

1 **Analysis of *Brevundimonas subvibrioides* developmental signaling systems reveals**
2 **unexpected differences between phenotypes and c-di-GMP levels**

3

4 Running title: *Brevundimonas* developmental signaling and c-di-GMP

5 Keywords: Brevundimonas, Caulobacter, development, signaling, DivK, c-di-GMP

6

7 Lauryn Sperling¹, Volkhard Kaever², Patrick D. Curtis^{1*}

8

9

10 ¹Department of Biology, University of Mississippi, University, MS 38677, USA

11 ²Institute of Pharmacology, Research Core Unit Metabolomics, Hannover Medical School,

12 30625 Hannover, Germany

13

14

15

16 *Corresponding author. Mailing address: Department of Biology, University of Mississippi, 402

17 Shoemaker Hall, University, Mississippi 38677 USA. Phone: 662-915-1911. Fax: 662-915-

18 5144. Email: pdcurtis@olemiss.edu.

19

20

21 **Abstract**

22 The DivJ-DivK-PleC signaling system of *Caulobacter crescentus* is a signaling network
23 that regulates polar development and the cell cycle. This system is conserved in related bacteria,
24 including the sister genus *Brevundimonas*. Previous studies had shown unexpected phenotypic
25 differences between the *C. crescentus* *divK* mutant and the analogous mutant of *Brevundimonas*
26 *subvibrioides*, but further characterization was not performed. Here, phenotypic assays
27 analyzing motility, adhesion, and pilus production (the latter characterized by a newly discovered
28 bacteriophage) revealed that *divJ* and *pleC* mutants have mostly similar phenotypes as their *C.*
29 *crescentus* homologs, but *divK* mutants maintain largely opposite phenotypes than expected.
30 Suppressor mutations of the *B. subvibrioides* *divK* motility defect were involved in cyclic-di-
31 GMP (c-di-GMP) signaling, including the diguanylate cyclase *dgcB*, and *cleD* which is
32 hypothesized to affect flagellar function in a c-di-GMP dependent fashion. However, the screen
33 did not identify the diguanylate cyclase *pleD*. Disruption of *pleD* in *B. subvibrioides* caused
34 hypermotility in wild-type, but not in the *divK* background. Analysis of c-di-GMP levels in these
35 strains revealed incongruities between c-di-GMP levels and displayed phenotypes with a notable
36 result that suppressor mutations altered phenotypes but had little impact on c-di-GMP levels in
37 the *divK* background. Conversely, when c-di-GMP levels were artificially manipulated,
38 alterations of c-di-GMP levels in the *divK* strain had minimal impact on phenotypes. These
39 results suggest that DivK performs a critical function in the integration of c-di-GMP signaling
40 into the *B. subvibrioides* cell cycle.

41

42

43

44 Importance

45 Cyclic-di-GMP signaling is one of the most broadly conserved signaling systems in
46 bacteria, but there is little understanding of how this system directly affects the physiology of the
47 organism. In *C. crescentus*, c-di-GMP has been integrated into the developmental cell cycle, but
48 there is increasing evidence that environmental factors can impact this system as well. The
49 research presented here suggests that developmental signaling could impact physiological
50 processes in c-di-GMP dependent and independent ways. This hints that the integration of these
51 signaling networks could be more complex than previously hypothesized, which could have a
52 bearing on the larger field of c-di-GMP signaling. In addition, this work further examines how
53 much models developed in one organism can be extrapolated to related organisms.

54 **Introduction**

55 Though model organisms represent a small portion of the biodiversity found on Earth, the
56 research that has resulted from their study shapes much of what we know about biology today.
57 The more closely related species are to a model organism, the more that theoretically can be
58 inferred about them using the information from the model organism. Modern genomic studies
59 have given this research an enlightening new perspective. Researchers can now compare the
60 conservation of particular systems genetically. Using model organisms can be a very efficient
61 and useful means of research, but the question still remains of how much of the information
62 gained from the study of a model can be extrapolated unto other organisms. Though genomic
63 comparison shows high levels of conservation between genes of different organisms, this does
64 not necessarily mean the function of those genes or systems has been conserved. This
65 phenomenon seems to be evident in the *Caulobacter crescentus* system.

66 *C. crescentus* is a Gram-negative alphaproteobacterium that lives a dimorphic lifestyle. It
67 has been used as a model organism for the study of cell cycle regulation, intracellular signaling,
68 and polar localization of proteins and structures in bacteria. The *C. crescentus* life cycle begins
69 with the presynthetic (G_1) phase in which the cell is a motile “swarmer cell” which contains a
70 single flagellum and multiple pili at one of the cell’s poles [for review, see (1)]. During this
71 period of the life cycle, the cell cannot replicate its chromosome or perform cell division. Upon
72 differentiation, the cell dismantles its pili and ejects its flagellum. It also begins to produce
73 holdfast, an adhesive polysaccharide, at the same pole from which the flagellum was ejected.
74 The cell then develops a stalk, projecting the holdfast away from the cell at the tip of the stalk.
75 The differentiation of the swarmer cell to the “stalked cell” marks the beginning of the synthesis
76 (S) phase of the cell life cycle as chromosome replication is initiated. As the stalked cell

77 replicates its chromosome and increases its biomass in preparation for cell division, it is referred
78 to as a predivisional cell. Toward the late predivisional stage, it again becomes replication
79 incompetent and enters the postsynthetic (G_2) phase of development. At the end of the G_2 phase,
80 the cell completes division forming two different cell types. The stalked cell can immediately
81 reenter the S phase, while the swarmer cell moves once again through the G_1 phase.

82 *Brevundimonas subvibrioides* is another Gram-negative alphaproteobacterium found in
83 oligotrophic environments that lives a dimorphic lifestyle like that of *C. crescentus*.

84 *Brevundimonas* is the next closest genus phylogenetically to *Caulobacter*. According to a
85 Pairwise Average Nucleotide Identity (ANI) test, their genomes are approximately 74% identical.
86 Bioinformatic analyses showed that all developmental signaling proteins found in the *C.*
87 *crescentus* cell cycle are conserved *B. subvibrioides* (2, 3). However, little physiological
88 characterization has been performed. Conservation of genes does not necessarily mean
89 conservation of function or properties (3). Essential gene studies within the Alphaproteobacteria
90 have shown that gene essentiality/non-essentiality in one organism does not always correspond
91 with that in another organism (3–6). Analyses that have been performed on *C. crescentus* and *B.*
92 *subvibrioides* have shown many similarities in gene essentiality between the two, but have
93 shown several surprising differences as well (3).

94 In *C. crescentus*, the DivJ-DivK-PleC system controls the spatial activation of one of the
95 master regulators in *C. crescentus*, CtrA (1, 7). This system is a prime example of how *C.*
96 *crescentus* has evolved traditional two-component proteins into a more complex signaling
97 pathway and, as a result, has developed a more complex life cycle. The DivJ-DivK-PleC
98 pathway consists of two histidine kinases (PleC and DivJ) and a single response regulator (DivK)
99 (8, 9). DivJ is absent in swarmer cells but is produced during swarmer cell differentiation. It

100 then localizes to the stalked pole (8). DivJ is required for, among other things, proper stalk
101 placement and regulation of stalk length (8). *C. crescentus divJ* mutants display filamentous
102 shape, a lack of motility, and holdfast overproduction (8, 9).

103 PleC localizes to the flagellar pole during the predivisional cell stage (10). Though
104 structurally a histidine kinase PleC acts as a phosphatase, constitutively de-phosphorylating
105 DivK (8, 9). *C. crescentus pleC* mutants display a lack of pili, holdfast, and stalks, and have
106 paralyzed flagella leading to a loss of motility (11–13). DivK is a single-domain response
107 regulator (it lacks an output domain) whose location is dynamic throughout the cell cycle (9, 14).
108 DivK remains predominantly unphosphorylated in the swarmer cell, while it is found mostly in
109 its phosphorylated form in stalked cells. Photobleaching and FRET analysis show that DivK
110 shuttles rapidly back and forth from pole to pole in the pre-divisional cell depending on its
111 phosphorylation state (9). Previous studies have shown that phosphorylated DivK localizes
112 bipolarly while primarily unphosphorylated DivK is delocalized throughout the cell (9). A *divK*
113 cold-sensitive mutant suppresses the non-motile phenotype of *pleC* at 37°C. However, at 25°C,
114 it displays extensive filamentation much like the *divJ* mutant (15). Additionally, filamentous
115 *divK* mutants sometimes had multiple stalks, though the second stalk was not necessarily polar
116 (15). Furthermore, electron microscopy of *divK* disruption mutants led to the discovery that they
117 lack flagella (15).

118 Upon completion of cytokinesis, PleC and DivJ are segregated into different
119 compartments, thus DivK phosphorylation levels in each compartment are dramatically different.
120 This leads to differential activation of CtrA in the different compartments (9, 16). In the
121 swarmer cell, the de-phosphorylated DivK leads to the downstream activation of CtrA. CtrA in
122 its active form binds the chromosome at the origin of replication and prevents DNA replication

123 (17, 18). The opposite effect is seen in stalked cells where highly phosphorylated DivK results
124 in the inactivation of CtrA and, therefore, permits DNA replication (19).

125 Gene essentiality studies in *B. subvibrioides* led to the discovery of a discrepancy in the
126 essentiality of DivK. In *C. crescentus* DivK is essential for growth, while in *B. subvibrioides*
127 DivK is dispensable for growth (3, 15). Further characterization found dramatic differences in
128 the phenotypic consequences of disruption. Through the use of a cold-sensitive DivK allele or
129 by ectopic depletion, *C. crescentus* *divK* disruption largely phenocopies *divJ* disruption in cell
130 size and motility effects (8, 9, 15). This is to be expected as DivK~P is the active form and both
131 *divJ* or *divK* disruption reduce DivK~P levels. In *B. subvibrioides*, disruption of *divJ* leads to the
132 same effects in cell size, motility, and adhesion (3). However, *divK* disruption leads to opposite
133 phenotypes of cell size and adhesion, and while motility is impacted it is likely by a different
134 mechanism.

135 While the previous study revealed important differences between the organisms, it did not
136 analyze the impact of PleC disruption, nor did it examine pilus production or subcellular protein
137 localization. The work presented here further characterizes the DivJ-DivK-PleC signaling
138 system in *B. subvibrioides* and begins to address the mechanistic reasons for the unusual
139 phenotypes displayed by the *B. subvibrioides* *divK* mutant.

