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Abstract

Background: Relationships between an organism and its environment can be fundamental in
the understanding how populations change over time and species arise. Local ecological
conditions can shape variation at multiple levels, among these are the evolutionary history and
trajectories of coding genes. This study examines the rate of molecular evolution at protein-
coding genes throughout the genome in response to host adaptation in the cactophilic
Drosophila mojavensis. These insects are intimately associated with cactus necroses,
developing as larvae and feeding as adults in these necrotic tissues. Drosophila mojavensis is
composed of four isolated populations across the deserts of western North America and each
population has adapted to utilize different cacti that are chemically, nutritionally, and structurally

distinct.

Results: High coverage lllumina sequencing was performed on three previously unsequenced
populations of D. mojavensis. Genomes were assembled using the previously sequenced
genome of D. mojavensis from Santa Catalina Island (USA) as a template. Protein coding
genes were aligned across all four populations and rates of protein evolution were determined

for all loci using a several approaches.

Conclusions: Loci that exhibited elevated rates of molecular evolution tended to be shorter,
have fewer exons, low expression, be transcriptionally responsive to cactus host use and have
fixed expression differences across the four cactus host populations. Fast evolving genes were
involved with metabolism, detoxification, chemosensory reception, reproduction and behavior.
Results of this study gives insight into the process and the genomic consequences of local

ecological adaptation.
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Background

Increasing availability of whole-genome sequencing data provides new insights into the
complex relationship between an organism and its environment. By examining changes in the
genetic code both at the level of individual genes and at the whole-genome level it is possible to
gain a better understanding of how local ecological conditions can shape the pattern of variation
within and between ecologically distinct populations [1, 2]. A comprehensive integrative
approach combining genomic, phenotypic and fitness data has been identified as the gold
standard in understanding the adaptation process [3, 4]. Yet, an examination of the genomic
divergence of ecologically distinct populations can yield valuable insight into the adaptation
process especially when the genomic data is placed in an ecological context [5]. This later
approach can identify genomic regions and loci that exhibit a pattern of variation and evolution
suggesting their role in local ecological adaptation. Furthermore, a consequence of the fixation
of ecologically-relevant variants has been implicated in the evolution of barriers to gene flow and

potentially the origins of reproductively isolated populations, i.e. species [6, 7].

While it has long been accepted that natural selection is a primary driver of change
within species as a response to environmental pressures, understanding the mechanism of how
this selection leads to speciation is unclear [8, 9]. More recently the idea of ecological
speciation, where various mechanisms work to prevent gene flow between populations causing
reproductive isolation and eventually speciation, has more directly shown how selection to local
ecological conditions may affect the process of speciation [6, 7]. Reproductive isolation
interrupts gene flow between populations and may potentially lead to the formation of new
species [10]. When different populations of a species inhabits and/or utilizes distinct resources
this opens many possibilities for local differentiation that can lead to obstacles of gene flow as
these populations are likely to have differing environmental pressures [6, 7]. For example, in

the leaf beetle Neochlamisus bebbianae, different populations have distinct host preferences
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and larvae perform significantly worse when growing on alternative host species [8]. Host
preferences and performance in this system facilitates the genetic and genomic isolation
observed between the host populations, as each prefers a different microenvironment and likely

does not interact and hybridize with members of the other population [11, 12].

Comparative genomic studies in mammals have shown clear evidence of positive
selection both between humans, mice, and chimpanzees as well as between human
populations [13-16]. Genes involved in the immune system, gamete development, sensory
perception, metabolism, cell motility, and genes involved with cancer were those found to have
signatures of positive selection. While in Drosophila, a genome level analysis of 12 species
provided insight into the evolution of an ecological, morphological, physiological and
behaviorally diverse genus [17]. Findings were relatively consistent with previously studies in
other taxa with genes involving defense, chemosensory perception, and metabolism shown to
be under positive selection [6, 13, 16, 18]. Since the Drosophila 12 genome project [17],
several population genomics studies in D. melanogaster have examined variation within a single
population, between clinal populations and between ancestral (African) and cosmopolitan
populations to assess the consequence of population subdivision, evolution of quantitative trait
variation and the adaptation to local ecological conditions [19-24]. These genome level analysis
have been extended to other D. melanogaster species group flies with distinct life history and
ecological strategies such as the Morinda citrifolia specialist D. sechellia [25] and the invasive

agricultural pest D. suzukii [26].

