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Abstract 

Motivation: Same-species contamination detection is an important quality control step in genetic 

data analysis.  Compared with widely discussed cross-species contamination, same-species 

contamination is more challenging to detect, and there is a scarcity of methods to detect and correct 

for this quality control issue.  Same-species contamination may be due to contamination by lab 

technicians or samples from other contributors. Here, we introduce a novel machine learning 

algorithm to detect same species contamination in next generation sequence data using support 

vector machines. Our approach uniquely detects such contamination using variant calling 

information stored in the variant call format (VCF) files (either DNA or RNA), and importantly 

can differentiate between same species contamination and mixtures of tumor and normal cells. 

Methods: In the first stage of our approach, a change-point detection method is used to identify 

copy number variations or copy number aberrations (CNVs or CNAs) for filtering prior to testing 

for contamination. Next, single nucleotide polymorphism (SNP) data is used to test for same 

species contamination using a support vector machine model.  Based on the assumption that 

alternative allele frequencies in next generation sequencing follow the beta-binomial distribution, 

the deviation parameter ρ is estimated by maximum likelihood method. All features of a radial 

basis function (RBF) kernel support vector machine (SVM) are generated using either publicly 

available or private training data. Lastly, the generated SVM is applied in the test data to detect 

contamination. If training data is not available, a default RBF kernel SVM model is used. 

Results: We demonstrate the potential of our approach using simulation experiments, creating 

datasets with varying levels of contamination. The datasets combine, in silico, exome sequencing 

data of DNA from two lymphoblastoid cell lines (NA12878 and NA10855).  We generated VCF 

files using variants identified in these data, and then evaluated the power and false positive rate of 

our approach to detect same species contamination.  Our simulation experiments show that our 

method can detect levels of contamination as low as 5% with reasonable false positive rates. 

Results in real data have sensitivity above 99.99% and specificity at 90.24%, even in the presence 

of DNA degradation that has similar features to contaminated samples. Additionally, the approach 

can identify the difference between mixture of tumor-normal cells and contamination. We provide 

an R software implementation of our approach using the defcon()function in the vanquish: Variant 

Quality Investigation Helper R package on CRAN. 
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1. Introduction 

High throughout next generation sequencing (NGS), has shown its advantages over 

traditional Sanger sequencing and microarrays in terms of accuracy, cost and speed (Metzker, 

2010; van Dijk, Auger, Jaszczyszyn, & Thermes, 2014). As NGS technologies have matured, best 

practices for quality control and data processing procedures have also developed (Patel & Jain, 

2012). One key step in a robust pipeline is the detection of sample contamination detection.  

Sample contamination detection is a necessary data quality control step of NGS data analysis 

pipeline since contamination might be introduced during sample preparation and sequencing 

analysis. Sample contamination affects all downstream sample analysis and may even generate 

misleading results, which in turn lead to false positive associations and genotype misclassification 

(Jun et al., 2012).  

In this paper, our working definition of contamination is when any sample contains tissues 

from more than one contributing source. There are two major types of contamination: (1) cross-

species contamination; (2) same-species or within-species contamination. Additionally, it is very 

common for a single cancer sample to contain both normal and tumor cells from the same patient 

or cell line.  

Contamination can emerge in next generation sequencing samples for various reasons. 

Despite best practices, unclean lab devices are one of the most common causes, with the 

introduction of unexpected materials like Mycoplasma (Schmidt, Hummel, & Herrmann, 1995).  

This same problem exists in even more recent, large scale research projects, such as the 1000 

Genomes Project (Langdon, 2014). Contamination can also arise from sample handling, sample 

extraction, library preparation and amplification, sample multiplexing and inaccurate barcode 

sequencing (Simion et al., 2018). Available methods are mainly based on the sequencing and allele 
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frequency information of the testing sample and can be categorized into two groups, according to 

the source of contaminants: cross-species contamination and same-species contamination. 