140

141 **Materials and Methods**

142 *Strains and growth conditions*

143 A complete list of strains used in this study is presented in the appendix (see Table 1).
144 *Brevundimonas* strains were cultured at 30°C on PYE medium (2 g peptone, 1 g yeast extract,
145 0.3 g MgSO₄ · 7H₂O, 0.735 CaCl₂) (20). Kanamycin was used at 20 µg/ml, gentamycin at 5

146 μ g/ml, and tetracycline at 2 μ g/ml when necessary. PYE plates containing 3% sucrose were used
147 for counter-selection. *Escherichia coli* was cultured on Luria-Bertani (LB) medium (10 g/L
148 tryptone, 10 g/L NaCl, 5 g/L yeast extract) at 37°C. Kanamycin was used at 50 μ g/ml,
149 gentamycin at 20 μ g/ml, and tetracycline at 12 μ g/ml when necessary.

150

151 *Mutant generation*

152 The *B. subvibrioides* Δ divJ, Δ divK, and Δ divJ Δ divK mutants were used from a previous
153 study (3). The *B. subvibrioides* *ApleC* construct was made by PCR amplifying an upstream
154 fragment of ~650 bps using primers PleC138Fwd
155 (attgaagccggctggcgccaCCAGATCGAAAAGGTGCAGCCC) and PleCdwRev
156 (tctaggccgcGCCCGCAAGGCGCTCTC) and a downstream fragment of ~550 bps using
157 primers PleCupFwd (cttgcggggcGCGGCCTAGAGCCGGTCA) and PleC138Rev
158 (cgtcacggccgaagctagcgGGTGCTGGATGAAGACACCG). The primers were designed using the
159 NEBuilder for Gibson Assembly tool online (New England Biolabs) and were constructed to be
160 used with the pNPTS138 vector (MRK Alley, unpublished). Following a digestion of the vector
161 using HindIII and EcoRI the vector along with both fragments were added to Gibson Assembly
162 Master Mix (New England Biolabs) and allowed to incubate for an hour at 50°C. Reactions
163 were then transformed into *E. coli* and correct plasmid construction verified by sequencing to
164 create plasmid pLAS1. This plasmid was used to delete *pleC* in *B. subvibrioides* as previously
165 described (3).

166 To create insertional mutations in genes, internal fragments from each gene were PCR
167 amplified. A fragment from gene *cpaF* was amplified using primers cpaFF
168 (GCGAACAGAGCGACTACTACCACG) and cpaFR (CCACCAGGTTCTTCATCGTCAGC).

169 A fragment from gene *pleD* was amplified using primers PleDF (CCGGCATGGACGGGTTTC)
170 and PleDR (CGTTGACGCCAGTTCCAG). A fragment from gene *dgcB* was amplified using
171 primers DgcBF (GAGATGCTGGCGGCTGAATA) and DgcBR
172 (CGAACTCTCGCCACCGTAG). A fragment from gene *cleD* was amplified using primers
173 Bresu1276F (ATCGCCGATCCGAACATGG) and Bresu1276R
174 (TTCTCGACCCGCTTGAACAG). The fragments were then cloned into the pCR vector using
175 the Zero Blunt cloning kit (Thermo Fisher), creating plasmids pPDC17 (*cpaF*), pLAS1 (*pleD*),
176 pLAS2 (*dgcB*), and pLAS3 (*cleD*). These plasmids were then transformed into *B. subvibrioides*
177 strains as previously published (3). The pCR plasmid is a non-replicating plasmid in *B.*
178 *subvibrioides* that facilitates insertion of the vector into the gene of interest via recombination,
179 thereby disrupting the gene.

180 To create a C-terminal *B. subvibrioides* DivJ fusion, ~50% of the *divJ* gene covering the
181 3' end was amplified by PCR using primers BSdivJgfpF
182 (CCTCATATGGGTTTACGGGCCTACGGG) and BSdivJgfpR
183 (CGAGAATTCTGAGACGGTCGGCGACGGTCCTG), and cloned into the pGFP-2 plasmid
184 (21), creating plasmid pPDC11. To create a C-terminal *B. subvibrioides* PleC fusion, ~50% of
185 the *pleC* gene covering the 3' end was amplified by PCR using primers BSpleCgfpF
186 (CAACATATGCCAGAAGGACGAGCTGAACCGC) and BSpleCgfpR
187 (TTTGAATTCTGAGGCCGCCGCGCCTGTTGTTG), and cloned into the pGFP-2 plasmid,
188 creating plasmid pPDC8. These plasmids are non-replicative in *B. subvibrioides* and therefore
189 integrate into the chromosome by homologous recombination at the site of each targeted gene.
190 The resulting integration creates a full copy of gene under the native promoter that produces a

191 protein with C-terminal GFP tag, and a ~50% 5' truncated copy with no promoter. This
192 effectively creates a strain where the tagged gene is the only functional copy.

193 Due to the small size of the *divK* gene, a region including the *divK* gene and ~500 bp of
194 sequence upstream of *divK* was amplified using primers BSdivKgfpF
195 (AGGCATATGCCAGCGACAGGGTCTGCACC) and BSdivKgfpR
196 (CGGGAATTGATCCGCCAGTACCGGAACGC) and cloned into pGFPC-2, creating
197 plasmid pPDC27. After homologous recombination into the *B. subvibrioides* genome, two
198 copies of the *divK* gene are produced, both under the native promoter, one of which encodes a
199 protein C-terminally fused to GFP.

200 Constructs expressing *E. coli* *ydeH* under IPTG induction on a medium copy (pTB4) and
201 low copy (pSA280) plasmids were originally published in (22). Constructs expressing
202 *Pseudomonas aeruginosa* *pchP* under vanillate induction (pBV-5295) as well as an active site
203 mutant (pBV-5295_{E328A}) were originally published in (23).

204

205 *Transposon mutagenesis*

206 Transposon mutagenesis was performed on the *B. subvibrioides* *ΔdivK* mutant using the
207 EZ-Tn5 <KAN-2> TNP transposome (Epicentre). *B. subvibrioides* *ΔdivK* was grown overnight
208 in PYE to an OD₆₀₀ of about 0.07 [quantified with a Themo Nanodrop 2000 (Themo Scientific)].
209 Cells (1.5 ml) were centrifuged 15,000 x g for 3 min at room temperature. The cell pellet was
210 then resuspended in 1 ml of water before being centrifuged again. This process was repeated.
211 Cells were resuspended in 50 µl of nuclease free water, to which 0.2 µl of transposome was
212 added. The mixture was incubated at room temperature for 10 minutes. The mixture was added
213 to a Gene Pulser Cuvette with a 0.1 cm electrode gap (Bio-Rad). The cells were then

214 electroporated as performed previously (3). Electroporation was performed using a GenePulser
215 Xcell (Bio-Rad) at a voltage of 1,500 V, a capacitance of 25 μ F, and a resistance of 400 Ω . After
216 electroporation, cells were resuspended with 1 ml of PYE then incubated shaking at 30°C for 3
217 hours. Cells were diluted 3-fold then spread on PYE + Kan plates (100 μ l/plate). Plates were
218 incubated at 30°C for 5-6 days.

219

220 *Swarm assay*

221 Strains were grown overnight in PYE, diluted to an OD₆₀₀ of 0.02, and allowed to grow
222 for two doublings (to OD₆₀₀ of ~0.06 - 0.07). All strains were diluted to OD₆₀₀ = 0.03 and 1 μ l of
223 culture was injected into a 0.3% agar PYE plate. Isopropyl 1-thio- β -D-galactopyranoside (IPTG)
224 (final concentration 1500 μ M) and vanillate (final concentration 1 M) was added to plate mixture
225 before pouring plates where applicable. Molten 0.3% agar in PYE (25 ml) was poured in each
226 plate. Plates were incubated at 30°C for 5 days. Plates were imaged using a BioRad ChemiDoc
227 MP Imaging System with Image Lab software. Swarm size was then quantified in pixels using
228 ImageJ software. Assays were performed in triplicate and average and standard deviation were
229 calculated.

230

231 *Short-term adhesion assay*

232 Strains were grown overnight in PYE, diluted to an OD₆₀₀ of 0.02, and allowed to grow
233 for two doublings (to OD₆₀₀ of ~0.06 - 0.07). All strains were diluted to OD₆₀₀ = 0.05, at which
234 time 0.5 ml of each strain was inoculated into a well of a 24-well dish and incubated at 30°C for
235 2 hours in triplicate. Cell culture was removed and wells were washed 3 times with 0.5 ml of
236 fresh PYE. To each well was added 0.5 ml of 0.1% crystal violet and incubated at room

237 temperature for 20 minutes. Crystal violet was removed from each well before the plate was
238 washed by dunking in a tub of deionized water. Crystal violet bound to biomass was eluted with
239 0.5 ml acetic acid and the A_{589} was quantified using a Themo Nanodrop 2000 (Themo
240 Scientific). Averages for each strain were calculated and then normalized to wild-type values
241 inoculated into the same plate. These assays were performed three times for each strain and used
242 to calculate average and standard deviation.

243

244 *Lectin-binding assay and microscopy conditions*

245 Holdfast staining was based on the protocol of (24). Strains of interest were grown
246 overnight in PYE to an OD_{600} of 0.05 – 0.07. For each strain, 200 μ l of culture were incubated
247 in a centrifuge tube with 2 μ l of Alexafluor 488 (GFP imaging conditions, Molecular Probes) for
248 20 minutes at room temperature. Cells were washed with 1 ml of sterile water then centrifuged
249 15,000 x g for 1 min at room temperature. The cell pellet was resuspended in 30 μ l of sterile
250 water. A 1% agarose pad (agarose in H_2O) was prepared for each strain on a glass slide to which
251 1 μ l of culture was added. Slides were then examined and photographed using an Olympus IX81
252 microscope by phase contrast and epifluorescence microscopy at appropriate wavelengths.

253 Holdfast of GFP-labeled strains were stained with Alexafluor 594 (RFP imaging
254 conditions) conjugated to Wheat Germ Agglutinin and prepared for imaging as described above.
255 Cells were imaged by phase contrast and epifluorescence microscopy at appropriate
256 wavelengths.

257

258 *Isolation of phage.*

259 Surface water samples from freshwater bodies were collected from several sources in
260 Lafayette County, Mississippi in 50 ml sterile centrifuge tubes and kept refrigerated. Samples
261 were passed through 0.45 μ m filters to remove debris and bacterial constituents. To isolate
262 phage, 100 μ l of filtered water was mixed with 200 μ l mid-exponential *B. subvibrioides* cells and
263 added to 2.5 ml PYE with molten 0.5% agar. The solution was poured onto PYE agar plates,
264 allowed to harden, and then incubated at room temperature (~22°C) for 2 days. Plaques were
265 excised with a sterile laboratory spatula and placed into sterile 1.5 ml centrifuge tubes. 500 μ l
266 PYE was added and the sample was refrigerated overnight to extract phage particles from the
267 agar. To build a more concentrated phage stock, the soft-agar plating was repeated with
268 extracted particles. Instead of excising plaques, 5 ml of PYE was added to the top of the plate
269 and refrigerated overnight. The PYE/phage solution was collected and stored in a foil-wrapped
270 sterile glass vial, and 50 μ l chloroform was added to kill residual bacterial cells. Phage solutions
271 were stored at 4°C.