Studying the sequence level constraints as well as functional categories and networks
associated with genes under positive selection is paramount to understanding the process of
evolutionary change. However, it is crucial to place patterns of variation and divergence in an
ecological context to have a more complete view how selection shapes variation within and

between populations. In this study we explore the link between ecology and patterns of
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95 genome-wide sequence variation in D. mojavensis, a fly endemic to the southwestern United
96 States and northwestern Mexico that has become a model for the understanding of the genetics
97 of adaptation [27]. This species of Drosophila is a cactophile in that both larval and adult stages
98 reside and feed in necrotic cactus tissues [28]. Drosophila mojavensis has four distinct host
99 populations that are geographically separated (Fig. 1). In addition to geographic separation
100 each population lives on a distinct cactus host species. The four populations are: Santa
101  Catalina Island living on prickly pear cactus (Opuntia littoralis), Mojave Desert living on barrel
102  cactus (Ferocactus cylindraceus), Baja California living on agria cactus (Stenocereus
103  gummosus), and Sonoran Desert living on organpipe cactus (S. thurberi). Drosophila
104  mojavensis diverged from its sister species D. arizonae, a cactus generalist, approximately half
105 a million years ago [29-32] with the divergence between D. mojavensis populations being more
106  recent (230,000 to 270,000 years ago) [33]. Differing host species provide different local
107  environments for each D. mojavensis populations. The necrotic cactus environment in which
108 these flies reside is composed not only of plant tissues, but a number of bacteria and yeast
109  species [34-37]. In addition to nutritional differences between the necrotic cactus host, several
110  of the compounds found therein have toxic properties [38-40]. This selective pressure has
111  resulted in the fixation of variants that facilitate the survival of D. mojavensis and other

112  cactophilic Drosophila species to their local necrotic cactus environment [28, 41].

113 Population genetics on individual candidate host adaptation genes in D. mojavensis has
114  shown evidence for positive selection in loci involved with xenobiotic metabolism [31]. In

115  addition, transcriptome-wide differences have been observed in D. mojavensis in response to
116  host shifts [42, 43] as well as indicating fixed expression differences between the host

117  populations [44]. Among the loci that are differentially expressed or constitutively fixed between
118 populations many are involved in detoxification, metabolism, chemosensory perception and

119  behavior, supporting the role of the local necrotic cactus conditions in shaping transcriptional
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120 variation [42-44]. Taking into consideration the breadth of ecological information of D.

121  mojavensis this study highlights how selection pressures caused by local ecological

122 environments differentially shape patterns of genomic variation across the host populations and
123 provides further insight into how selection acts on organisms and its genome level

124  consequences.
125
126 Results

127 Number of cleaned reads and the number assembled to the Catalina Island reference
128 genome are shown in Table 1. All three populations had approximately 88 percent of paired-
129  end reads successfully assembled. Mate pair reads had lower rates of mapping ranging from
130 27 percent to 63 percent. Of the 14,680 loci annotated in the reference genome the vast

131  maijority were also present in our template-based assemblies of the other three populations. Of
132  these annotations, a common set of 12,695 were initially processed that did not lack any

133 premature stop codons. From this common set of loci we filtered out those that among the four
134  populations exhibited either less than five total, zero nonsynonymous, or zero synonymous

135  substitutions. This yielded a working set of 9,087 loci for which all subsequent analyzes were
136  performed. The list of all loci examined, summary data, test statistics, and D. melanogaster

137  ortholog information can be found in Additional file 1: Table S1.
138
139  Characteristics and patterns of divergence of D. mojavensis loci

140 Estimates of w (Ka/Ks) were calculated using both KaKs Calculator [45] and codeml in
141  PAML [46]. Given that the w values were highly correlated (r* = 0.88, P < 0.001; see Additional

142  file 2: Figure S1) all subsequent analyses were performed using the values obtained from
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143 codeml. The distribution of log, transformed w are shown in Figure S2. Overall a total of 190
144  loci exhibited w values greater than one. When examined per chromosome (Muller Element),
145  we observed that the dot chromosome (Muller F) had the greatest mean w, followed by the
146  chromosomes for which segregate chromosomal inversions (Muller B and E) and than those

147  chromosomes that lack inversions (Muller A, C and D) (Fig. 2, Additional File 2: Table S2).

148 To describe the characteristics of loci whose evolutionary trajectory could have been
149  shaped by the adaptation of D. mojavensis populations to their respective ecological conditions
150 we examined loci with w values in the top 10% of the distribution, hereafter referred to as

151  TOP10 loci. Furthermore, using codeml| we performed a series of gene-wide tests of positive
152  selection for each individual locus. Via a maximum likelihood rate test (model 7 vs. model 8) we
153 identified 912 loci that exhibited a pattern of adaptive protein evolution. We used a smaller set
154  of 244 loci, following an FDR correction, for all subsequent analyses, hereafter referred to as
155  PAML-FDR loci. The set of TOP10, PAML significant loci and those with an FDR correction
156  (PAML-FDR) can be found in Additional file 1: Table S1. The distribution of both the PAML-
157  FDR and TOP10 loci was uniform across the D. mojavensis chromosomes (Additional file 2:
158  Figure S3 and S4), with the exception that significantly fewer PAML-FDR genes were present in

159  Muller E (Fisher’s Exact test, P = 0.02).

160 Significant differences in w values were observed across loci of differing protein coding

161  lengths (Fig. 3). Loci smaller than 1 Kb exhibit significantly higher rate of molecular evolution,

162  followed by those 1-2 Kb and then by gene categories of longer lengths (Additional file 2: Table
163  S3). A similar pattern of w values was observed for the TOP10 loci, where a significant excess
164  of the smaller gene group (< 1 Kb) was composed of TOP10 loci, and a significantly fewer were
165 observed in the greater than 4 Kb bin (Additional file 2: Figure S5). Although the overall w was
166  greater in shorter loci, the proportion of these loci who exhibited a significant pattern of positive

