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ABSTRACT 

 

Current-day metagenomics increasingly requires taxonomic classification of long DNA sequences and 

metagenome-assembled genomes (MAGs) of unknown microorganisms. We show that the standard 

best-hit approach often leads to classifications that are too specific. We present tools to classify high-

quality metagenomic contigs (Contig Annotation Tool, CAT) and MAGs (Bin Annotation Tool, BAT) 

and thoroughly benchmark them with simulated metagenomic sequences that are classified against a 

reference database where related sequences are increasingly removed, thereby simulating 

increasingly unknown queries. We find that the query sequences are correctly classified at low 

taxonomic ranks if closely related organisms are present in the reference database, while 

classifications are made higher in the taxonomy when closely related organisms are absent, thus 

avoiding spurious classification specificity. In a real-world challenge, we apply BAT to over 900 MAGs 

from a recent rumen metagenomics study and classified 97% consistently with prior phylogeny-based 

classifications, but in a fully automated fashion. 

 

 

INTRODUCTION 

 

Metagenomics, the direct sequencing of DNA from microbial communities in natural environments, 

has revolutionized the field of microbiology by unearthing a vast microbial sequence space in our 

biosphere, much of which remains unexplored1-3. With increases in DNA sequencing throughput, 

metagenomics has moved from analysis of individual reads to sequence assembly, where increases in 
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sequencing depth have enabled de novo assembly of high-quality contiguous sequences (contigs), 

sometimes many kilobases in length4. In addition, current state-of-the-art encompasses binning of 

these contigs into high-quality draft genomes, or metagenome-assembled genomes (MAGs) 5-8. 

Advancing from short reads to contigs and MAGs allows the field to answer its classical questions9, 

‘who is there?’ and ‘what are they doing?’ in a unified manner: ‘who is doing what?’, as both function 

and taxonomy can be confidently linked to the same genomic entity. Because assembly and binning 

can be done de novo, these questions can be applied to organisms that have never been seen before, 

and the discovery of entirely novel phyla is common still8. 

Several efficient tools for taxonomic classification of short, read-length sequences have been 

developed over the years, reflecting the read-based focus of the time. Most tools consider each read 

as an independent observation, whose taxonomic origin can be estimated by identifying best-hit 

matches in a reference database, either on read, K-mer, or translated protein level (see 10 for an 

overview). Widely-used programs such as Kraken11 (K-mer based), CLARK12 (discriminative K-mer 

based), and Kaiju13 (protein-based) can process hundreds of thousands of sequencing reads per 

second. Without compromising accuracy, still faster approaches use mixture modelling of K-mer 

profiles, as implemented in FOCUS14. Sometimes a Last Common Ancestor (LCA) algorithm is applied 

to allow for multiple hits with similar scores as the best hit (e.g. Kraken, MEGAN15). Kaiju uses a best-

hit approach with an LCA algorithm if equally good top-hits are found. 

Similar approaches are applied to contigs, with classification often based on the best hit to a 

reference database. Although fast, the best-hit approach can lead to spurious specificity in 

classifications, for example when a genomic region is highly conserved or recently acquired via 

horizontal gene transfer (HGT) from a distantly related organism. As we will show below, the problem 

is particularly grave when the query contigs are very divergent from the sequences in the database, 

i.e. they are distantly related to known organisms. Whereas specificity (correctly classified / total 

classified) can be increased when only classifications at higher taxonomic ranks are considered, this 

approach is not desirable as taxonomic resolution is unnecessarily lost for query contigs that are 

closely related to known organisms. 

Depending on their length, contigs may contain multiple open reading frames (ORFs), each of 

which contains a taxonomic signal. Integrating these signals should enable a more robust 

classification of the entire contig, yet surprisingly few tools exist that integrate distributed signals for 

contig classification. The viral-specific pipeline MetaVir216 assesses the classification of up to five 

ORFs encoded on a contig. Recently, the MEGAN long read algorithm was introduced17, which 

partitions the sequence into intervals based on the location of hits of a LAST18 search. 

In contrast, for taxonomic classification of MAGs it is common to include information from multiple 

ORFs. Since the classification of complete genomes by using phylogenetic trees of multiple marker 

genes is well-established19, MAG classification has followed these best practices. Some steps in the 

process can be automated, including initial placement in a low-resolution backbone tree by CheckM20, 

specific marker gene identification and backbone tree taxon selection by phyloSkeleton21, and many 

tools are available for protein alignment, trimming, tree building, and display. However, interpretation 

of the resulting phylogeny remains a critical manual step, making this approach for genomic taxonomy 
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a laborious task that does not scale well with the increasing number of MAGs being generated (see 

e.g. 7). 

Here we present Contig Annotation Tool (CAT) and Bin Annotation Tool (BAT), two tools whose 

underlying ORF-based algorithm is specifically designed to provide robust taxonomic classification of 

long sequences and MAGs that contain multiple protein-encoding gene sequences. Both tools require 

minimal user input and can be applied in an automated manner, yet all aspects are flexible and can be 

tuned to user preferences. 