272

273 *Isolation of phage resistant mutants.*

274 *B. subvibrioides* was mutagenized with EZ-Tn5 transposome as described above. After
275 electroporation, cells were grown for 3 hr without selection, followed by 3 hr with kanamycin
276 selection. Transformed cells (100 μ l) were mixed with 100 μ l phage stock (~1 x 10¹⁰ pfu/ml)
277 and plated on PYE agar medium with kanamycin. Colonies arose after ~5 days and were
278 transferred to fresh plates. Transformants had their genomic DNA extracted using the Bactozol
279 kit (Molecular Research Center). Identification of the transposon insertion sites was performed
280 using Touchdown PCR (25), with transposon specific primers provided in the EZ-Tn5 kit.

281

282 *Phage sensitivity assays.*

283 Two different phage sensitivity assays were used. First (hereafter referred to as the
284 spotting assay) involved the mixing of cells and phage in liquid suspension and then spotting
285 droplets on an agar surface. Each cell culture was normalized to $OD_{600} = 0.03$. The culture was
286 then diluted 10^{-2} , 10^{-4} and 10^{-5} in PYE medium. For control assays, 5 μ l of each cell suspension
287 (including undiluted) was mixed with 5 μ l PYE, then 5 μ l of this mixture was spotted onto PYE
288 plates, allowed to dry, then incubated at room temperature for 2 days. For the phage sensitivity
289 assays, 5 μ l of each cell suspension was mixed with 5 μ l of phage stock ($\sim 1 \times 10^{10}$ pfu/ml), 5 μ l
290 spotted onto PYE plates, allowed to dry, then incubated at room temperature for 2 days.

291 The second assay (hereafter referred to as the soft agar assay) involved creating a lawn of
292 cells and spotting dilutions of phage on the lawn. Cell cultures were normalized to $OD_{600} = 0.03$
293 and 200 μ l of cells were mixed with 4.5 ml PYE with molten 0.5% agar, mixed, poured onto a
294 PYE agar plate, and allowed to harden. Phage stock ($\sim 1 \times 10^{10}$ pfu/ml) was diluted in PYE
295 media as individual 10X dilutions to a total of 10^{-7} dilution. 5 μ l of each phage concentration
296 (10^{-1} to 10^{-7} , 7 concentrations total) were spotted on top of the soft agar surface and allowed to
297 dry. Plates were incubated 2 days at room temperature.

298

299 *Swarm suppressor screen*

300 Individual colonies from a transposon mutagenesis were collected on the tip of a thin
301 sterile stick and inoculated into a 0.3% agar PYE plate. Wild-type *B. subvibrioides* strains as
302 well as *B. subvibrioides* $\Delta divK$ were inoculated into each plate as controls. 32 colonies were
303 inoculated into each plate including the 2 controls. Plates were incubated at 30°C for 5 days.

304 Plates were then examined for strains that had expanded noticeably further than the parent *divK*
305 strain from the inoculation point. Those strains of interest were then isolated for further testing.

306

307 *Identification of swarm suppressor insertion sites.*

308 Swarm suppressor insertion sites were identified by Inverse PCR (iPCR, (26)). Genomic
309 DNA (gDNA) was purified using the DNeasy Blood & Tissue Kit (Qiagen). Digests were then
310 prepared using 1 μ g of gDNA and either AluI or HhaI incubated overnight at 37°C. Digests were
311 heat inactivated for 20 minutes at 80°C then column cleaned using the DNA Clean and Concen-
312 trator kit (Zymo Research). Dilute ligations (100-500 ng DNA) were then prepared so that di-
313 gested fragments would likely circularize. Ligations were incubated at 17°C overnight. Reac-
314 tions were heat inactivated at 65°C for 20 minutes then column cleaned using the DNA Clean
315 and Concentrator kit. The ligated DNA was used as the template in a PCR reaction with primers
316 that anneal inside the transposon sequence. Primers used included AluIF (GCGTT-
317 GCCAATGATGTTACAGATGAG) and AluIR (GCCCGACATTATCGCGAGCCC) as well as
318 HhaIF2 (TTACGCTGACTTGACGGGAC) and HhaIR2 (GGAGAAAACTCACCGAGGCA).
319 Given the large size of the resulting AluI fragment from the transposon sequence alone, another
320 primer AluIFSeq (CGGTGAGTTTCTCCTTCATTACAG) was designed specifically for se-
321 quencing after iPCR was complete. Primers were designed facing outward toward either end of
322 the transposon such that the resulting PCR amplicon would be fragments that begin and end with
323 transposon sequence with gDNA in between. PCR reactions were prepared using 10.75 μ l H₂O,
324 5 μ l HF buffer (BioRad), 5 μ l combinational enhancer solution (2.7 M betaine, 6.7 mM DTT,
325 6.7% DMSO, 55 μ g/mL BSA), 1 μ l of template DNA from each ligation, 1 μ l each of their re-
326 spective forward and reverse primers (primers based on what enzyme was used during diges-

327 tion), 1 μ l of 10 mM dNTP's (BioLine), and 0.25 μ l iProof (BioRad). PCR conditions were as
328 follows. Initial melt was set to 98°C for 30 seconds. Melting temperature was set to 98°C for 45
329 seconds, annealing temperature was set to 52°C for 20 seconds, extension temperature was set to
330 72°C for 2:30 seconds. and these three steps were cycled through 30 times. Final extension tem-
331 perature was set to 72°C for 10 minutes. 5 μ l from each reaction were run on a 1% agarose gel
332 to check for fragments. Those reactions that tested positive for bands were drop dialyzed using
333 0.025 μ m membrane filters (Millipore) then prepared for sequencing with their respective pri-
334 mers. Samples were sent to Eurofins for sequencing.

335

336 *Quantification of c-di-GMP.*

337 Strains of interest were grown overnight in PYE to an OD₆₀₀ of 0.05 – 0.07. Metabolites
338 were then extracted from each sample and c-di-GMP was quantified using the protocol previous-
339 ly described in (27). Metabolites from each strain were extracted in triplicate. Remaining cellu-
340 lar material was dried at room temperature and resuspended in 800 μ L 0.1M NaOH. Samples
341 were incubated at 95°C for 15 minutes. Samples were then centrifuged for 10 min at 4°C,
342 20,800 x g. Protein levels were measured in triplicate for each sample using 10 μ l from the pel-
343 let treatment and the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Intracellular
344 concentrations measured by mass spectrometry were then normalized to protein levels.

345

346 **Results**

347 **Deletion mutants in the *B. subvibrioides* DivJ-DivK-PleC system result in varied**
348 **phenotypes compared to that of analogous *C. crescentus* mutations.** In the previous study
349 done in *Brevundimonas subvibrioides*, deletion mutants of the genes *divJ*, *divK*, and a *divJdivK*

350 double mutant were made and partially characterized, uncovering some starkly different
351 phenotypes compared to the homologous mutants in *C. crescentus*. However, characterization of
352 this system was not complete as it did not extend to a key player in this system: PleC. As
353 previously mentioned, *C. crescentus pleC* mutants display a lack of motility, pili, holdfast, and
354 stalks (28). To begin examining the role of PleC in *B. subvibrioides*, an in-frame deletion of the
355 *pleC* gene (Bresu_0892) was created. This strain, along with the previously published *divJ*,
356 *divK*, and *divJdivK* strains, were used in a swarm assay to analyze motility. All mutant strains
357 displayed reduced motility in swarm agar compared to the wild-type (Figure 1A). This had been
358 reported for the published strains (3). The mechanistic reasons for this are unclear. All were
359 observed to produce flagella and were seen to swim when observed microscopically. The *divJ*
360 strain has significantly filamentous cell shape which is known to inhibit motility through soft
361 agar, but the *divK* and *divJdivK* strains actually have shorter than wild-type cells. The nature of
362 the *pleC* motility defect is also unknown. The cell size of the *pleC* mutants was not noticeably
363 different from that of wild-type cells (Figure 1B). The *C. crescentus pleC* mutant is known to
364 have a paralyzed flagellum which leads to a null motility phenotype, but *B. subvibrioides pleC*
365 mutants were observed swimming under the microscope suggesting that unlike *C. crescentus*
366 their flagellum remains functional. While the mechanistic reason for this discrepancy is
367 unknown, it does provide another important difference in developmental signaling mutants
368 between the two organisms.

369 To further the phenotypic characterization, these strains were analyzed for the surface
370 adhesion properties using both a short-term adhesion assay as well as staining holdfast material
371 with a fluorescently-conjugated lectin. As previously reported, the *divK* and *divJdivK* strains had
372 minimal adhesion and no detectable holdfast material (Figure 1AB). It was previously reported

373 that the *divJ* strain had increased adhesion over wild-type, but in this study, it was found to have
374 slightly reduced adhesion compared to wild-type. It is not clear if this difference is significant.
375 The *pleC* strain had reduced adhesion compared to wild-type, but more adhesion compared to the
376 *divK* or *divJdivK* strains. When analyzed by microscopy, the *pleC* strain was found to still
377 produce detectable holdfast, which is a difference from the *C. crescentus* *pleC* strain where
378 holdfast was undetectable (28, 29).

379 An important component to the function of this signaling system is the subcellular
380 localization of DivJ and PleC to the stalked and flagellar poles respectively. As the localization
381 of these proteins had yet to be characterized in *B. subvibrioides*, GFP-tagged constructs were
382 generated such that the tagged versions were under native expression. Because *B. subvibrioides*
383 cells very rarely produce stalks under nutrient-replete conditions (30), holdfast material was
384 stained using a WGA lectin conjugated with a fluorophore that uses RFP imaging conditions. As
385 seen in Figure 1C, DivJ-GFP formed foci at the same pole as the holdfast, while PleC-GFP
386 formed foci at poles opposite holdfast. As it has been demonstrated that holdfast material is
387 produced at the same pole as the stalk in *B. subvibrioides* (30), this result suggests that these
388 proteins demonstrate the same localization patterns as their *C. crescentus* counterparts.
389 Additionally, DivK-GFP was seen to form bipolar foci in predivisional cells (Figure 1C), the
390 same as *C. crescentus* DivK. Therefore, while the phenotypic consequences of signaling protein
391 disruption vary between these organisms, the localization patterns of the proteins are consistent.
392 **Isolation of a bacteriophage capable of infecting *B. subvibrioides*.** Another important
393 developmental event in *C. crescentus* is the production of pili at the flagellar pole coincident
394 with cell division. Pili are very difficult to visualize, and in *C. crescentus* the production of pili
395 in strains of interest can be assessed with the use of the bacteriophage Φ CbK, which infects the

396 cell using the pilus. Resistance to the phage indicates the absence of pili. However,
397 bacteriophage that infect *C. crescentus* do not infect *B. subvibrioides* (data not shown) despite
398 their close relation. In an attempt to develop a similar tool for *B. subvibrioides*, a phage capable
399 of infecting this organism was isolated.