167  selection was significantly less (Additional file 2: Figure S6). Similarly to what was observed for
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168  gene length, genome-wide, loci with fewer exons tended to have greater levels of w, with the
169  highest observed from loci having two exons, then those with either only one or three exons,
170  followed by those having four to six exons and lastly those with seven or more (Additional file 2:
171  Figure S7, Table S4). TOP10 loci were overrepresented in the one and two exon categories
172 and underrepresented in the more than seven exon category, whereas the PAML-FDR loci

173 where uniformly distributed across all exon number categories (Additional file 2: Figures S8 and

174  S9).

175

176  Relationship between expression and rate of molecular evolution

177 To assess the relationship between expression level and rate of molecular evolution we
178 integrated our results with previous collected RNAseq data from D. mojavensis [47]. When

179  examined genome-wide, genes with male-biased expression had significantly greater w values
180 than female-biased (Tukey HSD, P < 0.001) and unbiased (Tukey HSD, P < 0.001) expressed
181 genes, and female-biased genes had the lowest rate (Tukey HSD, P < 0.001) of molecular

182  evolution of all three expression categories (Additional file 2: Figure S10, Table S5). Among the
183  TOP10 loci, there was a significant representation of them in the male-biased group of genes
184  and a significant underrepresentation in the female-biased genes (Fig. 4). No significant over-
185  or underrepresentation was observed among the PAML-FDR genes with respect to the sex

186  biased expression categories (Additional file 2: Figure S11). Expression data was also used to
187  assess the relationship between overall expression level and rate of molecular evolution. After
188  removing both the female- and male-biased genes, we observed that of the 5,101 remaining loci
189  those in the lowest expression category showed the greatest w values (Additional file 2: Figure

190 S12, Table S6). Similarly, the TOP10 loci were overrepresented among the low expression
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191  category of loci and no differences were observed among the expression categories of the

192  PAML-FDR loci (Additional file 2: Figures S13 and S14).

193 We also integrated our genomic data with two prior ecological transcriptional studies. We
194  compare rates of molecular evolution of loci that are differentially expressed in response to

195 cactus host utilization [43] as well as those loci who exhibit fixed significant expression

196 differences between the four host populations in the absence of cactus compounds (i.e.

197  constitutive differences) [44]. To remove the potential confounding effect of those loci that show
198  a pattern of positive selection, we removed those loci from the subsequent expression analysis.
199  For both datasets, loci that are either differentially expressed in response to necrotic cactus (P <
200 0.001 post FDR correction) or those that show constitutive differences between the populations
201 (P <0.001 post FDR correction) have a significantly greater value of w (ANOVA, P < 0.001, for

202  both comparisons) (Additional file 2: Figures S15, Table S7).

203

204  Functional gene groups analysis

205 Of our 9,087 genes in our filtered dataset, approximately 14% (1,238) genes did not

206  have orthologous calls back to loci in the D. melanogaster reference genome (Additional file 2:
207  Figure S16). Of the remaining set of genes with D. melanogaster orthologs, less than half of the
208 genes (3,649) had at least one gene ontology (GO) term. The percentage of loci without D.

209  melanogaster orthologous in the TOP10 and PAML-FDR genes was greater (40% and 23%,
210  respectively). Overall only 336 and 144 loci had at least one GO term for the TOP10 and

211  PAML-FDR datasets, respectively. Clustering of biological process and molecular function GO
212 terms within the TOP10 and PAML-FDR dataset illustrated some distinct functional groups. Fig.
213 5illustrates the biological process functional clusters for TOP10 genes, in which clusters

214  associated with reproduction/development, detoxification and response to stimuli, and behavior
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215  are present. A network analysis of the same set of loci indicates similar functional networks as
216  well as those associated with defense and chromatin regulation and remodeling (Fig. 6).
217  Functional and network clustering for molecular function GO terms, KEGG and the PAML-FDR
218  dataset can be found in Additional file 2: Figures S17-S20, Additional file 3: Table S11. Among
219  molecular functions, in the TOP10 dataset, serine endopeptidase activity appeared to be

220 overrepresented (Additional file 2: Table S8).

221

222 Discussion

223 In this study we sequenced, assembled and analyzed the genomes of each of the four
224  cactus host populations of D. mojavensis for the purpose of assessing the genomic

225  consequences of the adaptation to local ecological conditions. Overall, we were able to analyze
226  the sequence, pattern of divergence and structure of 9,087 genes. And although the four

227  genomes examined diverged relatively recently [29-33], for several loci, sufficient number of

228  substitutions occurred for us to begin to assess the changes associated with cactus host

229  adaptation.

230 Unlike what is present in D. melanogaster, D. mojavensis chromosomes are all

231  acrocentric and its karyotype is composed of six Muller elements [48]. In D. melanogaster

232 element A is the X chromosome and elements B/C and D/E form large metacentric

233 chromosomes (2L/2R and 3L/3R, respectively), while the F element or dot chromosome is

234 reduced in sized and highly heterochromatic [49, 50]. In D. mojavensis we observed the highest
235 rate of molecular evolution in the small F element, followed by elements B and E, and then the

236  remaining autosomal elements and the X chromosome (Fig. 2).

