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Abstract

A gene, a locatable region of genomic sequence, is the basic functional unit of heredity.

Differences in genes lead to the various congenital physical conditions of people. One
kind of these major differences are caused by genetic variations named single
nucleotide polymorphisms(SNPs). SNPs may affect splice sites, protein structures and
so on, and then cause gene abnormities. Some abnormities will lead to fatal diseases.
People with these diseases have a small probability of having children. Thus the
distributions of SNP patterns on these sites will be different with distributions on
other sites. Based on this idea, we present a novel statistical method to detect the
abnormal distributions of SNP patterns and then to locate the suspicious lethal genes.
We did the test on HapMap data and found 74 suspicious SNPs. Among them, 10
SNPs can map reviewed genes in NCBI database. 5 genes out of them relate to fatal
children diseases or embryonic development, 1 gene can cause spermatogenic failure,
the other 4 genes are also associated with many genetic diseases. The results validate
our idea. The method is very simple and is guaranteed by a statistical test. It is a
cheap way to discover the suspicious pathogenic genes and the mutation site. The
mined genes deserve further study.
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Introduction

Genes are the most important genetic materials which can determine the health of a
person in some ways. The functions of genes may be affected by the genetic variations
called SNPs. So it is a good way to study the disease-related genes from SNPs. Many
defective genes caused by SNPs for human Mendelian diseases (i.e. single gene
diseases) have bAsnaghi2013Ieen found [1,2]. For example, Prescott el al. [3] found a
nonsynonymous SNP in ATG16L1 related to Crohn’s disease. Seki et al. [4] reported
that a functional SNP in CILP is suspicious to lumbar disc disease. These
achievements inspire people.

However, the discovered pathogenic genes caused by SNPs only take a small
fraction, most of them are still unknown. At the same time, the number of SNPs is
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very large and most SNPs do not take effects on genes [5,6]. Checking all SNPs by
biological experiments is a expensive work. Narrowing the range of suspicious SNPs
will benefit the study of pathogenic genes greatly [7]. For the purpose, people analyzed
SNPs from various angles. Lee et al. [8] builded a functional SNP database which
integrates information got from 16 bioinformatics tools and functional SNP effects for
disease researches. Cargill et al. [9] studied the different rates of polymorphism within
genes and between genes. They concluded that the rates may reflect selection acting
against deleterious alleles during evolution and the lower allele frequency of missense
¢SNPs are possibly associated with diseases. Adzhubei et al. [10] developed a tool
named PolyPhen which predicts possible impact of an amino acid substitution on the
structure and function of a human protein. Kumar et al. [11] developed a tool named
SIFT which predicts whether an amino acid substitution will affect protein function.
Their algorithm is suitable to naturally occurring nonsynonymous polymorphisms and
laboratory-induced missense mutations. While synonymous mutations can also
contribute to human diseases [12]. For example, Westerveld et al. [13] reported that a
intronic variants rs1552726 may affect the splice site activity.

In the paper, a novel method is proposed from the angle of genetic law. If a
defective gene caused by SNPs can lead to fatal diseases and most of the sick people
do not have the change to breed the next generation. This will affect the distributions
of the SNPs within the gene. It provides us a novel way to distinguish the pathogenic
SNPs from normal SNPs.

Materials and methods

Given a bi-allele SNP, ‘A‘ and ‘a‘ are used to denote the major and minor allele,
respectively. Because chromosomes come in pairs, each individual will take one of the
following three SNP patterns: pattern0=‘AA‘, patternl=‘Aa‘, pattern2=‘aa‘. In a
population, the distribution of individuals taking each pattern can be counted. The
abnormal distributions are what we concern. Next, an example is given to illustrate
the abnormal distributions.

Fig 1. The heredity of SNPs.

Example 1: Suppose that there is a distribution for 1000 individuals; 500
individuals out of them take pattern ’AA’ and other people take pattern ’aa’. Nobody
takes the pattern 'Aa’.

According to bisexual reproduction rule, a child will inherit one chromosome from
his mother and one from his father. If the mother takes pattern ‘AA‘ and the father
takes pattern ‘aa‘. The child will take pattern ‘Aa‘. It is shown as Fig 1. If every one
has a equal probability to marry other people in the population. The probability of a
child with pattern ‘Aa‘ should be 2*0.5%0.5=0.5, that means there should be about
0.5*1000=500 individuals taking the pattern ‘Aa‘. But none is observed. We think
that the distribution on this SNP site is abnormal. The reason for the abnormal
distribution is probably that the person taking ‘Aa‘ will die in childhood so that we
can not observe them. From the analysis, a hypothesis is proposed as following.