 

Benchmarking classification of sequences from novel taxa 

Taxonomic classifiers are often benchmarked by testing them on sequences from novel taxa, i.e. that 

are not (yet) in the reference database (e.g. 11,12,14). Alternatively, unknown query sequences can be 

simulated by using a ‘leave-one-out’ approach, where the genome that is being queried is removed 

from the database (e.g. 13,17). However, due to taxonomic biases in the database composition, other 

strains from the same species, or other species from the same genus may still be present. Thus, the 

leave-one-out approach does not reflect the level of sequence unknownness that is often encountered 

in real metagenomes, where the query sequences may be only distantly related to the ones in the 

reference database. Here, we rigorously assess the performance of contig classification tools by 

developing an extensive database reduction approach at different taxonomic ranks, where novel 

species, genera, and families are simulated by removing all the sequences of entire taxa from the 

database. We show that the algorithm of CAT and BAT allows for the correct classification of 

organisms from known and unknown taxa, at least up to the rank of novel families. We compared the 

performance of CAT to contig classifications by a best-hit approach, LAST+MEGAN-LR17, and Kaiju13. 

Moreover, we used BAT to classify a large, recently published set of 913 MAGs from the cow rumen7, 

and whose taxonomic classifications involved extensive phylogenetic analyses. We show that CAT 

and BAT perform in par with, or better than existing methods, especially for sequences that are highly 

unknown. 

 

 

RESULTS AND DISCUSSION 

 

Contig classification with CAT 

CAT has two user definable parameters. We used CAT (Figure 1) to classify ten simulated contig sets 

in the context of four reference databases with different levels of simulated unknownness, 

representing query sequences from (A) known strains, (B) novel species, (C) novel genera, and (D) 

novel families (see Online methods). To assess the effect of the two key user parameters, r (hits 

included within range of top hits) and f (minimum fraction classification support) on precision, fraction 

of classified contigs, sensitivity, and taxonomic rank of classification, we ran CAT with a wide range of 

possible parameter values against all four reference databases (Figure 2). This parameter sweep 

revealed a trade-off between the classification precision on the one hand, and the taxonomic 

resolution and the fraction of classified contigs on the other. This general trend can be understood by 
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considering that classifications at a low taxonomic rank (i.e. close to the species level, high taxonomic 

resolution) will inevitably be increasingly imprecise, especially if closely related organisms are absent 

from the reference database. This might be resolved by classifying contigs at a higher taxonomic rank, 

but this leads to increased numbers of contigs not being classified or classified at trivially informative 

taxonomic ranks such as ‘cellular organisms’ or ‘root’. 

The r parameter, which governs the divergence of included hits for each ORF, had the largest 

effect. As increasing r includes homologs from increasingly divergent taxonomic groups, their LCA is 

pushed back and classifications at low taxonomic ranks are lost, resulting in fewer classified contigs at 

lower taxonomic resolution (higher ranks), but with higher average precision. The f parameter, which 

governs the minimum bit-score support required for classifying a contig, has a smaller effect. 

Decreasing f allows CAT classifications to be based on evidence from fewer ORFs, leading to more 

tentative classifications at lower taxonomic ranks. As a result, more contigs are classified at lower 

taxonomic ranks, albeit with a lower precision. 

As a user increases r and f, this will increasingly result in high rank classifications that are correct 

but ultimately uninformative. When low values of r and f are chosen, the classifications will be more 

specific (i.e. at a lower taxonomic rank) but more speculative (i.e. precision goes down). Based on the 

parameter sweep described above, we set the default values for CAT contig classification to r = 10; f = 

0.5 (red line in the legend of Figure 2). Note that this value of f = 0.5 results in at most one 

classification at a given taxonomic rank, since >50% of the bit-score supports that classification. 

 

Comparison to state-of-the-art tools. We compared classification by CAT to (1) the recently published 

LAST+MEGAN-LR algorithm17, (2) the widely used Kaiju algorithm13, and (3) a standard best-hit 

approach with Diamond22 (Figure 3). Kaiju was designed for short-read classification, but its 

underlying algorithm allows for the classification of long sequences as well, and has recently been 

used as such17,23,24. Final classification is based on the hit with the maximum exact match (MEM), or 

on the highest scoring match allowing for mismatches (Greedy). 

When classifying simulated contigs against the full reference database (known strains), all 

programs showed a similar precision and fraction of classified sequences (Figure 3A). The average 

taxonomic rank of classification is slightly higher for CAT (0.77 ± 0.05) and LAST+MEGAN-LR (0.62 ± 

0.04) than for best-hit (0.14 ± 0.03), Kaiju MEM (0.25 ± 0.04) and Kaiju Greedy (0.25 ± 0.04), 

reflecting the conservative LCA-based classification strategies of the former two. Best-hit does not use 

LCA, and Kaiju only in cases were multiple hits have identical scores, and thus they classify contigs 

according to the taxonomic rank of their match in the reference database. 

When novel species, genera, and families were simulated by removing related sequences from the 

database, precision declined rapidly for best-hit and Kaiju (Figure 3A-D). The classifications called by 

these approaches are often too specific, because in databases where closely related sequences are 

absent, the singular best hit may still match a sequence that is annotated at a low taxonomic rank, 

although this annotation cannot match that of the query. This spurious specificity can be seen in the 

average rank of classification, which stays close to the species rank, even when sequences from the 

same species, genus, or family were removed from the database (Figure 3B-D). CAT and 
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LAST+MEGAN-LR clearly perform better in the face of such uncharted sequences. With default 

parameter settings, CAT has higher precision and sensitivity than MEGAN-LR and classifications are 

made at slightly higher taxonomic ranks, e.g. for simulated novel families (Figure 3D) 3.40 ± 0.07 and 

3.01 ± 0.07 for CAT and MEGAN-LR, respectively. 

