

1

2 **PSMC3 is required for spermatogonia niche establishment in mouse** 3 **spermatogenesis**

4

5 Maria Cristina S. Pranchevicius^{1#}, Luciana Previato^{2#}, Rodrigo O. de Castro², and Roberto J.
6 Pezza^{2, 3, *}.

7 ¹ Department of Genetics and Evolution, Universidade Federal de Sao Carlos, Sao Carlos,
8 Brazil.

9 ²Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation,
10 Oklahoma City, Oklahoma, United States of America.

11 ³Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City,
12 Oklahoma, United States of America.

13 [#] First authors.

14 * To whom correspondence should be submitted.

15 Running title: *Psmc3* function in mouse gametogenesis

16
17 Key words: gametogenesis, spermatogonia, spermatogenesis, and testis development.

18 19 **Abstract**

20 Males produce millions of spermatozoa each day, which are originated from spermatogonia.
21 Spermatogonia niche establishment and maintenance and the subsequent haploidization of
22 spermatocytes in meiosis are hallmarks of this process. The function of the individual players
23 and coordinated mechanisms regulating different stages of gametogenesis in mammals are not
24 well understood. In this work we focused on the role of PSMC3 in mouse gametogenesis. We
25 observed that *Psmc3* is highly expressed in mouse testis, and it is widely expressed in different

26 stages of gamete formation. Conditional deletion of *Psmc3* results in both male and female
27 impairment of gonad development at early pre-meiotic stages, but has no apparent effect on
28 meiosis progression. This is likely a consequence of abnormal spermatogonia niche
29 establishment and/or maintenance, revealed by a massive loss of undifferentiated
30 spermatogonia. Our work defines a fundamental role of PSMC3 functions in spermatogenesis
31 during spermatogonia development with direct implications in fertility.

32

33

34 **Introduction**

35 Spermatogenesis is the process by which diploid spermatogonia cells produce haploid mature
36 gametes called spermatozoa. During this process, spermatogonia niche establishment and
37 maintenance are essential to ensure that the genetic information is passed to the next
38 generation. Indeed, errors in producing or differentiating spermatogonia can result in male
39 infertility. Spermatogenesis begins with primordial germ cells migration to the developing male
40 gonad and division to produce an undifferentiated stem cell type of spermatogonia (type A).
41 The latter cells divide and some of them generate differentiated type B spermatogonia, the last
42 to undergo mitotic division and the precursor of primary spermatocytes. Primary spermatocytes
43 undergo meiosis to half their chromosome complement and yield a pair of secondary
44 spermatocytes, which differentiate to produce haploid gametes [1].

45

46 In order to explain possible causes of infertility, we need to identify and understand the
47 function of the individual players and coordinated mechanisms regulating mammalian
48 spermatogenesis. Here, we focus on understanding the role of PSMC3 in mouse germ cell
49 development. Analysis of mouse PSMC3 (a.k.a. TBP1/Tat-binding protein 1, RPT-5 or S6A)
50 protein sequence indicates that PSMC3 belongs to the AAA ATPase family of proteins. Starting
51 from the amino-terminus, this protein features a putative leucine zipper motif with possible DNA

52 binding activity; an ATPase Walker A motif, an ATPase Walker B motif; and a putative helicase
53 domain with a DEXD motif, that relates PSMC3 to the superfamily 2 DEAH helicases.

54

55 PSMC3 has been associated with a number of different cell functions. This includes
56 participating in the 19S regulatory subunit of the proteasome [2], whose main function is
57 degradation of excess, no longer needed, and defective proteins. In most organisms
58 proteasome activity acts via the ubiquitin/26S proteasome system [3, 4]. This system involves
59 the specific attachment of a chain of ubiquitin to the protein target by the E1-E3 enzymes [3].
60 The 26S proteasome complex recognizes labeled target proteins. This complex can be
61 subdivided into a 20S core protease and a 19S regulatory part [5]. The 19S subunit works by
62 recognizing the target proteins and delivering them to the 20S subunit for degradation. Among
63 other proteins the 19S subunit is composed by the AAA-ATPases Psmc 1-5 (Rpt1-Rpt6)
64 (regulatory particle triple A ATPase) [6]. All Psmc/Rpt proteins are essential in yeast [7] and
65 they form an hexameric ATPase complex [8, 9]. In *Arabidopsis*, mutants affecting 19S RP
66 ATPase subunits show severe defects in maintaining the pool of stem cells in the root.
67 Importantly, gametophyte development requires proteasome function, which is evident by
68 chemical inhibition of the proteasome resulting in pollen developmental defects [10-12]. Recent
69 studies using insertion mutants affecting proteasome components observed that alleles
70 affecting *Rpt5a* (an *Arabidopsis* ortholog of *Psmc3*) displayed severe male gametophyte
71 development defects, with pollen development arrested before cells enter meiosis at the
72 second pollen mitosis stage [13].

73

74 PSMC3 has also being implicated in different cellular events that do not require
75 proteolysis such as transcriptional initiation and elongation [14-16], DNA repair [17], and as a
76 negative regulator of cell proliferation [18, 19]. By comparing gene expression profiles from
77 normal and abnormal human testes with those from comparable infertile mouse models, a

78 number of genes critical for male fertility have been identified [20]. Among the expression of 19
79 human genes that were different between normal and abnormal samples, *Psmc3* appears as a
80 top candidate [20]. Another lead to the function of PSMC3 independent of the proteasome is
81 that the HOP2/TBPIP protein, a strong interaction partner of PSMC3, has an extensively
82 documented role in proper meiotic chromosome segregation and fertility through its interaction
83 with DMC1 and RAD51, both central components of the recombination pathway [21-24].
84

85 The role of PSMC3 in mammalian spermatogenesis has not been explored. Herein, we
86 present the phenotype associated to the conditional deletion of *Psmc3* in mouse gonads.
87 Males are infertile likely a result of absence of any gametocyte type in the gonad. Meiosis is
88 apparently not affected in *Psmc3*^{-/-} mice when ablation of PSMC3 occurs at meiotic stages.
89 However, testis development is impaired at early stages during spermatogonia niche
90 establishment, with massive loss of undifferentiated spermatogonia. Our work in understanding
91 the functions of PSMC3 in germ cell development has broader implications in defining
92 mechanisms responsible for infertility.
93

94 95 **Materials and Methods**

96 **Mice and Genotyping**

97 Experiments involving mice conformed to relevant regulatory standards and were approved by
98 the IACUC (Institutional Animal Care and Use Committee).

