

1 **Incomplete influenza A virus genomes are abundant but readily complemented during spatially
2 structured viral spread**

3

4 Nathan T. Jacobs^a, Nina O. Onuoha^a, Alice Antia^a, Rustom Antia^b, John Steel^a, Anice C. Lowen^{1a}

5

6 ^aDepartment of Microbiology and Immunology, Emory University School of Medicine, Atlanta,
7 GA, USA

8 ^bDepartment of Biology, Emory University, Atlanta, GA, USA

9 ¹Address correspondence to Anice C. Lowen, anice.lowen@emory.edu

10 **Abstract**

11 Viral genomes comprising multiple distinct RNA segments can undergo genetic exchange
12 through reassortment, a process that facilitates viral evolution and can have major
13 epidemiological consequences. Segmentation also allows the replication of incomplete viral
14 genomes (IVGs), however, and evidence suggests that IVGs occur frequently for influenza A
15 viruses. Here we quantified the frequency of IVGs using a novel single cell assay and then
16 examined their implications for viral fitness. We found that each segment of influenza
17 A/Panama/2007/99 (H3N2) virus has only a 58% probability of being present in a cell infected
18 with a single virion. These observed frequencies accurately account for the abundant
19 reassortment seen in co-infection, and suggest that an average of 3.7 particles are required for
20 replication of a full viral genome in a cell. This dependence on multiple infection is predicted to
21 decrease infectivity and to slow viral propagation in a well-mixed system. Importantly, however,
22 modeling of spatially structured viral growth predicted that the need for complementation is met
23 more readily when secondary spread occurs locally. This expectation was supported by
24 experimental infections in which the level spatial structure was manipulated. Furthermore, a
25 virus engineered to be entirely dependent on co-infection to replicate *in vivo* was found to grow
26 robustly in guinea pigs, suggesting that coinfection is sufficiently common *in vivo* to support
27 propagation of IVGs. The infectivity of this mutant virus was, however, reduced 815-fold relative
28 to wild-type and the mutant virus did not transmit to contacts. Thus, while incomplete genomes
29 augment reassortment and contribute to within-host spread, the existence of rare complete IAV
30 genomes may be critical for transmission to new hosts.

31

32 **Main Text**

33 Pathogen evolution poses a continued threat to public health by reducing the
34 effectiveness of antimicrobial drugs and adaptive immunity. In the case of the influenza A virus
35 (IAV), this evolution results in seasonal outbreaks as new viruses emerge to which pre-existing
36 immunity is weak. Each year requires a new vaccine as a consequence, and keeping pace with
37 IAV evolution is challenging: unexpected emergence of new strains could render the vaccine
38 obsolete before the flu season starts. IAV populations evolve rapidly in part because their
39 mutation rates are high, on the order of 10^{-4} substitutions per nucleotide per genome copied¹.
40 The segmentation of the viral genome gives a second source of genetic diversity. The IAV genome
41 is composed of eight single-stranded RNA segments, and so cells co-infected with two different
42 IAV virions can produce chimeric progeny with a mix of segments from these two viruses. This
43 process, termed reassortment, carries costs and benefits analogous to those of sexual
44 reproduction in eukaryotes². Reassortment can join beneficial mutations from different
45 backgrounds to alleviate clonal interference³, and purge deleterious mutations to mitigate the
46 effects of Muller's ratchet^{4,5}. This combinatorial shuffling of mutations may accelerate adaptation
47 to new environments such as a novel host⁶. But free mixing of genes through reassortment may
48 also reduce viral fitness by separating beneficial segment pairings, as sexual reproduction carries
49 this cost in eukaryotes⁷. Previous work has shown that reassortment occurs readily between
50 closely related variants⁸, but is limited between divergent lineages due to molecular barriers^{9,10}
51 or reduced fitness of progeny^{11,12}. Nevertheless, the contribution of reassortment to emergence
52 of novel epidemic and pandemic IAVs has been documented repeatedly¹³⁻¹⁶. Factors that affect

53 the frequency of co-infection and consequently reassortment are therefore likely to play an
54 important role in viral evolution.

55 While the ability of a virus particle to enter a cell depends only on the proteins that line
56 the virion surface, subsequent production of viral progeny requires successful expression and
57 replication of the genome. A virion that does not contain, or fails to deliver, a complete genome
58 could therefore infect a cell but fail to produce progeny. IAV particles outnumber plaque-forming
59 units (PFUs) by approximately 10–100 fold¹⁷, meaning that only a minority of particles establish
60 productive infection at limiting dilution. Recent data suggest that IAV infection is not a binary
61 state, however. Efforts to detect viral proteins and mRNAs at the single cell level have revealed
62 significant heterogeneity in viral gene expression¹⁸⁻²⁰. These data furthermore suggest that a
63 subset of gene segments is often missing entirely from cells infected at low MOI. Thus, many non-
64 plaque-forming particles appear to be semi-infectious, giving rise to incomplete viral genomes
65 (IVGs) within the infected cell²¹.

