairment at least 1.5 standard
deviations below that expected for age and education (Petersen et al., 1999); iii) biomarker
evidence of amyloid pathology (positive Pittsburgh Compound-B PET scan) (MCl+) (Okello et
al., 2009). We combined patients with clinical Alzheimer’s disease and MCIl+ on the basis that
these two groups represent a continuum of the same clinical spectrum (Okello et al., 2009).
Fourteen age-, sex-, and education-matched healthy controls (6 males and 8 females)
were recruited with no history of major psychiatric or neurological illnesses, head injury or
any other significant medical co-morbidity. All participants were aged over 50 years, with
premorbid proficiency in English for cognitive testing, did not have any acute infectious or
chronic symptomatic systemic inflammatory disorder (e.g., lupus, rheumatoid arthritis, etc.),
or contra-indications to magnetic resonance imaging. Patients were identified from the
Cambridge University Hospitals NHS Trust Memory Clinics and the Dementias and
Neurodegenerative Diseases Research Network (DeNDRoN), while healthy controls were

recruited via a Clinical Research Network (http://www.nihr.ac.uk/nihr-in-your-

area/dementias-and-neurodegeneration/). Participants had mental capacity and gave

written consent in accordance with the Declaration of Helsinki. The study was approved by

the local research ethics committee.
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Clinical and cognitive assessment

Clinical indices of cognitive decline included Mini Mental State Examination (MMSE),
Addenbrooke’s Cognitive Examination-Revised (ACE-R), and Rey auditory verbal learning test
(RAVLT). The demographic and neuropsychological measures are reported in Table 1. A
Principal Component Analysis on the total MMSE, ACE-R, and RAVLT scores was conducted to
reduce the dimensionality of the cognitive deficit into one latent variable which summarized

the largest portion of shared variance as the first principal component.

Experimental design

Structural and functional magnetic resonance imaging protocols and pre-processing
Structural and functional magnetic resonance imaging was performed using a 3 Tesla Siemens
Tim Trio scanner with a 32-channel phased-array head coil. A T1-weighted magnetization-
prepared rapid gradient-echo image was acquired with repetition time=2300 ms, echo
time=2.98 ms, matrix=256x240, in-plane resolution of 1x1 mm, 176 slices of 1 mm thickness,
inversion time=900ms and flip angle=9 degrees. The co-registered T1 images were used in a
multi-channel segmentation to extract probabilistic maps of 6 tissue classes: grey-matter,
white-matter, cerebrospinal fluid, bone, soft tissue, and residual noise. The native-space grey-
matter and white-matter images were submitted to diffeomorphic registration to create
group template images (Ashburner, 2007). The template was normalised to the Montreal
Neurological Institute (MNI) template using a 12-parameter affine transformation. After
applying the normalisation parameters from the T1 stream to warp pre-processed functional
images into MNI space, the normalised images were smoothed using an 8-mm Gaussian
kernel. An estimate of total grey-matter, used in between-subject analysis as a covariate of

no interest, was calculated as the median grey-matter tissue intensity in a group mask based
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on voxels with grey-matter tissue probability of 0.3 across all individuals. Resting state multi-
echo functional imaging was carried out for 11 min. A total of 269 echo-planar image volumes
were acquired with repetition time=2430ms, echo times=13.00, 30.55 and 48.10 ms,
matrix=64x64, in-plane resolution of 3.75x3.75 mm, 34 slices of 3.8 mm thickness with an
inter-slice gap of 0.38 mm, and a GeneRalized Autocalibrating Partial Parallel Acquisition
(GRAPPA) imaging with an acceleration factor of 2 and bandwidth=2368 Hz/pixel. The first six
volumes were discarded to eliminate saturation effects and achieve steady-state
magnetization. Pre-processing of resting-state data employed the Multi-Echo Independent
Components Analysis (ME-ICA) pipeline, which uses independent component analysis to
classify blood oxygenation dependant (BOLD) and non-BOLD signals based on the
identification of linearly dependent and independent echo-time related components

(https://wiki.cam.ac.uk/bmuwiki/MEICA) (Kundu et al., 2013). This provides an optimal

approach to correct for movement-related and non-neuronal signals, and is therefore
particularly suited to our study, in which systematic differences in head position might have
been expected between groups. After ME-ICA, the data were smoothed with 5.9 mm full-
width half maximum kernel.