Hypothesis 1: Some SNP patterns should appear in human populations
according to bisexual reproduction but are not observed. These patterns may cause
gene abnormities for fatal genetic diseases so that the corresponding person will die in
childhood.

In HapMap data, the SNP data of 11 human populations are sequenced. Since the
relationships of individuals in each population are unknown, we make a assumption to
simplify the computation.
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Assumption 1: In each population, everyone has the equal probability to marry
other people and to give a birth to a baby.

For population;, the distribution P of individuals for all the patterns can be
counted. P = [po, p1,p2], where p; is the percentage of the individuals with pattern;.
Under Assumption 1 and the bisexual reproduction rule, the distribution among the
next generation (denoted by P*) can be computed according to the distribution P.
Let P* = [p§, py,p3]. P* can be computed by the formulas (1),(2) and (3).

P = (o + ) (1)
=20+ ) + 5 (2)
P = (2 + ) (3)

If there is no big disaster, the distribution among a human population will not
change radically. Under usual circumstances, P* can be treated as an approximation
to the mean distribution of the current population. If p; is 0, but p; is far from 0. The
distribution may be abnormal. Supposing the size of the population; is n;. The
number of individuals matching the pattern; obeys the binomial distribution. e;; is
used to denote the event that the pattern; is not observed in current population;, the
probability of e;; is computed by formula (4)

Pr(e;) = (L—pi")"™ (4)

In HapMap data, there are 11 human populations. eAll denotes the event that the
pattern; can not be observed in all the populations. The probability of eAll is given
by formula (5).

10
p — value (eAll) = H Pr(e;j) (5)
=0

If the p — value(eAll) is very small, the event that the pattern; are not observed in
all the populations is unlikely. But it actually happens in the observation of HapMap
project. The reason may be that the pattern; may cause gene abnormities for fatal
genetic diseases and most patients will die in childhood. In usual statistical test, 0.05
is often used as the threshold of significance level. In our test, since there are many
SNPs to be checked. For example, there are 117068 SNPs on chromosome 1. The
significance level should be corrected. Here, Bonferroni correction is choosed to adjust
the threshold. Given k SNPs, 3k hypothesizes need to be tested. The p-value
threshold of significance should be 0.05/3k. The SNPs with p — value(e All) below the
p-value threshold are suspicious. After finding these SNPs, the suspicious lethal genes
can be located by NCBI database.

The HapMap [14] data (genotypes data of phase 3.3 consensus) is used to validate
our method. The HapMap data contains 11 human populations. 1417 individuals are
sequenced. The detail of human populations is listed in Table 1.

Results

In our experiment,the statistical test is checked on each chromosome separately. For
one chromosome, the common bi-allele SNPs in the 11 populations are extracted. On
chromosome 1, there are 117068 common SNPs and 8 SNPs are detected to be
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Table 1. information of human populations.

Label | Population sample Size
ASW | African ancestry in Southwest USA 87
CEU Utah residents with Northern and Western European
ancestry from the CEPH collection 174
CHB Han Chinese in Beijing, China 139
CHD Chinese in Metropolitan Denver, Colorado 109
GIH Gujarati Indians in Houston, Texas 101
JPT Japanese in Tokyo, Japan 116
LWK | Luhya in Webuye, Kenya 110
MEX | Mexican ancestry in Los Angeles, California 86
MKK | Maasai in Kinyawa, Kenya 184
TSI Toscans in Italy 102
YRI Yoruba in Ibadan, Nigeria 209

suspicious. On the whole 22 chromosomes, 74 SNPs are obtained among 1,395,560
SNPs (we do not check SNPs on the chromosome X and Y because the heredity on
chromosome X and Y are different with that on autosomes). By looking up in NCBI
database, 29 genes are located. Some of them have been studied in many years and
some are still new to people. According to the reference sequence (RefSeq) status code,
these genes can be divided into 3 catalogs.

A reviewed gene means that its RefSeq record has been reviewed by NCBI staff or
by a collaborator. The NCBI review process includes assessing available sequence data
and the literature. Some RefSeq records may incorporate expanded sequence and
annotation information.