66 Replication and expression of only a subset of the genome may be explained by two
67 potential mechanisms: either the majority of particles lack one or more genome segments, or
68 segments are readily lost in the process of infection before they can be replicated. Electron
69 microscopy has shown that most particles contain eight distinct RNA segments²², and FiSH-based
70 detection of viral RNAs indicated that a virion tends to contain one copy of each segment²³,
71 suggesting that most particles contain full genomes. Regardless of the molecular mechanisms
72 that lead to the phenomenon of incomplete IAV genomes, their frequent occurrence suggests
73 that complementation by co-infection at the cellular level is an underappreciated aspect of the
74 viral life cycle. The observation of appreciable levels of reassortment following co-infection at

75 low MOIs suggests IVG reactivation through complementation occurs commonly during IAV
76 infection²⁴. Nevertheless, the extent to which IAVs rely on co-infection for replication, and how
77 this need changes over the course of infection, remains unclear. Similarly, the existence of IVGs
78 *in vivo* has been demonstrated²⁵, but their importance to the dynamics of infection within hosts
79 is untested.

80 Here we investigate the biological implications of incomplete IAV genomes and the
81 emergent need for cooperation at the cellular level. We first developed a novel single-cell sorting
82 assay to measure the probability of each segment being delivered by an individual virion for
83 influenza A/Panama/2007/99 (H3N2) [Pan/99] virus. Our data estimate that individual virus
84 particles lead to successful replication of all eight gene segments only 1.3% of the time. When
85 considering a well-mixed system in which virus particles are distributed randomly over cells, the
86 potential fitness costs of incomplete genomes are high. In contrast, a model of viral spread that
87 incorporates local dispersal of virions to nearby cells predicted that the spatial structure of virus
88 growth mitigates costs of genome incompleteness. Testing of this model confirmed that
89 infections initiated with randomly distributed inocula contained more IVGs than those generated
90 by secondary spread from low MOIs, in which spatial structure is inherent. To determine the
91 potential for complementation to occur *in vivo*, we generated a mutant virus that was fully
92 dependent on cellular co-infection for viral replication, and found that it was able to grow within
93 guinea pigs, but unable to transmit to cagemates. Taken together, these results suggest that the
94 abundance of incomplete genomes and the potential for complementation are important factors
95 in the replication and transmission of IAV.

96

97 **Results**

98 *Measurement of P_p*

99 To better evaluate the implications of genome incompleteness for IAV fitness and
100 reassortment, we sought to quantify the probability of successful replication (P_p = probability
101 present) for each of the eight IAV genome segments within single cells infected with single virus
102 particles. To ensure accurate detection of IVGs, we devised a system that would allow their
103 replication to high copy number. We applied our approach to the human seasonal isolate,
104 influenza A/Panama/2007/99 (H3N2) virus. In this assay, MDCK cells are inoculated with a virus
105 of interest, referred to herein as "Pan/99-WT" or "WT", and a genetically tagged helper virus
106 ("Pan/99-Helper" or "Helper"). This Helper virus differs from the WT strain only by silent
107 mutations on each segment that provide distinct primer-binding sites. For example, qPCR primers
108 targeting WT PB2 will not anneal to cDNA of Helper PB2, and vice versa. By co-inoculating cells
109 with a low MOI of WT virus and a high MOI of Helper virus, we ensure that each cell is
110 productively infected, but is unlikely to receive more than one WT virion. Following infection, one
111 cell per well is sorted into a 96-well plate containing MDCK cell monolayers. The initially infected
112 cell produces progeny which then infect neighboring cells, effectively amplifying the vRNA
113 segments present in the first cell. The presence or absence of WT segments in each well can then
114 be measured by performing segment-specific RT qPCR. As detailed in the Methods, a correction
115 factor was applied to account for multiple infection, the probability of which could be estimated
116 based on the observed number of cells infected with each virus.

