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Abstract

A pathogen’s virulence is a key parameter in the mathematical models
on which most epidemiological theory is based. In these models virulence
generally has a very specific definition where it is the increased per capita
rate of mortality of infected hosts due to infection. Empirical studies
involving the experimental infection of hosts often estimate virulence with
the aim of comparing these estimates to values or patterns predicted in
the theoretical literature. However most empirical studies do not estimate
virulence as it is defined in the theoretical literature, thus potentially
confounding comparisons between the two approaches. Here the analysis
of relative survival is applied to the type of data routinely generated in
empirical studies to estimate virulence as it is defined in the theoretical
literature. The theoretical grounds for approach are outlined, followed
by worked examples estimating the virulence of different pathogens with
data from published studies. Code allowing virulence to be estimated by
maximum likelihood with R is provided.

Introduction

Empirical studies involving the experimental infection of hosts often estimate
the pathogen’s virulence and compare these estimates to values or patterns
predicted in the theoretical literature. However most empirical studies do not
estimate virulence as it is defined in the mathematical models on which most
epidemiological theory is based [1–3]. Instead alternative or proxy measures of
virulence are used and they vary in how well they correlate with virulence as it
is defined in the theoretical literature [4, 5]. Consequently it is questionable as
to how valid most comparisons between data and theory are where virulence is
concerned [4].

Here the analysis of relative survival is presented as a means to estimate
pathogen virulence, as it is generally defined in the theoretical literature, from
the type of data routinely generated in empirical studies recording the survival
of experimentally-infected hosts over time.
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Empirical context

Empirical studies investigating the effects of pathogens on hosts often involve the
initial establishment of several uninfected populations of hosts, experimentally-
infecting some of them, and recording how host survival changes over time in the
different treatments. Statistical analyses are then applied to compare survival
in the infected vs. uninfected treatments.

The members of the initial uninfected populations are usually chosen such
that the expected pattern of mortality in the different populations would be ex-
pected to be the same were it not for the experimental intervention of infection.
Thus, all else being equal, any reduction in survival for infected populations can
be attributed to the effect of infection.

The pattern of events occurring in this type of experimental design can be
described by the same expressions as those used in population dynamics models
describing the flow of hosts between different compartments, e.g., susceptible-
infectious-recovered (SIR) models. The dynamics described by such models can
be complex and open to influence by many parameters. However in the type
of experiment outlined above it is often possible to simplify matters such that
the only population dynamics to be recorded are those for how host population
sizes change over time due to host mortality. For example, the pattern of events
in an uninfected (X ) and infected (Y ) population of hosts can be expressed as,

X ′(t) = −[µ(t)] ·X(t)

Y ′(t) = −[µ(t) + ν(t)] · Y (t)
(1)

where X ′ (t) and Y ′ (t) are the rates of change in the size of the uninfected
and infected populations at time t, respectively. These are both negative and
determined by the size of each population at time t, X(t) and Y(t), respectively,
multiplied by the average rate at which hosts die. In the uninfected population
this rate is determined by the ‘natural’ or background rate of mortality at time
t, µ (t). In the infected population there is an additional rate of mortality,
ν (t), which is the average increase in the rate of mortality of infected hosts due
to infection at time t ; this is how virulence is defined in most epidemiological
models on which the theoretical literature is based [6, 7].

Here the population dynamics have been simplified by assuming all hosts are
of the same age, where a host’s age and that of their infections is set to zero at
time t0, when survival is first recorded; hence age and time are interchangeable
in the following expressions. It is also assumed there are are no births during
the experiment and the observed dynamics are not influenced by any density-
dependent processes.

There are no dynamics describing the gain of infection, as it is assumed
an individual’s infection status was determined in the period prior to survival
being recorded and there is no transmission of infection during the experiment,
e.g., because infected and uninfected hosts are housed separately. Unless stated
otherwise, these models assume all hosts in an infected treatment are infected.

There are also no dynamics describing the loss of, or recovery from, infection.
This is an influential parameter for the predictions of many epidemiological
models. The initial models below assume hosts cannot recover from infection
or do not do so within the time-frame of the experiment. Subsequent models
allow for recovery from infection and other sources of variation influencing the
observed pattern of mortality in an infected treatment or population. Allowing
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for such variation can qualitatively change the estimated pattern of virulence
experienced by individual hosts relative to the pattern observed for an infected
population or treatment as a whole.

Survival

An alternative means of describing the population dynamics within an exper-
iment is with survival functions where time is continuous. For example, the
cumulative survival function S(t) is the probability and individual in a partic-
ular population at the beginning of an experiment, t0, will still be alive at time
t,

S(t) = 1− F (t) (2)

and is the complement of the cumulative density function, F(t), for the proba-
bility an individual will have died by time t ; 0 ≤ S(t), F (t) ≤ 1.

Differentiating F(t) with respect to time gives the rate at which mortality
reduces the size of the population at time t,

f(t) = −S′(t) (3)

where f(t) is the probability density function for mortality. It corresponds with
the number of individuals dying at time t, divided by the initial size of the
population. The number of individuals dying at time t is generally the data
collected in this type of experiment.

Whereas f(t) represents the probability an individual alive at t0 will die at
time t, the hazard function, h(t), represents the probability an individual alive
at time t will die at time t,

h(t) =
f(t)

S(t)
(4)

where the probability of dying at time t, f(t), is corrected by the probability of
being alive at time t, S(t). This is the rate of mortality in the population at
time t and represents the per capita risk of dying at time t.

If the hazard function h (t) represents the risk an individual alive at time t
will die at time t, the cumulative hazard function, H (t), represents the individ-
ual’s accumulated exposure to the risk of dying at time t. It is related to the
cumulative survival function, S (t), as,

S(t) = exp [−H (t)] (5)

and can take values greater than one.
Analyses testing for the effects of a pathogen on the survival of infected vs.

uninfected hosts usually involve the estimation and comparison of one of the
expressions above. What makes the analysis of relative survival different is how
it treats the survival of infected hosts.