Cross-species contamination has been well studied, with several methods that have 

emerged to detect this type of contamination (Korneliussen, Albrechtsen, & Nielsen, 2014; 

Laurence, Hatzis, & Brash, 2014; Schmieder & Edwards, 2011; Strong et al., 2014). In fact, 

modern metagenomics approaches are extensions of cross species contamination detection 

approaches. For example, Schmieder and Edwards developed DeconSeq, a framework for 

identification and removal of human contamination from microbial metagenomes (Schmieder & 

Edwards, 2011), providing a framework for cross-species contamination detection during 

sequencing alignment. Later in 2014, Merchant et al. used microbiome analysis software to scan 

a sample of domestic cow, Bos taurus, and found small contigs from microbial contaminants 

(Merchant, Wood, & Salzberg, 2014). Generally, data is assembled from available Sanger reads 

to the known species, then the unmapped contigs within the assembly are classified by k-mer 

matching where a database containing all bacteria, archaea, and viruses from the RefSeq database. 

As a result, contigs aligning to other genomes are found as a sign of contamination. 

By contrast, same-species or within-species contamination is relatively more challenging, 

with fewer methods to implement valid and robust approaches. Arguably the most commonly 

implemented approach, and the earliest developed is ContEst (Cibulskis et al., 2011), a module 

within the Genome Analysis ToolKit (GATK) software (McKenna et al., 2010).  ContEst uses a 

Bayesian method to calculate the posterior probability of each contamination level and find the 

maximum a posterior probability (MAP) estimate of the contamination level at homozygous loci. 

Assuming a uniform prior distribution, Unif(0,1), on the contamination level, the posterior 

distribution of contamination level is proportional to the joint distribution of seeing observed 
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alleles given the qualities of base calling and the probabilities of observing true alleles in 

contaminated sample. Thus, ContEst requires VCF and BAM format input and general population 

frequency information, i.e., base identities and quality scores from sequencing data.  

Later in 2012, Jun et al. developed the VerifyBamID package for detecting same-species 

contamination of human DNA samples in both sequence and array-based data (Jun et al., 2012). 

VerifyBamID implements both likelihood-based and regression-based approaches that assume no 

more than one contaminant contained in a testing DNA sample. The likelihood of a contamination 

level is maximized by using a grid search over each contamination level for a maximizer. While 

VerifyBamID has demonstrated good sensitivity in real normal data experiments, copy number 

alterations (CNAs) in tumor samples will shift allele frequencies away from those outside of CNA 

regions, which leads to misinterpreting copy number-driven shift as contamination (Bergmann, 

Chen, Arora, Vacic, & Zody, 2016a).  

The statistical model introduced in VerifyBamID, was further developed by Bergmann et 

al. in their Conpair method for detecting another source of same-species contamination  - the 

mixture of tumor and normal cells from the same patient sample (Bergmann, Chen, Arora, Vacic, 

& Zody, 2016b). Conpair focuses on homozygous loci within tumor-normal paired samples. Given 

that homozygous markers are invariant to copy number changes; pre-selected highly informative 

genomic homozygous markers are provided with Conpair to perform contamination detection.  

Other more recent methods developments have used haplotype structure for contamination 

detection in NGS data (Sehn et al., 2015). Closely spaced SNP pairs within sequencing region are 

identified from the 1000 Genomes database (The 1000 Genomes Project Consortium, 2012). Then 

read haplotypes for these selected SNP pairs are inferred. Human-human admixture is suggested 
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if more than two read haplotypes are observed at a given locus in a sample. The estimated level of 

contamination for each testing sample are twice the mean frequency of the minor haplotype. 

While the current approaches have been successful in a broad range of applications, there 

are major limitations that we address with our current approach. These developments represent 

substantial improvements in both the practical implementation of the quality control procedures 

and the statistical model used. Current approaches rely on the sizeable human reference genome 

data, as well as at least two large, memory intensive files.  They each require either tumor and 

normal BAM files (Conpair), or VCF file and BAM file (VerifyBamID and ContEst). By using a 

combination of a Beta-Binomial assumption and support vector machines within our algorithm to 

detect same species contamination, it works directly from information in VCF file. Even for a 

tumor-normal paired sample, no other information is needed to perform contamination detection. 