117 Using this assay, the P_p values for each segment of Pan/99 virus were quantified (Fig. 1A).
118 We observed that each segment was present at an intermediate frequency between 0.5 and 0.6,

119 indicating that incomplete genomes may arise from loss of any segment(s). The mean frequency
120 across all segments was 0.58. When used to parameterize a model that estimates the frequency
121 of reassortment, which we published previously²⁴, these P_p values generated predicted levels of
122 reassortment that align closely with experimental data (Fig. 1B). This match between observed
123 and predicted reassortment is important because i) it offers a validation of the measured P_p
124 values and ii) it indicates that IVGs fully account for the levels of reassortment observed, which
125 are much higher than predicted for viruses with only complete genomes²⁴.

126 Interactions between vRNP segments are thought to play an important role in the
127 assembly of new virions^{10,26-29}. To determine whether similar interactions exist that could
128 mediate the co-delivery of segments to the cell, the patterns of segment co-occurrence were
129 analyzed. In performing this analysis, it was again important to take into account the known
130 probability of multiple infection in our single cell assay. As shown in Supplementary Figure 1, cells
131 containing more segments were likely to have been infected with multiple virions. Because such
132 cells are less informative for this analysis, we applied a weighting factor to ensure that results
133 relied more strongly on data from cells with fewer WT segments. Namely, we determined the
134 probability that a given cell acquired its gene constellation by infection with a single virion and
135 weighted data according to this probability to calculate the pairwise correlation between
136 segments. While some significant interactions were observed (HA-NA, HA-M, M-NS), they were
137 relatively weak, with r^2 values below 0.15 (Fig.1C). Thus, our data suggest that associations
138 among specific vRNPs do not play a major role during the establishment of infection within a cell.
139 *Predicted costs of incomplete genomes for cellular infectivity*

140 If singular infections often result in replication of fewer than eight viral gene segments,
141 the infectious unit would be expected to comprise multiple particles. To evaluate the relationship
142 between the frequency of IVGs and the number of particles required to infect a cell, we
143 developed a probabilistic model in which the likelihood of segment delivery is governed by the
144 parameter P_p . In Figure 2A we examine how P_p affects the frequency with which a single virion
145 delivers a given number of segments. If P_p is low, singular infections typically yield few segments
146 per cell. Even at the intermediate P_p that characterizes Pan/99 virus, the vast majority of singular
147 infections give rise to IVGs within the cell. When P_p is high, however, most cells receive the full
148 complement of eight segments. In Figure 2B we plot the relationship between P_p and the
149 percentage of cells that are expected to be productively infected following singular infection. If
150 only a single virus infects a cell, then the probability that all eight segments are present will be
151 P_p^8 . For Pan/99 virus, the frequency with which eight segments are present is approximately 0.58^8
152 = 1.3%.

153 Importantly, however, if more than one virus particle infects the cell, then the probability
154 that all eight segments are present will be considerably higher. This effect is demonstrated in
155 Figure 1C, where the percentage of cells containing all eight IAV segments is plotted as a function
156 of the number of virions that have entered the cell. Here we see that, even for low P_p , a high
157 probability of productive infection is reached at high multiplicities of infection. Finally, in Figure
158 2D, the relationship between P_p and the average number of virions required to productively
159 infect a cell is examined. We see that the number of virions comprising an infectious unit is
160 inversely proportional to P_p . Based on our experimentally determined values of P_p for Pan/99
161 virus, we estimate that an average of 3.7 virions must enter a cell to render it productively

162 infected (Fig. 2D). Thus, as a result of stochastic loss of gene segments, the likelihood that a full
163 viral genome will be replicated within a singularly infected cell is low. The fitness implications of
164 this inefficiency may be offset, however, by complementation of IVGs in multiply infected cells.

165 *Predicted costs of incomplete genomes for population infectivity*

166 The potential for multiple infection to mitigate the costs of inefficient genome delivery
167 will, of course, depend on the frequency of multiple infection. To evaluate the theoretical impact
168 of IVGs on viral fitness, we therefore modeled the process of infection at a population level. A
169 population of computational virions was randomly distributed across a population of
170 computational cells over a range of MOIs, such that the likelihood of multiple infection was
171 dictated by Poisson statistics. The frequency with which each cell acquired segments was again
172 governed by P_p . For each combination of P_p and MOI, we calculated the percentage of
173 populations in which at least one cell contained eight segments (Fig. 3A). This plot shows that
174 viruses with lower P_p require markedly higher MOIs to ensure productive infection within a
175 population of cells. Indeed, when we estimated the MOI required for a virus of a given P_p to infect
176 50% of populations, we observed that the ID_{50} increases exponentially as P_p decreases (Fig. 3B).
177 Thus, a reliance on multiple infection in a well-mixed system is predicted to bear a substantial
178 fitness cost.