Relative survival

The analysis of relative survival is frequently encountered in the medical liter-
ature [8–11], where it is the method of choice for estimating how survival in
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populations of patients is affected by a particular disease or illness, e.g., dif-
ferent types of cancer [12, 13]. What the relative survival approach does is to
assume individuals in the target population are exposed to two independent and
mutually exclusive sources of mortality;

(i) Background or ‘natural’ mortality. This is the mortality individuals in the
target population would be expected to experience had they not been afflicted
by the disease or illness in question, and,

(ii) Mortality due to disease or illness. This is mortality individuals in the tar-
get population experience due to the disease or illness in question.

The following outlines the relative survival approach applied to describing sur-
vival in infected vs. uninfected populations of hosts.

When infected hosts die, it is not possible to tell whether they died due
to background mortality or due to infection. However to remain alive means
the host has not died due to the cumulative effects of background mortality,
FBCK (t), or the cumulative effects of mortality due to infection, FINF (t). As
these two sources of mortality are independent, the probability an infected host
will be observed surviving until time t, SOBS.INF (t), can be calculated as,

SOBS.INF (t) = [1− FBCK (t)] · [1− FINF (t)]

= SBCK (t) · SINF (t)
(6)

where SBCK (t) and SINF (t) are the cumulative survival functions for back-
ground mortality and mortality due to infection at time t, respectively.

The relative survival of infected hosts at time t, SREL (t), is calculated as
their observed probability of surviving until time t, divided by that for unin-
fected hosts,

SREL (t) =
SOBS.INF (t)

SBCK (t)
=
SBCK (t) · SINF (t)

SBCK (t)
= SINF (t) (7)

which equals the expected survival of infected hosts due only to the effects of
infection, SINF (t). That is, relative survival is the observed survival of infected
hosts corrected for background mortality.

If there is no background mortality, as happens in some experiments, SBCK (t) =
1 and the observed mortality in an infected treatment can be analysed directly
as being due to the effect of infection; SREL (t) = SOBS.INF (t) = SINF (t) (7).

Differentiating SOBS.INF (t) with respect to time and taking the negative
gives the probability density function for mortality observed in the infected
treatment at time t, fOBS.INF (t),

fOBS.INF (t) = −S′OBS.INF(t)

= fBCK (t) · SINF (t) + fINF (t) · SBCK (t)
(8)

where fBCK (t) and fINF (t) are the probability density functions for the proba-
bility an individual alive at time t0 will die at time t due to background mortality
or mortality due to infection, respectively.
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Dividing fOBS.INF (t) by SOBS.INF (t) gives the hazard function, hOBS.INF (t),

hOBS.INF (t) =
fBCK (t) · SINF (t) + fINF (t) · SBCK (t)

SBCK (t) · SINF (t)

=
fBCK (t)

SBCK (t)
+
fINF (t)

SINF (t)

= hBCK (t) + hINF (t)

(9)

showing the observed rate of mortality in the infected population is the sum of
the background rate of mortality at time t, hBCK (t), plus the rate of mortality
due to infection at time t, hINF (t), that is, the pathogen’s virulence at time t.

Re-arranging (1) for infected hosts shows the population dynamics describing
the per capita rate of decrease in the size of the infected population, −Y ′(t)/Y (t),
equals the relative survival expression for the rate of mortality observed in the
infected population (9),

µ (t) + ν (t) = hBCK (t) + hINF (t) (10)

The following sections illustrate how these rates can be estimated by analysing
the relative survival of infected and uninfected hosts.

Estimating virulence

Estimates from survival curves

Published figures showing survival curves for infected and uninfected popula-
tions of hosts can be used to estimate a pathogen’s virulence. The observed
survival in an infected population at time t, divided by that in a matching un-
infected population estimates the relative survival of infected hosts at time t,
SREL (t). Differentiating SREL (t) with respect to time and taking the negative
gives the probability density function for the probability an infected host alive
at time t0 will die due to infection at time t, fINF (t),

fINF (t) = −S′REL(t) (11)

Dividing fINF (t) by the relative survival in the infected population at time t,
SREL (t), gives the hazard function, hINF (t), at time t,

hINF (t) =
fINF (t)

SINF (t)
=

fINF (t)

SREL (t)
=
−S′REL(t)

SREL (t)
(12)

thus a pathogen’s virulence can be estimated directly from survival curves by
using them to calculate the relative survival of infected hosts at time t and the
rate of change in relative survival at time t.

This approach to estimating virulence does not require any information on
the frequency of infected or uninfected individuals dying or remaining alive at
any point in time. However, without information on the actual frequencies
of individuals dying or remaining alive at different points in time, it is not
possible to calculate the variance associated with these estimates of virulence.
Consequently it is not possible to tell if, or when, these estimates differ from
one another, or from zero.
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Estimates at individual points in time

When sampling is carried out at regular intervals, the rate of mortality in in-
terval i, h(i), can be estimated as,

h(i) = d(i)/r(i) (13)

where d(i) is the number of individuals dying during interval i and r(i) is the
number of individuals alive, or at risk of dying, at the beginning of interval i.
Re-arranging (9) shows the difference in rates of mortality observed for infected
and uninfected treatments at a given time estimates the rate of mortality due
to infection at the time, hence these differences for the interval i ;

hINF (i) = hOBS.INF (i)− hBCK (i) (14)

estimate the pathogen’s virulence in the interval.
These estimates of virulence are based on the difference between two bino-

mial proportions. There are many methods to calculate the confidence intervals
for this type of difference. Wald’s confidence interval is the most widely used,
but it is not recommended by some authors [14]. An alternative is to calculate
Wald’s modified or adjusted confidence intervals as proposed by Agresti & Caffo
[15]; see supplementary file S01 for details.

If there is no mortality recorded in a control population the observed mortal-
ity of infected hosts can be directly analysed as being due to infection. Poisson
regression models may provide a useful means for estimating a pathogen’s viru-
lence in individual intervals as they can make use of functions already available
in statistical software packages, including the influence of random effects (e.g.,
see Austin [16]).

There are limitations to estimating virulence at individual points in time.
One is that generating a series of individual estimates based on small subsets
of a larger dataset is not an efficient means of exploiting the available data.
Another is differences among individual estimates of virulence are potentially
confounded with random variation in mortality rates over time. Such variation
can influence estimates towards the beginning of an experiment when mortality
rates are low in both infected and uninfected treatments. However it is likely to
be more influential as the number of individuals within a treatment decreases
and stochastic variation in the number of individuals dying has more influence
on the proportion of individuals dying (or remaining alive) within a sampling
interval.