 

CAT automatically classifies sequences at the appropriate taxonomic rank. As a solution to the 

spurious specificity of the best-hit approach described above, best-hit classifications may be assigned 

to a higher taxonomic rank, such as genus, family, or even phylum. Supplementary Figure 2 shows 

that application of a rank cut-off to the best-hit classifications only partly solved the problem of 

spurious specificity. For instance, when only order rank classifications were considered, precision was 

0.21 ± 0.02 in the case of simulated novel families (Supplementary Figure 2D). Importantly, applying a 

rank cut-off may unnecessarily sacrifice taxonomic resolution in cases where the query sequences do 

have close relatives in the reference database and classification at a low taxonomic rank would be 

justified. 

As shown in Figure 2, the ORF-based voting algorithm of CAT ensures a high precision regardless 

of the level of unknownness of the query sequences, i.e. whether closely related sequences are 

present in the reference database or not. Only when necessary, taxonomic resolution is traded for 

precision: when classifying contigs that are more distantly related to the sequences in the reference 

database, hits will have weaker bit-scores and match sequences that are taxonomically more diverse. 

As a result of these conflicting signals, the CAT algorithm automatically increases the taxonomic rank 

when classifying more divergent query sequences. For example, when novel families are simulated, 

precision is 0.64 ± 0.008 and the average taxonomic rank of classifications lay between order and 

class (Supplementary Figure 2D). In contrast, best-hit classifications that were cut-off at these 

taxonomic ranks had a precision of 0.21 ± 0.02 and 0.47 ± 0.01, respectively, with a similar fraction of 

classified sequences. 

 

CAT is fast and has a very low memory requirement. CAT is about two times faster than 

LAST+MEGAN-LR (Figure 4A) and outperforms all other programs in terms of memory-usage. The 

most memory intensive step is the Diamond search for homologs in the vast NR database (Figure 4B). 

Note that construction of the database files during the ‘prepare’ step requires more memory than the 

classification, but this only needs to be done once. 

 

Bin classification with BAT 

Classification of 913 Metagenome-Assembled Genome bins (MAGs). Next, we set out to apply the 

algorithm to MAGs, i.e. draft genomes that can be generated from metagenomes by assembly and 

binning. Since the typical pipeline to generate MAGs is reference database independent, they can be 

distantly related to known organisms. As benchmark set, we picked 913 recently published MAGs 

from the cow rumen7 that represented a wide range of novelty at different taxonomic ranks 

(Supplementary Figure 3A). The published classifications were based on placement of the MAGs in a 

backbone tree and subsequent refinement, a slow process that includes various manual steps and 
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visual screening7. At the time of our study, the MAGs were not yet included in the reference database, 

providing an ideal test case for our automated classification tool BAT. 

The 913 MAGs were previously assessed to be ≥80% complete, have ≤10% contamination, and 

contain between 541-5,378 ORFs each (Supplementary Figure 3B). We ran BAT with default 

parameter settings for MAGs classification (r = 5, f = 0.3). The low r value ensures that individual 

ORFs are annotated to a LCA with a relatively low taxonomic rank, as hits within 5% of the highest bit-

score are considered. The low f value reports taxonomic classifications that are supported by at least 

30% of the bit-score evidence. While this could be considered a speculative call when contigs with 

relatively few encoded ORFs are annotated, the much higher number of ORFs in MAGs means that 

even classifications with relatively low f values are backed by a high number of ORFs. We scored the 

consistency between BAT and the published classifications (Figure 5A), dividing consistent 

classifications into three groups: (i) BAT can be more conservative than the published classification, 

i.e. BAT classifies the MAG to an ancestor of the published classification, (ii) classifications can be 

equal, and (iii) BAT can be more specific. Alternatively, BAT can classify a MAG inconsistently, i.e. in 

a different taxonomic lineage than the original publication. As shown in Figure 5A, 885 of 913 MAGs 

(97%) were classified consistently with the original publication. If parameter f is relaxed, average level 

of classification for the MAGs increases (Figure 5B). Importantly, decreasing the value of f has little 

effect on inconsistency rate. Thus, changing this parameter will mainly lead to a change in the rank of 

classification, while the taxonomic lineage will remain unchanged. 

To assess the taxonomy of the 28 inconsistently classified MAGs (at r = 5, f = 0.3), we placed them 

in a phylogenomic tree with closely related genomes and observed their closest relatives, the 

published classifications, and the BAT classifications. As shown in Figure 6, BAT classified all 28 

inconsistent MAGs more precisely and at a higher taxonomic resolution than the published 

classifications. Note that this may be due to these closely related reference genomes being new 

additions to the database since the research was performed. Together, these results highlight the 

benefit of using BAT for the rapid, automated, and high resolution taxonomic classification of novel 

microbial lineages at a range of unknownness. 

 

 

CONCLUSIONS 

 

Metagenomics continues to reveal novel microorganisms in all environments in the biosphere, whose 

sequences can be reconstructed with high accuracy by using high-throughput DNA sequencing and 

modern sequence assembly tools. Taxonomically classifying these uncharted sequences remains 

challenging, partly because the vast natural biodiversity remains highly under-represented in even the 

largest reference databases, and partly because existing tools are built to classify short sequencing 

reads. 