179 *Model of spatially structured viral spread*

180 The estimates of viral infectivity made above assume that virus is distributed randomly
181 over a population of cells. Following the initial infection event, however, viruses spread with
182 spatial structure. We hypothesized that this structure may be very important for reducing the

183 costs of genome incompleteness once infection is established. To test this idea, we developed a
184 model of viral spread in which the extent of spatial structure could be varied.

185 The system comprises a spatially explicit grid of cells that can become infected with virus.
186 The number and type of segments delivered upon infection is dictated by the parameter P_p and,
187 if all eight segments are present, a cell produces virus particles. These particles can then diffuse
188 in a random direction, with the distance traveled governed by the diffusion coefficient (D). D was
189 varied in the model to modulate the spatial structure of viral spread: higher D corresponds to
190 greater dispersal of virus and therefore lower spatial structure. We simulated replication of two
191 virus strains under a range of diffusion coefficients, one with a frequency of IVGs characteristic
192 of Pan/99 virus ($P_p = 0.58$) and one with complete genomes ($P_p = 1.0$).

193 Our results point to an important role for spatial structure in determining the efficiency
194 of infection. When $P_p = 1.0$, replication proceeds faster at higher values of D , because virus
195 particles reach permissive cells more efficiently (Fig. 4A and Supplementary Fig. 2A). In contrast,
196 when $P_p = 0.58$, replication proceeds fastest at intermediate values of D (Fig. 4A and
197 Supplementary Fig. 2B). An intermediate level of spatial structure is optimal for a virus with
198 incomplete genomes for two reasons. At high values of D , virions diffuse farther and cellular co-
199 infection becomes less likely, reducing the likelihood of complementation. At the other extreme,
200 when D is very low, complementation occurs readily but spread to new cells becomes rare.

201 The model allows the potential costs of incomplete genomes to be evaluated by
202 comparing results obtained for a virus with $P_p=1.0$ to those obtained for a virus with a lower P_p .
203 In particular, we focused on $P_p=0.58$ based on the measured values for Pan/99 virus. In Figure 4B
204 and 4C we show how reductions in the initial growth rate (Fig. 4B) and in the amount of virus

205 produced at the peak of infection (Fig. 4C) brought about by incomplete genomes vary with
206 spatial structure. We see that costs of incomplete genomes are minimized at intermediate values
207 of D . These results predict that the fitness effects of IVGs are dependent on the extent to which
208 viral dispersal is spatially constrained.

209 *Impact of MOI on efficiency of virus production*

210 Burst size, the average number of virions generated by an infected cell, is an important
211 factor determining the potential for complementation of incomplete genomes. If an infected cell
212 produces a larger number of viral progeny, the likelihood of coinfection in neighboring cells
213 increases. We therefore measured this parameter experimentally for Pan/99 virus by performing
214 single cycle growth assays over a range of MOIs (1, 3, 6, 10, and 20 PFU/cell). Multiple MOIs were
215 used to determine whether burst size is dependent on the number of viral genome copies per
216 cell. We saw that higher MOIs resulted in earlier emergence of virus, suggesting that there is a
217 kinetic benefit of additional vRNA input beyond what is required to productively infect a cell
218 (Fig.5A; Supplementary Figure 3). Despite these kinetic benefits, MOIs above 3 PFU/cell
219 conferred no benefit in terms of percent infection (Fig. 5B) or total productivity (Fig. 5C). This
220 growth analysis indicated that a maximum of 11.5 PFU per cell was produced during Pan/99 virus
221 infection of MDCK cells. Based on measured P_p values, these data estimate that a single
222 productively infected cell produces 962 virions, and this value was used as the burst size in our
223 models.

224 *Impact of MOI and spatial structure on IVG complementation in cell culture*

225 Our models indicate that, for a virus of a given P_p , the frequency of infected cells
226 containing IVGs is reduced i) at higher MOIs and ii) under conditions of high spatial structure.

227 These predictions can be seen in Figure 6, where we examined how the proportion of infected
228 cells that are semi-infected varies with MOI (Fig. 6A) and with the diffusion coefficient (Fig. 6B).
229 We tested these predictions of the models experimentally by modulating MOI and spatial spread
230 in IAV infected cell cultures and gauging the impact of each manipulation on levels of IVGs.

231 To monitor levels of IVGs, we used flow cytometry to measure the potential for
232 complementation—that is, the benefit provided by the addition of Pan/99-Helper virus. We
233 hypothesized that, under single cycle conditions, the potential for complementation would
234 decrease with increasing WT virus MOI, since complementation between co-infecting WT viruses
235 would occur frequently at high MOIs. In addition, under multicycle conditions initiated from low
236 MOI, we predicted that the potential for complementation would be greatest at the beginning of
237 infection, due to the random distribution of viral particles, and reduced by secondary spread. We
238 hypothesized that the combination of local dispersal and high particle production during
239 secondary spread would support co-infection in neighboring cells. To test our hypotheses, we
240 inoculated cells with Pan/99-WT virus and either added Pan/99-Helper virus at the same time, or
241 added the Helper virus after allowing time for secondary spread.