The change points of B allele frequencies (from the VCF file) are detected and then all 

chromosomes are separated into shorter sequences. Each sequence overlapping any copy number 

variation or abberation region is detected and filtered. In the enclosed study, we demonstrate our 

method in both real and simulated data, and show that it demonstrates excellent sensitivity and 

specificity for both simulated and real data. We also describe an R package implementation of the 

method. 

 

2. Materials and Methods 

2.1. Beta-binomial Model of Allele Frequency in Next Generation Sequencing 

The proposed method is designed for human applications and assumes a diploid genome. 

For each locus that contains a single nucleotide variant (SNV) called from next generation 

sequencing (NGS) data, we define the allele frequency as the number of counts for the alternative 
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(non-reference genome) allele over the total number of depth. For any diploid genome, if an 

individual is homozygous for the alternative allele (denoted as alternative/alternative, 1/1), the 

expected allele frequency is 1; meanwhile, if an individual is heterozygous (denoted as 

reference/alternative, 0/1) at a locus, 0.5 is the expected allele frequency. Using these theoretical 

expectations motivates using the Binomial distribution for the number of reads at each locus,  

Pr(𝑥; 𝑛, 𝑝) =  (𝑛
𝑥

)𝑝𝑥(1 − 𝑝)𝑛−𝑥, 

where 𝑛 is the total number of depth at the locus; 𝑝 is the theoretical allele frequency; 𝑥 is the 

number of counts for the alternative allele. 

While such a simple model is intuitively appealing, previous studies have discovered extra 

binomial dispersion,  specifically, overdispersion of allele frequency distributions (Esteve-Codina 

et al., 2011; Pickrell et al., 2010; Skelly, Johansson, Madeoy, Wakefield, & Akey, 2011; Zhang et 

al., 2014). This overdispersion results in a higher variability than the Binomial distribution, so a 

distribution that models such large variance is needed. Previous studies proposed and demonstrated 

the Beta-Binomial distribution as an appropriate model for allele frequencies at a particular locus 

in a subpopulation. The Beta-binomial distribution is a discrete hierarchical model containing the 

Beta distribution and binomial distribution, where the probability follows the Beta distribution; 

and the response follows the Binomial distribution. Hence the probability mass function of the 

Beta-Binomial distribution is 

  Pr(𝑥; 𝑛, 𝑎, 𝑏) =  (𝑛
𝑥

)
𝐵(𝑥+𝑎,𝑛−𝑥+𝑏)

𝐵(𝑎,𝑏)
, 

where 𝑛 is the total number of reads at the locus; 𝐵(𝑎, 𝑏) is the beta function theoretical allele 

frequency; 𝑥 is the number of counts for the alternative allele. This model has been applied in a 

number of studies since, and the advantages of the Beta-Binomial over the Binomial distribution 
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in dealing with overdispersion has been repeatedly demonstrated (Chen et al., 2016; Mayba et al., 

2014). This work motivates our use of the Beta-Binomial distribution. 

 

2.2. Quality Control of Variant Call Format (VCF) files  

The input format for our method is the well-established Variant Call Format (VCF< 

Danecek et al., 2011).  To our knowledge, this is the first method to detect same-species 

contamination from the VCF format.  The VCF format contains all single nucleotide variation 

(SNV) information that is needed in the next steps. Before a VCF file is used in our software, 

quality control is needed to filter noise and unnecessary information. The recommended quality 

control and processing steps are outlined below, and are additional quality control steps beyond 

the processing to produce the VCF file itself.  

 

Step 1. Indel Filtering 

The SNVs used in our method must be substitution variants, not copy number variations 

like insertions and deletions.  Only substitution mutations result in heterozygous and homozygous 

genotypes that are appropriately modeled by the Beta-Binomial distribution.  Insertions and 

deletions are identified as any mutation segments with a length of more than one base pair, and are 

then filtered/dropped in this step.  