We presented CAT and BAT, a suite of tools that exploit database searches of individual ORFs, 

LCA annotation, and a voting algorithm to classify long contigs and metagenome-assembled genomes 

(MAGs). As we have shown, these query sequences contain a wealth of information that allows their 
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accurate taxonomic classification at appropriate taxonomic ranks, i.e. at a low rank when closely 

related organisms are present in the database, and at a high rank when the sequences are divergent 

or highly novel. We have shown that the low precision of conventional best-hit approaches when 

classifying novel taxa can be overcome by a voting algorithm based on classifications of multiple 

ORFs. Elegantly, sequences from organisms that are distantly related to those in the reference 

database are automatically classified at a higher taxonomic rank than known strains. ORFs on 

divergent sequences will hit a wider variety of different taxa both on the individual ORF level and 

between ORFs. Such conflict of classifications is automatically resolved by the algorithm by providing 

a more conservative classification, so no taxonomic cut-off rank for classification needs to be pre-

defined. In metagenomes containing both known and unknown sequences, the algorithm vastly 

outperforms best-hit approaches in both precision and sensitivity. 

CAT and BAT supplement a modern metagenomics workflow in various ways. For example, CAT 

can be used after metagenome assembly to confidently classify all contigs. We expect that 

subsequent classification of the original sequencing reads in terms of these contigs will result in fewer 

false positives than if reads were taxonomically classified using short-read classification tools. 

Moreover, BAT will rapidly provide taxonomic classifications of MAGs without requiring a full 

phylogenomics pipeline and subsequently visual inspection of the tree. CAT classifications of 

individual contigs within MAGs can be used to identify taxonomic outliers, and flag those as possible 

contamination. As most binning tools do not incorporate taxonomic signals (e.g. 25,26), CAT 

classification can be considered as independent evidence and might be used to decide on the 

inclusion of specific contigs in a MAG. 

BAT provides a robust and rapid classification of MAGs in a single operation, but it is not a 

replacement for high-confidence phylogenomic tree construction based on marker gene 

superalignments which remains the gold standard19. However, BAT queries the full NCBI non-

redundant reference database (NR) and the taxonomic context is thus much bigger than any 

phylogenomic tree that depends on completely sequenced genomes. For example, the backbone tree 

of CheckM currently includes only 5,656 genomes20. BAT classification is fully automated and can be 

run on a set of MAGs with minimal user input, allowing MAG classification to be scaled up 

considerably as we showed here for over nine hundred MAGs that were classified consistently with 

the original publication in almost all cases. 

As long as sequence space is incompletely explored and reference databases represent a biased 

view of the tree of life1,3, algorithms designed to address the abundant uncharted microbial sequences 

will be needed to make sense of the microbial world. Decreasing sequencing costs and improvement 

of alignment and binning algorithms have moved metagenomics from the analysis of short reads 

towards contigs and MAGs, improving our understanding of microbial ecosystems to a genomic 

resolution. As these data will only increase in the coming years, we presented a robust solution to their 

specific challenges that we expect will play an important role in future metagenomics workflows. 

 

 

AVAILABILITY 
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CAT and BAT are available at https://github.com/Dutilh/CAT/. All benchmarking datasets and 

reference databases with increasing levels of unknownness are available from the authors upon 

request. 

 

 

SUPPLEMENTARY DATA 

 

Methods and Supplementary Figures are available online. 

 

 

AUTHOR CONTRIBUTIONS 

 

B.E.D. conceived the study. D.D.C., K.A., and F.A.B.v.M. wrote the code. F.H.C. and F.A.B.v.M. 

analysed the data. F.A.B.v.M. and B.E.D. wrote the paper. All authors read and approved the 

manuscript. 

 

 

FUNDING 

 

This work was supported by the Netherlands Organization for Scientific Research [Vidi grant 

864.14.004] to [B.E.D.]; and the Conselho Nacional de Desenvolvimento Científico e Tecnológico 

[Science Without Borders program] to [D.D.C.] and [F.H.C.]. 

 

 

CONFLICT OF INTEREST 

 

The authors declare no conflict of interest. 

 

 

REFERENCES 

 

1. Dutilh, B. E. Metagenomic ventures into outer sequence space. Bacteriophage 4, e979664 
(2014). 

2. Bernard, G., Pathmanathan, J. S., Lannes, R., Lopez, P. & Bapteste, E. Microbial Dark Matter 
Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch 
a Logic of Scientific Discovery. Genome Biol Evol 10, 707–715 (2018). 

3. Castelle, C. J. & Banfield, J. F. Major New Microbial Groups Expand Diversity and Alter our 
Understanding of the Tree of Life. Cell 172, 1181–1197 (2018). 

4. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile 
metagenomic assembler. Genome Res. 27, 824–834 (2017). 

5. Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain 
Bacteria. Nature 523, 208–211 (2015). 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/530188doi: bioRxiv preprint 

https://github.com/Dutilh/CAT/
https://doi.org/10.1101/530188
http://creativecommons.org/licenses/by-nc/4.0/


6. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially 
expands the tree of life. Nat Microbiol 31, 217–1542 (2017). 

7. Stewart, R. D. et al. Assembly of 913 microbial genomes from metagenomic sequencing of the 
cow rumen. Nat Commun 9, 870 (2018). 

8. Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected 
biogeochemical processes in an aquifer system. Nat Commun 7, 13219 (2016). 

9. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. 
Microbiol. Mol. Biol. Rev. 68, 669–685 (2004). 

10. Breitwieser, F. P., Lu, J. & Salzberg, S. L. A review of methods and databases for 
metagenomic classification and assembly. Brief. Bioinformatics 3, 31 (2017). 

11. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using 
exact alignments. Genome Biol. 15, R46 (2014). 