242 To assess the potential for complementation at the outset of infection and at a range of
243 MOIs, cells were co-inoculated with Pan/99-Helper virus at a constant MOI and with Pan/99-WT
244 virus at MOIs of 0.1, 0.3, 0.6, or 1 PFU/cell. Cells were then incubated under single-cycle
245 conditions for 12 h to allow time for HA protein expression. Samples were processed by flow
246 cytometry with staining for WT and Helper HA proteins (Supplementary Figure 4). In each co-
247 infection, we quantified the benefit provided by Pan/99-Helper virus by calculating the
248 enrichment of WT HA expression in Helper⁺ cells relative to Helper⁻ cells. Essentially, the

249 enrichment measure works as follows. If the proportion of Helper⁺ cells that are WT⁺ is higher
250 than the proportion of Helper⁻ cells that are WT⁺, enrichment will be $> 0\%$, indicating a
251 cooperative interaction in which Helper virus allows the expression WT HA genes present in semi-
252 infected cells. The results shown in Figure 6C revealed that the potential for complementation at
253 the outset of infection was high at low MOIs, but decreased with increasing MOI. This result was
254 as expected, since complementation between WT virus particles was predicted to reduce the
255 need for Helper virus (Fig. 6A).

256 To evaluate the impact of spatially structured secondary spread on IVG prevalence, cells
257 were inoculated with Pan/99-WT virus at low MOI (0.002 or 0.01 PFU/cell) and then multicycle
258 replication was allowed to proceed over a 12 h period. After this period, cells were inoculated
259 with Pan/99-Helper virus to complement any semi-infected cells, and incubated for 12 h under
260 single-cycle conditions to allow HA expression to occur. In contrast to the results seen when
261 complementation was offered at the outset of infection, the enrichment of WT⁺ cells in the
262 Helper⁺ fraction was significantly lower in these samples where multi-cycle replication occurred
263 prior to the addition of Helper virus. This reduction in enrichment is clear when comparing
264 infections performed under each condition in which ~50% of cells expressed WT HA (Fig. 6C).
265 These data agree with our theoretical results (Fig. 6B) and indicate that the spatial structure of
266 secondary spread facilitates complementation between WT particles as they infect neighboring
267 cells at locally high MOIs.

268 *Generation of a virus with absolute dependence on multiple infection*

269 To evaluate the potential for complementation *in vivo*, we generated a virus that is fully
270 dependent on complementation for replication. This was accomplished by modifying the M

271 segment to generate one M segment which encoded only M1 (M1.Only) and a second one which
272 encoded only M2 (M2.Only) (Fig. 7A). When combined with seven standard reverse genetics
273 plasmids for the remaining viral gene segments, the plasmids encoding these two M segments
274 allowed the generation of a virus population in which individual viruses encode functional M1 or
275 M2, but not both. We called this virus Pan/99-M.STOP virus. Due to the rarity of recombination
276 within segments in negative-sense RNA viruses³⁰, it is unexpected that M1.Only and M2.Only
277 segments will recombine to generate a WT M segment. Hence, this virus is reliant on both M
278 segments being delivered to the same cell by co-infection. This requirement for co-infection is
279 only absolute *in vivo*, as M2 is not essential for replication in cell culture^{31,32}. However, this virus
280 is expected to be attenuated in cell culture because a lack of M2 hinders replication³³, and also
281 because some proportion of virions contain M segments that do not encode M1 and so will be
282 unable to replicate independently. It is important to note that, in contrast to the more arbitrary
283 multiplicity dependence of a wild type IAV, the complementation needed by Pan/99-M.STOP
284 virus requires co-infection with two viruses of a particular genotype.