The location of the key cortical regions in each network was identified by spatial
independent component analysis (ICA) using the Group ICA of fMRI Toolbox (Calhoun et al.,
2001) in an independent dataset of 298 age-matched healthy individuals from the population-
based cohort in the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) (Shafto et al.,
2014). Details about pre-processing and node definition are published previously (Tsvetanov
et al., 2016). Four networks were identified by spatially matching to pre-existing templates
(Shirer et al., 2012). The default mode network contained five nodes: the ventromedial

prefrontal cingulate cortex, dorsal and ventral posterior conjugate cortex, and right and left
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inferior parietal lobes. The fronto-parietal network was defined using bilateral superior
frontal gyrus and angular gyrus. Subcortical nodes included nodes having differential group
accumulation of [11C]PK11195, namely, bilateral putamen and hippocampus. The node time-
series were defined as the first principal component resulting from the singular value
decomposition of voxels in a 8-mm radius sphere, which was centred on the peak voxel for
each node (Tsvetanov et al., 2016).

After extracting nodal time-series we sought to reduce the effects of noise confounds
on functional connectivity effects of node time-series using a general linear model (Geerligs
et al., 2017). This model included linear trends, expansions of realignment parameters, as well
as average signal in the white-matter and cerebrospinal, including their derivative and
guadratic regressors from the time-courses of each node (Satterthwaite et al., 2013). The
signals in the white-matter and cerebrospinal fluid were created by using the average across
all voxels with corresponding tissue probability larger than 0.7 in associated tissue probability

maps available in the SPM12 software (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/).

A band-pass filter (0.0078-0.1 Hz) was implemented by including a discrete cosine transform
set in the general linear model, ensuring that nuisance regression and filtering were
performed simultaneously (Hallquist et al., 2013) (Lindquist et al., 2018). The general linear
model excluded the initial five volumes to allow for signal equilibration. The total head motion
for each participant, which was used in subsequent between-subject analysis as a covariate
of no interest (Geerligs et al., 2017), was quantified using the approach reported in Jenkinson
and colleagues (Jenkinson et al., 2002), i.e. the root mean square of volume-to-volume
displacement. Finally, the functional connectivity between each pair of nodes was computed

using Pearson’s correlation on post-processed time-series.
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Positron emission tomography (PET) protocols and pre-processing
All participants underwent [*1C]PK11195 PET imaging to assess the extent and distribution of
neuroinflammation while patients with mild cognitive impairment (MCI) also underwent
[*1C]PiB PET scanning to evaluate the degree of beta-amyloid. [*!C]PK11195 and [*!C]PiB PET
were produced with high radiochemical purity (>95%), with [*1C]PiB PET having a specific
activity >150 GBg/umol at the end of synthesis, while [*C]PK11195 specific activity was
around 85 GBg/umol at the end of synthesis. PET scanning used a General Electric (GE)
Advance PET scanner (GE Healthcare, Waukesha, WI) and a GE Discovery 690 PET/CT, with
attenuation correction provided by a 15min 68Ge/68Ga transmission scan and a low dose
computed tomography scan, respectively. The emission protocols were 550 MBq [11C]PiB
injection followed by imaging from 40-70 minutes post-injection, and 75 minutes of dynamic
imaging (55 frames) starting concurrently with a 500 MBq [C]PK11195 injection. Each
emission frame was reconstructed using the PROMIS 3-dimensional filtered back projection
algorithm into a 128x128 matrix 30cm trans-axial field of view, with a trans-axial Hann filter
cut-off at the Nyquist frequency (Kinahan and Rogers, 1989). Corrections were applied for
randoms, dead time, normalization, scatter, attenuation, and sensitivity.