12. Ounit, R., Wanamaker, S., Close, T. J. & Lonardi, S. CLARK: fast and accurate classification of 
metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16, 236 
(2015). 

13. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics 
with Kaiju. Nat Commun 7, 11257 (2016). 

14. Silva, G. G. Z., Cuevas, D. A., Dutilh, B. E. & Edwards, R. A. FOCUS: an alignment-free model 
to identify organisms in metagenomes using non-negative least squares. PeerJ 2, e425 (2014). 

15. Huson, D. H. et al. MEGAN Community Edition - Interactive Exploration and Analysis of Large-
Scale Microbiome Sequencing Data. PLoS Comput. Biol. 12, e1004957 (2016). 

16. Roux, S., Tournayre, J., Mahul, A., Debroas, D. & Enault, F. Metavir 2: new tools for viral 
metagenome comparison and assembled virome analysis. BMC Bioinformatics 15, 76 (2014). 

17. Huson, D. H. et al. MEGAN-LR: new algorithms allow accurate binning and easy interactive 
exploration of metagenomic long reads and contigs. Biol. Direct 13, 6 (2018). 

18. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P. & Frith, M. C. Adaptive seeds tame genomic 
sequence comparison. Genome Res. 21, 487–493 (2011). 

19. Dutilh, B. E. et al. Assessment of phylogenomic and orthology approaches for phylogenetic 
inference. Bioinformatics 23, 815–824 (2007). 

20. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: 
assessing the quality of microbial genomes recovered from isolates, single cells, and 
metagenomes. Genome Res. 25, 1043–1055 (2015). 

21. Guy, L. phyloSkeleton: taxon selection, data retrieval and marker identification for 
phylogenomics. Bioinformatics 33, 1230–1232 (2017). 

22. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. 
Nat. Methods 12, 59–60 (2015). 

23. Xia, H. et al. Comparative Metagenomic Profiling of Viromes Associated with Four Common 
Mosquito Species in China. Virol Sin 33, 59–66 (2018). 

24. Young, J. M., Skvortsov, T., Arkhipova, K. & Allen, C. C. R. Draft Genome Sequence of the 
Predatory Marine Bacterium Halobacteriovorax sp. Strain JY17. Genome Announc 6, 593 
(2018). 

25. Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately 
reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015). 

26. Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 
11, 1144–1146 (2014). 

 

 

ONLINE METHODS 
 

 

Software availability 

CAT and BAT are implemented in Python 3. The software and user manual are available at 

https://github.com/Dutilh/CAT/. 

 

Explanation of the algorithm 
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Both CAT and BAT take high-quality long DNA sequences in FASTA format as input (Figure 1), such 

as assembled contigs or corrected long Nanopore or PacBio reads1,2. First, ORFs are predicted with 

Prodigal3 in metagenome mode, using default parameter settings (genetic code 11) (Figure 1A, B). 

Predicted proteins can also be independently supplied to CAT/BAT in case a user prefers a different 

gene caller than Prodigal. 

Next, protein translations of the predicted ORFs are queried against the National Center for 

Biotechnology Information (NCBI) non-redundant protein database (NR) 4 using Diamond5 blastp (e-

value cut-off of 0.001, BLOSUM62 alignment matrix, reporting alignments within 50% range of top hit 

bit-score) (Figure 1C). The NR database is currently the largest sequence database where all 

sequences are assigned to clades in NCBI Taxonomy6. A separate Blast tabular output file can also 

be supplied together with the predicted proteins file, in which case CAT/BAT starts directly with 

classification. 

Taxonomic classification of the query sequences is then carried out based on a voting approach 

that considers all ORFs on a query with hits to the reference database. Here, the main difference 

between CAT and BAT is that CAT considers ORFs on a single contig, whereas BAT considers ORFs 

on all contigs belonging to a MAG. CAT and BAT also have slightly different default parameters values 

(see below). 

First, the algorithm infers the taxonomic affiliation of individual ORFs based on the top Diamond 

hits (Figure 1D). To account for similarly high-scoring hits in potentially different clades, hits within a 

user-defined range of the top hit bit-score to that ORF are considered and the ORF is assigned to the 

LCA of their lineages (parameter r for range, by default hits with bit-scores within 10% or 5% range of 

the top hit bit-score are included, r = 10 for CAT and r = 5 for BAT, respectively). By adjusting 

parameter r, the user can tune how conservative CAT is in the classification of individual ORFs. For 

example, increasing r results in more divergent hits being included that together are likely to have a 

deeper LCA, thus leading to a more conservative ORF classification at a higher taxonomic rank. In 

contrast, decreasing r leads to a more specific classification since fewer and more similar hits will be 

included, likely with a narrower taxonomic range. This accounts for conserved or HGT-prone genes 

that are highly similar in diverse taxa by assigning them a high-rank classification. The top hit bit-score 

for each ORF is registered for the subsequent voting process (Figure 1D). 

Next, the query contig or MAG is evaluated by summing the bit-scores for each taxon identified 

among the classifications of all ORFs, as well as their ancestral lineages up to the taxonomy root 

(Figure 1E). The query contig or MAG is then assigned to a taxon, if the total bit-score evidence for 

that taxon exceeds a cut-off value (mbs, minimum bit-score support), which is calculated as a fraction 

(parameter f for fraction) of the sum of the bit-scores of all ORFs (mbs = f * Bsum, by default f = 0.5 for 

CAT and f = 0.3 for BAT). For example, if parameter f is set to 0.5, this means that a contig is 

assigned to a taxon if at least half of the sum of the bit-scores of all ORFs supports that classification 

(mbs = 0.5 x Bsum). This is done at all taxonomic ranks including phylum, class, order, family, genus, 

and species. The algorithm stops at the taxonomic rank where the total bit-score supporting the 

classification drops below the minimum bit-score support value, so CAT/BAT automatically finds the 
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lowest rank taxonomic classification that is still reliable (Figure 1E). Note, that if f < 0.5, multiple 

lineages at a given taxonomic rank may exceed the threshold, and all are written to the output file. 