285 To characterize the Pan/99-M.STOP virus genetically, we used digital droplet PCR (ddPCR)
286 to measure copy numbers of the two M segments and the NS segment in three different virus
287 stocks (Fig. 7B). The total M segment copy number was found to comprise 30% M2.Only and 70%
288 M1.Only. In addition, the total number of M segments was similar to the number of NS segments,
289 as expected if each virion packages one NS and one M vRNA (Fig. 7B). To verify that M1.Only and
290 M2.Only M segments were packaged into distinct virions, we performed infections of MDCK cells
291 with serial dilutions of Pan/99-M.STOP virus under single-cycle conditions and analyzed
292 expression of M1 and M2 by flow cytometry. We observed that, as dilution increased, cells

293 expressing M1 were less likely to express M2, and vice versa (Fig. 7C). This result would be
294 expected if expression of both proteins from the same cell required co-infection with M1.Only
295 and M2.Only encoding virions. As a control, we monitored the effect of dilution on co-expression
296 of HA and M1 or M2. Here, we found that co-expression of M1 or M2 and HA was much less
297 sensitive to dilution, consistent with co-delivery of M and HA segments by single virions.

298 To test the hypothesis that a given number of Pan/99-M.STOP virus particles would be
299 less infectious than a comparable number of Pan/99-WT virus particles, we characterized both
300 viruses using a series of titration methods that vary in their dependence on infectivity and M
301 protein expression. We first used ddPCR to quantify NS copy numbers of the WT and M.STOP
302 viruses and then normalized all other comparisons to this ratio to account for the difference in
303 virus concentration. As shown above, total M copy numbers were roughly equivalent when
304 normalized to NS (Fig. 7B and 7D). Using immunotitration, in which cells are infected under single-
305 cycle conditions with serial dilutions of virus and then stained for HA expression³⁴, we observed
306 equivalent titers of both viruses (Fig. 7D). This was expected, as HA expression under single-cycle
307 conditions is not dependent on M1 or M2 proteins. When titration relied upon multi-cycle
308 replication, however, the WT virus was higher titer than the M.STOP virus. This difference was
309 moderate in cell culture-based measurements, with PFU and TCID₅₀ titers 24- and 51-fold higher,
310 respectively, likely because of the reduced importance of M2 in this environment. The full cost
311 for infectivity of separating the M1 and M2 ORFs onto distinct segments was apparent *in vivo*,
312 where 815-fold as much M.STOP virus was required to infect 50% of guinea pigs compared to WT
313 virus (Fig. 7D). Thus, although the M.STOP virus differs from a virus with very low P_P in that
314 complementation can only occur when viruses carrying M1.Only and M2.Only segments co-

315 infect, the prediction shown in Figure 3 that increased dependence on multiple infection
316 decreases infectivity held true in this system.

317 *Potential for complementation in vivo*

318 Having determined that the dependence of Pan/99-M.STOP virus on complementation
319 impairs viral infectivity, we next sought to evaluate the potential for complementation to occur
320 *in vivo* once infection had been established. Guinea pigs were inoculated intranasally with
321 equivalent doses of Pan/99-WT or Pan/99-M.STOP virus in terms of NS vRNA copies. Specifically,
322 a dose of 10^7 copies per guinea pig was used to ensure successful Pan/99-M.STOP virus infection
323 in all animals. This dose represents $8 \times \text{GPID}_{50}$ of this mutant virus and $6.5 \times 10^3 \times \text{GPID}_{50}$ of the WT
324 virus. Despite its reduced ability to establish infection, Pan/99-M.STOP virus successfully grew in
325 guinea pigs, following similar kinetics to Pan/99-WT virus. Average peak virus production,
326 measured as NS vRNA copies, was reduced by only 9-fold relative to WT (Fig. 8A).

327 Next, we set up an experiment to determine whether Pan/99-M.STOP virus was
328 competent to undergo transmission to new hosts. In this case, guinea pigs were inoculated with
329 equivalent doses in terms of GPID_{50} with the goal of establishing comparable infections in the
330 donor hosts so that relative efficiency of transmission could be better evaluated. Thus, doses of
331 $8 \times \text{GPID}_{50}$ of WT or M.STOP virus were used. At 24 h post-inoculation, each index guinea pig was
332 co-housed with a naïve partner. As expected, WT virus transmitted to and initiated robust
333 infection in of the four contact animals. In contrast, only transient, low levels of the M.STOP virus
334 was observed in nasal washings collected from contacts (Fig. 8B). These results suggest that the
335 spatial structure inherent to multi-cycle replication mitigates the cost of incomplete genomes in
336 an individual host, but dependence on complementation is costly for transmission.

337

338 **Discussion**

339 Using a novel single-cell approach that enables robust detection of incomplete IAV
340 genomes, we show that ~99% of Pan/99 virus infections led to replication of fewer than eight
341 segments. The theoretical models we describe predict that the existence of IVGs presents a need
342 for cellular co-infection, and that this need has a high probability of being met when spread
343 occurs in a spatially structured manner. Use of silent genetic tags allowed us to experimentally
344 interrogate cooperation at the cellular level to test these predictions. In agreement with our
345 models, experiments in cell culture showed that co-infection and complementation occur readily
346 when multiple rounds of infection are allowed to proceed with spatial structure. The high
347 potential for complementation to occur *in vivo* was furthermore revealed by the robust within-
348 host spread of a virus that is fully dependent on co-infection. Complementation was not observed
349 during transmission, however, suggesting that fully infectious particles may be required to
350 initiate infection in a new host.