For [*1C]PiB we used reference tissue region of interest (ROI) defined by > 90% on the
SPM8 grey-matter probability map (smoothed to PET resolution) in the cerebellar cortex
(Schuitemaker et al., 2007). For ['!C]PK11195, supervised cluster analysis was used to
determine the reference tissue time-activity curve (Turkheimer et al., 2007). [''C]PiB data
were quantified using standardized uptake value ratio (SUVR) by dividing the mean
cerebrospinal fluid (CSF) corrected radioactivity concentration in each Hammers atlas ROl by
the corresponding mean CSF-corrected radioactivity concentration in the reference tissue ROI

(whole cerebellum). [*'C]PiB data were treated as dichotomous measures (i.e., positive or
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negative) and considered positive if the average SUVR value across the cortical ROls was > 1.5
(Hatashita and Yamasaki, 2010). For [11C]PK11195 maps of non-displaceable binding potential
(BPnp), @ measure of specific binding, were determined using a basis function implementation
of the simplified reference tissue model, both with and without CSF contamination correction
(Gunn et al., 1997). [**C]PK11195 BPnp maps (termed here PK maps for simplicity) were also
generated using this basis function approach.

The PK maps were co-registered and warped to the Montreal Neurological Institute
(MNI) space using the flow fields. To minimise the noise effects from non grey-matter regions,
the normalised PK maps were masked with a group-based grey-matter mask based on voxels
having grey-matter tissue probability larger than 0.3 in grey-matter segmented images across
all individuals. The normalised images were smoothed using a 6mm Gaussian kernel. We then
used independent component analysis across participants to derive spatial patterns of PK
maps across voxels expressed by the group in a small number of independent components.
All PK maps were spatially concatenated and submitted to Source-Based ‘inflammetry’ (SBI)
to decompose images across all individuals in a set of spatially independent sources without
providing any information about the group (Xu et al., 2009), using the GIFT toolbox.
Specifically, the n-by-m matrix of participants-by-voxels was decomposed into: (i) a source
matrix that maps each independent component to voxels (here referred to as PKic maps), and
(ii) a mixing matrix that maps PKics to participants. The mixing matrix consists of loading values
(one per participant) indicating the degree to which a participant expresses a defined PKic.
The independent component loading values for the PKic were taken forward to between-
participant analysis of functional connectivity (Figure 1), if they were (a) differentially

expressed by controls and patients with Alzheimer’s disease pathology; and (b) were

10
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associated with atrophy (see results section and Fig.3). Only 1 dependent variable (IC3) met

these criteria.

Statistical analyses

We adopted a two-level procedure, in which, at the first-level, we sought to identify
functional connectivity differences associated with differences in [11C]PK11195 binding. In a
second-level analysis, we tested whether individual variability in functional connectivity (from
first-level analysis) is specifically associated with variability in cognitive decline in the group
of patients with Alzheimer’s disease pathology.

Details about the first-level analysis approach are published previously (Tsvetanov et
al., 2018). In short, we used multiple linear regression with well-conditioned shrinkage
regularization (Ledoit and Wolf, 2004) to identify correlated structured sources of variance
between functional connectivity and neuroinflammation measures. In particular, this analysis
describes the linear relationship between functional connectivity and PK maps on a between-
subject level, in terms of structure coefficients (Thompson and Borrello, 1985), by providing
a linear combination of the functional connectivity measures, which we term brain scores,
that are optimised to be highly correlated with the between-subject variability in the
expression of the PK maps. Namely, brain-wide connectivity strength for each individual
defined the independent variables, and PKc subject-specific loading values for group
differentiating components were employed as dependent variable.

To identify and exclude potential outliers, Grubbs’ test was used (Grubbs, 1969;
Barnett and Lewis, 1994). None of the loading values in the IC3 were outlying observations.
Furthermore, to down-weight the effects of extreme or imprecise data points, analyses used

robust linear regression.

11
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To avoid overfitting, first-level multiple linear regression model was integrated with a 5-Fold
Cross—Validation (Thompson and Borrello, 1985). To minimize the non-negligible variance of
traditional k-Fold cross-validation procedure, we repeated each k-Fold 1,000 times with
random partitioning of the folds to produce an R-value distribution, for which we report the
median values.