 

Step 2. Homozygous and Heterozygous Genotype Calling 

The next step of processing is to call the genotypes for modeling.  As mentioned above, 

there are two genotypes for alternative allele at any SNV: homozygous and heterozygous. 

Suggested genotypes are listed in the GT field of VCF file where 0/0 means homozygous 

reference; 0/1 means heterozygous; and 1/1 means homozygous alternative. In step 2 of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2019. ; https://doi.org/10.1101/531558doi: bioRxiv preprint 

https://doi.org/10.1101/531558
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

processing, new information is generated that summarizes the genotype in reference to the 

alternative allele, in which “Het” reflects 0/1 in GT, and “Hom” reflects 1/1 in GT.  This results in 

two categories of called variants, each corresponding to its own Beta-binomial model. 

Homozygous reference (0/0) and other heterozygous genotypes (1/2, 2/3, and so on) are not 

considered to simplify computations, and are label as “Complex” and are not included in further 

calculations.  

 

Step 3. Low and High Depth Filtering 

NGS data is not completely error free, so it is important to identify whether a sequence is 

a true call or a sequencing error. One of the efficient methods is to set thresholds for coverage 

depth (Morgan et al., 2010). A previous study suggested read depths of >50 provide acceptable 

sensitivity and specificity in mutation detection. A reasonable read depth threshold should be 

chosen according to the average read depths of a testing sample. 

 

Step 4. Change point Detection for CNV 

In a pure sample, when there is a copy number variation (CNV) region, its features look 

very similar to the region with more than one contributors (same species contamination). Hence it 

is necessary to filter CNV region before generating features. If there is CNV information already 

generated for testing sample, the function vanquish::defcon() can filter the CNV region directly. 

Otherwise, a change point detection method is used to detect the CNV region. It has been reported 

that the variances of B-Allele Frequency (BAF, alternative allele frequency) at heterozygous loci 

are different among normal, duplication, deletion and loss of heterozygous (Ku et al., 2013). 

Therefore, change point analysis can be employed to detect change point of variance, i.e., border 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 26, 2019. ; https://doi.org/10.1101/531558doi: bioRxiv preprint 

https://doi.org/10.1101/531558
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

of copy number region. The package “changepoint” is applied on only heterozygous positions for 

multiple changepoint searching of variance change (Rebecca Killick & Eckley, 2014).   

 

2.3. Distribution and Likelihood based Features 

The next step of our approach is to generate variables/features that will be used for model 

building to predict whether a sample contains same-species contamination.  Briefly, there are two 

types of features that are generated and used in model building: distribution-based feature and 

likelihood-based feature.  

 

(1) Distribution based features 

By its definition, allele frequency is a real number between 0 and 1. To generate 

distribution-based features, allele frequency is binned into 4 regions as shown in Figure 1: Low 

Alternative Allele Frequency (LowRate), Heterozygous Alternative Allele Frequency (HetRate), 

High Alternative Allele Frequency (HighRate), and Homozygous Alternative Allele Frequency 

(HomRate). Here 0, 0.3, 0.7, and 0.99 are their corresponding cut-off values. 

From the bins in Table 1, there are 8 distribution-based features generated for the following 

model-building steps. These features reflect the distribution of allele frequencies in the whole file, 

instead of at each variant calling position. Therefore, each input sample/ VCF file has one set of 

features to represent itself. 

 

(2) Average log-likelihood, the likelihood based feature 

 The only likelihood based feature is the average likelihood of all loci in VCF file. The 

likelihood is calculated by applying the Beta-binomial distribution. In the current study, NA 10855 

and other available pure samples are selected as a reference genome to calculate maximum 
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likelihood estimator for both parameters, 𝑝 and 𝜌, in the Beta-binomial distribution (Sequenced at 

Q2 Solutions). With 𝑝̂ and 𝜌̂, log likelihood of all loci are calculated so that the last feature, their 

average value is also generated.  