400 Despite the fact that *B. subvibrioides* was isolated from a freshwater pond in California
401 over 50 years ago (4), a phage capable of infecting the bacterium was isolated from a freshwater
402 pond in Lafayette County, Mississippi. This result is a testament to the ubiquitous nature of
403 *Caulobacter* and *Brevundimonas* species in freshwater environments all over the globe. This
404 phage has been named Delta, after the state's famous Mississippi Delta region. To determine the
405 host range for this phage, it was tested against multiple *Brevundimonas* species (Figure 2A).
406 Delta has a relatively narrow host range, causing the largest reduction of cell viability in *B.*
407 *subvibrioides* and *B. aveniformis*, with some reduction in *B. basaltis* and *B. halotolerans* as well.
408 None of the other 14 *Brevundimonas* species showed any significant reduction in cell viability.
409 Neither did Delta show any infectivity toward *C. crescentus* (data not shown). While *B.*
410 *subvibrioides*, *B. aveniformis*, and *B. basaltis* all belong to the same sub-clade within the
411 *Brevundimonas* genus (P. Caccamo, Y.V. Brun, personal communication), so do *B.*
412 *kwangchunensis*, *B. alba* and *B. lenta*, all of which are more closely related to *B. subvibrioides*
413 than *B. aveniformis* and all of which were resistant to the phage. Therefore, infectivity does not
414 appear to fall along clear phylogenetic lines and may be determined by some other factor.

415 To begin identifying the infection mechanism of Delta, *B. subvibrioides* was randomly
416 mutagenized with a Tn5 transposon and resulting transformants were mixed with Delta to select
417 for transposon insertions conferring phage resistance as a way to identify the phage infection
418 mechanism. Phage resistant mutants were readily obtained and maintained phage resistance

419 when rescreened. A number of transposon insertion sites were sequenced and several were
420 found in the pilus biogenesis cluster homologous to the *C. crescentus* *flp*-type pilus cluster. In-
421 sertions were found in the homologs for *cpaD*, *cpaE* and *cpaF*; it is known disruption of *cpaE* in
422 *C. crescentus* abolishes pilus formation and leads to Φ CbK resistance (2, 3, 31–33). A targeted
423 disruption was made in *cpaF* and tested for phage sensitivity by the soft agar assay (Figure 2B).
424 The *cpaF* disruption caused complete resistance to the phage. The fact that multiple transposon
425 insertions were found in the pilus cluster and that the *cpaF* disruption leads to phage resistance
426 strongly suggest that Delta utilizes the *B. subvibrioides* pilus as part of its infection mechanism.
427 The identification of another pili-tropic phage is not surprising as pili are major phage targets in
428 multiple organisms.

429 Phage Delta was used to assess the potential pilis production in developmental signaling
430 mutants using the soft agar assay (Figure 2C). The *divJ* mutant has similar susceptibility to
431 Delta as the wild-type, suggesting this strain still produces pili. This result is consistent with the
432 *C. crescentus* result as the *C. crescentus* *divJ* mutant is Φ CbK susceptible (8). Conversely, the *B.*
433 *subvibrioides* *pleC* mutant shows a clear reduction in susceptibility to Delta, indicating that this
434 strain is deficient in pilus production. If so, this would also be consistent with the *C. crescentus*
435 *pleC* mutant which is resistant to Φ CbK (8, 28). With regards to the *divK* strain, if that mutant
436 were to follow the *C. crescentus* model it should demonstrate the same susceptibility as the *divJ*
437 strain. Alternatively, as the *divK* strain has often demonstrated opposite phenotypes to *divJ* in *B.*
438 *subvibrioides*, one might predict it to demonstrate resistance to Delta. As seen in Figure 2C, the
439 *divK* strain (and the *divJdivK* strain) shows the same level of resistance to phage Delta as the
440 *pleC* mutant. Therefore, in regards to phage sensitivity, the *divK* strain is once again opposite of
441 the prediction of the *C. crescentus* model. Interestingly, none of these developmental signaling

442 mutants demonstrate complete resistance to Delta as seen in the *cpaF* strain. This result suggests
443 that these mutations impact pilus synthesis, but does not abolish it completely.

444 **A suppressor screen identifies mutations related to c-di-GMP signaling.** As the *B.*
445 *subvibrioides* *divK* mutant displays the most unusual phenotypes with regard to the *C. crescentus*
446 model, this strain was selected for further analysis. Complementation of *divK* was attempted by
447 expressing wild-type DivK from an inducible promoter on a replicating plasmid, however
448 induction failed to complement any of the *divK* phenotypes (data not shown), indicating proper
449 complementation conditions have not yet been identified. Transposon mutagenesis was
450 performed on this strain and mutants were screened for those that restore motility. Two mutants
451 were found (Bresu_1276 and Bresu_2169) that restored motility to the *divK* strain, and
452 maintained this phenotype when recreated by plasmid insertional disruption. Both mutants were
453 involved in c-di-GMP signaling. The *C. crescentus* homolog of the Bresu_1276 gene, CC3100
454 (42% identical to Bresu_1276), was recently characterized in a subcluster of CheY-like response
455 regulators and renamed CleD (34). Function of CleD is, at least in part, initiated by binding c-di-
456 GMP via an arginine-rich residue with high affinity and specificity for c-di-GMP (34). Upon
457 binding, roughly 30% of CleD localizes to the flagellated pole of the swarmer cell. Nesper et. al
458 suggests that CleD may bind directly to the flagellar motor switch protein, FliM. Based upon
459 these findings, it was hypothesized that increased c-di-GMP levels cause activation of CleD,
460 which binds to the flagellar switch and inhibits flagellar function. In *C. crescentus*, *cleD* mutants
461 are 150% more motile while their adhesion does not differ significantly from that of the wild-
462 type. Unlike conventional response regulators, the phosphoryl-receiving aspartate is replaced
463 with a glutamate in CleD. In other response regulators, replacement of the aspartate with a
464 glutamate mimics the phosphorylated state and locks the protein in an active conformation.

465 Alignment of CleD with orthologs from various *Caulobacter* and *Brevundimonas* species
466 demonstrated that this was a conserved feature of CleD within this clade (Figure 3). Similar to
467 *C. crescentus*, the swarm size of *B. subvibrioides* *cleD* mutant increased to 151% compared to
468 wild-type. However, unlike *C. crescentus* the *cleD* disruption reduced adhesion by 35%
469 compared to wild-type (Figure 4A). A knockout of *cleD* in the *divK* background led to a
470 complete restoration of motility compared to that of wild-type, while adhesion did not appear to
471 be affected. These phenotypes correspond relatively well with the model given in Nesper et al.
472 A cell lacking CleD would have decreased flagellar motor disruption leading to an increase in
473 motility and a delay in surface attachment.

474 Bresu_2169 is the homolog of the well-characterized *C. crescentus* diguanylate cyclase,
475 DgcB (61% identical amino acid sequence). In *C. crescentus*, DgcB is one of two major
476 diguanylate cyclases that work in conjunction to elevate c-di-GMP levels which in turn helps
477 regulate the cell cycle, specifically in regards to polar morphogenesis (35). It has been shown
478 that a *dgcB* mutant causes adhesion to drop to nearly 50% compared to wild-type while motility
479 was elevated to almost 150%. It was unsurprising to find very similar changes in phenotypes in
480 the *dgcB* mutant in wild-type *B. subvibrioides*. In the *dgcB* mutant, swarm expansion increased
481 by 124% while adhesion dropped to only 46% compared to wild-type (Figure 4A). Though the
482 *dgcB* mutant did not restore motility to wild-type levels in the *divK* background, the insertion did
483 cause the swarm to expand nearly twice as much as that of the *divK* parent. These phenotypes
484 are consistent with our current understanding of c-di-GMP's role in the *C. crescentus* cell cycle.
485 As c-di-GMP builds up in the cell, it begins to make the switch from its motile phase to its
486 sessile phase. Deleting a diguanylate cyclase therefore should prolong the swarmer cell stage,
487 thereby increasing motility and decreasing adhesion.

488 **A *pleD* mutant lacks hypermotility in *divK* background.** Given the identification of
489 *dgcB* in the suppressor screen, it was of note that the screen did not identify the other well-
490 characterized diguanylate cycle involved in the *C. crescentus* cell cycle, PleD. PleD is an
491 atypical response regulator with two receiver domains in addition to the diguanylate cyclase
492 domain (36, 37). The *pleD* mutant in *C. crescentus* has been shown to suppresses the *pleC*
493 motility defect in *C. crescentus* which led to its initial discovery alongside *divK* (22, 36, 37).
494 However, in a wild-type background, *pleD* disruption has actually been shown to reduce motility
495 to about 60% compared to wild-type (22, 35). Additionally, a 70% reduction in adhesion is
496 observed in *pleD* mutants which is thought to be a result of delayed holdfast production (22, 35,
497 38). Therefore, it was not clear whether a *pleD* disruption would lead to motility defect
498 suppression in a *divK* background. To examine this, a *pleD* disruption was made in both the
499 wild-type and *divK* *B. subvibrioides* strains (Figure 4A).

500 In wild-type *B. subvibrioides*, *pleD* disruption caused hypermotility with swarms
501 expanding to 156% of wild-type, while adhesion dropped to only 10% compared to wild-type.
502 While this data supports the broader theory of c-di-GMP's role as the "switch" between the
503 motile and sessile phase of the cell cycle, it does not align with those phenotypes seen in a *C.*
504 *crescentus* *pleD* mutant. While adhesion is reduced in both organisms, the reduction in adhesion
505 was much more drastic in *B. subvibrioides* than *C. crescentus*. Moreover, the motility
506 phenotypes in homologous *pleD* mutants shift in opposite directions. In *C. crescentus*, *pleD*
507 mutants causes a decrease in motility by nearly 40% in the wild-type background (22, 35). In *B.*
508 *subvibrioides*, we see a 156% increase (Figure 4A).