An alternative to estimating virulence at individual points in time is to
estimate it as a function of time.

Estimates as a function of time

Probability distributions can be used to describe the probability an event will
occur between two points in time. When the event is death, these distributions
allow survival, probability density, and hazard functions to be described as
continuous functions of time.

Cumulative survival functions described by different probability distribution
all decrease monotonically over time from 1 to 0. However these functions are
specified differently for each probability distribution, as are the correspond-
ing probability density and hazard functions. This variation allows different
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Figure 1: Survival (a-d), probability density (e-h) and hazard (i-l) functions
for the exponential (column 1), Weibull (column 2), Gumbel (column 3) and
Fréchet (column 4) distributions. Note the scale of Y-axis for the probability
distribution figures (e-h) is different to the scale used for the survival and hazard
functions.

probability distributions to describe different patterns of survival over time.
Furthermore the functions for each probability distribution require at least one
parameter to be specified and varying the values of these parameters provides
flexibility in the pattern of survival each probability distribution can describe.

Figure 1 illustrates some of the variation possible in the patterns of survival
and mortality of different probability distributions. Here the survival, prob-
ability density and hazard functions are plotted for the exponential, Weibull,
Gumbel and Fréchet distributions when survival was constrained such that 5%
of the original population remained alive on day 14; S(t14) = 0.05. Given this
constraint, survival curves varied from being concave to convex (Fig 1 a-d). The
probability density function that an individual alive a time t0 would die at time t
varied from decreasing monotonically to having a unimodal distribution skewed
to either the left or right (Fig 1e-h). The corresponding hazard functions varied
from being constant (Fig 1i), to increasing at a constant rate (Fig 1j), increasing
at an accelerating rate (Fig 1k), or having a unimodal pattern increasing and
then decreasing over time (Fig 1l).

Table 1 gives the survival, probability density and hazard functions corre-
sponding with each of the four probability distributions above. There are dif-
ferent ways these functions can be expressed. Here they are expressed in terms
of location (a) and scale (b) parameters which determine where and over what
range the data are distributed along the time axis, respectively; the exponential
distribution is a special case of the Weibull distribution when b = 1.

Values of a and b are interchangeable between functions, such that, esti-
mates of a and b from cumulative survival data can be plugged into the hazard
function for the estimated of the rate of mortality over time, and vice-versa.
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Table 1: Survival, probability density and hazard functions for the Exponential,
Weibull, Gumbel and Fréchet distributions

Exponential distribution

S (t) = exp [− exp (z)] f (t) = 1
t exp [z − exp (z)] h (t) = 1

t exp (z)

where, z = log t− a

Weibull distribution

S (t) = exp [− exp (z)] f (t) = 1
bt exp [z − exp (z)] h (t) = 1

bt exp (z)

where, z = (log t− a) /b

Gumbel distribution

S (t) = exp [− exp (z)] f (t) = 1
b exp [z − exp (z)] h (t) = 1

b exp (z)

where, z = (t− a) /b

Fréchet distribution

S (t) = 1− exp [− exp (−z)] f (t) = 1
bt exp [−z − exp (−z)] h (t) = f (t) /S (t)

where, z = (log t− a) /b

The value of these parameters can be made to depend on covariates, such as,
dose, temperature, gender, etc. . .

Various approaches can be used to determine the parameter values giving
the closest fit between survival functions and survival data. The next section
outlines the approach using likelihood models.

Likelihood models

Data collected during the course of a survival experiment provides information
on the frequency of individuals dying between sampling intervals. These can
be used to estimate the probability density function, f(t), for the probability an
individual alive at time t0 will die at time t. However empirical studies are fre-
quently terminated before all, or even most, individuals die. Consequently these
individuals do not experience the event of interest. Nonetheless it is known they
survived at least until the end of the experiment and this information can con-
tribute towards estimates for the probability of dying at time t. These are known
as censored individuals, or more precisely right-censored individuals. They in-
clude individuals removed from populations during the course of an experiment,
e.g. to control for infection success, those that escape, or are accidently killed,
where the timing of the event is known.

If the probability of dying at any one time t is equal for all n members of a
population and the death of any one individual i has no effect on the timing of
death of any other individuals, the overall likelihood L of dying at time t is the
product of the probability of each individual dying at time t,

L =
n∏
i=1

Li (15)
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where Li = f(ti). This allows for right-censored individuals when expressed as,

f(ti) = [h(ti)]
d · S(ti) (16)

with d being a death indicator taking a value of 1 for individuals dying during
the experiment and 0 for those censored during or at the end of the experiment.

It is often more convenient to work with the likelihood expression after log-
transformation,

logL =
n∑
i=1

logLi =
n∑
i=1

log f (ti) =
n∑
i=1

{d log [h (ti)] + log [S (ti)]} (17)

this log-likelihood expression can be used for analysing survival data, allowing
for right-censored individuals. Substituting the survival and hazard functions
in (17) with equations (6) and (9), respectively, gives

logL =
n∑
i=1

d log [hBCK (ti) + ghINF (ti)] + log [SBCK (ti)] + g log [SINF (ti)]

(18)

where g is an indicator of infection taking a value of 1 for individuals exposed
to infection and 0 for those not exposed to infection. This log-likelihood ex-
pression can be used for analysing relative survival, allowing for right-censored
individuals.

Approximate confidence intervals for the hazard function describing the
pathogen’s virulence can be estimated using the delta method [17]; see S02
for details.

The goodness of fit between data and the likelihood model describing them
is reflected in the loss function; the closer to zero the loss, the better the fit.
Likelihood-ratio tests can be used to test for significant differences in the loss
of nested models where one model needs to be a simplified version of the other,
e.g., models with or without interaction terms. Alternatively models can be
compared based on criteria determining which of the rival models is best, e.g.,
Akaike’s information criterion (AIC). An advantage of these approaches is they
allow non-nested models to be compared, e.g., when the same data are analysed
with models based on different probability distributions. Here Akaike’s infor-
mation criterion corrected for finite sample sizes, AICc [18], is used to compare
models.