 

2.4. Support Vector Machine  

After generating features, a classification method is used to identify whether a sample is 

from single contributor or multiple contributors. In the current study, we apply a Support Vector 

Machine (SVM) model because of the complexity in pattern recognition within feature space 

(Cortes & Vapnik, 1995). The SVM method fits a hyperplane between single and multiple 

contributor regions to optimally discriminate between classifications. In our approach, we 

implement the SVM method using the e1071 R package (Meyer et al., 2018) (https://CRAN.R-

project.org/package=e1071). Since a linear model is not guaranteed, the Gaussian (Radial Basis 

Function) kernel is used to avoid such parametric assumptions. There are two parameters in SVM 

analysis that need to be tuned: cost and gamma.  They are tuned using the parallel searching 

method, where a grid search is conducted on an exponentially growing sequence of cost and 

gamma to look for optimized paired values. It is possible for the estimated parameter to be 

different, given another training data set. 

 

3. Results  

3.1. Changepoint analysis for approximate copy number region detection 

In the scenario where the copy number information of a sample is not provided, change 

point analysis was conducted to find copy number regions of a sample. The rmChangePoint() 

function within the vanquish package imports cpt.var() from changepoint package (Rebecca 

Killick & Eckley, 2014). The pruned exact linear time (PELT) method (R. Killick, Fearnhead, & 
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Eckley, 2012) and the Changepoints for a Range of PenaltieS (CROPS) algorithm (Haynes, 

Eckley, & Fearnhead, 2014) are employed to search for variance changepoints. In Figure 2(A), 

the B-allele frequencies (only those between 0.05 and 0.95) of corresponding loci contained within 

the input VCF files are plotted. It is clear that there exist some CNV patterns. Red vertical lines 

are where the variance changes detected. The whole plot is separated into multiple parts by these 

change points. For each part, if the percentage of loci of the B-allele frequency is between 0.45 

and 0.55 is larger than 10% and the skewness is larger than 0.5, the part will be kept in further 

analysis. The result after filtering is shown in Figure 2(B). See the documentation of the vanquish 

package for more details. 

 

3.2. Beta-binomial parameter estimation for reference sample(s) 

In order to calculate likelihood-based features for further analysis, maximum likelihood 

estimators of 𝜌 for beta-binomial distribution of heterozygous and homozygous models are 

estimated. For the B-allele frequency, the theoretical value of the parameter 𝑝 is 0.5 in 

heterozygous model and 1 in homozygous model.  𝑝 is fixed at 0.5 and 0.999 to search for 𝜌̂ in 

corresponding model. L-BFGS-B (Byrd, Lu, Nocedal, & Zhu, 1995) is applied for maximum value 

searching. For instance, NA10855 was chosen as a reference sample, and five replicates were 

sequenced by Q2 Solutions. The maximum likelihood estimator of 𝜌 in each sample was estimated 

by rho_est() in the vanquish package (Table 2) and the sample averages were achieved for further 

analysis. The value the of estimator highly depends on the variant caller, so it is suggested to keep 

using the same variant caller for the reference sample, training sample, and test samples. 

 

3.3. Features in the classification and regression model 
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To train the classification and regression model, 238 samples were sequenced at Q2 

Solutions as a training data set. 124 out of the 238 samples were pure; and the rest of the training 

set were contaminated. Some of the contaminated samples were mixed on purpose in wet lab; and 

others were simulated by two pure FASTQ format files (Cock, Fields, Goto, Heuer, & Rice, 2010). 

Pure and contaminated samples show different B-allele frequency patterns. As shown in Figure 3, 

only heterozygous loci detected in samples are plotted. The pure sample (Figure 3A) had a narrow 

horizontal band; while the contaminated sample (Figure 3B) had a relatively uniform distribution 

for B-allele frequency. Eight boxplots and t-tests (null hypothesis ofno differences) were 

conducted to show the difference of pure and contaminated samples considering each feature 

(Figure 4). Among all eight features after t-tests, HomVar, HetVar and HighRate have significant 

p-values 1.786−9, 1.750−6, and 4.540−20 correspondingly. See Supplementary data for details of 

each feature. 