237 Selection on the X chromosome has been examined in a number of studies with

238  somewhat variable results [51]. Analysis of several melanogaster group species has shown
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239  significant elevated w values for genes on the X chromosome [17]. From population genetics
240  theory it is generally predicted that the X chromosome would show elevated rates of evolution
241  due to its reduced population size and level of recombination [51]. A subsequent genomic
242 analysis of the X chromosome across more distant Drosophila species (D. melanogaster, D.
243  pseudoobscura, D. miranda and D. yakuba) failed to find evidence of increased protein

244  evolution on the X chromosome [52]. It is difficult to make any conclusions about the lack of a
245  pattern of accelerated X chromosome evolution found here, it may be possible that there has
246 not been enough divergence time between these populations for factors such as effective

247  population size to have a measurable effect. The greatest w values were present in the dot
248  chromosome which in D. mojavensis is heterochromatic and has a highly reduced level of

249  recombination [53], which would make it highly susceptible to sweeps and hence higher rates of

250 molecular evolution.

251 Within D. mojavensis there are polymorphic inversions in Muller elements B and E [54],
252  both exhibited overall higher chromosomal-wide levels of w (Fig. 3). Lower levels of

253  recombination and higher divergence rates have been known to occur around the inversion

254  breakpoint regions in Drosophila [55]. One possible explanation for the elevated rates of

255  molecular evolution in these chromosomes is the distinct karyotypes of the sequenced lines
256  (Additional file 2: Table S9). One consequence of a template-based assembly as performed in
257  this study, is that chromosomal structural differences can be largely wiped away. A more

258  detailed analysis of the consequence of chromosomal inversion on the evolutionary trajectories
259  of associated loci will be performed in future analyses of de novo assemblies of D. mojavensis
260 genomes from all host populations as well as from sibling species (D. arizonae and D. navojoa)

261  (unpublished data, Matzkin).

262 Genes across the genome as well as those with evidence of positive selection or in the

263  top 10 percent of w values were assessed for a number of characteristics. Genome-wide loci
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264  exhibiting greater w values tended to be shorter, have fewer exons (3 or less), have low

265  expression, be differentially expressed in response to cactus host use and have fixed

266  expression differences across the four cactus host populations of D. mojavensis (Fig. 3;

267  Additional file 2: Figures S7, S12, S15). Overall this pattern of divergence was similar when
268  examining the TOP10 or PAML-FDR loci. Previous genomic analyses in D. melanogaster and
269 related species have observed similar characteristics of loci with elevated w values. This

270 indicates that although the phylogenetic scale of the present study is limited (within D.

271  mojavensis) the forces shaping genome evolution between diverged species can also be

272 observed between recently isolated populations within species.

273 The first comparative genomic study within the D. melanogaster group species [56]

274  observed an association between coding length and w, which they partially attributed to a

275  positive correlation between Ks and protein length. Longer genes have more of these mutations
276  and this may explain in part why genes with high w values are likely to be shorter. In this study
277  we did not observe such correlation, in fact the relationship is negative (P < 0.001), but explains
278  very little of the variation in Ks (r* = 0.004) (Additional file 2: Figure S21). Therefore, it is difficult
279  to infer the effect of the association between Ks and protein length, and the lack of positive

280  correlation might be a function of the close relationship between the genomes studied here.

281  The negative association between intron number and rate of molecular evolution has been

282  previously suggested to be due to the presence of exonic splice site enhancers which help in
283  the correct removal of introns from the transcription sequence. As mutations in these regions
284  are more likely to be conserved changes here could cause an intron to not be removed or part
285  of an exon to be removed instead [57]. The link between intron presence and w values may
286  also help explain why TOP10 genes tend to be shorter as long genes are more likely to have
287 introns [58]. The correlation between gene length and rate of molecular evolution could also be

288  explained as a result of the increased level of interactions between sites of larger exons [59]. In
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289 this study a negative correlation between w and exon length (r> = 0.08, P < 0.001) was

290 observed (Additional file 2: Figure S22). These interactions between residues of a protein,
291  commonly refer to as Hill-Robertson interference [60], have a tendency to buffer against the
292  accumulation of amino acid substitutions and can explain a significant portion of the pattern of

293  molecular evolution in genomes [61]

294 Highly expressed genes tend to have a higher level of constraint as indicated by the

295  tendency of having lower rates of molecular evolution. This has been previously explained as
296  being a result of selection against mutations that alter transcriptional and translational efficiency
297  as well as selection for the maintenance of correct folding (translational robustness) [56, 62-66].
298  Given our coarse transcription data we were not able to tease apart which of the above-

299  mentioned forces might more strongly shape the rate of molecular evolution in these genomes.
300 Nonetheless we observed a clear negative relationship across the four D. mojavensis genomes
301 between transcriptional level and w. In addition to overall expression, both tissue and sex-bias
302 expression have been known shape the evolutionary trajectories of genes [61, 67-69]. Male, or
303 more specifically testes expressed genes have been associated with elevated rates of

304 molecular evolution in Drosophila and across many taxa [70]. Many of these loci are believed to
305 be under strong sexual selection, which would explain their accelerated rate of molecular

306  evolution. As predicted we observed an overall higher rate of molecular evolution in male-

307 biased genes. Even female-biased loci exhibited a significant greater w than unbiased genes.
308 Previous behavioral and molecular studies in D. mojavensis have shown that this species

309 experiences strong and recurrent bouts of sexual selection [71-78].