In our results, 10 SNPs map reviewed genes. The corresponding chromosomes,
SNPs, genes, gene types, alleles, disease patterns and p-values are listed in Table 2.
For the first two SNPs and their patterns, the expectations of the number of
individuals in each population are listed in Table 3 and Table 4, respectively. For the
pattern ’AA’ at SNP site rs2145402, there should be about 34.4 individuals in all
populations. But none is observed. If the pattern ’AA’ is normal, the probability of
the event is only 3.05E-16. It is too small to happen by chance. So we think the
distribution of the pattern at SNP rs2145402 is abnormal. The corresponding gene
LYST is suspicious to genetic diseases.

Table 2. information of SNPs mapping reviewed genes.

chr | SNP gene alleles | disease pattern | pvalue

1 rs2145402 LYST A/C AA 3.05E-16
1 rs4915931 RORI1 A/G AA 1.70E-12
1 rs4660992 BMP8B C/T TT 9.91E-10
6 rs9263745 CCHCR1 | A/G AA 5.67E-11
7 rs11766679 | DPP6 A/G GG 4.29E-10
10 rs12263497 | INPP5F A/G GG 1.46E-10
11 rs1552726 NLRP14 A/G GG 2.64E-09
14 rs3742943 JAG2 C/T TT 6.07E-08
16 rs1646233 CBFA2T3 | A/G AA 1.20E-09
22 rs11705619 | TXNRD2 | C/T CcC 1.43E-09

The reviewed genes are familiar to people. There are relatively more studies on
them. The number of literatures focused on this kind of genes are more than that of
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Table 3. expectations of the number of individuals in each population who takes pattern ‘AA‘ at SNP site

rs2145402.
population CHB | CHD | JPT | CEU | TSI | ASW | LWK | MKK | YRI | GIH | MEX | All
expectation | 1.1 0.5 11.6 | 8.2 1.0 0.0 0.1 0.1 4.8 6.6 34.4

Table 4. expectations of the number of individuals in each population who takes pattern ‘AA‘ at SNP site

rs4915931.
population CHB | CHD | JPT | CEU | TSI | ASW | LWK | MKK | YRI | GIH | MEX | Al
expectation | 0.2 0.2 8.8 4.2 2.5 1.3 0.3 2.5 4.1 2.5 26.7

other genes. These related literatures provide us a intuitive impression and are listed
in the following. From the details we can see that most of these genes are actually
associated with fatal genetic diseases.

1) SNP rs2145402 maps gene LYST.

In ClinVar database [15], LYST is associated with lung cancer, Malignant
melanoma and Chediak-Higashi syndrome. Many researchers [16-21] also reported
that gene LYST is associated with Chediak-Higashi syndrome. Chediak-Higashi
syndrome can affect many parts of the body, particularly the immune system. The
disease damages immune system cells. Most affected individuals have repeated and
persistent infections starting in infancy or early childhood [22]. The result of the
disease is very serious and most affected individuals die in childhood [23].

2) SNP rs4915931 maps gene ROR1

In ClinVar database [15], RORL1 is associated with malignant melanoma. Broome
et al. [24] reported that RORL1 is a receptor tyrosine kinase expressed during
embryogenesis, on chronic lymphocytic leukemia and in other malignancies. Hudecek
et al. [25] found that RORI is highly expressed during early embryonic development
but expressed at very low levels in adult tissues. Many papers reported that ROR1
has a very close relation with chronic lymphocytic leukemia [26,27] and acute
lymphoblastic leukemia [28-32]. ROR1 is suggested as the targeted therapy for human
malignancies [33, 34].

3) SNP rs4660992 maps gene BMP8B

BMPS8B is a thermogenic protein which increases brown adipose tissue
thermogenesis through both central and peripheral actions and regulates energy
balance in partnership with hypothalamic AMPK [35]. Zhao et al. [36] showed that
mouse Bmp8a (Op2) and Bmp8b play a role in spermatogenesis and placental
development. Ying et al. [37] reported that BMP8B is required for the generation of
primordial germ cells in the mouse.

4) SNP rs11766679 maps gene DPP6

Genetic variation in DPP6 is associated with amyotrophic lateral
sclerosis 20, 38,39] and Familial Idiopathic Ventricular Fibrillation [40]. Golz et
al. [41] found that DPP6 is suspicious to many diseases such as cardiovascular diseases,
endocrinological diseases, metabolic diseases, gastroenterological diseases, cancer,
hematological diseases, inflammation, muscle skeleton diseases, neurological diseases,
urological diseases, reproduction disorders and respiratory diseases.