Supplementary file S03 gives details of how to specify (18) in R [19] and
estimate parameter values by maximum likelihood using the bbmle package by
Ben Bolker and the R Core development team [20]. Supplementary file S04
shows how to specify (18) for analysis with the non-linear platform of JMP [21].

Maximum likelihood estimation techniques used to solve likelihood prob-
lems require initial values for the parameters to be estimated. Some probability
distributions lend themselves to this task by having functions that can be trans-
formed into linear functions of time. This allows initial parameter values to be
estimated by ordinary linear regression; see S05.

Worked examples

This section presents the results of analyses where virulence has been estimated
from the data of published studies. The aim is to illustrate the analysis of rela-
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Figure 2: Survival and estimates of virulence for mosquitoes with fungal infec-
tions. (a) Survival of uninfected (black) and infected (blue) mosquitoes pooled
across replicate cages, (b) Virulence as estimated from dynamics of relative
survival, (c) Virulence estimated at individual points in time (±95% c.i.) (d)
Maximum likelihood estimate of virulence (blue line ±95% c.i. grey lines). The
dotted horizontal line is the estimate for virulence assuming constant rates of
mortality. Symbols as in (c).

tive survival rather than to provide definitive analyses of the data or to challenge
the original analyses. Supplementary files provide details of each analysis.

Virulence increasing over time

Here the rate of mortality due to infection is estimated as increasing over time
at an accelerating rate.

Blanford et al. [22] exposed replicate populations of adult female Anopheles
stephensi mosquitoes to a total of 17 different isolates of four fungal pathogens
and recorded their survival over the next 14 days. Simon Blanford kindly pro-
vided the original data from the experiment and Matthew Thomas generously
allowed their inclusion as supplementary material in this study. Here a subset
of the data is analysed where the survival of adult female mosquitoes exposed
to isolate Bb06 of Beauveria bassiana is compared to that of uninfected females
in matching control treatments.

Most of the females exposed to infection died within the 14 days of the
experiment, whereas roughly half of those in the uninfected cages died (Fig 2a).
Consequently roughly half of the mortality observed in the infected treatment
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was expected to be due to background mortality (7).
The pathogen’s virulence was estimated as tending to increase over time

based on the rate of change in relative survival calculated from survival curve
data (12) (Fig 2b). Estimates based on the proportion of individuals dying in
each daily interval (13) confirmed this pattern and estimated virulence as being
significantly greater than zero in the second week of the experiment, although
not consistently so (Fig 2c).

Initial investigations of the data suggested the Weibull distribution was ap-
propriate for describing background mortality and mortality due to infection,
thus the log-likelihood expression for analysing relative survival (18) was param-
eterised accordingly; see S06. In numerical terms the hazard function estimating
the pathogen’s virulence was,

hINF (t) =
1

0.183t
exp

(
log t− 2.581

0.183

)
(19)

As, 0 < (bINF = 0.183) < 0.5, this Weibull hazard function describes the
rate of mortality due to infection as increasing monotonically over time at an
accelerating rate (Fig 2d).

In contrast to estimates at individual points in time, the delta method es-
timated the lower 95% confidence interval as consistently greater than zero in
the second week of the experiment (Fig 2d).

Comparison with a constant rate of mortality model

Epidemiological models commonly assume mortality rates remain constant over
time. This assumption is sometimes justified by observed data, but it is more
frequently a convenience making models easier to manipulate and interpret.
For example, a pathogen’s basic reproduction number R0 is often calculated as
being proportional to the average longevity of infected hosts [6, 7]. This can
be calculated from the area under a survival curve when there are no censored
individuals or by integration of the survival function when there are; see S07.
When mortality rates are constant, the calculation simplifies to, 1/(µ + ν), or,
1/(hBCK + hINF).

The likelihood model above was re-run with bBCK = bINF = 1; thus con-
straining the Weibull hazard functions to constant rates of mortality. The con-
strained model estimated the background rate of mortality as 0.041 day-1 and
that due to infection as, 0.047 day-1 (Fig 2d). The corresponding estimates for
the average longevity of infected hosts were, 1/(0.041 + 0.047) ∼ 11.4 days for
the constrained model and ∼ 10.3 days for the unconstrained model; see S06.
All else being equal, estimates of R0 based on the assumption of constant mor-
tality rates would be ∼ 10% greater than those based on more realistic estimates
of host mortality.

Proportional virulence

Here a pathogen’s virulence is estimated as proportional to the dose of infection
hosts were exposed to.

Proportional hazards models are a popular means of comparing survival
in infected vs. uninfected populations of hosts. An attractive feature of this
approach is to condense differences in host mortality into a single and easy to
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Figure 3: Proportional virulence. (a) Survival in control (black), lowest dose
(light blue) and highest dose (dark blue) treatments. Low and high food treat-
ments in circles and diamonds, respectively, (b) Observed and estimated viru-
lence in the lowest and highest dose treatments. Observed data (stepped lines,
symbols) based on daily data pooled for larval food treatments. Smooth curves
show maximum likelihood estimates for virulence.

interpret value, e.g., infection doubled a host’s risk of dying. These models
assume there is a underlying rate of mortality experienced by all individuals
under study, with the difference in the mortality rates among treatments or
populations being determined by their deviation from this underlying rate. Non-
or semi-parametric proportional hazards models make no assumptions as to the
distribution of the underlying rate, only quantifying the deviation from it. In
parametric models the underlying rate of mortality is specified according to a
particular probability distribution. In both cases the hazard functions for the
populations under study need to satisfy the relationship,

hA (t) /hB (t) = c (20)

where A and B are independent populations and c is a constant, i.e., the ratio of
mortality rates in the populations being compared remains constant over time
[23].

The data in this example are from a study by Lorenz & Koella [24] and
are freely available [25]. Larvae of the mosquito An. gambiae were exposed
to spores of the microsporidian parasite Vavraia culicis in six different dose
treatments, and there was an unexposed control treatment. Larvae were reared
in individual vials on diets of high or low food availability. As adults they
remained in their vials of origin and were provided with sugar-water. Adult
longevity was recorded daily until all individuals died. The relative survival
of adult females in all dose treatments is analysed, however for clarity, only
data from the control, lowest and highest dose treatments are presented in the
accompanying figure.