99 Mice: The *Psmc3* stem cells carrying a floxed allele mice was obtained from International
100 Knockout Mouse Consortium. Transgenic Cre recombinase mice *Ddx4-Cre*^{FVB-Tg(Ddx4-cre)1Dcas/J} or
101 *Stra8-iCre*^{B6.FVB-Tg(Stra8-cre)1Reb/LguJ} were purchased from The Jackson Laboratory (Bar Harbor,
102 ME). *Spo11-Cre* mice were provided by Dr. P. Jordan (Johns Hopkins University Bloomberg
103 School of Public Health, Baltimore, MD). All mice were maintained on a mixed genetic

104 background at the Laboratory Animal Resource Center of Oklahoma Medical Research
105 Foundation. All animal work was carried out in accordance with IACUC protocols.

106 Genotyping: characterization of wild type and floxed alleles was carried out by PCR using the
107 following oligonucleotides (see Fig. 2A): 1F 5'- CAAGCAGATCCAGGAGGTAAG, 1R 5'-
108 CATGGCTCAGAGAGTAAGAGTG, 2F 5'- CATGTCTGGATCCGGGGTA, 2R 5'-
109 CCTACTGCGACTATAGAGATATC, 3F 5'- GGATTCCAGAGAGATTGGAGATTGT, 3R 5'-
110 CCTACTGCGACTATAGAGATATC, 4F 5'- GGATTCCAGAGAGATTGGAGATTGT, and 4R 5'-
111 GAACGGGCCACACAAATCTAGTA. The presence of *cre* recombinase allele was determine
112 by PCR using the following primers: *Spo11*-Cre forward 5'-CCATCTGCCACCAGCCAG,
113 *Spo11*-Cre reverse 5'-TCGCCATCTTCCAGCAGG, *Ddx4*-Cre forward 5'-
114 CACGTGCAGCCGTTAACGCGCGT, *Ddx4*-Cre reverse 5'-
115 TTCCCATTCTAAACAAACACCCCTGAA, *Stra8*-Cre forward 5'-
116 AGATGCCAGGACATCAGGAACCTG and *Str8*-Cre reverse 5'-
117 ATCAGCCACACCAGACAGAGAGATC.

118

119 **Histology and immunostaining**

120 Testes and ovaries were dissected, fixed in 4% paraformaldehyde and processed for paraffin
121 embedding. After sectioning (5–8- μ m), tissues were positioned on microscope slides and
122 analyzed using hematoxylin and eosin using standard protocols. For immunostaining analysis,
123 tissue sections were deparaffinized, rehydrated and antigen was recovered in sodium citrate
124 buffer (10 mM Sodium citrate, 0.05% Tween 20, pH 6.0) by heat/pressure-induced epitope
125 retrieval. Incubations with primary antibodies were carried out for 2 PLZF at 37°C in PBS/BSA
126 3%. Primary antibodies used in this study were as follows: monoclonal mouse antibody raised
127 against mouse SOX9 at 1:500 dilution (AbCam, ab26414), polyclonal rabbit antibody raised
128 against mouse STRA8 at 1:500 dilution (AbCam, ab49602), polyclonal rabbit antibody raised

129 against mouse TRA98 at 1:200 dilution (AbCam, 82527), monoclonal mouse antibody raised
130 against mouse PLZF at 1:50 dilution (Santa Cruz, 28319). Following three washes in 1× PBS,
131 slides were incubated for 1 PLZF at room temperature with secondary antibodies. A
132 combination of Fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG (Jackson
133 laboratories) with Rhodamine-conjugated goat anti-mouse IgG and Cy5-conjugated goat anti-
134 human IgG each diluted 1:450 were used for simultaneous triple immunolabeling. For Stra8,
135 we used the ImmPRESS™ Reagent Anti-Rabbit IgG Peroxidase (Vector Laboratories) and
136 hematoxylin as counterstaining. Slides were subsequently counterstained for 3 min with 2 μ g/ml
137 DAPI containing Vectashield mounting solution (Vector Laboratories) and sealed with nail
138 varnish.

139

140 **Statistical Analyses**

141 Results are presented as mean \pm standard deviation (SD). Statistical analysis was performed
142 using Prism Graph statistical software. Two-tailed unpaired Student's *t*-test was used for
143 comparisons between 2 groups. P< 0.05 was considered statistically significant.

144

145

146 **Results**

147 ***Psmc3* expression in mouse testis**

148 Tissue specific expression and kinetics of expression in testis may help reveal the function/s of
149 PSMC3. We performed RT-PCR on total purified RNA from different mouse tissues and
150 specific primers designed to analyze the level of expression of *Psmc3* (Figure 1A). Our results
151 are consistent with previous reports [25] and show that *Psmc3* is highly expressed in testis and
152 a relative minor amount in other tissues such as thymus, brain, liver, and kidney.