509 Another interesting detail discovered in performing these assays was the lack of change
510 in phenotypes seen in the *pleD* disruption strain in a *divK* background. It is not surprising that

511 adhesion was not negatively impacted as it is already significantly lower in the *divK* strain
512 compared to wild-type. However, disrupting the *pleD* gene did not cause hypermotility in the
513 *divK* mutant even though it does cause hypermotility in the wild-type background. In fact,
514 motility was reduced to 89% compared to the *divK* control (Figure 4A). It is not clear why
515 disruption of the diguanylate cyclase DgcB leads to increased motility in both the wild-type and
516 *divK* backgrounds, but disruption of another diguanylate cycle PleD leads to increased motility in
517 just the wild-type background. Interestingly, it was previously shown that DivJ and PleC do not
518 act on DivK alone, but in fact also have the same enzymatic functions on PleD phosphorylation
519 as well (39). It may be that PleD acts upon motility not through c-di-GMP signaling but instead
520 by modulating DivK activity, perhaps by interacting/interfering with the polar kinases. If so,
521 then the absence of DivK could block this effect.

522 **Suppressor mutants have altered c-di-GMP levels.** As these mutations are all involved
523 in c-di-GMP signaling, c-di-GMP levels in each strain were quantified to determine if the cellular
524 levels in each strain correspond to observed phenotypes. These metabolites were quantified from
525 whole cell lysates. In bacteria, high c-di-GMP levels typically induce adhesion while low c-di-
526 GMP levels induce motility. Therefore, it would be expected that hypermotile strains would
527 show decreased c-di-GMP levels. Instead, hypermotile strains of the wild-type background had
528 varying c-di-GMP levels (Figure 4B). The *pleD* knockout had reduced c-di-GMP levels as
529 predicted. While it may seem surprising that c-di-GMP levels are not affected in a *dgcB* mutant,
530 this in fact true of the *C. crescentus* mutant as well (35). This result suggests that the c-di-GMP
531 levels found in the *dgcB* strain do not appear to be the cause for the observed changes in motility
532 and adhesion.

533 Perhaps the most interesting result is that the *cleD* mutant had the highest c-di-GMP
534 levels of all strains tested. This is surprising as it is suggested by Nesper et. al. that CleD does
535 not affect c-di-GMP levels at all, but rather is affected by them. CleD is a response regulator that
536 contains neither a GGDEF nor an EAL domain characteristic of diguanylate cyclases and
537 phosphodiesterases respectively. Instead it is thought CleD binds to c-di-GMP, which then
538 stimulates it to interact with the flagellar motor. The data presented here suggests that there may
539 be a feedback loop whereby increased motility in the swarm agar leads to increased c-di-GMP
540 levels. One potential explanation is that this situation increases contact with surfaces. Yet the
541 *cleD* mutant clearly shows decreased adhesion compared to wild-type despite the elevated c-di-
542 GMP levels. Therefore, there must be a block between the high c-di-GMP levels and the
543 execution of those levels into adhesion in this strain.

544 Very different results were obtained when c-di-GMP levels were measured in *divK*
545 derived strains (Figure 4B). While a wide variety of motility phenotypes were observed in *cleD*,
546 *dgcB*, and *pleD* disruptions in the *divK* background, their c-di-GMP levels are all nearly identical
547 to that of the *divK* mutant. For the *dgcB* *divK* strain, once again the increase in motility occurs
548 without a change in c-di-GMP levels. These results suggest that DgcB is not a significant
549 contributor to c-di-GMP production in *B. subvibrioides*. While *pleD* disruption leads to
550 decreased c-di-GMP levels in the wild-type background, no change is seen in the *divK*
551 background. This means in the absence of PleD some other enzyme must be responsible for
552 achieving these levels of c-di-GMP. Given the lack of impact DgcB seems to have on c-di-GMP
553 signaling, it is tempting to speculate an as-yet characterized diguanylate cyclase is involved.
554 Lastly the elevated c-di-GMP levels seen in the *cleD* disruption are not seen when *cleD* is

555 disrupted in the *divK* background. This result suggests that whatever feedback mechanism leads
556 to elevated c-di-GMP levels is not functional in the *divK* mutant.

557 **Non-native diguanylate cyclases and phosphodiesterases cause shifts in c-di-GMP**
558 **levels but do not alter phenotypes in the *divK* strain.** As previously mentioned, c-di-GMP is
559 thought to assist in the coordination of certain developmental processes throughout the cell cycle.
560 The previous results found mutations in genes involved in c-di-GMP signaling could suppress
561 developmental defects, but the actual effect of the mutations appears uncoupled from effects on
562 c-di-GMP levels. In order to further investigate the connection between developmental defects
563 and c-di-GMP signaling, c-di-GMP levels were artificially manipulated. Plasmid constructs
564 expressing non-native c-di-GMP metabolizing enzymes previously used in similar experiments
565 in *C. crescentus* were obtained and expressed in *B. subvibrioides*. The diguanylate cyclase *ydeH*
566 from *Escherichia coli* was expressed from two different IPTG inducible plasmids; a medium
567 copy number pBBR-based plamid pTB4, and a low copy number pRK2-based plasmid, pSA280
568 (22). The combination of the two different inducible copy number plasmids resulted in different
569 elevated levels of c-di-GMP (Figure 5B). A phosphodiesterase *pchP* from *Pseudomonas*
570 *aeruginosa* (40), as well as its active site mutant *pchP*^{E328A} were expressed from pBV-MCS4, a
571 vanillate inducible medium copy number plasmid (23). The phosphodiesterase on a medium
572 copy plasmid was enough to decrease levels of c-di-GMP to either equivalent or lower levels as
573 is seen in the *divK* strain. The decrease was not observed when the active site mutant was
574 expressed, demonstrating that the reduction of c-di-GMP was the result of *pchP* expression.
575 Wild-type and *divK* strains were grown with IPTG and vanillate respectively to control for any
576 growth effects caused by the inducers.

577 The low copy diguanylate cyclase plasmid did not appear to affect levels (Figure 5B), and
578 unsurprisingly did not appear to affect either motility or adhesion. However, the medium copy
579 diguanylate cyclase plasmid increased c-di-GMP levels but had the opposite phenotypic effect
580 than expected. An increase in c-di-GMP levels would be predicted to decrease motility and
581 increase adhesion, but here the increase in c-di-GMP caused an increase in motility and a
582 decrease in adhesion (Figure 5A). Conversely, expression of the phosphodiesterase in the wild-
583 type background caused a reduction in c-di-GMP which would be predicted to increase motility
584 and decrease adhesion. While this strain had a large reduction of adhesion, it also had a
585 reduction in motility. Therefore, the changes in c-di-GMP levels largely do not match the
586 changes in phenotype. It is also interesting to note that expression of the phosphodiesterase
587 results in similar c-di-GMP levels to that of the *divK* strain yet the phosphodiesterase strain
588 demonstrates much larger swarm sizes than the *divK* strain.

589 In the *divK* background strain, expression of either diguanylate cyclase increases c-di-
590 GMP levels, though the low copy diguanylate cyclase increase is not as dramatic as the medium
591 copy. However, neither expression level has a significant impact on motility or adhesion (Figure
592 5). Neither the phosphodiesterase nor its active site mutant cause a noticeable shift in the c-di-
593 GMP levels compared to the *divK* strain nor any noticeable impact on phenotype. In fact, though
594 the c-di-GMP levels differed dramatically between strains, the phenotypes of all six of these
595 strains are not impacted. T-tests performed between each strain and its respective control
596 showed no significant difference. These results appear to be the antithesis of those found from
597 the suppressor screen. While the suppressor mutants showed recovery in their motility defect
598 compared to *divK*, their c-di-GMP levels did not significantly differ from each other or *divK*.
599 Conversely, when c-di-GMP levels were artificially manipulated, alterations of c-di-GMP levels

600 in the *divK* strain had no impact on phenotypes. These results suggest that DivK is somehow
601 serving as a block or a buffer to c-di-GMP levels and their effects on phenotypes and calls into
602 question the role c-di-GMP has in *B. subvibrioides* developmental progression.

603 **Discussion**

604 Across closely related bacterial species, high levels of gene conservation are commonly
605 observed. It has therefore been a long-standing assumption that information gathered from
606 studying a model organism can be extrapolated to other closely related organisms. Through this
607 study, it has been shown that these assumptions may not be as safe to make as previously
608 thought. Preliminary data raised a few questions by demonstrating major differences in the
609 phenotypes of *divK* mutants between species. Here more differences between systems were
610 observed by demonstrating *pleC* mutants have similar but not identical phenotypes to *C.*
611 *crescentus* *pleC* mutants. These differences in signaling protein operation were observed despite
612 the fact that subcellular localization patterns are the same in both organisms. These findings
613 strongly indicated that some aspect of this system is somehow behaving differently than the
614 understood *C. crescentus* model system. These discoveries not only raised questions about how
615 the DivJ-DivK-PleC system has evolved over a short evolutionary distance, but they have also
616 called into question different aspects of the *C. crescentus* system.

617 In an attempt to further map this system in *B. subvibrioides* and perhaps identify missing
618 pieces, a suppressor screen was employed using the *divK* mutant as its phenotypes differed most
619 dramatically from its *C. crescentus* homolog. Suppressor mutations were found in genes
620 predicted to encode proteins that affected or were affected by c-di-GMP. This was not
621 necessarily a surprising discovery. C-di-GMP is a second messenger signaling system conserved
622 across many bacterial species used to coordinate the switch between motile and sessile lifestyles.

623 Previous research in *C. crescentus* suggests that organism integrated c-di-GMP signaling into the
624 swarmer-to-stalked cell transition. Mutations that modify c-di-GMP signaling would be
625 predicted to impact the swarmer cell stage, perhaps lengthening the amount of time the cell stays
626 in that stage and thus lead to an increase in swarm spreading in soft agar. However, further
627 inquiry into c-di-GMP levels of *divK* suppressor mutants revealed discrepancies between c-di-
628 GMP levels and their corresponding phenotypes. Firstly, CleD, a CheY-like response regulator
629 that is thought to affect flagellar motor function, caused the strongest suppression of the *divK*
630 mutant restoring motility levels to that of wild-type. Given that the reported function of CleD is
631 to bind the FliM filament of the flagellar motor and interfere with motor function to boost rapid
632 surface attachment (34), it is expected that disruption of *cleD* would result in increased motility
633 and decreased adhesion which can be seen in both the wild-type and *divK* background strains
634 (Figure 4A). What was unexpected, however, was to find that a lack of CleD led to one of the
635 highest detected levels of c-di-GMP in this study, which was surprising given that CleD has no
636 predicted diguanylate cyclase or phosphodiesterase domains. Yet when this same mutation was
637 placed in the *divK* background, the c-di-GMP levels were indistinguishable from the *divK* parent.
638 Therefore, the same mutation leads to hypermotility in two different backgrounds despite the fact
639 that c-di-GMP levels are drastically different. Consequently, the phenotypic results of the
640 mutation do not match the c-di-GMP levels, suggesting that c-di-GMP has little or no effect on
641 the motility phenotype. A similar result was seen with DgcB. Disruption of *dgcB* in either the
642 wild-type or *divK* background resulted in hypermotility, but c-di-GMP levels were not altered.
643 Once again, the effect on motility occurred independently of c-di-GMP levels.