Next, we tested the hypothesis that the effect of neuroinflammation on functional
connectivity was related to cognitive deficits, in patients relative to controls. To this end, we
performed a second-level multiple liner regression (MLR) analysis. Independent variables
included subjects’ brain scores from first level MLR (reflecting how strongly each individual
expressed the whole brain pattern of functional connections weighted by the IC3- PET derived
data), group information, and their interaction term (brain scores x group). The dependent
variable was subjects’ loading values of the first principal component across the three
cognitive tests. Covariates of no interest included age, gender, head movement, and global

grey-matter volume.
Results

Source-based ‘inflammetry’

The optimal number of components (n=5) was detected with minimum-distance length
criteria. One component showed significant differences between the patient and control
groups in terms of their loading values (PKic3, t-value = -2.1, p-value = 0.04) (Figure 2 right
panel). The spatial extent of this PKic3 included voxels with high values in cortical and sub-
cortical regions, including the inferior temporal cortex and hippocampus, indicating that
individuals with higher loading values, in this case the patient group, had higher [*1C]PK11195
binding in these regions, relative to the control group (Figure 2, left panel). The other

components did not differentiate patients from controls (Figure 3, first row).

12
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The PKics component, which differed between patients and controls, was the only PK
component that negatively correlated with total grey-matter values in patients but not
controls (Figure 3, second and third row). In other words, the patients expressing higher
[*1C]PK11195 binding showed also higher levels of cortical atrophy (Figure 3, second and third
row). This result was obtained when including the grey-matter volume as a covariate of no
interest in the analysis, which suggests that the reported association was over and above the
effects of overall brain atrophy.

All in all, our findings imply that the PKicz component reflects specific patterns of
neuroinflammation and neurodegeneration in Alzheimer’s disease. These patterns were next
tested in terms of their relevance for changes in large-scale network function and their

interactive effect in predicting cognitive deficit in Alzheimer’s disease.

Functional connectivity

As expected, there was strong positive functional connectivity between all nodes within the

four networks, identified by spatially matching to pre-existing templates (Figure 4, left panel).
In terms of group differences, the functional connectivity within networks (within the default
mode network, within the fronto-parietal network, left-right putamen and left-right
hippocampus) and between the default mode network and hippocampus was weaker in
patients relative to controls (Figure 4, right panel). Furthermore, the connectivity between
the putamen and hippocampus increased while the connectivity between default mode

network and putamen was less negative for patients relative to controls.

13
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Functional connectivity and neuroinflammation

The first-level multiple linear regression model assessing the relationship between PKics maps
and functional connectivity data was significant (r=0.52, p<0.001). The standard coefficients
indicated a positive association between the PKc3 loading values and variability in functional
connectivity (Figure 5, left panel). In other words, individuals with higher [*!C]PK11195
binding values in the inferior temporal cortex and medial temporal lobe regions (as reflected
by higher PKic3 values) showed: i) increased connectivity between the default mode network,
the hippocampus, and other subcortical regions, and ii) weaker connectivity for nodes within

the default mode network.

Linking neuroinflammation, connectivity, and cognitive deficits

The first component of the principal component analysis (PCA) of cognitive tests explained
the 80% of the variance across the three cognitive measures (with coefficients .61, .61, and
.52 for MMSE, ACE-R, and RAVLT, respectively).

Next, we tested whether the effects of neuroinflammation on network connectivity
were specific to the patient group and whether this functionally-relevant neuroinflammation
related to cognitive deficits. Consistently with this hypothesis, the interaction term between
group and brain scores (reflecting how strongly each individual expresses the pattern shown
in Fig.5 (which is the brain-wide pattern of functional connections optimised to highly
correlate with the IC3- PET derived data) was significantly associated to the first component
of the PCA of cognitive tests (t=-3.4, p=0.004).