153 We then used a complete data set of gene expression previously generated in testis [26] to
154 determine *Psmc3* expression during testis development (Figure 1B). We used *Dmc1* and *Hop2*
155 expression times as markers for proteins expressed during early meiotic specific stages of
156 gamete development. We concluded that *Psmc3* is initially expressed at pre-meiotic stages of
157 gamete development (6 days post partum (dpp) samples) and gradually increases after 10 dpp
158 as spermatogenesis progresses, which may suggest a dual role for *Psmc3* both at early and
159 later stages of gamete development.

160

161 **Generation of *Psmc3* testis specific knockout mice**

162 We generated *Psmc3* knockout mice using germline conditional inactivation. Two FRT sites are
163 located in between exons 6 and 7 and flank LacZ, a loxP site, and a Neo cassette. Exons 7
164 and 8 of *Psmc3* are flanked by two loxP sites (Fig. 2A). Heterozygous mice carrying *Psmc3*
165 FRT sites and floxed 7 and 8 alleles were first mated with transgenic mice expressing FRT
166 recombinase. Products of this cross were mated with *Ddx4*-, *Stra8*-, or *Spo11*-Cre transgenic
167 mice (Fig. 2B). Cre activity in *Ddx4*-Cre mice first becomes detectable in primordial germ cells
168 (embryonic day 15.5). Thus, conditional knockout mice *Ddx4*-Cre; *Psmc3*^{f/f} (here called *Ddx4*-
169 *Psmc3*^{-/-}) was generated by crossing males *Ddx4*-Cre; *Psmc3*^{WT/f} with females *Psmc3*^{f/f} mice.
170 The *Stra8*-Cre is expressed later in differentiated spermatogonia cells, which allows the
171 deletion of the floxed allele only in cells already committed to meiosis (*Stra8*-Cre; *Psmc3*^{f/f},
172 *Stra8-Psmc3*^{-/-}). Finally, we generated mutants using *Spo11*-Cre (*Psmc3*^{f/f}, *Spo11-Psmc3*^{-/-})
173 mice in which the floxed *Psmc3* allele is expected to be deleted only in early primary
174 spermatocytes. We confirmed deletion of *Psmc3* by RT-qPCR (Fig. 2B).

175

176 **Deletion of *Psmc3* results in testis developmental defects**

177 If *Psmc3* participates in any stage of gamete development, we expect that their deletion will
178 lead to disruption of gametogenesis, which can be studied by comparative tissue analysis of

179 wild type and mutant testis. *Psmc3*^{-/-} adult mice appear normal in all aspects except in
180 reproductive tissues (Fig. 2C). However, *Stra8-Psmc3*^{-/-} (0.045g ± 0.005, n=4, P=0.0002, t
181 test) and *Ddx4-Psmc3*^{-/-} males (0.023g ± 0.003, n=3, P≤0.0001, t test) had significantly
182 smaller testes than wild type (0.11 g ± 0.003, n=3) littermates, with *Ddx4-Psmc3*^{-/-} showing the
183 most significant reduction in testis size (Fig. 2C). This substantial reduction in size is an
184 indication of severe developmental defects in testis. In contrast, *Spo11-Psmc3*^{-/-} (0.1 g ±
185 0.0063, n=4, P=0.1, t test) did not show any significant difference compared to wild type
186 littermates (Fig. 2C). *Spo11* is expressed in early prophase I, during leptotene [27]. Therefore,
187 normal testis size in *Psmc3*^{-/-} with *Spo11*-Cre background indicates that developmental defects
188 triggered by PSMC3 depletion are originated in pre-meiotic stages of gamete development and
189 that PSMC3 has no apparent role during mouse meiosis. Thus, homozygous *Stra8*- and *Ddx4*-
190 *Psmc3*^{-/-} mutant mice show severe blocks of spermatogenesis. We also analyzed hematoxylin-
191 eosin histological sections of 45-days-old wild type and *Ddx4-Psmc3*^{-/-} ovaries. We note that
192 albeit a significant reduction occurred in ovary size and increase in stromal cells, a reduced
193 number of follicles can be observed in the *Ddx4-Psmc3*^{-/-} mice (Fig. 2D). We conclude that
194 *Psmc3* plays a role in male and female gametogenesis.

195
196 Detailed tissue analysis indicates that both *Stra8*- and *Ddx4-Psmc3*^{-/-} males develop
197 testicular hypoplasia with hyperplasia of interstitial cells and a lack of spermatozoa, with *Ddx4*-
198 *Psmc3*^{-/-} showing the most severe phenotype (Fig. 3A and B). Although there were no
199 alterations in number of seminiferous tubules, the diameter of seminiferous tubules was
200 reduced (wild type, 319.8μm ± 13.26, n=30; mutant, 173.6 μm ± 21.87, n=30). Spermatids
201 represent the most advanced spermatogenic cells in the *Stra8-Psmc3*^{-/-} mice, indicating that
202 spermatogenesis progress, albeit with a severely reduced number of cells (wild type average
203 53 cells per seminiferous tubules while *Stra8-Psmc3*^{-/-} average 32 cells per seminiferous

204 tubule). Analysis of *Ddx4-Psmc3^{-/-}* revealed near total loss of germ cells in seminiferous
205 tubules. Although no meiocytes were observed, even those cell types at early development (i.e.
206 spermatogonia); Sertoli cells were apparently not affected (Fig. 3A and B).