5) SNP rs12263497 maps gene Inpp5f

Zhu el al. [42] reported that Inpp5f is a polyphosphoinositide phosphatase that
regulates cardiac hypertrophic responsiveness. Kim et al. [43] found that INPP5F
inhibits STAT3 activity and suppresses gliomas tumorigenicity. Palermo et al. [44]
reported that gene expression of INPP5F can be as an independent prognostic marker
in fludarabine-based therapy of chronic lymphocytic leukemia. Bai et al. [45] reported
that alteration of Akt signal plays an important role in diabetic cardiomyopathy.
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Inpp5f is a negative regulator of Akt signaling.

6) SNP rs9263745 maps gene CCHCR1

CCHCRI is associated with malignant melanoma in ClinVar database [15].
CCHCRI is up-regulated in skin cancer and associated with EGFR expression [46].
The CCHCR1 (HCR) gene is relevant for skin steroidogenesis and downregulated in
cultured psoriatic keratinocytes [47].

7) SNP rs1552726 maps gene NLRP14

NLRP14 may play a regulatory role in the innate immune system [48]. Mutations
in the testis-specific NALP14 gene in men suffering from spermatogenic failure in
GeneCards database [49]. Westerveld et al. [13] collected the data of 157 patients, they
identified 25 suspicious variants in total: 1 nonsense mutation, 14 missense mutations,
6 silent mutations and 4 intronic variants. By using ESEfinder and SpliceSiteFinder to
check these SNPs, only the SNP rs1552726 is predicted to affect the correct splicing.
Abe et al. [50] reported that germ-cell-specific inflammasome component NLRP14
negatively regulates cytosolic nucleic acid sensing to promote fertilization.

8) SNP rs3742943 maps gene JAG2

GO annotations related to JAG2 include Notch binding and calcium ion binding.
The gene serve as a ligand for Notch signaling receptors. The Notch signaling pathway
is an intercellular signaling mechanism that is essential for proper embryonic
development. Defect in JAG2 may cause ossifying fibroma and shipyard eye in
GeneCards database [49]. Houde et al. [51] observed the overexpression of the
NOTCH ligand JAG2 in malignant plasma cells from multiple myeloma patients and
cell lines. Yustein et al. [52] validated that induction of ectopic Myc target gene JAG2
augments hypoxic growth and tumorigenesis in a human B-cell model. Asnaghi et
al. [53] reported that a role for Jag2 promotes uveal melanoma dissemination and
growth. Vaish et al. [54] reported that JAG2 enhances tumorigenicity and
chemoresistance of colorectal cancer cells.

9) SNP rs1646233 maps gene CBFA2T3

CBFA2T3-GLIS2 Fusion Protein Defines an Aggressive Subtype of Pediatric Acute
Megakaryoblastic Leukemia [55] and CBFA2T3-GLIS2 fusion transcript is a novel
common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7
subtype [56]. CBFA2T3-GLIS2-positive is closed related to pediatric acute
megakaryoblastic leukemia with non-Down syndrome [57].

10) SNP rs11705619 maps gene TXNRD2

Mutations in the gene TXNRD2 cause dilated cardiomyopathy [58] Jakupoglu et
al. [59] did the experiment of Txnrd2 deletion and found which leads to fatal dilated
cardiomyopathy and morphological abnormalities of cardiomyocytes. Prasad et al. [60]
reported that TXNRD2 knockout is embryonic lethal in mice due to cardiac
malformation.

Conclusion

In the paper, we gain enlightenment from Mendel’s genetic experiments and propose a
simple method which can utilize the distributions of SNP patterns among human
populations to mine the pathogenic genes. On HapMap data, 74 SNPs are selected in
22 autosomal chromosomes, 10 SNPs can map reviewed genes in NCBI database.
Among these genes, LYST gene and ROR1 gene are reported to relate to fatal genetic
children diseases. Genes JAG2, TXNRD2 and BMP8B play important roles in
embryonic development and lead to many fatal diseases. NALP14 gene may cause
spermatogenic failure. Among 25 suspicious variants, only SNP rs1552726 is predicted
to affect the correct splicing of gene NLRP14 [13], rs1552726 is also one of the 10
SNPs which maps reviewed genes. The left genes DPP6, Inpp5f, CCHCR1 and
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CBFA2T3 are also associated with many genetic diseases. Looked from the overall, we
think the results are good and can validate our idea in some ways. The method can
give a narrow range of suspicious pathogenic genes which deserve further studies. As
whole-genome sequencing advances, more and more data can be achieved, the method
can get more accurate and interesting results. The method is a simple and cheap way
to find the suspicious pathogenic genes and SNPs.
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