310 Loci indicating a pattern of positive selection and those with elevated w appear to be
311  associated with a wide range of metabolic processes. These changes are likely a result of the
312  distinct nutritional and xenobiotic environment the different D. mojavensis populations

313  experience. The chemical composition of the cacti and the species of yeast found in each rot
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314  varies [34-41] and thus the populations have likely needed to optimize the recognition,
315 avoidance and processing of these necrosis-specific compounds through changes in

316  metabolism, physiology and behavior.

317 One aspect of metabolism that has likely been shaped by cactus host adaptation is the
318  detoxification of cactus compounds, as the distinct cactus hosts have different chemical

319 compositions. Expression studies have shown that genes involved in detoxification are

320 enriched when flies develop in an alternative necrotic cactus species. Fitness costs of living on
321  the alternative cactus have also been shown to be quite high with those flies having low viability
322 (<40%)[43, 79, 80]. Out of all GO terms examined in this study, the only ones that were

323  consistently overrepresented were those associated with serine-type endopeptidase activity.
324  These type of proteins perform a number of function within organisms, among them is their

325  targeting of organophosphorus toxins [81]. These compounds are often used in pesticides and
326  are found to inhibit serine hydrolase function in both insects and vertebrates [81]. While the
327  apparent positive selection on these genes could be due to a response to pesticides they might
328  experience in the field, but more likely they may be evolving in response to the effects of the

329  toxic or nutritional compounds found in cactus rots.

330 Cactophilic Drosophila have been shown to deploy a number of enzymatic strategies to
331 ameliorate the deleterious consequences of ingesting cactus necrosis-derived compounds.

332  Many of the previously identified proteins playing a role in detoxification in cactophiles

333  (Glutathione S-transferases, Cytochrome P450s, Esterases and UDP-glycosyltransferase) have
334  been associated with detoxification in a broad number of taxa [82-86]. In fact, in recent

335 comparative genomic analysis of the cactophilic D. buzzatii [87] and D. aldrichi [88], a number
336  of metabolic genes, including those associated with detoxification were shown to be under

337  positive selection. In the present genomic analysis of the D. mojavensis genome we observed

338 that the largest functional cluster (Fig. 5) was composed of several genes belonging to known
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339  detoxification protein families, such as Cytochrome P450 and Glutathione S-transferases (Gst).
340 Furthermore, previous transcriptional studies have indicated that these same categories of

341  detoxification loci are differentially expressed when D. mojavensis are utilizing necrotic cactus
342  tissues [42, 43]. A population genetics analysis of GstD17 has indicated a pattern of adaptive
343  amino acid evolution at this locus in the Sonora and Baja California populations [31]. The

344  location of the fixed residue fixed in the lineages leading to these two populations indicated

345  potential functional consequences and a recent kinetic analysis of these proteins have support

346 this prediction (Matzkin, unpublished data).

347 The diversity of bacterial species found on each necrotic cactus provides, directly or
348 indirectly, nutritional resources for the fly populations, but also are composed of potentially
349  distinct pathogenic organisms [89, 90]. A number of genes with elevated rates of molecular
350 evolution in this study are linked to a range of processes involved with the immune response.
351  As each population is faced with a different composition of threats, the evolutionary arms race
352  between flies and their pathogens creates further divergence between the populations as they
353 face different pathogenic landscapes. Studies in other species, such as D. simulans, have
354  found that genes with immune related functions were found to have higher rates of positive
355 selection than the genome average [91]. Exposure to bacterial pathogens in D. mojavensis
356  could occur while utilizing the necrotic cactus substrate, but as has been previously suggested

357  [92], via sexual transmission.

358 A number of the TOP10 loci in this study perform functions associated with sensory

359  perception and behavior (Fig. 6). Drosophila mojavensis larvae actively seek out patches of
360 preferred yeast species [93] and across the four host populations there are distinct larval

361 foraging strategies [94]. More specifically genes involved in chemosensory behavior were

362 observed to have elevated w values in these genomes. Across Drosophilids, there have been a

363  number of studies indicating the links between the evolution of chemosensory genes and host
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364  specialization [95-97]. In D. sechellia, a specialist species, was found to be losing olfactory

365  receptor genes at a faster rate than its sibling generalist species D. simulans [98]. In D.