 

Output files 

For each query contig or MAG, the full taxonomic lineage of the lowest-rank supported classification is 

written to the output file, together with support values (i.e. the fraction of Bsum that is represented by 

the taxon). In addition, the number of ORFs found on the contig or MAG and the number of ORFs on 

which the classification is based are written to the output file. An extra output file containing 

information about individual ORFs is also generated, including classifications of ORFs and an 

explanation for any ORF that is not classified. We advise the user caution when interpreting the 

classifications of short contigs that are based on relatively few ORFs as they will be less robust than 

the classifications of long contigs or MAGs. 

 

Helper programs 

The CAT/BAT package comes bundled with three helper utilities, ‘prepare’, ‘add_names’, and 

‘summarise’. ‘Prepare’ only needs to be run once. It downloads all the needed files including NCBI 

taxonomy files and the NR database. It constructs a Diamond database from NR, and generates the 

files needed for subsequent CAT and BAT runs. Because the first protein accession in NR not always 

represents the LCA of all protein accessions in the entry, ‘prepare’ corrects for this in the protein 

accession to taxonomy id mapping file (prot.accession2taxid). After running CAT/BAT, ‘add_names’ 

will add taxonomic names to the output files, either of the full lineage or of official taxonomic ranks 

alone. ‘Summarise’ generates summary statistics based on a named classification file. For contig 

classification, it reports the total length of the contigs that are classified to each taxon. For MAG 

classification, it reports the number of MAGs per taxon. 

 

Generation of contig benchmarking datasets 

To test the performance of CAT, we artificially generated contigs from known genome sequences in 

the RefSeq database7. We randomly downloaded one genome per taxonomic order from bacterial 

RefSeq on July 7th, 2017 (163 orders in total) and cut the genomes into at most 65 non-overlapping 

contigs, generating a set of ~10,500 contigs with known taxonomic affiliation. Contig lengths were 

based on the length distribution of eight assembled real metagenomes deposited in the Sequence 

Read Archive (SRA) 8 (assembly with metaSPAdes v3.10.19 after quality filtering with BBDuk that is 

included with BBTools v36.64 (https://sourceforge.net/projects/bbmap/), see Supplementary Table 1), 

with a minimum length of 300 nucleotides. This was done ten times to construct ten different 

benchmarking datasets sampled from 163 different genomes, each from a different taxonomic order 

(Supplementary Table 1). 

Viruses remain vastly under-sampled and the sequences in the database remain a small fraction of 

the total viral sequence space10. Moreover, the hierarchy of the viral taxonomy is not as deeply 

structured as the taxonomy of cellular organisms11. Based on these considerations, we did not 

explicitly assess the performance of our tool on viral sequences. However, we expect that 
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classification of viruses will be readily possible when closely related viruses are present in the 

reference database. 

 

Reference databases with increasing levels of unknownness 

The benchmarking datasets generated above are derived from genomes whose sequences are also 

present in the reference database, corresponding to the perhaps unlikely scenario where the query 

sequences in the metagenome are identical to known strains in the database. To benchmark our tools 

in the context of discovering sequences from novel taxa, we next generated novel reference 

databases with increasing levels of unknownness by removing specific taxonomic groups from NR. In 

addition to the original NR database (known strains), three derived databases were constructed to 

reflect the situation of discovering novel species, genera, and families. This was done by removing all 

proteins that are only present in the same species, genus, or family as any of the 163 genomes in the 

benchmarking dataset. To do this, we either removed the sequences from the database itself, or if a 

protein was identical in sequence to a protein in another clade, we changed the protein accession to 

taxonomy id mapping file to exclude the query taxon. In contrast to many other taxonomic 

classification tools, all the programs that we compared (CAT, Diamond best-hit, LAST+MEGAN-LR, 

and Kaiju) allowed such custom files to be used. The three reduced databases and associated 

mapping files thus reflect what NR would have looked like if the species, genus, or family of the 

genomes present in the benchmarking dataset were never seen before. This was done independently 

for each of the ten different benchmarking datasets, resulting in a total of 30 new reference databases 

to rigorously test the performance of our sequence classification tools in the face of uncharted 

microbial sequences. Simulating unknownness like this provides a better benchmark for classification 

of unknown sequences than a leave-one-out approach where only the query genome is removed from 

the reference database12,13, because close relatives of the query may still be present. It also avoids 

the need to simulate the sequences themselves, and the many assumptions associated with it14. 