644 Disruption of *pleD* led to different results. In the wild-type background, disruption of
645 *pleD* caused a reduction in c-di-GMP levels, which would be predicted given that PleD contains

646 a diguanylate cyclase domain. Therefore, of the three proteins analyzed here (CleD, DgcB, and
647 PleD), it appears only PleD actually contributes to the c-di-GMP pool. Yet when disruptions of
648 any of the genes are placed in a *divK* background, c-di-GMP levels are not altered. Disruption of
649 *divK* seems to somehow stabilize c-di-GMP levels. Even when non-native enzymes are
650 expressed in the *divK* background the magnitude of changes seen in the c-di-GMP pool is
651 dampened compared to the magnitude of change seen when the enzymes are expressed in the
652 wild-type background. This may explain why *pleD* was not found in the suppressor screen.
653 While CleD and DgcB seem involved in c-di-GMP signaling, their effect on the cell appears c-
654 di-GMP-independent, while PleD appears to perform its action by affecting the c-di-GMP pool.
655 If that pool is stabilized in the *divK* strain, then disruption of *pleD* will have no effect on either
656 the c-di-GMP pool or on the motility phenotype. However, it should be noted that c-di-GMP
657 levels were measured from whole cell lysates and does not reflect the possibility of spatial
658 variations of c-di-GMP levels within the cell. It is possible that CleD and DgcB have c-di-GMP
659 dependent effects, but those effects are limited to specific sub-cellular locations in the cell.

660 This research raises several questions. First, what is the exact role of c-di-GMP in cell
661 cycle progression of *B. subvibrioides*? Is this signal a major driver of the swarmer cell and
662 swarmer cell differentiation? Or have the various c-di-GMP signaling components found new
663 roles in the swarmer cell and the actual c-di-GMP is simply vestigial. What is the role of PleD in
664 cell cycle progression? Why are c-di-GMP levels so stable when DivK is removed? And lastly,
665 are the answers to these questions specific to *B. subvibrioides*, or can they be extrapolated back
666 to *C. crescentus*? Further investigation into c-di-GMP signaling in both organisms is required.

667

668 **Acknowledgements**

669 The authors wish to thank P. Caccamo and Y.V. Brun for providing most of the
670 *Brevundimonas* species, as well as the iPCR protocol that had been adapted for use in *C.*
671 *crescentus*, U. Jenal for providing several plasmids, Satish Adhikari and Kari Ferolito for their
672 help with cloning, and the Curtis lab for general support. This work was supported by the United
673 States National Science Foundation CAREER program award 1552647.

674

675

676 **References**

- 677 1. Curtis PD, Brun Y V. 2010. Getting in the Loop: Regulation of Development in
678 *Caulobacter crescentus*. *Microbiol Mol Biol Rev* 74:13–41.
- 679 2. Brilli M, Fondi M, Fani R, Mengoni A, Ferri L, Bazzicalupo M, Biondi EG. 2010. The
680 diversity and evolution of cell cycle regulation in alpha-proteobacteria : a comparative
681 genomic analysis. *BMC Syst Biol*.
- 682 3. Curtis PD, Brun Y V. 2014. Identification of essential alphaproteobacterial genes reveals
683 operational variability in conserved developmental and cell cycle systems. *Mol Microbiol*
684 93:713–735.
- 685 4. Brassinga AKC, Siam R, Mcsween W, Winkler H, Wood D, Marczynski GT. 2002.
686 Conserved Response Regulator CtrA and IHF Binding Sites in the Chromosomal
687 Replication Origins. *Society* 184:5789–5799.
- 688 5. Barnett MJ, Hung DY, Reisenauer A, Shapiro L, Long SR. 2001. A homolog of the CtrA
689 cell cycle regulator is present and essential in *Sinorhizobium meliloti*. *J Bacteriol*
690 183:3204–3210.
- 691 6. Lang AS, Beatty JT. 2000. Genetic analysis of a bacterial genetic exchange element: the
692 gene transfer agent of *Rhodobacter capsulatus*. *Proc Natl Acad Sci U S A* 97:859–864.
- 693 7. Goley ED, Iniesta AA, Shapiro L. 2007. Cell cycle regulation in *Caulobacter*: location,
694 location, location. *J Cell Sci* 120:3501–3507.
- 695 8. Wheeler RT, Shapiro L. 1999. Differential localization of two histidine kinases controlling
696 bacterial cell differentiation. *Mol Cell* 4:683–694.
- 697 9. Matroule JY, Lam H, Burnette DT, Jacobs-Wagner C. 2004. Cytokinesis monitoring
698 during development: Rapid pole-to-pole shuttling of a signaling protein by localized
699 kinase and phosphatase in *Caulobacter*. *Cell* 118:579–590.
- 700 10. Deich J, Judd EM, McAdams HH, Moerner WE. 2004. Visualization of the movement of
701 single histidine kinase molecules in live *Caulobacter* cells. *Proc Natl Acad Sci* 101:15921–
702 15926.
- 703 11. JM Sommer AN. 2013. Turning Off Flagellum Rotation Requires the Pleiotropic Gene
704 *pleD*: *pleA*, 171:1–10.
- 705 12. Ely B, Gerardot CJ, Fleming DL, Gomes SL, Frederikse P, Shapiro L. 1986. General
706 nonchemotactic mutants of *Caulobacter crescentus*. *Genetics* 114:717–730.

707 13. Fukuda A, Asada M, Koyasu S, Yoshida H, Yaginuma K, Okada Y. 1981. Regulation of
708 polar morphogenesis in *Caulobacter crescentus*. *J Bacteriol* 145:559–572.

709 14. Cabantous S, Guillet V, Ohta N, Newton A, Samama JP. 2002. Characterization and
710 crystallization of DivK, an essential response regulator for cell division and differentiation
711 in *Caulobacter crescentus*. *Acta Crystallogr Sect D Biol Crystallogr* 58:1249–1251.

712 15. Hecht GB, Lane T, Ohta N, Sommer JM, Newton A. 1995. An essential single domain
713 response regulator required for normal cell division and differentiation in *Caulobacter*
714 *crescentus*. *Embo J* 14:3915–3924.

715 16. Biondi EG, Reisinger SJ, Skerker JM, Arif M, Perchuk BS, Ryan KR, Laub MT. 2006.
716 Regulation of the bacterial cell cycle by an integrated genetic circuit. *Nature* 444:899–904.

717 17. Quon KC, Yang B, Domian IJ, Shapiro L, Marczyński GT. 1998. Negative control of
718 bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome
719 origin. *Proc Natl Acad Sci* 95:120–125.

720 18. Bastedo DP, Marczyński GT. 2009. CtrA response regulator binding to the *Caulobacter*
721 chromosome replication origin is required during nutrient and antibiotic stress as well as
722 during cell cycle progression. *Mol Microbiol* 72:139–154.

723 19. Domian IJ, Quon KC, Shapiro L. 1997. Cell Type-Specific Phosphorylation and
724 Proteolysis of a Transcriptional Regulator Controls the G1-to-S Transition in a Bacterial
725 Cell Cycle. *Elsevier* 90:415–424.

726 20. Poindexter J. 1964. Biological properties and classification of the *Caulobacter* group.
727 *Bacteriol Rev* 28:231–95.

728 21. Thanbichler M, Iniesta AA, Shapiro L. 2007. A comprehensive set of plasmids for
729 vanillate - And xylose-inducible gene expression in *Caulobacter crescentus*. *Nucleic Acids*
730 *Res* 35.

731 22. Abel S, Bucher T, Nicollier M, Hug I, Kaever V, Abel zur Wiesch P, Jenal U. 2013. Bi-
732 modal Distribution of the Second Messenger c-di-GMP Controls Cell Fate and
733 Asymmetry during the *Caulobacter* Cell Cycle. *PLoS Genet* 9:5–11.

734 23. Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Jenal U. 2009. Second
735 messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell
736 cycle progression. *Cold Spring Harb Lab Press* 93–104.

737 24. Janakiraman RS, Brun Y V. 1999. Cell Cycle Control of a Holdfast Attachment Gene in
738 *Caulobacter crescentus* Cell Cycle Control of a Holdfast Attachment Gene in *Caulobacter*
739 *crescentus* 181:1118–1125.

740 25. Levano-Garcia J, Verjovski-Almeida S, Da Silva ACR. 2005. Mapping transposon
741 insertion sites by touchdown PCR and hybrid degenerate primers. *Biotechniques* 38:225–
742 229.

743 26. Ochman H, Gerber AS, Hart DL. 1988. Genetic Applications of an Inverse Polymerase
744 Chain Reaction. *Genet Soc Am* 0–2.

745 27. Burhenne H, Kaever V. 2013. Quantification of Cyclic Dinucleotides by Reversed-Phase
746 LC-MS/MS. *Methods Mol Biol.* 1016:27–37.

747 28. Wang SP, Sharma PL, Schoenlein P V, Ely B. 1993. A histidine protein kinase is involved
748 in polar organelle development in *Caulobacter crescentus*. *Proc Natl Acad Sci U S A*
749 90:630–4.

750 29. Smith CS, Hinz A, Bodenmiller D, Larson DE, Brun Y V. 2003. Identification of genes
751 required for synthesis of the adhesive holdfast in *Caulobacter crescentus*. *J Bacteriol*
752 185:1432–1442.

753 30. Curtis PD. 2017. Stalk formation of *Brevundimonas* and how it compares to *Caulobacter*
754 *crescentus*. *PLoS One* 12:1–24.

755 31. Curtis PD, Klein D, Brun Y V. 2013. Effect of a *ctrA* promoter mutation, causing a
756 reduction in *CtrA* abundance, on the cell cycle and development of *Caulobacter*
757 *crescentus*. *BMC Microbiol* 13:166.

758 32. Curtis PD, Quardokus EM, Lawler ML, Guo X, Klein D, Chen JC, Arnold RJ, Brun Y V.
759 2012. The scaffolding and signalling functions of a localization factor impact polar
760 development. *Mol Microbiol* 84:712–735.