A post-hoc analysis within each group indicated a significant negative association
between the behavioural scores from the PCA and functional connectivity/PK-combined

indices in the patient group (r= -0.51, p=0.005) (Figure 5, right panel). Conversely, a non-
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significant positive direction of association for the same relationship between PCA-derived
cognitive scores and brain measures was found in controls (r=0.46, p=0.09). The significant
difference between patients and controls remains if AD and MCl+ subgroups are analysed
separately (not shown). The negative association in the patient group indicated that patients
in whom higher neuroinflammation was more strongly associated with more abnormal

connectivity also performed worse on a summary measure of cognitive deficits.
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Discussion

This study establishes a link between the presence of neuroinflammation and the disruption
of large-scale functional connectivity in Alzheimer’s disease. The degree to which patients
expressed the association between abnormal connectivity and neuroinflammation ijtself
correlated with their cognitive deficit. This relationship was found across the spectrum of
patients ranging from mild cognitive impairment with biomarker evidence of Alzheimer’s
pathology to clinical diagnosis of probable Alzheimer’s disease. We suggest that not only does
neuroinflammation relate to large-scale network function, but that the disruption of
connectivity linked to neuroinflammation mediates cognitive deficits in Alzheimer’s disease.

There are different mechanisms by which neuroinflammation might alter brain
functional connectivity and consequently neuroimaging indices of network function or vice
versa (i.e., the ways in which synaptic firing can influence microglia activity and related
neuroinflammatory processes). Microglia are important contributors in the process of
synaptic pruning and regulation of synaptic function (Hong and Stevens, 2016). The
microglia’s highly mobile and ramified branches can reach and surround synaptic terminals
to promote phagocytosis and synaptic demise (Hong and Stevens, 2016). Microglia-induced
complement activation might also contribute to synaptic dysfunction and loss, especially in
the context of amyloid deposition and neuritic plaque formation (Hong et al., 2016). On the
other hand, synaptic firing can influence microglia activation via specific membrane receptors
and ion channels (Tofaris and Buckley, 2018).

The anatomical distribution of neuroinflammation in Alzheimer’s disease and its
effects on large-scale network function supports the hypothesis that neuroinflammation

might be an early event in the pathogenesis of Alzheimer’s disease and that our current
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results are not driven by a global effect of a systemic inflammatory confound which would
have affected the whole-brain indistinctively.

This study has also two important implications. First, it reinforces the notion that
neuroinflammation is a key pathophysiological mediator of Alzheimer’s disease and its clinical
variability (Weiler et al., 2016). Genome-wide association studies have challenged the idea
that neuroinflammation is merely a secondary event caused by neurodegeneration and have
conversely sustained a primary role of microglia-related molecular pathways in the etio-
pathogenesis of Alzheimer’s disease (Guerreiro et al., 2013; Jonsson et al., 2013). For
instance, mutations in TREM2, an immune cells receptor expressed on microglia, represent a
risk factor for Alzheimer’s disease and other neurodegenerative disorders (Guerreiro et al.,
2013; Jonsson et al., 2013). Together with our results, these data suggest that immuno-
therapeutic strategies might be helpful to reduce the deleterious impact of neuro-
inflammation on cognitive deficit in Alzheimer’s disease.

Second, the functional connectivity abnormalities observed here can be considered
an intermediate phenotypic expression of the neuroinflammatory pathology in Alzheimer’s
disease. This can be relevant to reconcile the apparent conflict between the encouraging
findings from basic research on the role of neuroinflammation in Alzheimer’s pathogenesis
(Heppner et al., 2015) and the results from human studies which as yet have provided little
support for immunotherapeutics in Alzheimer’s disease (Group et al., 2007; Group et al.,
2008), despite epidemiological evidence (Breitner and Zandi, 2001; in t' Veld et al., 2001).

In other words, assessing how neuroinflammation influences the intermediate
phenotypes of large-scale network functional connectivity might help explaining why clinical
trials have failed thus far to demonstrate a role forimmunotherapeutic strategies due to high

patient heterogeneity. Our data showed marked individual differences in the relationship
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between resting-state functional connectivity and neuroinflammation in patients with
Alzheimer’s disease at different stages, and it was this variance that was significantly related
to individual differences in cognitive performance.