207

208 **PSMC3 is apparently required for spermatogonia niche establishment and maintenance**

209 The severe phenotype observed in *Ddx4-Psmc3^{-/-}* mice (Fig. 2 and 3A and B) prompted us to
210 explore earlier stages of testis development with the premise that morphological changes
211 between the mutant and wild type may reveal differences in early spermatogenesis
212 differentiation. Testis from mice at different postnatal ages were collected, paraffin embedded,
213 and tissue slides analyzed by PLZF&E or immunohistochemistry. PLZF&E stained testis
214 sections from 9dpp *Ddx4-Psmc3^{-/-}* show near absence of gametocyte and differences in cell
215 composition compared to wild type (Fig. 3C). To analyze this in detail, we immunostained testis
216 sections with Stra8, which marks differentiating spermatogonia (Fig. 3D). While several tubules
217 in wild type contain cells expressing STRA8 (12.83 average number of cells per positive tubule,
218 n=34 seminiferous tubules), tubules in *Psmc3^{-/-}* samples show near absence of positive cells
219 for these markers (0 STRA8 positive cells, n=50) (Fig. 3D). These results suggested that testis
220 developmental defects in *Psmc3^{-/-}* mice begin early during pre-meiotic stages of postnatal
221 development, possibly before spermatogonia differentiate, and are the cause of absent germ
222 cells in adult mutant mice.

223 To investigate this in detail, we then analyzed 1, 3, 5, 7 and 9 dpp testis sections by
224 immunostaining with antibodies specific for PLZF/ZBTB16, used as a marker for
225 undifferentiated spermatogonia, and TRA98, which mark all germ cells (Fig. 4A). Similar
226 number of cells are positive for both markers as observed for both wild type and *Psmc3*
227 mutant in 1dpp (PLZF wild type, average \pm standard deviation, 1.0 ± 1.3 , n=123 seminiferous
228 tubules; mutant, 1.6 ± 1.7 , n=73, P=0.014, t test) (TRA98 wild type, 0.33 ± 0.73 , n=93;
229 mutant, 0.08 ± 0.3 , n=73, P=0.007, t test) and 3dpp (PLZF wild type, 2.0 ± 1.3 , n=66

230 seminiferous tubules; mutant, 2.0 ± 1.6 , n=23, P=0.89, t test) (TRA98 wild type, 0.94 ± 0.97 ,
231 n=66; mutant, 1.4 ± 1.02 , n=23, P=0.05, t test) testis.

232 Notably, compared to wild type (5dpp PLZF, 3.7 ± 1.6 , n=20; TRA98, 3.9 ± 1.8 , n=26.
233 7dpp PLZF, 3.8 ± 2.3 , n=45; TRA98, 3.1 ± 1.5 , n=48. 9dpp PLZF, 6.0 ± 3.5 , n=86; TRA98,
234 11.62 ± 5.9 , n=86) a significant reduction of PLZF and TRA98 positive cells in *Psmc3*^{-/-}
235 mutants were observed at 5ddp (PLZF, 0.0 ± 0.0 , n=20, P<0.0001, t test; TRA98, 0.0 ± 0.0 ,
236 n=39, P<0.0001, t test) and 7dpp (PLZF, 0.0 ± 0.0 , n=41, P<0.0001, t test; TRA98, 0.0 ± 0.0 ,
237 n=41, P<0.0001, t test) and confirmed at 9dpp (PLZF, 0.0 ± 0.0 , n=86, P<0.0001, t test;
238 TRA98, 0.0 ± 0.0 , n=94, P<0.0001, t test) testis (Fig. 4A-C). We note that the reduction in the
239 number of positive cells for PLZF indicates that deletion of *Psmc3* affects undifferentiated
240 stages of gamete development.

241 Since normal number of Sertoli cells revealed by immunostaining with SOX9 can be
242 observed in testis of this mutant (3dpp wild type, 11.5 ± 4.3 , n=58 and mutant 11.7 ± 3.8 , n=15,
243 P=0.9, t test. 5dpp wild type, 14.8 ± 4.5 , n=15 and mutant 13.9 ± 3.5 , n=14, P=0.6, t test. 7dpp
244 wild type 12.0 ± 3.8 , n=37 and mutant 12.9 ± 3.9 , n=18, P=0.44, t test. 9dpp wild type $23.7 \pm$
245 10.7 , n=64 and mutant 25.6 ± 4.9 , n=75, P=0.18, t test) (Fig. 4A and D), we conclude that
246 deletion of *Psmc3* by *Ddx4*-Cre affects germ cells at the undifferentiated stage of
247 spermatogonia.

248

249

250 **Discussion**

251 PSMC3 has been associated with a number of different cell functions, and it is highly
252 expressed in testis. Nonetheless, PSMC3 function in gametogenesis is poorly understood. In
253 this work, we took to task the function of PSMC3 in mouse gamete development. We
254 generated and analyzed the phenotype of gonad-specific conditional *Psmc3* knockout mice.

255 We observed that knocking out *Psmc3* in mouse spermatocytes results in severe male and
256 female gonad developmental defect. Arrest of gametogenesis occurs at early pre-meiotic
257 stages, revealed by a massive loss of undifferentiated spermatogonia, and apparently as a
258 result of abnormal spermatogonia niche establishment and/or maintenance. Our results are in
259 agreement with previous works showing that mutants affecting *Rpt5a* Arabidopsis (ortholog of
260 *Psmc3*), result in severe male gametophyte defects, with pollen development arrested before
261 cells enter meiosis at the second pollen mitosis stage. This correlates with absence of the
262 proteasome-dependent cyclin A3 degradation and argues that gametophyte development may
263 require proteasome function through RPR5A [13].