761 33. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and
762 endosymbiont DNA with Glimmer. *Bioinformatics* 23:673–679.

763 34. Nesper J, Hug I, Kato S, Hee CS, Habazettl JM, Manfredi P, Grzesiek S, Schirmer T,
764 Emonet T, Jenal U. 2017. Cyclic di-GMP differentially tunes a bacterial flagellar motor
765 through a novel class of chey-like regulators. *Elife* 6:1–25.

766 35. Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, Laub MT, Baker TA, Jenal U. 2011.
767 Regulatory Cohesion of Cell Cycle and Cell Differentiation through Interlinked
768 Phosphorylation and Second Messenger Networks. *Mol Cell* 43:550–560.

769 36. Hecht GB, Newton A. 1995. Identification of a novel response regulator required for the
770 swarmer-to- stalked-cell transition in *Caulobacter crescentus*. *J Bacteriol* 177:6223–6229.

771 37. Aldridge P, Paul R, Goymer P, Rainey P, Jenal U. 2003. Role of the GGDEF regulator
772 *PleD* in polar development of *Caulobacter crescentus*. *Mol Microbiol* 47:1695–1708.

773 38. Levi A, Jenal U. 2006. Holdfast formation in motile swarmer cells optimizes surface
774 attachment during *Caulobacter crescentus* development. *J Bacteriol* 188:5315–5318.

775 39. Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT. 2005. Two-component signal
776 transduction pathways regulating growth and cell cycle progression in a bacterium: A
777 system-level analysis. *PLoS Biol* 3.

778 40. Massimelli MJ, Beassoni PR, Forrellad MA, Barra JL, Garrido MN, Domenech CE, Lisa
779 AT. 2005. Identification, cloning, and expression of *Pseudomonas aeruginosa*
780 phosphorylcholine phosphatase gene. *Curr Microbiol* 50:251–256.

781

782

783 **Figure Legends**

784 **Figure 1. Deletions in *B. subvibrioides* developmental signaling genes results in varying**
785 **physiological phenotypes.** A) Wild-type, *divJ*, *divK*, *divJdivK*, and *pleC* *B. subvibrioides* strains
786 were analyzed for swarm expansion (dark bars) and adhesion (light bars) defects using a soft
787 agar swarm assay and a short-term adhesion assay. Mutant strains were normalized to wild-type
788 results for both assays. Deletion of *divJ* gives motility defects but minimal adhesion defects,
789 similar to *C. crescentus* *divJ* results. *B. subvibrioides* *divK* and *divJdivK* strains give opposite
790 results, with severe motility and adhesion defects. The *B. subvibrioides* *pleC* strain has reduced
791 motility and moderately reduced adhesion, which is similar but not identical to the *C. crescentus*
792 Δ *pleC* strain. B) Lectin staining of holdfast material of wild-type, *divJ*, *divK*, *divJdivK*, and
793 Δ *pleC* strains. The Δ *pleC* strain, despite having reduced adhesion in the short-term adhesion
794 assay, still has detectable holdfast material C) GFP-tagged DivJ localizes to the holdfast
795 producing pole, while PleC-GFP localizes to the pole opposite the holdfast. DivK-GFP displays
796 bi-polar localization. These localization patterns are identical those of *C. crescentus* homologs.

797

798 **Figure 2. Bacteriophage Delta serves as a tool to investigate *B. subvibrioides* pilus**
799 **production.** A) Phage Delta was tested for infection in 18 different *Brevundimonas* species.
800 Control assays used PYE media instead of phage stock. Delta caused a significant reduction in
801 *B. subvibrioides* and *B. aveniformis* viability, with some reduction in *B. basaltis* and *B.*
802 *halotolerans* as well. B) Phage Delta was tested against wild-type and *cpaF*::pCR *B.*
803 *subvibrioides* strains using a soft agar phage assay. Wild-type displayed zones of clearing with
804 phage dilutions up to 10^{-7} , while the *cpaF* strain showed resistance to all phage dilutions. C) *B.*
805 *subvibrioides* developmental signaling mutants were tested with phage Delta in soft agar phage

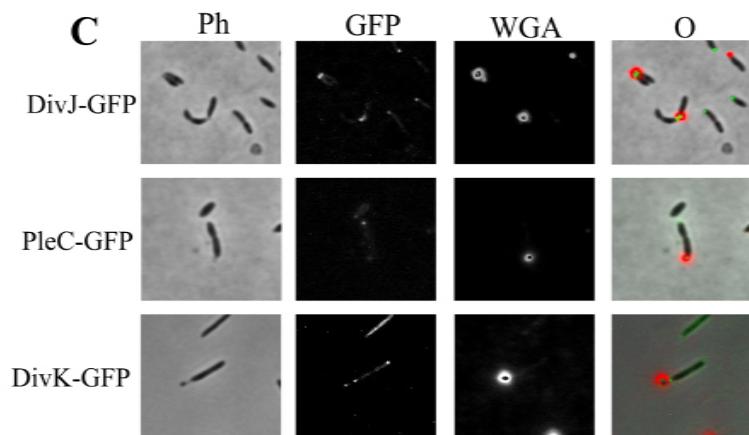
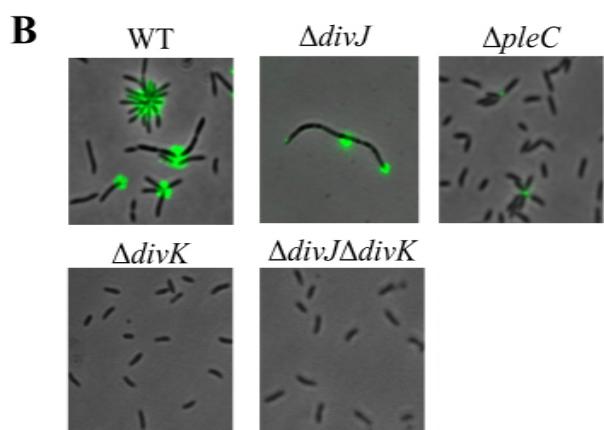
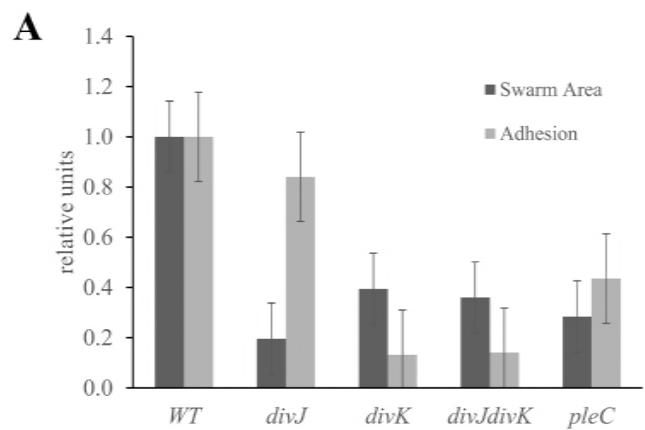
806 assays. Wild-type shows clear susceptibility to Delta, as does the *divJ* strain suggesting that, like
807 *C. crescentus* *divJ*, it produces pili. The *pleC* strain shows a 2-3 orders of magnitude reduced
808 susceptibility to the phage, indicating reduced pilus production which is consistent with the *C.*
809 *crescentus* phenotype. The *divK* and *divJdivK* strains display similar to resistance as the *pleC*
810 strain. Here again, *divK* disruption causes the opposite phenotype to *divJ* disruption, unlike the
811 *C. crescentus* results.

812

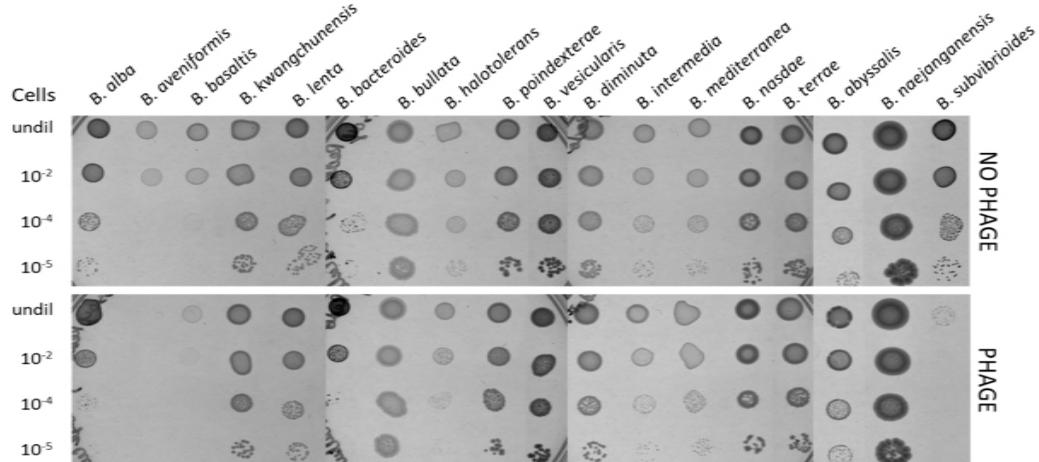
813 **Figure 3. CleD displays a conserved glutamate residue in place of an aspartate typical of**
814 **response regulators.** CleD orthologs from various Caulobacter and Brevundimonas species
815 were aligned by ClustalW, along with *B. subvibrioides* DivK. The shaded box indicates *B.*
816 *subvibrioides* DivK D53, which is analogous to *C. crescentus* DivK D53 and is the known
817 phosphoryl-accepting residue. This alignment demonstrates that CleD orthologs all contain a
818 glutamate substitution at that site, which has been found to mimic the phosphorylated state and
819 lock the protein in an active conformation in other response regulators.

820

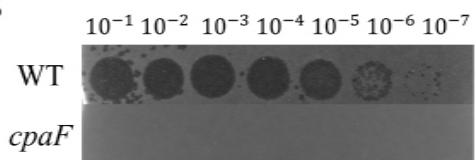
821 **Figure 4. Phenotypes exhibited by *divK* suppressors do not coincide with intracellular c-di-**
822 **GMP levels.** A) Swarm expansion (dark bars) and surface adhesion (light bars) of suppressor
823 mutations tested in both the wild-type and *divK* background. Disruption of CleD, DgcB and
824 PleD lead to increased motility in the wild-type background, but only CleD and DgcB lead to
825 increased motility in the *divK* background. Disruptions in the wild-type background lead to
826 varying levels of adhesion reduction, but the same disruptions had no effect on adhesion in the
827 *divK* background. B) C-di-GMP levels were measured using mass spectrometry then normalized
828 to the amount of biomass from each sample. Despite disruptions causing increased motility in

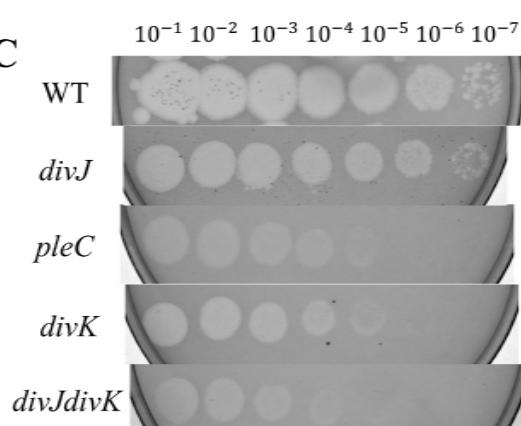



829 the wild-type background, those strains had different c-di-GMP levels. No disruption changed c-
830 di-GMP levels in the *divK* background even though some strains suppressed the motility defect
831 while others did not. These results show a discrepancy between phenotypic effects and
832 intracellular c-di-GMP levels.