Our study has limitations and caveats. First, we recognise that even the multi-variate
methods of statistical associations used here do not in themselves demonstrate causality
between neuroinflammation, network dysfunction, and cognition. To address this issue,
longitudinal and interventional studies are needed, alongside mediation analyses (Fan et al.,
2015a; Kreisl et al., 2016).

Second, the molecular pathology of Alzheimer’s disease is multi-faceted, with amyloid
deposition, tau accumulation, and vasculopathy. These processes, alone or in combination,
may moderate the association between neuroinflammation and functional connectivity;
hence, multi-modal studies that capture each of these aspects will be useful to formally assess
the complex interplay between neuroinflammation, abnormal tau deposition, vasculopathy,
and cognitive deficits.

Third, the confounding effect of head motion on functional imaging has been fully
recognized as both challenging and critical for interpretation of functional imaging studies,
especially in clinical populations. To minimize this confound, we used Multi-Echo Independent
Components Analysis (ME-ICA) and validated pre-processing pipelines, which separate
changes in the fMRI signal that are due to blood oxygenation dependant (BOLD) and non-
BOLD signals. Furthermore, we included movement-related parameters as covariates of no
interest in second-level analyses, as well as motion and physiological signals in first-level
analyses.

Fourth, the use of the [11C]PK11195 tracer has its own limitations in terms of reduced

affinity to the mitochondrial translocator protein (TSPO) in activated microglia, especially
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when compared to second-generation TSPO tracers as PBR28 (Fujita et al., 2017). On the
other hand, such second-generation TSPO tracers are affected by common genetic
polymorphisms (Owen et al., 2012).

Finally, at the phenotypic level, it remains to be determined whether the deleterious
impact of neuroinflammation on network function can be revealed in pre-symptomatic adults
at risk of Alzheimer’s disease, for example in carriers of autosomal dominant genetic
mutations. Despite the inclusion of patients with mild cognitive impairment with biomarker
evidence of Alzheimer’s pathology, our study cannot resolve the timing of neuroinflammation
and its causal relationship to network dysfunction, cell loss, and cognitive deficit.

In conclusion, we have shown that source-based ‘inflammetry’ of [*1C]PK11195 PET
data reveals a distributed profile of neuroinflammation in Alzheimer’s disease, which in turn
related to abnormal functional connectivity. Our cross-modal multivariate analyses also
indicated that heterogeneity in cognitive status was associated to variability in
neuroinflammation-related network dysfunction. These data emphasize the value of multi-
modal neuroimaging to study how different aspects of the molecular pathology of
Alzheimer’s disease mediate brain function and cognition. Improved stratification procedures
may facilitate more efficient therapeutic trials in Alzheimer’s disease, based not on
inflammation, tau, atrophy or connectivity alone, but on their complex interaction that leads

to individual differences in cognitive impairment.
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Demographic & Clinical data

AD / MCI+ (N = 28)

Controls (N = 14)

Group difference

Sex (males/females)

Age (years) (SD, range)
Education (years) (SD, range)
MMSE (SD, range)

ACE-R (SD, range)

RAVLT (SD, range)

15/13
72.3 (8.6, 53-86)
13.0 (3.0, 10-19)
25.3 (2.5, 19-30)
78.0 (8.9, 53-91)

1.4 (+1.6, 0-6)

6/8
68.2 (+5.4, 59-81)
14.1 (+2.7, 10-19)
28.8 (+1.0, 27-30)
91.5 (+5.3, 79-99)

9.6 (+3.2, 3-15)

NS

NS

NS

T=-4.7, P<0.001

T=-5.2, P<0.001

T=-11.0, P<0.0001

Table 1. Participant details (mean, with standard deviation (SD) and range in parentheses)

and group differences by chi-squared test, one-way analysis of variance or independent

samples t-test. AD/MCI+: Alzheimer’s disease/mild cognitive impairment (amyloid positive on

Pittsburgh Compound-B positron emission tomography scan); MMSE: Mini Mental State