Larval food availability had little effect on adult longevity, whereas infection
reduced survival and tended to do in dose-dependent manner (Fig 3a). Two
females in the uninfected, high larval food availability treatment died within
three days of emerging. This skewed the lower tail of the probability density
function for background mortality towards a pattern described by the Gumbel
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distribution (c.f. Fig 1g). The Weibull distribution was used to describe mor-
tality due to infection. Different models were fitted to the data, with the results
of the best model according to AICc presented below; see S08.

The best model pooled data from the two larval food treatments and esti-
mated the rate of mortality due to infection as a log-linear function of the dose
of spores larvae were exposed to;

hINF (t) =
1

0.186t
exp

(
log t− [3.841− 0.081 log (dose)]

0.186

)
(21)

As in the previous example, the scale parameter estimated for the Weibull haz-
ard function was, 0 < (bINF = 0.186) < 0.5, meaning rates of mortality due
to infection were estimated as increasing monotonically over time at an ac-
celerating rate (Fig 3b). The estimate for the location parameter, aINF =
3.841−0.081 log (dose), has the effect of bringing forward the scheduled pattern
of mortality as dose increases.

The pathogen’s virulence was also estimated as being proportional to the
log (dose) of infection: Weibull hazard functions are proportional when their
scale parameters are equal as their ratio reduces to,

hA (t)

hB (t)
= exp

[(
aB − aA

b

)]
= c (22)

where A and B are independent populations, bA = bB = b and c a constant.
This was not the case for the observed rates of mortality in the infected vs.

uninfected treatments. However separating out the contribution of background
mortality to the observed mortality of infected hosts resulted in a single value
of bINF being estimated for all six dose treatments. Consequently the relative
survival approach estimated the rate of mortality due to infection as being pro-
portional to the dose of infection. In numerical terms, the pathogen’s virulence
was estimated as increasing by ∼ 4.5 times between the lowest and highest dose
treatments (Fig 3b).

Supplementary file S08 illustrates how the choice of different probability
distributions influences the goodness of fit between the log-likelihood model
and the observed data.

Supplementary file S09 illustrates how the data above can be considered in
terms of an accelerated failure time (AFT) model where dose acts to scale the
passage of time for mortality due to infection.

Unimodal virulence

This example estimates the virulence for three isolates of a fungal pathogen as
increasing and then decreasing over time.

The data are from the study by Blanford et al. [22] and involve the fun-
gal pathogen Metarhizium anisopliae. Isolates Ma06, Ma07 and Ma08 were
each used to infect replicate host populations and there were replicate control
populations unexposed to infection in the same block of the experiment; see
S10.

There was less background mortality in this block of the experiment (Fig 4a)
than that analysed above (c.f. Fig 2a). Nonetheless background mortality will
have influenced the observed mortality of mosquitoes in the infected treatments.
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Figure 4: Unimodal patterns of virulence for three fungal isolates. (a) Survival
in the control treatment (black), and those exposed to isolates Ma06 (green),
Ma07 (red), Ma08 (blue), (b-d) Daily estimates of virulence for each isolate
(symbols ±95% c.i.) and maximum likelihood estimates (coloured line ±95% c.i.
grey lines); colours as in (a).
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The Weibull distribution was considered suitable for describing the background
mortality. However survival curves tended to flatten out over time in the infected
treatments, particularly for isolate Ma07 (Fig 4a). This flattening corresponds
with the rate of mortality decreasing over time. Daily estimates for the virulence
of each isolate agreed with this pattern as they initially increased and then
tended back towards zero (Fig 4b-d). This is not a pattern of mortality the
Weibull or Gumbel distributions can describe, but one the Fréchet distribution
can (c.f. Fig. 1l).

The log-likelihood expression (18) was parameterised where the location and
scale parameters for the background mortality, aBCK and bBCK respectively,
were estimated using Weibull distribution functions. Those for mortality due to
infection, aINF and bINF, were estimated separately for each isolate with Fréchet
distribution functions.

Estimates of aINF and bINF for each fungal isolate (±95% c.i.) were non-
overlapping and chosen as the best values for each isolate; see S10. Each de-
scribed a unimodal pattern of virulence increasing and then decreasing over time
for each isolate (Fig 4b-d). Unlike the Weibull or Gumbel distributions, there
are no values for the location or scale parameters of the Fréchet distribution
that result in proportional hazard functions.

What underlies a unimodal pattern of virulence?

One possibility is for virulence to be correlated with temporal variation in the
pathogen’s within-host growth. For example, Bell et al. [26] recorded the growth
of B. bassiana infections in An. stephensi mosquitoes and found the number of
conidia detected increased dramatically 3–4 days post-exposure and continued
to increase thereafter, but at a slower rate. This increase in conidia replica-
tion was correlated with increased fungal division, the growth of hyphae in the
host haemocoel, and increased rates of host mortality. These patterns indicate
temporal variation in different components of a pathogen’s within-host growth
could be correlated with temporal variation in its virulence.

Another means by which unimodal patterns of virulence can arise is when
virulence varies among the members of a host population or treatment.

Variation in virulence

In the examples above virulence varied over time, but the same hazard function
described the virulence experienced by all the members of the infected pop-
ulation or treatment. This section considers examples where mortality rates
vary among hosts within an infected population or treatment. This variation
influences the pattern of mortality observed for the infected population or treat-
ment as a whole and can be qualitatively different from the pattern of virulence
experienced by individual hosts.

Observed discrete variation

In this example unimodal patterns of virulence were observed for each treatment
exposed to infection. However, within each treatment visual cues allowed hosts
to be classified into two distinct sub-populations experiencing either virulent or
avirulent infections.
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Parker et al. [27] followed the survival of uninfected Acyrthosiphon pisum
pea aphids and those experimentally-infected with the fungal pathogen Pandora
neoaphidis. The original data are freely available [28]. The experiment involved
three dose treatments and six host genotypes. Host genotype is not taken into
account in the following analyses, but the effect of dose is; see S11.