264

265 PSMC3 has also been associated to proteasome-independent functions. Indeed,
266 PSMC3/TBPinteracts with HOP2/TBPIP [25], a central player in the meiotic recombination
267 pathway. Deletion of HOP2 in mouse results in male and female gamete developmental
268 defects, with impairment in double-strand break repair and homologous chromosome
269 associations [28]. Because HOP2/TBPIP is a strong interactor of PSMC3, we reason that
270 deletion of *Psmc3*, which may affect HOP2 integrity or activity, may result in meiotic defect. To
271 test this, we analyzed *Spo11-Psmc3*^{-/-} mouse testis, in which conditional deletion of *Psmc3* is
272 predicted to occur at the onset of primary spermatocytes, after normal mitotic divisions and
273 developing gametes have entered meiosis. Evaluated by the normal development of *Spo11-*
274 *Psmc3*^{-/-} testis, we conclude that PSMC3 is dispensable for normal meiotic progression,
275 including double-stand break repair and homologous chromosome interactions.

276

277 In conclusion, our work defines a fundamental role of PSMC3 in spermatogenesis
278 during early spermatogonia development. Future work, should address the mechanism of such
279 function, either related or independent of PSMC3 participation in the proteasome.

281 References

282 1. Mecklenburg JM, Hermann BP. Mechanisms Regulating Spermatogonial Differentiation. *Results Probl*
283 *Cell Differ* 2016; 58:253-287.

284 2. Sepe M, Festa L, Tolino F, Bellucci L, Sisto L, Alfano D, Ragno P, Calabro V, de Franciscis V, La
285 Mantia G, Pollice A. A regulatory mechanism involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the
286 control of cell proliferation. *PLoS One* 2011; 6:e22800.

287 3. Hershko A, Ciechanover A. The ubiquitin system. *Annu Rev Biochem* 1998; 67:425-479.

288 4. Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. *Annu Rev Plant Biol* 2004;
289 55:555-590.

290 5. Walz J, Erdmann A, Kania M, Typke D, Koster AJ, Baumeister W. 26S proteasome structure revealed
291 by three-dimensional electron microscopy. *J Struct Biol* 1998; 121:19-29.

292 6. Glickman MH, Rubin DM, Fried VA, Finley D. The regulatory particle of the *Saccharomyces cerevisiae*
293 proteasome. *Mol Cell Biol* 1998; 18:3149-3162.

294 7. Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D. Active site mutants in the six
295 regulatory particle ATPases reveal multiple roles for ATP in the proteasome. *EMBO J* 1998; 17:4909-
296 4919.

297 8. Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD. Subunit interaction maps for the regulatory particle of
298 the 26S proteasome and the COP9 signalosome. *EMBO J* 2001; 20:7096-7107.

299 9. Benaroudj N, Zwickl P, Seemuller E, Baumeister W, Goldberg AL. ATP hydrolysis by the proteasome
300 regulatory complex PAN serves multiple functions in protein degradation. *Mol Cell* 2003; 11:69-78.

301 10. Speranza A, Scoccianti V, Crinelli R, Calzoni GL, Magnani M. Inhibition of proteasome activity strongly
302 affects kiwifruit pollen germination. Involvement of the ubiquitin/proteasome pathway as a major
303 regulator. *Plant Physiol* 2001; 126:1150-1161.

304 11. Sheng X, Hu Z, Lu H, Wang X, Baluska F, Samaj J, Lin J. Roles of the ubiquitin/proteasome pathway in
305 pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell
306 wall components. *Plant Physiol* 2006; 141:1578-1590.

307 12. Doelling JH, Yan N, Kurepa J, Walker J, Vierstra RD. The ubiquitin-specific protease UBP14 is
308 essential for early embryo development in *Arabidopsis thaliana*. *Plant J* 2001; 27:393-405.

309 13. Gallois JL, Guyon-Debast A, Lecureuil A, Vezon D, Carpentier V, Bonhomme S, Guerche P. The
310 *Arabidopsis* proteasome RPT5 subunits are essential for gametophyte development and show
311 accession-dependent redundancy. *Plant Cell* 2009; 21:442-459.

312 14. Lassot I, Latreille D, Rousset E, Sourisseau M, Linares LK, Chable-Bessia C, Coux O, Benkirane M,
313 Kiernan RE. The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic
314 mechanisms. *Mol Cell* 2007; 25:369-383.

315 15. Lee D, Ezhkova E, Li B, Pattenden SG, Tansey WP, Workman JL. The proteasome regulatory particle
316 alters the SAGA coactivator to enhance its interactions with transcriptional activators. *Cell* 2005;
317 123:423-436.

318 16. Gonzalez F, Delahodde A, Kodadek T, Johnston SA. Recruitment of a 19S proteasome subcomplex to
319 an activated promoter. *Science* 2002; 296:548-550.

320 17. Russell SJ, Reed SH, Huang W, Friedberg EC, Johnston SA. The 19S regulatory complex of the
321 proteasome functions independently of proteolysis in nucleotide excision repair. *Mol Cell* 1999; 3:687-
322 695.

323 18. Park BW, O'Rourke DM, Wang Q, Davis JG, Post A, Qian X, Greene MI. Induction of the Tat-binding
324 protein 1 gene accompanies the disabling of oncogenic erbB receptor tyrosine kinases. *Proc Natl Acad
325 Sci U S A* 1999; 96:6434-6438.

326 19. Pollice A, Nasti V, Ronca R, Vivo M, Lo Iacono M, Calogero R, Calabro V, La Mantia G. Functional and
327 physical interaction of the human ARF tumor suppressor with Tat-binding protein-1. *J Biol Chem* 2004;
328 279:6345-6353.

329 20. Rockett JC, Patrizio P, Schmid JE, Hecht NB, Dix DJ. Gene expression patterns associated with
330 infertility in humans and rodent models. *Mutat Res* 2004; 549:225-240.

331 21. Petukhova GV, Pezza RJ, Vanevski F, Ploquin M, Masson JY, Camerini-Otero RD. The Hop2 and
332 Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. *Nat Struct Mol Biol* 2005;
333 12:449-453.