Examination; ACE-R: Addenbrooke’s Cognitive Examination Revised, RAVLT: Rey Auditory-

Verbal Learning Test (delayed recall). NS, not significant with p>0.05 (uncorrected).
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Figure Legends

Figure 1. Schematic representation of various modality datasets in the study, their processing
pipelines on a within-subject level (light blue), as well as data-reduction techniques and
statistical strategy on between-subject level (dark blue) to test for associations between the
datasets. Abbreviations: PKc (Independent component [*!C]PK11195 maps); FC (functional
connectivity); Cov. (covariates); COG PC1 (latent variable (cognitive deficit) which summarizes
the largest portion of shared variance as the first principal component); MMSE (Mini Mental
State Examination), ACE-R (Addenbrooke’s Cognitive Examination-Revised); RAVLT (Rey
auditory verbal learning test); GM (grey-matter); PiB (Pittsburgh Compound-B positron
emission tomography); Cam-CAN (Cambridge Centre for Ageing and Neuroscience); AD/MCl+
(Alzheimer’s disease and MCI PiB positive mild cognitive impairment patients); MLR (multiple
linear regression analyses); NIMROD (Neuroimaging of Inflammation in MemoRy and Other
Disorders study).

Figure 2. Source-Based Inflammetry for the component differentially expressed between
groups: (left) independent component (IC) spatial map reflecting increase in [*!C]PK11195
(PK) binding values in cortical and subcortical areas including inferior temporal cortex and
hippocampus, regionally specific increase over and above global PK differences between
groups (regions in red), (right) bar plot of subject loading values for AD/MCl+ and control
group (each circle represents an individual) indicating higher loading values for AD/MCI+ than
control group as informed by two-sample unpaired permutation test. AD/MCl+ (Alzheimer’s
disease and MCI PiB positive mild cognitive impairment patients).

Figure 3. The Source-Based Inflammetry (SBI) identified five independent components (IC)
which reflected [*!C]PK11195 (PK) binding values in cortical and subcortical areas. The PKIC3
component differed between AD/MCIl+ patients and controls (first row, third column). This
PKIC3 component negatively correlated with total grey-matter volumes in all individuals as
well as in patients-only (but not controls-only) (second, third, and fourth rows). In other
words, the patients expressing higher [!C]PK11195 binding PKIC3 component (reflecting
higher binding in the inferior temporal cortex and hippocampus as shown in Figure 2) also
displayed higher levels of brain-wide atrophy.
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Figure 4. Main effects (left) and group difference effects (AD/MCI+>Controls, right) between
default mode network (DMN) and subcortical regions using univariate approach. ACC —
anterior cingulate cortex; PCC — posterior cingulate cortex; IPL — intraparietal lobule; FPN —
fronto-parietal network; Put — Putamen; Hipp — Hippocampus, AG — angular gyrus; SFG —
superior frontal gyrus; R, right; L, left. Note that the whole pattern of brain connectivity rather
than each connection separately was employed to study how subject-specific
neuroinflammatory levels influence large-scale network connectivity (Fig 5).

Figure 5. (Left) First-level multiple linear regression (MLR) indicating that functional
connectivity differences (deviating from groups effects in Figure 3) are associated positively
with [11C]PK11195-related independent component measures (PKics). Connections surviving
a threshold of P<0.05 corrected for multiple comparisons are highlighted with a black
contour, although it is important to bear in mind that the whole-pattern of brain connectivity
was used in the analysis shown in the right panel. (Right) Second-level MLR association
between PKc3 pattern of functional connectivity and cognitive performance for patients with
Alzheimer’s disease (AD) pathology (including mild cognitive impairments, amyloid positive,
MCI+) (orange) and control (green) groups. The group difference in slopes was significant
(p<0.0001). ACC — anterior cingulate cortex; PCC — posterior cingulate cortex; IPL —
intraparietal lobule; FPN — fronto-parietal network; SC — subcortical, DMN — default mode
network, DMNd — dorsal DMN, Put — Putamen; Hipp — Hippocampus, AG —angular gyrus; SFG
— superior frontal gyrus; R, right; L, left.
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