Survival was lower in the treatments exposed to infection and tended to
decrease in a dose-dependent manner (Fig 5 a-c). Survival in the control treat-
ment suggested that roughly half the mortality observed in infected treatments
could be attributed to background mortality. As dose increased, survival curves
in the treatments exposed to infection tended to level off indicating mortality
rates were slowing over time and suitable for description by the Fréchet distri-
bution (Fig 5d-f).

Parker et al. not only recorded when aphids died, but also whether they
showed visible signs of fungal sporulation at the time of their death [27]. These
individuals accounted for 31%, 49% and 65% of hosts in the low, intermediate
and high dose treatments, respectively. The sporulating population all died
within 12 days of exposure to infection, whereas those in the non-sporulating
population were more likely to survive until the end of the experiment (Fig
5g-i). The log-likelihood model (18) was parameterised such that common loca-
tion and scale parameters were estimated for the background mortality in each
population, but separate location and scale parameters were estimated for mor-
tality due to infection in the sub-populations of sporulating and non-sporulating
hosts; see S11.

Observed rates of mortality due to infection increased rapidly over time in
the sub-population of sporulating hosts and were described by Weibull hazard
functions that accelerated over time (Fig 5j-l). In contrast, the observed and
estimated virulence experienced in the sub-population of non-sporulating hosts
remained close to zero over time (Fig 5j-l). This suggests these hosts experienced
avirulent infections having little or no effect on their rates of mortality.

These results show a monotonically increasing pattern of virulence expe-
rienced at the level of individual hosts can appear as a unimodal pattern of
virulence at the level of the population as a whole when virulence varies among
hosts. These results also show the dose of infection can have qualitatively dif-
ferent effects on a pathogen’s estimated virulence: the analysis of the Lorenz
& Koella data [25] suggest virulence was proportional to the dose of infection,
whereas the analysis above of the Parker et al. data [28] suggest the main of
dose was to influence the proportion of hosts experiencing virulent infections,
not the virulence of these virulent infections.

Avirulent infections

In the example above, the non-sporulating populations of hosts showed little
or no increase in mortality relative to uninfected hosts. This section considers
two reasons why hosts in infected treatments may experience avirulent infections

(i) Exposed-but-uninfected hosts. Exposure to infection does not guarantee in-
fection. Hosts assumed to be experiencing avirulent infections may have avoided
or resisted infection and were never actually infected. If avoiding or resisting in-
fection has no effect on their survival, they should only experience background
mortality. In such cases the increased rate of mortality of infected hosts in
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Figure 5: Observed unimodal patterns of virulence and underlying heterogeneity
of virulence within populations. Data in the 1st, 2nd and 3rd columns are for
aphids exposed to the low, medium and high dose treatments of the fungal
pathogen, respectively. (a-c) Observed survival in unexposed control population
(black line) and exposed population (green line). (d-f) Observed and estimated
unimodal patterns of virulence at the level of the exposed population in each
treatment (observed, symbols, dotted stepped line; estimated, smooth curve).
(g-i) Observed survival when exposed host population classified according to
sporulation status (black, unexposed controls; light blue, non-sporulating; dark
blue, sporulating). (j-l) Observed and estimated virulence in sporulating and
non-sporulating populations (dark blue symbols/lines, light blue symbols/lines,
respectively).
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an infected treatment means they will tend to die earlier than the uninfected
members. Consequently the rate of mortality in the treatment as a whole will
become increasingly biased towards that for background mortality over time. If
the proportions of infected and uninfected members of the population cannot be
distinguished and analysed separately, the proportion of exposed-but-uninfected
individuals can be estimated from the observed pattern of survival in the pop-
ulation as a whole as,

SOBS.INF (t) = p [SBCK (t) · SINF (t)] + (1− p)SBCK (t) (23)

where p is a constant to be estimated, 0 ≤ p ≤ 1.
Differentiating (23) with respect to time and taking the negative gives the

probability density function for mortality observed in the population as a whole
at time t, fOBS.INF (t), which can be used in turn to estimate the hazard func-
tion, hOBS.INF (t); see S12.

This type of model is sometimes referred to as a ‘cure model’ as the observed
rate of mortality in the ‘infected’ population will eventually converge with that
in a matching uninfected population [29]. However this convergence is due to
differential rates of mortality in the infected vs. exposed-but-uninfected popu-
lations rather than any process related to hosts being cured or recovering from
infection. The following describes a model where ‘avirulent’ infections arise due
to hosts recovering from infection.

(ii) Recovery from infection. Infected hosts may be able to recover from in-
fection. Here this is assumed to mean they are no longer exposed to the risk
of dying due to infection; it does not necessarily mean recovered hosts are un-
infected and is not used here in relation to whether hosts are infectious and
capable of transmitting disease or not.

This model assumes the pattern of events in an infected population at time t,
SINF.POP (t), can be described as the product of three independent probability
distributions,

SINF.POP (t) = S1 (t) · S2 (t) · S3 (t) (24)

where S1 (t) is the survival function for background mortality at time t, S2 (t)
is the survival function for mortality due to infection at time t, and S3 (t) is the
survival function for the probability an infection ‘survives’ until time t, i.e., the
host has not recovered at time t. Here the index INF.POP , is used rather than,

OBS.INF , as recovery from infection may not be an observed event.
Differentiating (24) with respect to time and taking the negative gives the

probability density function, fINF.POP (t), for events occurring in the population
at time t,

fINF.POP (t) = f1 (t) · S2 (t) · S3 (t)

+ f2 (t) · S1 (t) · S3 (t)

+ f3 (t) · S1 (t) · S2 (t)

(25)

where the sum of the first two expressions gives the probability an infected host
is infected and dies at time t, from either background mortality or mortality
due to infection, and corresponds with data collected on the time of death of
infected hosts.

The third expression describes the probability an infected host is alive and
recovers from infection at time t, and corresponds with data collected on the
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timing of recovery of infected hosts. Hence the expression can be estimated
when the timing of recovery is known (e.g., [30]). This will not be the case
if a host’s recovery status is only determined after the host has died or been
censored, as the data collected correspond with the time hosts recovered and
subsequently survived before dying or being censored. However it is assumed
recovered individuals experience the same background mortality as uninfected
hosts. This information can be used to estimate the likelihood a recovered
individual dying at time t, recovered at an earlier time and subsequently survived
until time t, when it died or was censored; see S13.