366  mojavensis each cactus species rot contains different compounds and thus have distinct set of
367  volatiles emanating from the necroses [39, 40]. These chemical differences have shaped the
368 feeding and oviposition behavior of flies as has been shown by the exposure of adults to cactus
369 volatiles [99-101]. Recent analysis of populations differentiation in odorant and gustatory

370  receptors have shown that unlike what might be initially predicted a number of the changes in
371 these receptors suggests that effects at the level of signal transduction in addition to odorant
372 recognition [102]. Further functional analysis is needed to better understand the evolution and

373  functional changes of chemosensory pathways associated with the adaptation to necrotic cacti.

374 In addition to their role in xenobiotic metabolism, serine proteases have been shown to
375 be involved in the network of proteins associated with reproductive interactions in several taxa.
376  In D. melanogaster accessory gland proteins (ACP), such as sex peptide, are found to perform
377  a wide range of functions ranging from stimulating ovulation and reducing a female’s remating
378 rate to helping to defend against infections [103-105]. Knockouts of serine proteases have been
379  shown to interfere with the behavioral and physiological effects of the male-derived sex peptide
380 [105]. In D. mojavensis and its sister species D. arizonae a large number of proteases are

381 expressed in female reproductive tracts and several have been shown to be under strong

382  positive selection [74, 106-108]. In addition to ACPs being transferred via the ejaculate, gene
383 transcripts have been found to be deposited by males into females during copulation [73].

384  Some of these male-derived transcripts could alter the female’s transcriptional response, while
385  other may potentially be translated within females. Furthermore, the loci of several of these

386  male-transferred transcripts show a pattern of strong and continuous positive selection, likely as
387 the result of persistent sexual selection [72]. While there seems to be no postzygotic effects of

388  sexual isolation within the D. mojavensis populations there is some evidence of prezygotic
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389 isolation, where certain populations prefers to mate with members of its own population [77].
390 The pattern of positive selection and/or elevated rate of molecular evolution for proteases and
391 reproductive loci in the present study may highlight the continuing genomic consequence of

392  sexual selection in this species.

393

394 Conclusions

395 Local ecological adaptation can shape the pattern variation at multiple levels (life history,
396  behavior and physiological), and the imprint of this multifaceted selection can be observed at
397 the genomic level. In this first ever genome-wide analysis of the pattern of molecular evolution
398 across the four ecologically distinct populations of D. mojavensis, we have begun to describe
399  the genomic consequences of the adaptation of these cactophilic Drosophila to their respective
400 environments. Given that across the four populations are known differences in cactus host use,
401  which encompass differences in both toxic and nutritional compounds, but as well as necrotic
402  host density, temperature, exposure to desiccation and likely pathogens and predators, it was
403  expected that a number of functional classes of loci might be under selection. Among genes
404  with elevated rates of change are those involved in detoxification, metabolism, chemosensory
405  perception, immunity, behavior and reproduction. We observed general patterns of variation
406  across the genomes indicating that loci with elevated rates of molecular evolution tended to be
407  shorter, with fewer exons and have low overall expression. Furthermore, fast evolving loci also
408  were more likely to be differentially expressed in response to cactus host use and have fixed
409 inter-population expression differences, indicating that both transcriptional and coding sequence

410 changes have been involved in the local ecological adaptation of D. mojavensis.

411 Methods

412  Drosophila mojavensis lines and sample preparation
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413 Fly lines MJBC 155 collected in La Paz, Baja California in February 2001, MJ 122

414  collected in Guaymas, Sonora in 1998, and MJANZA 402-8 collected in ANZA-Borrego Park,
415  California in April 2002 were used as the source lines for the sequencing of three D. mojavensis
416  populations. These lines were highly inbred to reduce the heterozygosity of their DNA.

417  Summary of the karyotype of each of the lines sequenced as well as the Catalina Island

418  template genome stock (15081-1352.00) can be found in Additional file 2: Table S9. The flies
419  were grown for two generations in banana molasses media [94] supplemented with ampicillin
420 (125 pg/ml) and tetracycline (12.5 pg/ml), to prevent the isolation of bacterial DNA in addition to
421  the flies’. DNA was extracted from homogenized whole male flies using a combination of

422  phenol/chloroform DNA extraction and Qiagen DNeasy spin-columns to achieve the required
423  amount of DNA material. RNase A was used to reduce RNA contamination. Gel electrophoresis
424  was run on each sample to check the quality of the extraction. Any samples with RNA

425  contamination were run through a Qiagen QIAquick PCR Purification Kit spin column to filter
426  contaminates. Extracted DNA was sent to the HudsonAlpha Institute for Biotechnology

427  Genomic Services Lab (Huntsville, Alabama) for sequencing. One hundred base pair paired-

428 end and mate pair sequencing was done on an lllumina HiSeq 2000 with one lane for each.

429 Genome assembly

430 Paired-end and mate pair lllumina reads were filtered and trimmed using step one of the
431 A5 Pipeline [109]. This step uses SGA [110] and TagDust [111] with the quality scores from the
432  lllumina FASTQ files to reduce the number of low quality reads. A5 was run on the Dense

433  Memory Cluster of the Alabama Super Computer Center with four processing cores and 64

434  gigabytes of memory allocated for each run. With the reads cleaned they were assembled to
435  the template genome. The reference genome of the Catalina Island population of D.