 

Programs, parameters, and dependencies 

NR database and taxonomy files were downloaded on the November 23rd, 2017. Prodigal v2.6.33 was 

used to identify ORFs on the simulated contigs. Diamond v0.9.145 was used to align the encoded 

proteins to the reference databases for CAT and for the Diamond best-hit approach. Kaiju v1.6.212 

was run both in MEM and Greedy mode with SEG low complexity filter enabled. The number of 

mismatches allowed in Greedy mode was set to 5. For LAST+MEGAN-LR, LAST v91415 was used to 

map sequences to the databases with a score penalty of 15 for frame-shifts, as suggested in13. Scripts 

in the MEGAN v6.11.713 tools directory were used to convert LAST output to a classification file. The 

maf2daa tool was used to convert LAST output to a .daa alignment file. The daa2rma tool was used to 

apply the long read algorithm. ‘--minSupportPercent’ was set to 0, the LCA algorithm to longReads, 

and the longReads filter was applied. ‘--topPercent’ was set to 10 and ‘--lcaCoveragePercent’ to 80 

(MEGAN-LR defaults). The rma2info tool was used to convert the generated .rma file to a 

classification file. When a reduced database was queried, the appropriate protein accession to 
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taxonomy id mapping file was supplied via its respective setting (see section ‘Reference databases 

with increasing levels of unknownness’ above). 

 

Scoring of contig classification performance 

For contig classification, we scored (i) the fraction of classified contigs, (ii) sensitivity, (iii) precision, 

and (iv) average rank of classification (Supplementary Figure 1). Classifications were compared at the 

taxonomic ranks of species, genus, family, order, class, phylum, and superkingdom. In those cases 

where f < 0.5 and multiple classifications reached the mbs threshold, we chose the lowest 

classification that reached a majority vote (i.e. as if f = 0.5) for calculating the four performance 

measures i-iv. This means CAT classifications were more conservative in those (rare) cases. Contigs 

with a classification higher than the superkingdom rank (e.g. ‘cellular organisms’ or ‘root’) were 

considered unclassified, as these classifications are trivially informative in our benchmark. For all 

tools, a classification was considered correct if it was in the true taxonomic lineage, regardless of rank 

of classification. The average taxonomic rank of classification was calculated for all classified contigs, 

where the ranks species-phylum were given the integer values 0-6, respectively. Sensitivity and 

precision were scored as (correctly classified / total number of contigs) and (correctly classified / total 

number of classified contigs), respectively. 

 

Bin classification 

913 high-quality draft genome bins (MAGs) (completeness ≥80%, contamination ≤10%) from the cow 

rumen generated with both conventional metagenomics as well as Hi-C binning methods16 were 

downloaded from the DataShare of the University of Edinburgh 

(https://datashare.is.ed.ac.uk/handle/10283/3009). Taxonomic classification of the MAGs was 

downloaded from the Supplementary Data that accompanies the paper, and manually corrected if the 

names did not match our taxonomy files. To save disk space on the alignment file being generated, 

we ran BAT on batches of 25 genomes each. Akin to the contig classification case, we only 

considered classifications by BAT at official taxonomic ranks, and chose the majority classification in 

those cases were BAT gave more than one classification for a MAG (i.e. as if f = 0.5 for that MAG) 

resulting in more conservative classifications. 

To manually assess the 28 MAGs that whose classification was inconsistent with the published 

classifications, we created a phylogenomic tree of those bins together with closely related genomes 

that were downloaded from PATRIC17 on January 16th, 2018. CheckM v1.0.718 was used to extract 43 

phylogenetically informative marker genes that were realigned with ClustalOmega v1.2.319. We 

concatenated the alignments to create a superalignment and included gaps if a protein was absent. 

We constructed a maximum likelihood tree with IQ-TREE v1.6.320, with ModelFinder21 set to fit nuclear 

models (best-fit model LG+R7 based on Bayesian Information Criterion), including 1,000 ultrafast 

bootstraps22. Per clade, rooted subtrees were visualized in iTOL23. 

 

Usage of computer resources 
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Run time and peak memory usage were estimated with the Linux /usr/bin/time utility. Elapsed wall 

clock time and maximum resident set size were scored for a run classifying contig set #1 (10,533 

contigs, see Supplementary Table 1) with the NR reference database. All tools were run with default 

parameter settings. Runs were performed on a machine with an Intel Xeon Gold 6136 Processor, 

125.6 GB of memory, 24 cores and 48 threads. Whenever one of the programs allowed for the 

deployment of multiple threads, all were used. CAT and BAT have been tried and tested on 125 GB 

machines. 
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TABLE AND FIGURES LEGENDS 
 

Figure 1. Contig and MAG classification with CAT and BAT. (a, b) Step 1: ORF prediction with 

Prodigal. CAT analyses all ORFs on a contig, BAT analyses all ORFs in a MAG. (c) Step 2: predicted 

ORFs are queries with Diamond to the NCBI non-redundant protein database (NR). (d) Step 3: ORFs 

are individually classified based on the LCA of all hits falling within a certain range of the top hit 

(parameter r), and the top-hit bit-score is assigned to the classification. Bit-scores of hits are depicted 

within brackets. Hits in grey are not included in final annotation of the ORF. Parameter f defines 

minimum bit-score support (mbs). (e) Step 4: contig or MAG classification is based on a voting 

approach of all classified ORFs, by summing all bit-scores from ORFs supporting a certain 

classification. The contig or MAG is classified as the lowest classification reaching mbs. The example 

illustrates the benefit of including multiple ORFs when classifying contigs or MAGs; a best-hit 

approach might have selected Bacteroides vulgatus or Bacteroidetes if an LCA algorithm was applied 

as its classification, as this part has the highest score to proteins in the database in a local alignment-

based homology search. In the example only six taxonomic ranks are shown for brevity, in reality CAT 

and BAT will interpret the entire taxonomic lineage. 