334 22. Pezza RJ, Petukhova GV, Ghirlando R, Camerini-Otero RD. Molecular activities of meiosis-specific
335 proteins Hop2, Mnd1, and the Hop2-Mnd1 complex. *J Biol Chem* 2006; 281:18426-18434.

336 23. Pezza RJ, Voloshin ON, Vanevski F, Camerini-Otero RD. Hop2/Mnd1 acts on two critical steps in
337 Dmc1-promoted homologous pairing. *Genes Dev* 2007; 21:1758-1766.

338 24. Pezza RJ, Voloshin ON, Volodin AA, Boateng KA, Bellani MA, Mazin AV, Camerini-Otero RD. The dual
339 role of HOP2 in mammalian meiotic homologous recombination. *Nucleic Acids Res* 2014; 42:2346-
340 2357.

341 25. Satoh T, Ishizuka T, Tomaru T, Yoshino S, Nakajima Y, Hashimoto K, Shibusawa N, Monden T,
342 Yamada M, Mori M. Tat-binding protein-1 (TBP-1), an ATPase of 19S regulatory particles of the 26S
343 proteasome, enhances androgen receptor function in cooperation with TBP-1-interacting protein/Hop2.
344 *Endocrinology* 2009; 150:3283-3290.

345 26. Margolin G, Khil PP, Kim J, Bellani MA, Camerini-Otero RD. Integrated transcriptome analysis of
346 mouse spermatogenesis. *BMC Genomics* 2014; 15:39.

347 27. Bellani MA, Boateng KA, McLeod D, Camerini-Otero RD. The expression profile of the major mouse
348 SPO11 isoforms indicates that SPO11beta introduces double strand breaks and suggests that
349 SPO11alpha has an additional role in prophase in both spermatocytes and oocytes. *Molecular and
350 Cellular Biology* 2010; 30:4391-4403.

351 28. Petukhova GV, Romanienko PJ, Camerini-Otero RD. The Hop2 protein has a direct role in promoting
352 interhomolog interactions during mouse meiosis. *Dev Cell* 2003; 5:927-936.

353

354 **Figure legends**

355 **Figure 1. *Psmc3* expression during gametogenesis. (A)** Expression of *Psmc3* in different
356 tissues assessed by RT-PCR **(B)** Kinetics of *Psmc3* gene expression in testis of 6, 10, 12, 14,
357 16, 18, 20, and 38 dpp mice. Expression of *Psmc3* and *Dmc1* and *Hop2* was assessed by RNA-
358 seq.

359

360 **Figure 2. *Psmc3* gene targeting design and testis size phenotype of *Psmc3* mutant mice.**
361 **(A)** Testis specific Cre knockout strategy for deletion of *Psmc3*. A trapping cassette was
362 inserted to delete exons 7 and 8 in *Psmc3*. **(B)** *Psmc3* transcription levels expression in whole
363 testis of wild type and mutant (*Psmc3*^{-/-}, *Spo11*-Cre) mice and enriched fractions of
364 spermatogonia cells from wild type and mutant (*Psmc3*^{-/-}, *Ddx4*-Cre) mice assessed by RT-
365 PCR. **(C)** PLZF&E stained testis of wild type, *Stra8*-*Psmc3*^{-/-}, *Ddx4*-*Psmc3*^{-/-}, and *Spo11*-

366 *Psmc3*^{-/-} mice. Quantification of testis weight for wild type and homozygous knockout mice is
367 also shown. **(D)** PLZF&E stained ovaries of wild type and *Ddx4-Psmc3*^{-/-} mice.

368
369 **Figure 3. *Ddx4-Psmc3*^{-/-} mice show profound defects in gametogenesis. (A)** Details of
370 histological sections stained with PLZF&E of wild type, *Stra8-Psmc3*^{-/-}, and *Ddx4-Psmc3*^{-/-}
371 seminiferous tubules. Stars mark seminiferous tubules with absent germ cells. Note unchanged
372 number and morphology of Sertoli cells (indicated by green arrows). **(B)** Histological sections of
373 wild type and *Ddx4-Psmc3*^{-/-} testis immunostained with SOX9 (to mark Sertoli cells) and DAPI
374 (to mark nuclei). **(C)** PLZF&E stained 9dpp testis of wild type and *Ddx4-Psmc3*^{-/-} mice. The
375 inserts show magnification of seminiferous tubules and composition and distribution of cells. **(D)**
376 STRA8 immunostained and hematoxylin stained 9dpp testis of wild type and *Ddx4-Psmc3*^{-/-}
377 mice. Starts indicate positive seminiferous tubules. Quantitation of number of cells STRA8
378 positive per positive seminiferous tubule is also shown.

379
380 **Figure 4. Testis cord differentiation defects in *Psmc3*^{-/-} mice. (A)** Histological sections of
381 wild type and *Ddx4-Psmc3*^{-/-} testis cord from 1-9 days old mice immunostained with TRA98
382 antibodies (marking germ cells), PLZF antibodies (marking undifferentiated spermatogonia)
383 and Sox9 (marking Sertoli cells). Quantitation of cells in A immunostained with TRA98 **(B)**,
384 PLZF **(C)**, and Sox9 **(D)**.