436  mojavensis was assembled as part of the Drosophila 12 Genomes Consortium [17]. Version

437  1.04 of the reference genome was retrieved from FlyBase version FB2015_02 [112]. From the
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reference sequence, genome scaffolds [113] containing the protein-coding genes previously
mapped to a chromosome, were extracted for use as a template for the assembly; these
scaffolds are detailed in Additional file 2: Table S10. The reference templates as well as the
lllumina reads were imported into Geneious 8.1. Assembly was done separately for paired-end
and mate pair data. Using Geneious 8.1 and its Map to Reference feature the cleaned reads
were assembled to each of the template scaffolds. BAM files were exported for each paired-
end and mate pair assembly. SAMtools [114] was used to merge BAM files to create an
assembly with both types of reads. This merged BAM file was imported into Geneious 8.1
where consensus sequences were determined for each scaffold using majority calling to limit
the number of ambiguities. GTF files for each scaffold used were retrieved from FlyBase version
FB2015_02 [112]. These annotations were transferred to each of the new genomes by aligning
each assembled genome scaffold to the reference genome scaffold using Mauve Genome
Alignment [115] with default settings except for selecting assume collinear genomes. After
alignment, annotations were transferred from the reference to the new assembly. The resulting
scaffolds were exported in GenBank format. Using the EMBOSS program, extractfeat [116],
CDS sequences were extracted from the assembled scaffolds. Sequence files for each gene
were concatenated and then aligned using the default settings of the aligner Muscle 3.8.31
[117]. Only the longest transcript for each gene was used as some genes have multiple splice

variants.

Molecular evolution analysis

To generate substitution counts for filtering, the software KaKs Calculator 1.2 [45] was
used. Files of aligned genes were converted to AXT format using the Perl script
parseFastalntoAXT.pl including in the package. After conversion each gene was run through
the software using the NG method [118]. The output files for each loci were concatenated and

then imported into JMP 10 for filtering.
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463 Values for w were calculated using codeml part of the PAML 4.9 package [46]. Aligned
464  genes were converted to PHYLIP format using BioPerl [119]. As PAML requires a phylogenetic
465 tree to be provided for its calculations a neighbor joining tree was constructed in MEGA 5 [120].
466  This was done by concatenating all exons from each population and then aligning them using
467  Mauve Genome Alignment [115]. The alignment was converted to MEG format using MEGA
468  and a neighbor joining tree was built using the default settings. The tree was exported in newick
469  format for use by PAML. Genes were removed from analysis if they were not divisible by three,
470  these genes were manually screened and if alignment errors appeared to be the cause, these
471  were manually corrected. Screening was done for stop codons within the sequences by

472  translating the DNA sequence to protein sequence with Transeq, part of the EMBOSS package

473  [116] and any genes with internal stop codons were removed.

474 Using the BioPython PAML module [121], control files were built for each gene

475  alignment with default values taken except codon frequency was set to F3x4. Site-class models
476 0,7, and 8 were used to calculate the w values [122-124]. Model 0 is a single ratio based

477  omega value for the entire gene. Model 7 is a null model with 10 classes, which does not allow
478  for positive selection while model 8 adds an additional class that allows for positive selection.
479  Both the w values and log likelihood values were extracted from each output file and the data
480  was organized in Microsoft Excel. If model 8 significantly better fits the data this is evidence of
481  positive selection [46]. Significance values were found by taking the difference between the log
482 likelihood values of the two outputs and multiplying them by two. This value was then compared
483  a chi-square distribution to find P values for each gene. Genes with less than five total

484  substitutions as determined by KaKs Calculator [45] were filtered out and not considered. This
485  was done to help deal with the low power of these methods when there are very few changes
486  between the populations. Genes with few changes are more likely to cause the software to

487 either return an undefined result or to reach the maximum w the software allows. In addition,
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488  genes with either no nonsynonymous or no synonymous changes were also removed. This
489  vyielded a total of 9,087 genes that were used in the analysis. Histograms of a log»

490 transformation of the w values were produced using JMP 10. A comparison between the log:
491 transformations of the NG Ka/Ks and the omega value from model 0 of codeml was generated

492  with JMP 10.

493 The length of each gene’s coding sequence was extracted from the PHYLIP sequence
494  headers. This was to determine if genes with longer length have significantly different omega
495 values. Genes were binned based on length and an ANOVA with post-hoc Tukey test using
496  JMP 10 was used to compare length bins for significance. Intron data was extracted from the
497  reference genome annotation using Geneious 8.1. Based on this, genes were binned based on
498  the number of exons. ANOVA with post-hoc Tukey test in JMP 10 compared the bin sets for
499  significant difference in omega. To determine if there was a significant difference in omega

500 between genes present on each Muller element ANOVA with post-hoc Tukey test was used in

501 JMP 10 to compare omega value distribution on each element.

502 Expression analysis

503 Previous transcriptional studies provided differential expression data for cactus host
504  shifts [43] and between populations [44]. Loci that were found to be significant with codeml
505 model 7 and 8 were removed from this analysis. The model 0 omega for loci with a FDR