351 The existence of incomplete genomes was previously predicted by Heldt et al., and these
352 predictions are consistent with the experimental findings of our single-cell assay²⁰. The
353 parameter estimated by this assay, P_p , is defined as the probability that, following infection with
354 a single virion, a given genome segment is successfully replicated. Previous work by Brooke et al.
355 has shown that cells infected at low MOIs express only a subset of viral proteins¹⁹. While this
356 failure of protein expression could be explained by a failure in transcription or translation, the
357 results of our single-cell sorting assay indicate that the vRNA segments themselves are absent, as
358 they should be amplified by the helper virus polymerase even if they do not encode functional

359 proteins. As in Brooke et al., our method does not discriminate between the alternative
360 possibilities that segments are absent from virions themselves or are lost within the cell, but
361 published results suggest that a single virion usually contains a full genome^{22,23}. Importantly, our
362 single cell assay quantifies the frequencies of all eight segments, rather than only those that can
363 be detected indirectly by staining for protein expression, and therefore allows for analysis of the
364 associations between segments. Despite the importance of interactions among vRNP segments
365 during virion assembly^{10,26-29}, we did not detect compelling evidence of segment co-occurrence
366 at the level of vRNA replication within target cells. This observation suggests that interactions
367 among segments formed during assembly are likely not maintained throughout the early stages
368 the viral life cycle.

369 The results of our single cell assay indicate that 1.3% of Pan/99 virions are fully infectious,
370 which is consistent with our prior estimates based on observed levels of reassortment between
371 Pan/99 wild type and variant viruses²⁴. This result is, however, lower than other reported
372 estimates of the frequency of fully infectious particles. This difference is likely due in part to our
373 use of a different virus strain, as Brooke et al. observed that this frequency is strain-specific¹⁹. In
374 addition, our use of a helper virus likely allows more robust detection of IVGs than would be
375 expected in a system dependent on the detection of non-replicating viral genomes or their mRNA
376 transcripts^{20,35}.

377 Replication and secondary spread in an individual host involves inherent spatial structure,
378 as virions emerge from an infected cell and travel some distance before infecting a new cell³⁶⁻³⁸.
379 Our theoretical model predicts that local co-infection resulting from this spatial structure
380 mitigates the fitness costs of incomplete genomes, but that there is a trade-off between

381 complementation and dispersal. Handel et al. explore a similar trade-off related to attachment
382 rates in well-mixed (unstructured) populations, and find that an intermediate level of "stickiness"
383 is optimal—virions that bind too tightly are slow to leave the cell that produced them, while those
384 bind too weakly are unable to infect new cells³⁹. We observe a similar effect with spatial
385 structure: virions that diffuse faster, and hence disperse farther before infecting a new cell, are
386 less likely to co-infect with enough virions to establish a productive infection. By contrast, when
387 virions diffuse more locally, co-infection occurs more frequently than is required for productive
388 infection and virions take longer to physically reach new cells, ultimately limiting spread. The
389 optimal level of spatial structure for a virus with incomplete genomes is thus an intermediate one
390 that allows a population of virions to efficiently reach new cells while ensuring enough
391 complementation to minimize the frequency of semi-infection.

392 In quantitative terms, our model predicts that a diffusion coefficient characteristic of a
393 sphere of 100 nM diameter in water would give a near-optimal level of spatial structure. While
394 this condition may approximate conditions for spherical virions in cell culture, the extracellular
395 environment experienced by a virus *in vivo* would be different. Namely, virus replicating within
396 the respiratory tract would be released into a layer of watery periciliary fluid, which underlies a
397 more viscous mucous blanket⁴⁰. The structure and composition of this epithelial lining fluid may
398 act to limit dispersal the of virus particles relative to that expected in cell culture. Importantly,
399 however, this fluid lining the airways is not static, but rather is moved in a directional manner by
400 coordinated ciliary action⁴⁰. This coordinated movement raises the interesting possibility that
401 IAVs may have evolved to depend upon ciliary action to mediate directional dispersal of virions

402 to new target cells, while maintaining a high potential for complementation of IVGs. This concept
403 will be explored in subsequent studies.