 

3.4. Tune cost and gamma parameters in radial kernel SVM  

Monte Carlo method (1000 times) and tune() from R package e1071 (Meyer et al., 2018) 

(https://CRAN.R-project.org/package=e1071) were used to tune parameters cost and gamma in 

support vector machine. All 238 samples were split into training (70%, 167 samples) and test 

(30%, 71 samples) sets. For the training set, we used grid search to tune parameter cost in the range 

of (2−4, 212), and gamma in the range of (2−4, 24). Then sensitivity and specificity were 

calculated from the test set by using tuned cost and gamma. The results of Monte Carlo simulation 

are in Table 3. Median values of cost (16) and gamma (0.25), mean values of sensitivity (97.65%) 

and specificity (96.27%) were presented and the tuned cost and gamma were used in radial kernel 

SVM model for prediction. 
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3.5. Simulated data test results 

Two reference samples, NA12878 and NA10855, were sequenced at Q2 Solutions. Two 

pairs of FASTQ format files were obtained from sequencing results, and where re-sampled and 

mixed according to different proportions as shown in Table 4 by seqtk 

(https://github.com/lh3/seqtk). In this simulated test, NA12878 was treated as the sample, while 

NA10855 was assumed to be mixed into the NA12878 sample. The percentages of the artificial 

contaminated mixtures range from 0.5% to 20%, and the detection rate at different levels of 

contamination were calculated. The total number of reads were ~50 million for all 6 mixture 

samples. After running contamination analysis, contamination percentages above 5% were readily 

detected, while lower percentages were not detectable (Table 4). Based on this result, the 

contamination detection analysis has a detection sensitivity down to 5% in this case. If contaminant 

is less similar to the sample that it is mixed with, the detection sensitivity will be lower; on the 

other hand, if the similarity is larger, then contamination detection analysis will be more 

challenging. 

 

3.6. Two groups of real data test results 

After quantitative simulation test, the trained model was applied on a real data set (22 

samples in all); and the results are shown in Table 5. The samples are ranked by regression values 

from e1071::svm(). Twenty out of twenty-two samples had the same prediction as prior 

identification. However, a pair of Human_T-Lymphoblast samples (see bold text in Table 5) were 

considered as contaminated but predicted as pure. Therefore, we zoomed in to check the 

distribution of B-allele frequency in this pair of samples (Figure 5). The copy number variation 

pattern (two bands and three bands in chromosomes) was shifted below (middle area of CNV 

pattern shifted from 0.5 to 0.3) since the sample was a mixture of tumor normal cells from the 
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same person. The pattern was clear: the source of sample was uniform. Based on the distance of 

shift, the percentage of tumor cells and normal cells of the sample is even predictable.   

A second data set (contains 53 samples in all) was also used to test the model (See 

supplementary information for more details). Within this data set, 12 samples were mixed with 

contaminant on purpose; 41 samples were pure. The test results show that the sensitivity is > 

99.99%, and the specificity is 90.24%. All four false positive samples were formalin-fixed 

paraffin-embedded (FFPE) tissues, and were very likely to be degraded (Figure 6). When 

generating features from this degraded sample in Figure 6, its features looked very similar to 

features from a contaminated sample. 

 

4. Discussion 

In this study, we introduced a novel strategy that detected same-species or within-species 

contamination by using B-allele frequency from variant call information only. An R package, 

vanquish: Variant Quality Investigation Helper, was produced to conduct this analysis. A brief 

flowchart (Figure 7) introducing contamination detection procedure shows the necessary steps as 

following: 

(1) Variant call format (VCF) generated by a variant caller was read into R by 

vanquish::read_vcf function. So far, the supported variant callers are GATK, VarDict 

and strelka2. 

(2) Copy number variation regions existing in VCF file were approximately detected and 

filtered by vanquish::update_vcf function. 