506  significance greater than 0.001 for third-instar larva from the D. mojavensis Sonora population
507 that were raised on agria cactus rot was compared to non-significant loci using ANOVA in JMP
508 10. Comparison of model 0 omega between FDR significant loci and non-significant loci was
509 also done for differential expression between third-instar larva of the four host populations with

510 ANOVAin JMP 10.
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511 To explore the relationship between omega and gene expression level RNAseq data
512  from [47] was retrieved for whole male and female D. mojavensis flies as aligned BAM files.
513  Differential expression was calculated by using edgeR [125] to look for genes with significantly
514  higher male or female expression. Box plots of omega model 0 for genes with significant male
515 or female expressed genes as well as genes without sex based expression were compared
516  using ANOVA with post-hoc Tukey testin JMP 10. Average adjusted (+0.25) log. RPKM of
517 non-sex biased genes was plotted against log. omega model 0 and linear regression was

518 performed on the data with JMP 10.

519 Gene ontology terms analysis

520 Network graphs were generated using Cytoscape 3.2.1 [126] with the add-on app

521  ClueGO 2.2.5[127]. GO term and KEGG pathway data used was from the June 2016 release.
522  The custom D. melanogaster reference set was used for analysis. Both the TOP10 and PAML-
523  FDR genes were run on, biological processes, molecular function and KEGG terms. Data for
524 GO term summary tables was retrieved from FlyBase version FB2017_06 D. melanogaster
525 release 6.19 [112]. For each D. mojavensis gene with a D. melanogaster ortholog, GO term
526  summaries were phrased from the FlyBase GO Summary Ribbons for molecular function and
527  biological process. Clustering done with JMP 10 using the Ward method and 15 groups

528 allowed.

529

530 Abbreviations

531  2L: Left arm of 2nd chromosome in D. melanogaster; 2R: Right arm of 2nd chromosome in D.
532  melanogaster; 3L: Left arm of 3rd chromosome in D. melanogaster; 3R: Right arm of 3rd
533  chromosome in D. melanogaster; ACP: Accessory gland protein; ANOVA: Analysis of Variance;

534  BAM: Binary Alignment Map; CDS: Coding sequence; EMBOSS: European Molecular Biology
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535  Open Software Suite; FDR: False Discovery Rate; GO: Gene Ontology; Gst: Glutathione S-

536 transferase; Ka: number of nonsynonymous substitution per nonsynonymous site; kb: Kilobase;
537 KEGG: Kyoto Encyclopedia of Genes and Genomes; Ks: number of synonymous substitution
538  per synonymous site; MEGA: Molecular Evolutionary Genetics Analysis software; PAML:

539  Phylogenetic Analysis of Maximum Likelihood program; PAML-FDR: PAML significant loci post-
540 FDR correction; PHYLIP: Phylogeny Inference Package; RPKM: Reads Per Kilobase per Million
541  mapped reads; TOP10: Loci with w values in the top 10% of the distribution;

542
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900 Table 1 Number of cleaned reads and assembled reads for each population.

Population Reads Mapped Total Reads Proportion Mapped

Baja California

ME 12,052,662 44,912,130 0.27

PE 88,976,029 100,263,663 0.89

Total 101,028,691 145,175,793 0.70
Mojave

ME 26,638,794 52,910,406 0.50

PE 73,196,313 83,000,942 0.88

Total 99,835,107 135,911,348 0.73
Sonora

ME 39,962,094 63,240,890 0.63

PE 93,857,309 105,723,406 0.89

Total 133,819,403 168,964,296 0.79

901 ME mate pair end reads; PE paired end reads

902
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Figure legends

Fig. 1 Distribution of the four cactus host populations of D. mojavensis.

Fig. 2 Boxplot of log> w values for loci located in each of the D. mojavensis Muller elements.

Elements with different letters are significantly different using a Tukey HSD test (see Table S2).

Fig. 3 Boxplot of log> w values for loci in five different coding length bins. Bins with different

letters are significantly different using a Tukey HSD test (see Table S3).

Fig. 4 Proportion of TOP10 loci that show female-bias, male-bias or unbiased gene expression.
Dashed line indicates the genome wide proportion of TOP10 loci (0.10). Gene expression data
is from [47]. Asterisk indicate significance via Fisher's Exact test (* P < 0.05, ** P <0.01, *** P <

0.001).

Fig. 5 Functional clustering of Biological Process GO terms of the TOP10 loci. Details of gene

composition of each cluster is in Additional file 3: Table S11.

Fig. 6 Network clustering of Biological Process GO terms of the TOP10 loci. Network clustering
was performed using ClueGo using the following parameters: Min GO Level = 3, Max GO Level
= 8, All GO Levels = false, Number of Genes = 3, Get All Genes = false, Min Percentage = 5.0,
Get All Percentage = false, GO Fusion = true, GO Group = true, Kappa Score Threshold = 0.3,
Over View Term = Smallest PValue, Group By Kappa Statistics = true, Initial Group Size =1,

Sharing Group Percentage = 50.0.
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