 

Figure 2. Classification performance of CAT for different levels of unknownness across a range of 

parameter settings. Thickness of markers indicate values of the f parameter, runs with similar r 

parameter values are connected with black lines. Markers indicate maximum and minimum values out 

of ten benchmarking datasets, bars cross at the average. Colour coding indicates average taxonomic 

rank of classification across the then benchmarking dataset (minimum and maximum values not 

shown). Grey lines in the plot depict sensitivity, which is defined as fraction of classified contigs x 

precision. Runs with equal parameter settings are connected in the parameter settings figure, showing 

that CAT achieves a high precision regardless of unknownness of the query sequence, by classifying 

sequences that are more unknown at higher taxonomic ranks. Default parameter combination (r = 10, f 

= 0.5) is shown in red. 

 

Figure 3. Classification performance of CAT, LAST+MEGAN-LR, Kaiju, and Diamond best-hit for 

different levels of unknownness. (a) Classification of known sequences, (b-d) classification of 

simulated novel taxa for different levels of divergence from reference databases. Black bars indicate 

maximum and minimum values out of ten benchmarking datasets, bars cross at the average. Colour 

coding indicates average taxonomic rank of classification across the then benchmarking dataset 

(minimum and maximum values not shown). 
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Figure 4. Computer resource usage by CAT, LAST+MEGAN-LR, and Kaiju. (a) Run-time and (b) peak 

memory usage. In a, classification by CAT and Kaiju include adding taxonomic names to the 

classification, in b these steps are depicted separately. 

 

Figure 5. Classification of 913 MAGs with BAT. (a) Consistency between BAT classifications and 

published classifications with default parameter settings (r = 5, f = 0.3). (b) The average level of 

classification can be increased by increasing f. Arrow indicates BAT results for its default parameter 

settings. 

 

Figure 6. Tree placement of the 28 inconsistently classified MAGs that were assigned to five different 

taxa according to the original classifications (a-d). Headers of subfigures refer to the published 

classifications. In a, MAGs published as Selenomonadales are marked with an asterisk. Taxonomic 

classification of reference genomes is indicated in shades boxes. BAT classifications of MAGs are 

indicated in open boxes. 

 

Supplementary Figure 1. Measuring performance for contig classification. (a) Example contig set. 

Classifications above superkingdom rank (e.g. ‘cellular organisms’ or ‘root’) are considered not 

classified. Half of the total classifications is contained within the true taxonomic lineage and is thus 

scored as correct, and a quarter is not. (b) Measures of performance. Sensitivity is fraction of 

classified contigs x precision. Average taxonomic rank of classification is calculated for all classified 

contigs (75 in the example), where the ranks species-phylum are given the integer values 0-6, 

respectively, allowing an average to be calculated. 

 

Supplementary Figure 2. Classification performance of CAT, Diamond best-hit, and Diamond best-hit 

with different taxonomic rank cut-offs. (a) Classification of known sequences, (b-d) classification of 

simulated novel taxa for different levels of divergence from reference databases. Black bars indicate 

maximum and minimum values out of ten benchmarking datasets, bars cross at the average. Colour 

coding indicates average taxonomic rank of classification across the then benchmarking dataset 

(minimum and maximum values not shown). 

 

Supplementary Figure 3. Predicted ORFs on 913 MAGs. (a) Average percentage of identical matches 

with the best Diamond hit in the NR database for all predicted ORFs in a MAG. The wide distribution 

shows that the MAGs represent a wide range of novelty, i.e. most MAGs are organisms that are not 

present in the NR database yet. (b) Swarmplot showing the number of predicted ORFs per MAG. 

MAGs are coloured as in Figure 6 (r = 5, f = 0.3). 

 

Supplementary Table 1. Ten benchmarking contig sets were generated from genomes deposited in 

bacterial RefSeq. Lengths were based on the length distribution of eight assembled real 

metagenomes deposited in SRA (libraries SRR2922420, ERR1198954, ERR315808, ERR315819, 
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SRR3666246, ERR594326, ERR599045, SRR3732372). Reads were quality filtered with BBDuk 

(BBTools v36.64), and assembled with metaSPAdes v3.10.1. Contigs had a minimum length of 300 

nucleotides. RefSeq id, length, start and stop coordinate in the genome, and taxonomic classifications 

of contigs are shown. Datasets are available from the authors upon request. 
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Figure 2

superkingdom
phylum
class
order
family
genus
species

Average level of classification:

r = 35 302520
15

10

5

f =
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

parameter settings

Pr
ec

is
io

n

0.5

0.5

0.75

0.75

0.25

0.25
0

0

1.0

1.0

Fraction of classified sequences

Se
ns

iti
vi

ty

0.5

0.75

0.25

0

1.0
known strain

novel species
novel genus

novel family

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/530188doi: bioRxiv preprint 

https://doi.org/10.1101/530188
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3
Pr

ec
is

io
n

0.5

0.75

0.25

0

1.0

0.5 0.75 1.0 0.5 0.75 1.0 0.5 0.75 1.0 0.5 0.75 1.0

Fraction of classified sequences

a, known strain b, novel species c, novel genus d, novel family

Se
ns

iti
vi

ty

0.5

0.75

0.25

0

1.0

superkingdom
phylum
class
order
family
genus
species

Average level of classification:

CAT
MEGAN-LR
Kaiju MEM
Kaiju Greedy
best Diamond hit

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/530188doi: bioRxiv preprint 

https://doi.org/10.1101/530188
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4
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Figure 5
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Figure 6
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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