(3) Features for radial kernel SVM model were extracted from each sample by 

vanquish::generate_feature function. 
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(4) Parameter cost and gamma for kernel SVM were tuned. 

(5) A test sample was predicted whether it was contaminated. 

 Additionally, two scenarios were found where the performance of this approach may be 

affected. First, if the sample is a mixture of tumor and normal cells from the sample individual, 

which is not considered contamination by our definition. The second scenario is when the test 

sample has very low quality so that no clear B-allele frequency pattern can be found. 

 Finally, we have produced a user friendly R package to enable rapid analysis for same 

species analysis.  Our tool uniquely performs this important step of QC from VCF files, improving 

the performance, memory requirements, etc. The running time of CNA region removal and feature 

generating is summarized in Figure 8 (Hardware: Dell R820, 512GB of RAM). Five samples 

without any known change point are run 10 times each to achieve their average running time, 

keeping their maximum numbers of runs of algorithm are uniform. Same as our expectation, larger 

samples need more time to do change point detection and feature generation. Besides, if a sample 

contains more change points, it also needs a longer running time. 
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Figure 1.  Four regions for B-Allele frequency: LowRate, HetRate, HighRate, and HomRate 

and their corresponding cut-off values. LowRate is the region where B-Allele frequency is 

below 0.3; HetRate is the region where B-Allele frequency is between 0.3 and 0.7; HighRate is 

the region where B-Allele frequency is between 0.7 and 0.99; HomRate is the region where B-

Allele frequency is above 0.99. B Allele frequency density plots of pure (NA12878) and 

contaminated (NA12878-NA10855_90_10) samples. The features used in SVM classifier are 

based on the difference between pure and contaminated curves. 
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(A) Before copy number region filtering 

 
(B) After copy number region filtering 

Figure 2.  Change point analysis for copy number region detection. The Y-axis shows B-Allele 

frequency; X-axis is shows the location number of each variant from chromosome 1 to 22. (A) is before 

copy number region filtering. Red lines indicate where the variance change based on detection results. It is 

clear that there exist some copy number patterns. (B) is after copy number region filtering and in which 

most copy number patterns are removed. 
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(A) Pure sample: NA24143_gDNA_Run2_L1-2-3-4.SSHT42 a 

 
(B) Contaminated sample: Multiplex_Reference_Standard_rep1_Run1_L1-2-3-4.SSXT96-96 a 

a Sequenced at Q2 Solutions | EA Genomics, a Quintiles Quest Joint Venture 
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Figure 3. Heterozygous B-allele frequency patterns of pure (A) and contaminated (B) 

samples. Blue and red bands indicate different chromosomes. 

 

 

 

 
Figure 4. Boxplots of all features for pure samples (124) vs contaminated samples (114). 

Among all eight t-tests (null hypothesis of no difference hypothesis), HomVar, HetVar and 

HighRate have significant p-values 1.786−9, 1.750−6, and 4.540−20 correspondingly. 
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Figure 5. A sample that was previously considered as contaminated, but was detected as pure 

by vanquish::defcon(). The copy number variation pattern was shifted lower (middle area of CNV 

pattern shifted from 0.5 to 0.3) since the sample was a mixture of tumor normal cells from the 

same person. 
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Figure 6. Formalin-fixed paraffin-embedded (FFPE) tissue with low quality. This sample was 

a false positive prediction result because of the similarity between its low quality and 

contaminants.  
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Figure 7. A brief flowchart of contamination detection procedure. 
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Figure 8. Average running time (of 10 runs) for change point detection (Top) and feature 

generation (Bottom). Five samples with different numbers of loci but the same maximum number 

of runs of algorithm (= 2). 
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Features for Classification and Regression Model 
 

Name Description 

LOH 
𝐻𝑒𝑡

𝐻𝑜𝑚
 , the ratio of heterozygous and homozygous markers within a sample. 

HomRate The percentage of the loci in HomRate a region. 

HighRate The percentage of the loci in HighRate b region. 

HetRate The percentage of the loci in HetRate c region. 