The two types of model are described in greater detail in S12 and S13,
respectively, where each model is also applied to the Parker et al. data. These
analyses find the exposed-but-uninfected model provided a better description of
the data than the recovery model, suggesting the hosts experiencing avirulent
infections were more likely to have been uninfected, rather than recovered, hosts.

Code for running the exposed-but-uninfected model in R is given in S12
and that for running the recovery model is described in S13 and provided in a
separate file.

Unobserved continuous variation

The models above considered virulence when it varied discretely within an in-
fected population or treatment. In this section unobserved variation in mortality
rates is assumed to vary continuously among hosts, where all the hosts exposed
to infection are infected and there is no recovery from infection.

Frailty models make use of a proportional hazards assumption in which an
underlying rate of mortality is multiplied by a constant, e.g. λ, where λ varies
among members of the same population or treatment. Bigger values of this
constant are associated with weaker or more ‘frail’ individuals. The distribution
of λ determines the pattern of survival in the population. In particular, it
determines the pattern relative to that expected if mortality rates did not vary
among hosts. The difference between the observed and expected patterns of
mortality can be estimated as a function of the variance in λ, if λ is assumed
to be distributed as a continuous random variable of a probability distribution
constrained to a mean value of one. For example, if unobserved variation in
virulence is assumed to follow the gamma distribution with a mean of one, the
rate of mortality due to infection in the infected population at time t, hINF (t),
can be expressed as,

hINF (t) =
hV (t)

1 + θHV (t)
(26)

where hV (t) and HV (t) are the hazard and cumulative hazard functions for
the underlying pattern of virulence at time t, respectively, while θ is a constant
describing the variance of the distribution of λ and a parameter to be estimated.

The average frailty of individuals alive at time t in the infected population
decreases over time as, [1 + θHV (t)]

−1
. The corresponding function for survival

due to infection in the infected population at time t, SINF (t), is,

SINF (t) = [1 + θHV (t)]
−1/θ

(27)

These expressions were used to analyse the data from the Lorenz & Koella
study [24], when data from all six dose treatments were pooled to form a single
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Figure 6: Unobserved variation in virulence with a continuous distribution. (a)
Daily estimates of virulence from life table data for the pooled population of
infected female mosquitoes (symbols ±95% c.i.). The blue line is a Fréchet
hazard function estimating virulence, (b) frailty model estimates for underlying
pattern of virulence experienced by individual hosts (dashed line) and average
virulence experienced at level of the infected population (solid line), along with
the average frailty of infected individuals alive at time t (dotted line) based on
Weibull hazard functions and gamma distributed frailty.

infected population. This population was thus known to be heterogeneous for
virulence. Furthermore as virulence was estimated as being proportional to
dose, the proportional relationship assumed between the underlying pattern of
virulence and that experienced by individual hosts should have been met.

Although the pattern of virulence within individual dose treatments gener-
ally increased monotonically over time (c.f. Fig 3b), the pattern for the infected
population as a whole was unimodal (Fig 6a). This unimodal pattern was cap-
tured by a likelihood model where the hazard function of the Fréchet distribution
described the pathogen’s virulence (Fig 6a). This model (incorrectly) assumed
virulence was homogenous among infected hosts; see S14.

The unimodal pattern of virulence experienced at the level of the population
was also captured by a frailty model (Fig 6b). This model (correctly) assumed
virulence varied among infected hosts. The Weibull hazard function describing
the underlying pattern of virulence experienced by individual hosts increased
over time (Fig 6b). However this increase was counteracted at the level of the
population by the progressive decrease in the average frailty of the infected hosts
remaining alive (Fig 6b).

The frailty model above only allowed for unobserved variation in mortality
due to infection. It could have been considered as acting on background mor-
tality or on both sources of mortality in a more or less correlated fashion; see
Zahl [31] and S15 for details.

Frailty models can also be adapted to allow for random variation at higher
levels of organisation than considered above, e.g., among replicate populations
of the same treatment or among groups of hosts sharing the same genotype.
These multivariate frailty models are more complicated to formulate and are
beyond the scope of this study. For more information on multivariate models
and frailty models in general see; Hougaard [32, 33], Aalen [34], Gutierrez [35].
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Figure 7: Correlations between cumulative spore production and cumulative vir-
ulence. The log (number of V. culicis spores) recovered from adult mosquitoes
at the time of their death was positively correlated with estimates for, (a) the
host’s cumulative exposure to the pathogen’s virulence, HINF (t), at the time of
their death and (b) the contribution of HINF (t) to the host’s cumulative expo-
sure to the risk of dying, HINF (t) /HOBS.INF (t), at the time of their death.

Virulence and transmission

Epidemiological models generally assume a pathogen’s virulence arises as an un-
avoidable consequence of its within-host growth and production of transmission
stages [1–3]. Empirical studies estimating a pathogen’s virulence can investigate
this relationship when they also estimate the pathogen’s transmission success.

Empirical estimates of transmission success often rely on measures of the
pathogen’s potential, rather than its actual, transmission success. For example,
Sy et al. [36, 37] estimated the potential transmission success of V. culicis from
the number of the pathogens’ spores adult Aedes aegypti female mosquitoes har-
boured at the time of their death. These spores are not shed while the host is
alive and thus represent the pathogen’s cumulative investment into its potential
transmission success over its host’s lifetime. This cumulative sum was positively
correlated with estimates for the host’s cumulative exposure to the pathogen’s
virulence, HINF (t) (Fig 7a). This could suggest a causal relationship between
the production and accumulation of the pathogens’ spores and its virulence, but
this correlation is potentially confounded as the host’s exposure to background
mortality, HBCK (t), also increased over time in a similar manner. However
the number of spores hosts harboured was positively correlated with the ra-
tio, HINF (t) /HOBS.INF (t), at the time hosts died (Fig 7b). This ratio varies
between 0 and 1 and reflects the estimated contribution of the pathogen’s vir-
ulence towards the host’s overall exposure to the risk of dying at the time they
died. Thus when hosts died in the study by Sy et al. [36], this ratio was gener-
ally greater than 0.5 and positively correlated with the number of spores they
harboured, suggesting the cumulative effects of infection and spore production
were positively correlated with host mortality.
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Figure 8: Direct estimates of cumulative virulence from survival curve data.
Cumulative survival in the control (black), low dose (light blue) and high dose
(dark blue) treatments of the study by Lorenz & Koella. The horizontal dotted
line is when HOBS.INF (t) = 1 and SOBS.INF (t) = 0.368. The intersection of
this line with the cumulative survival curves in the infected treatments give the
‘expected times of death’ for infected hosts in the infected treatments (vertical
blue lines). The intersection of these vertical lines with the cumulative survival
curve for the control treatment estimates the contribution of background mor-
tality to the observed survival of infected hosts (horizontal blue lines). These
values allow estimation of the contribution of background mortality and the
pathogen’s virulence to the survival of infected hosts at their ‘expected time of
death’. Re-drawn from Fig. 3a with data pooled across larval food treatments.
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Comparing estimates