Figure 1

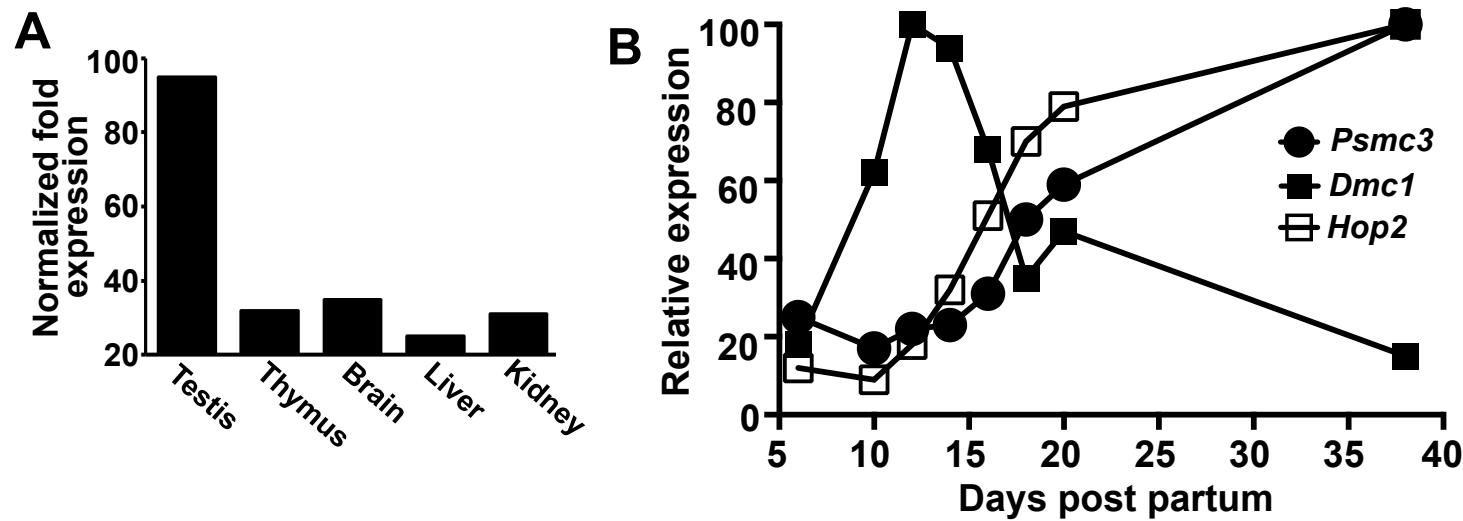


Figure 2

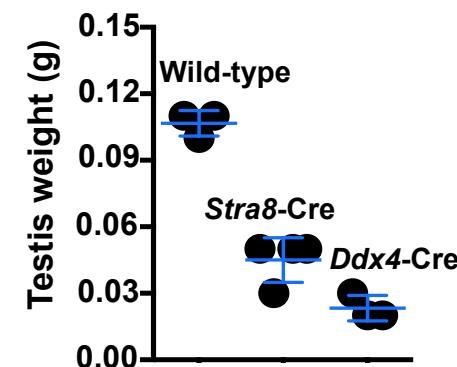
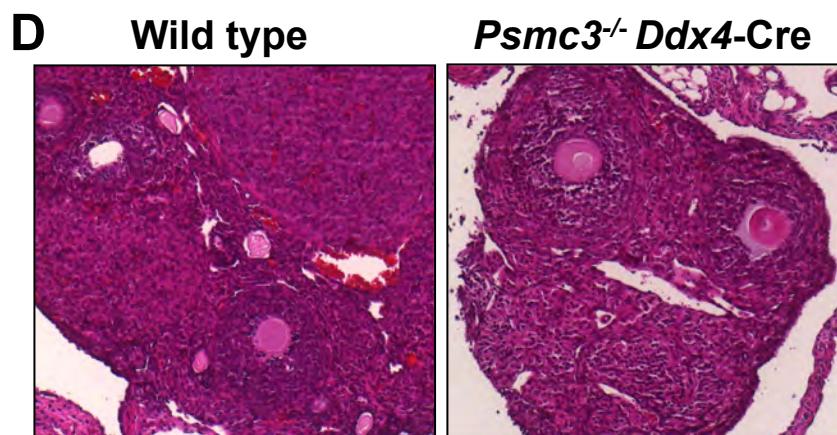