833

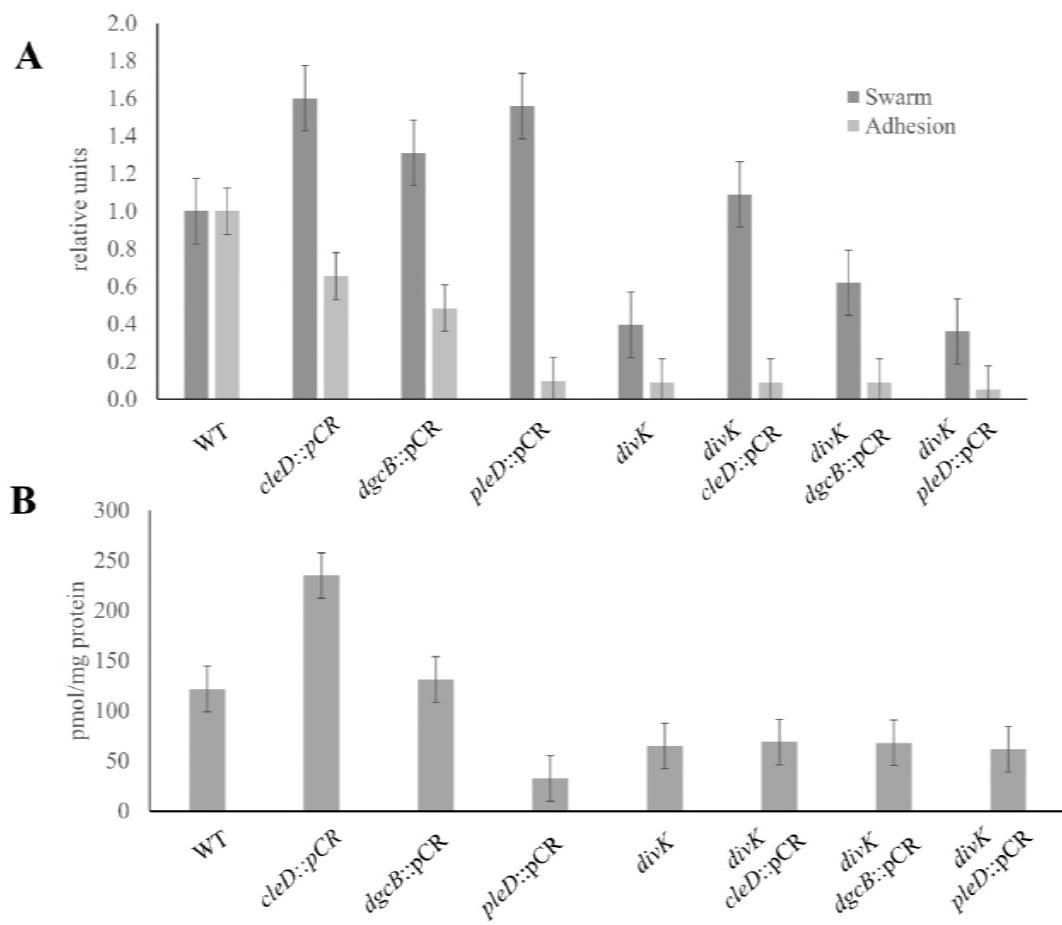

834 **Figure 5. Artificial manipulation of c-di-GMP levels do not significantly affect phenotypes**
835 **in the *divK* mutant.** A) Swarm expansion (dark bars) and surface adhesion (light bars) of strains
836 that have altered c-di-GMP levels caused by expression of non-native enzymes in the wild-type
837 and *divK* background. Constructs including the *E. coli* diguanylate cyclase *ydeH* expressed from
838 a medium copy plasmid (med DGC) and a low copy plasmid (low DGC), the *P. aeruginosa*
839 phosphodiesterase *pchP* (PDE) as well as a catalytically inactive variant (inactive PDE). Bars
840 below the x-axis outline inducer used for plasmids in each strain. In the wild-type background
841 the medium copy DGC increased motility and decreased adhesion, which is opposite the
842 expected outcome, while the PDE reduced motility and severely reduced adhesion. In the *divK*
843 background, no expression construct significantly altered the phenotypes. B) C-di-GMP levels
844 were measured using mass spectrometry then normalized to the amount of biomass from each
845 sample. In the wild-type background the medium copy DGC significantly increased c-di-GMP
846 levels while the PDE reduced c-di-GMP levels. In the *divK* background, both DGC constructs
847 increased c-di-GMP levels, though PDE expression has no effect, despite the fact that neither
848 DGC construct has an effect on motility and adhesion phenotypes.

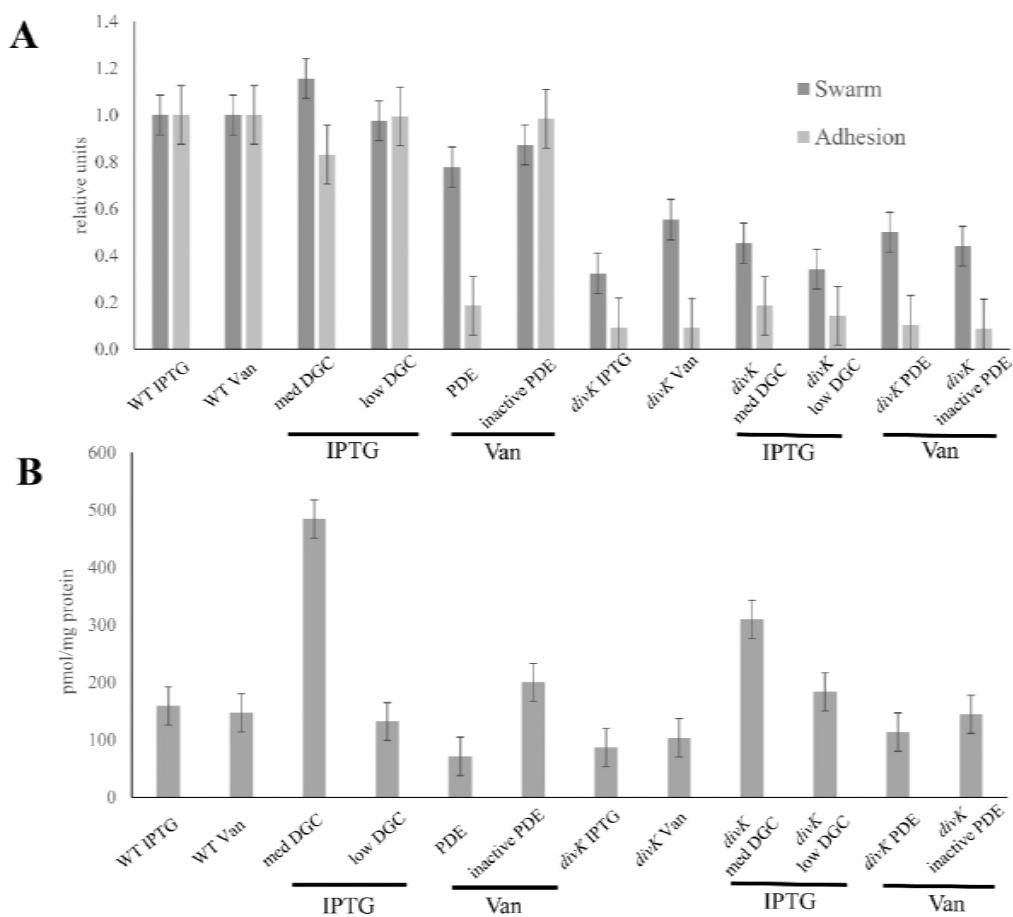
849


850


A

B




C

Caulobacter crescentus CB15
Caulobacter henricii
Caulobacter K31
Caulobacter segnis
Brevundimonas abyssalis
Brevundimonas denitrificans
Brevundimonas subvibrioides
Brevundimonas bacteroides
Brevundimonas diminuta
Brevundimonas naejangensis
Brevundimonas nasdae
Brevundimonas vesicularis
Brevundimonas veniformis
Brevundimonas subvibrioides DivK

QIFPAPTAEKGYALARAADPQLIFVERHGSSGVGDGLAFTRKLRRSDLTCRE
QIFSAPTIEKGYAMARTVDPQLIFVERHGSSGVGDGLLLSRKIRRSIDLVCRE
QIFAAPSIEAGWAMARTTDPMLIFVEHASAGCDGLALARKIRRSIDLACRE
NLWAAPTDAKALVIAQSILDPQIIFVEHAGPGLDGARLTRAIRSEFPCRQ
VVVHRGEGRAALDVCREEPEPTLIFTEYKGPNLDGEAFAKAVRRSNLVCRK
VVVHRGEGRAALDVCREEPEPTLIFTEYKGPNLDGEAFAKAVRRSNLVCRK
EVVTESDENRVMMDHAREMEPGLIFTERSGARLGEQLARRIRRSNLACRR
EVVTETDEGRALDHARELEPGVIFTERSGRLGEQFARRVRRSNMACRR
EIVVEGDEARVLDLAREMEPGLICTERAGPKLDGEALVRRIRRSSLSCRR
EIVVEGDEARVLDLAREMEPALIFTERTGPKLDGEALARRIRRSSLSCRR
EVYSEGDEERALELLRDVEPGVIFTERSGDRLNGETLARRIRRSSMSCCR
EVYSEGDEERALELLRDVEPGVIFTERAGDKLNGETLARRIRRSSMSCCR
EIIIEADEKEALAAVRDFEPTLMFVERSGPRFDGETLVSKLRRSRMDARR
QTFQTREGIQAQALARQYMPDLITLMDIQLPEISGLEVTKWLK-DDEELAH
: * : : * . : . . .