It is often convenient to compare estimates of virulence and transmission success
at a particular point in time. For example, pathogen fitness as estimated by R0

is often calculated based on the estimated time infected hosts are infectious [6,
7].

When there is no recovery from infection, the average longevity of infected
hosts can be estimated by integrating the survival function SOBS.INF (t). How-
ever if host rates of mortality are constant, the average longevity of infected
hosts conveniently equals, 1/(µ + ν). It also corresponds with the time when
HOBS.INF (t) = 1, which is the time when infected hosts are expected to have
died due to their cumulative exposure to the risk of dying from background
mortality and mortality due to infection (9).

When host mortality rates vary over time, and there is no recovery from in-
fection, the average longevity of infected hosts and the time whenHOBS.INF (t) =
1 are not the same. However it may be convenient to use the time when
HOBS.INF (t) = 1 for comparative purposes as it can be directly read from
plots of cumulative survival in infected treatments: when HOBS.INF (t) = 1,
SOBS.INF (t) = exp(−1) = 0.368 (5).

When SOBS.INF (t) = 0.367, the cumulative survival curve in a matching
control treatment can be used to estimate the host’s cumulative exposure to
background mortality,

HBCK(tETD) = − log [SBCK(tETD)] (28)

and thus its cumulative exposure to the pathogen’s virulence,

HINF (tETD) = HOBS.INF (tETD)−HBCK(tETD) (29)

= 1−HBCK(tETD).

where tETD is the ‘expected time of death’ for infected hosts whenHOBS.INF (t) =
1. These estimates do not require any assumptions as to the distribution of
background mortality or mortality due to infection.

For example, the cumulative survival curves for infected hosts in the high
and low dose treatments of the study by Lorenz & Koella [24] intersected the
line, SOBS.INF (t) = 0.368, on days 17.5 and 21.5, respectfully (Fig 8). At
these times, survival in the control treatment was 0.784 and 0.619, respectively.
The negative log-transformation of these values estimated the host’s cumulative
exposure to the risk of dying from background mortality, HBCK(tETD), as 0.243
and 0.480, respectively, giving estimates of the host’s cumulative exposure to
the pathogen’s virulence at its expected time of death, HINF (tETD), as, 0.757
and 0.520, respectively.

Hence infected hosts were not only expected to die earlier in the highest vs.
lowest dose treatment (17.5 vs. 21.5 days), but their death was estimated as
more likely to be due to infection (0.757 vs. 0.520). When hosts in the lowest
dose treatment were expected to die, the likelihood of them dying from infec-
tion was approximately equal to that of them dying from background mortality
(0.520 vs. 0.480), whereas it was roughly three times greater in the highest dose
treatment (0.757 vs 0.243).
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Wider applications of relative survival

The analysis of relative survival can be applied when survival in a target popu-
lation is less than would be expected due to a specific factor. These situations
extend beyond those involving patients afflicted with a particular disease or ill-
ness or hosts experimentally-infected with a particular pathogen. The analysis
of relative survival could, for example, be usefully applied to estimating the
adverse effects of xenobiotics (antibiotics, insecticides, fungicides, etc. . . ) on
survival in treated vs. untreated population, such as, populations of bees ex-
posed or unexposed to neonicotinoid pesticides, or bees experimentally exposed
to different combinations of stressors, such as, pesticides and pathogens.

Another application of the method could be to compare survival in model
organisms, such as, Drosophila melanogaster or Caenorhabditis elegans, where
their survival is reduced following the knockdown of a particular gene, gene-
product, or component of the immune system, etc. . . . Adopting the analysis of
relative survival in these studies could provide much more detailed estimates for
the effects of the experimental manipulation than the log-rank tests habitually
used to test for evidence of effect.

Summary

Reciprocal feedback between data and theory is one of the motors by which
science advances. This progress is potentially hindered when empirical and
theoretical studies differ in how the subject of interest is defined. This can mean
like is not being compared with like and the assumed relationship between two
variables is potentially confounded by a third variable [4].

Most empirical studies generating estimates of a pathogen’s virulence do not
estimate virulence as it is defined in the theoretical literature [1–3], where it is
generally defined as the increase in the per capita rate of mortality of infected
hosts due to infection [6, 7]. The aim of this study has been to illustrate how this
rate can be estimated from the data of empirical studies by applying a statistical
method widely used in the medical literature to analyse relative survival in
populations of patients afflicted by a particular disease or illness [8–11]. This
does not validate the theoretical literature’s use of this definition for virulence,
but it allows theoretical and empirical studies to compare virulence based on
the same metric.

Worked examples illustrate cases where rates of host mortality due to in-
fection accelerate over time and where this acceleration is proportional to the
dose of infection to which hosts were exposed. Other examples illustrate the ob-
served pattern of virulence in an infected population or treatment can increase
and then decrease over time. This unimodal pattern could reflect the pattern of
the pathogen’s within-host growth, but can also indicate virulence varied among
members of the host population. Such variation may be directly observed or
assumed to be present and analysed as discretely or continuously distributed.
These estimates open the way for the relationship between virulence and other
traits to be explored, such as, transmission success, and how they contribute to
pathogen fitness.
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