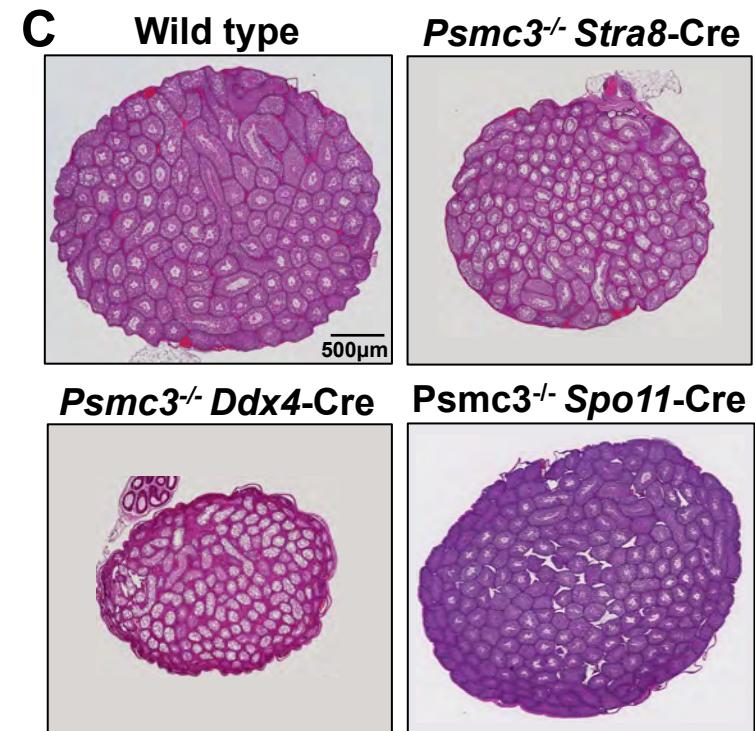
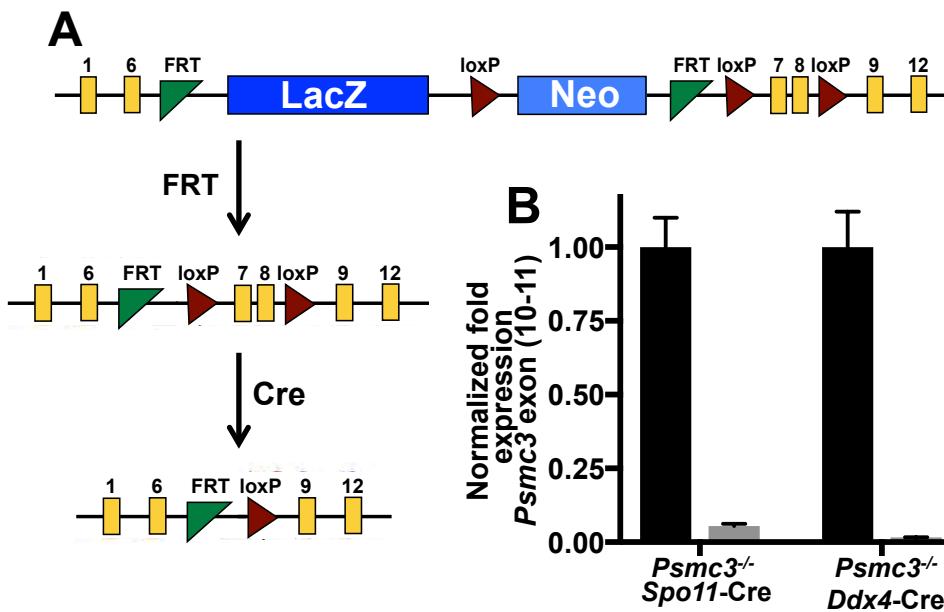
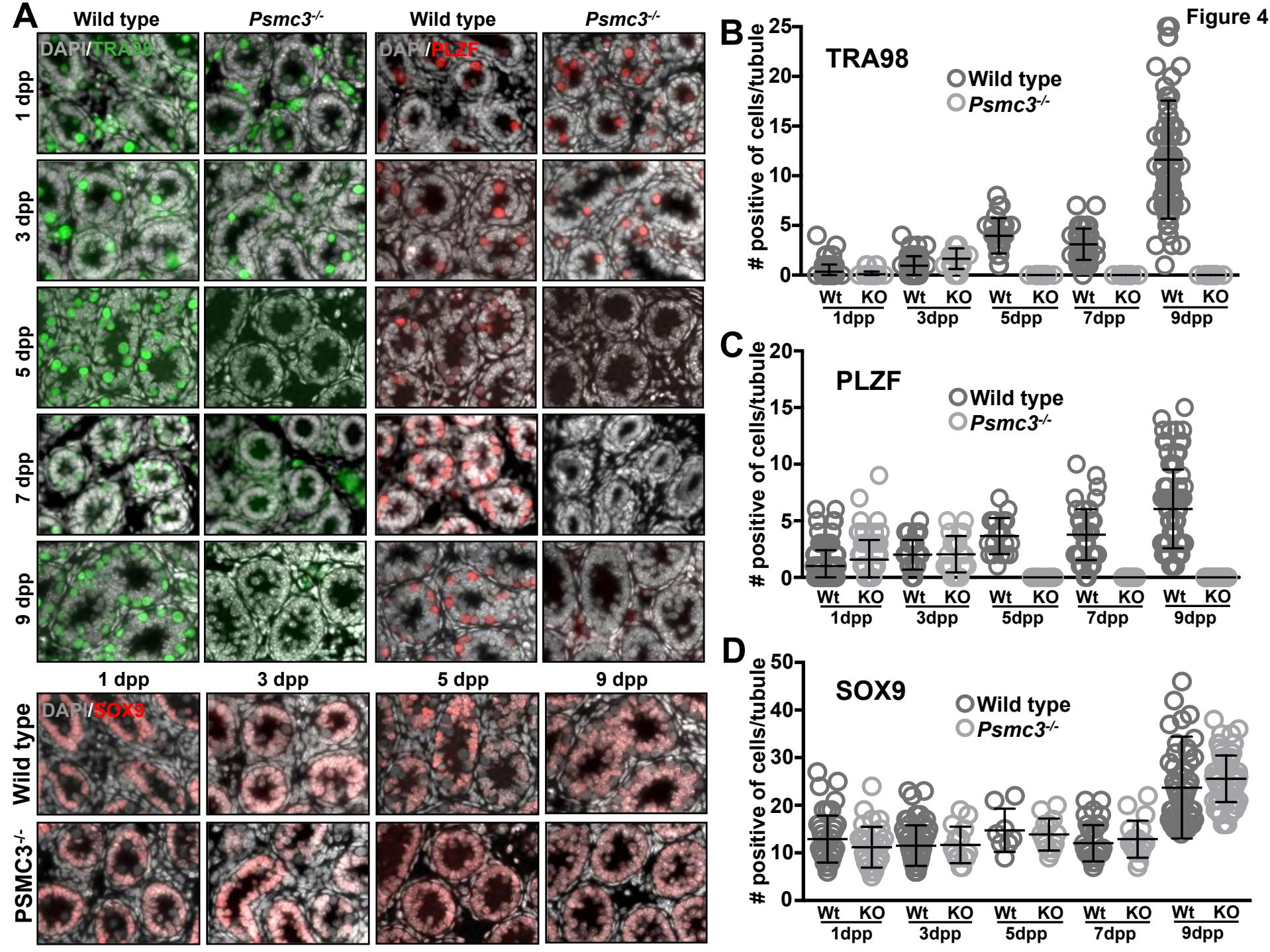






Figure 4