LowRate The percentage of the loci in LowRate d region. 

HomVar The variance of allele frequencies in HomRate region. 

HetVar The variance of allele frequencies in HetRate region. 

AvgLL Average likelihood of all loci assuming Beta-Binomial distribution. 

a HomRate: the region where B-Allele frequency is above 0.99 
b HighRate: the region where B-Allele frequency is between 0.7 and 0.99 
c HomRate: the region where B-Allele frequency is between 0.3 and 0.7 
d HomRate: the region where B-Allele frequency is below 0.3 

 

Table 1.  All features for classification and regression model and their descriptions. 
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Maximum Likelihood Estimator 𝝆̂ of NA10855 Samples 
 

 Heterozygous 𝜌̂ Homozygous 𝜌̂ 

NA10855_1 0.154 0.0269 

NA10855_2 0.223 0.0253 

NA10855_3 0.177 0.0210 

NA10855_4 0.187 0.0310 

NA10855_5 0.169 0.0274 

Sample Mean 0.182 0.0263 

 

Table 2. Maximum Likelihood Estimator 𝝆̂ of NA10855 Samples. 𝜌̂ of heterozygous and 

homozygous models were estimated for each sequencing replicate. The sample mean can be used 

for generating features from training data set. 
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Parameter Tuning and Performance Test 
 

Median Cost Median Gamma Average Sensitivity Average Specificity 

16 0.25 97.65% 96.27% 

 

Table 3. Monte Carlo test results for parameter tuning and performance test. 
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Contamination Detection for Simulated Data 
 

Sample Component Reads (NA12878) Reads (NA10855) Test Results 

NA12878 (80%) + NA10855 (20%) 40M a 10M Contaminated 

NA12878 (90%) + NA10855 (10%) 45M 5M Contaminated 

NA12878 (95%) + NA10855 (5%) 47.5M 2.5M Contaminated 

NA12878 (97.5%) + NA10855 (2.5%) 48.75M 1.25M Pure 

NA12878 (99%) + NA10855 (1%) 49.5M 0.5M Pure 

NA12878 (99.5%) + NA10855 (0.5%) 49.75M 0.25M Pure 

a M: million 

Table 4. Contamination Detection for a series of simulated data. 
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Contamination Detection for Real Data 
 

Sample Name Classification Regression Prior Identification 

Human_B-Lymphocyte_L8 1 1.9243094 1 

Human_B-Lymphocyte_2_L20 1 1.9209875 1 

Human_Breast_2_L16 0 1.483925 0 

Human_Breast_L4 0 1.463376 0 

Human_T-Lymphoblast_2_L21a 
0 1.3622305 1 

Human_T-Lymphoblast_L9 0 1.3472358 1 

Human_Brain_L3 0 1.3147938 0 

Human_Brain_2_L15 0 1.303287 0 

Human_Testis_L12 0 1.245767 0 

Human_Cervix_2_L17 0 1.2429423 0 

Human_Testis_2_L24 0 1.2424441 0 

Human_Cervix_L5 0 1.203943 0 

Human_Macrophage_L10 0 1.158416 0 

Human_Macrophage_2_L22 0 1.1582528 0 

Human_Liver_2_L18 0 1.1442246 0 

Human_Liposarcoma_L7 0 1.1406007 0 

Human_Liposarcoma_2_L19 0 1.132044 0 

Human_Skin_2_L23 0 1.1209464 0 

Human_Skin_L11 0 1.1194772 0 

Human_Liver_L6 0 1.1170909 0 

Human_Reference_DNA_Male_L1 0 1.0945151 0 

Human_Reference_DNA_Male_2_L13 0 1.0906951 0 

 
a This is a mixture of tumor and normal cells. See Figure 5 for distribution of B-allele frequency of this sample. 

Table 5. Contamination Detection for a series of real data. Twenty out of twenty-two samples 

had the same prediction as prior identification. However, a pair of Human_T-Lymphoblast 

samples (bold text) were considered as contaminated but predicted as pure. 
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