404 Our experiments designed to test the predicted role of spatial structure in enabling
405 complementation confirmed that secondary spread allows Pan/99-WT virus to replicate
406 efficiently even at low initial MOIs, diminishing the need for complementation after only 12 hours
407 of multi-cycle replication. The potential for complementation of IVGs *in vivo* was furthermore
408 evidenced by the replication in guinea pigs of Pan/99-M.STOP virus, which requires co-infection
409 for productive infection. Importantly, however, Pan/99-M.STOP virus did not initiate productive
410 infection in exposed cagemates. In interpreting this result, it is important to note that the
411 complementation needed by Pan/99-M.STOP virus requires co-infection with two viruses of a
412 particular genotype. This type of complementation has a lower probability of occurring than that
413 typically needed for completion of a WT IAV genome. Despite this caveat, the failure of Pan/99
414 M.STOP virus to transmit suggests that the establishment of IAV infection requires at least some
415 fully infectious virions. The delivery of multiple particles to a small area via droplet transmission
416 may allow multiple virions to infect the same cell and establish infection, but our data suggest
417 that this mechanism does not occur efficiently in a guinea pig model. The tight genetic bottleneck
418 observed in human-human transmission events is furthermore consistent with a model in which
419 infection is commonly initiated by single particles⁴¹. In prior work, mutations decreasing the
420 frequency of fully infectious particles, but not eliminating them entirely, were observed to
421 increase transmissibility²⁵. This enhanced transmission was attributed to modulation of the
422 HA:NA balance, which enhanced growth in the respiratory tract. In contrast, the HA:NA balance
423 of the Pan/99-M.STOP virus evaluated herein is not expected to differ from Pan/99 virus.

424 In summary, our findings suggest that incomplete genomes are a prominent feature of
425 IAV infection. These semi-infectious particles are less able to initiate infections in cell culture and
426 during transmission to new hosts, when virions are randomly distributed. In contrast, our data
427 show that incomplete genomes actively participate in the within-host dynamics of infection as
428 they are complemented by cellular co-infection, suggesting an important role for spatial structure
429 in viral spread. This frequent co-infection leads to higher gene copy numbers at the cellular level,
430 consequently promoting reassortment and free mixing of genes. Thus, a reliance of IAVs on co-
431 infection may have important implications for viral adaptation to novel environments such as
432 new hosts following cross-species transmission.

433

434 **Acknowledgements**

435 We thank Daniel Perez for the pDP2002 plasmid, and Shamika Danzy for technical assistance.
436 This work was funded in part by the NIH/NIAID Centers of Excellence in Influenza Research and
437 Surveillance (CEIRS), contract number HHSN272201400004C (to ACL and JS), and by NIH/NIAID
438 grants R01 AI099000 (to ACL) and U19 AI117891 (to RA, ACL and JS).

439

440 **Author Contributions**

441 NTJ contributed to the conception of work, experimental design, data acquisition and analysis,
442 interpretation of data and writing of the manuscript; NOO contributed to data acquisition and
443 analysis; AA contributed to data analysis and interpretation; JS contributed to experimental
444 design, interpretation of data and writing of the manuscript; RA contributed to conception of

445 work, interpretation of data and writing of the manuscript; ACL contributed to conception of

446 work, experimental design, interpretation of data and writing of the manuscript.

447

448 **Computational Methods**

449 *Probabilistic model to estimate costs of incomplete genomes for cellular infectivity*

450 To define the impact of incomplete viral genomes on viral infectivity, we considered how

451 the infectious dose varies with P_P , the probability that an individual genome segment from an

452 infectious virus is successfully delivered and replicated within the infected cell. This model

453 assumes that a single particle can deliver each of the 8 segments that a host cell does not already

454 contain. Furthermore, delivery of each segment is independent, making the action of segment

455 delivery by a single virion a binomial process ($p = P_P$, $N = \#$ of missing segments).

456 We model this process as a Markov chain in which a cell can exist in 9 states, containing

457 between 0 and 8 genome segments, and transitions between states are governed by the 9x9

458 matrix T , in which each element is described by the binomial distribution:

$$459 T_{i,j} = \binom{8-i}{j-i} (P_P)^{j-i} (1-P_P)^{8-j}$$

460 where i is the number of segments a cell contains before infection, and j is the number of

461 segments it contains after infection. Since the binomial distribution is not defined for $k < 0$, all

462 entries below the main diagonal are populated by 0s. The state of 8 segments, or productive

463 infection, becomes the absorbing state, and it is assumed that each cell will obtain all 8 genome

464 segments given the addition of enough virions. To estimate how many virions are required to

465 reach this state, we first define a 1x9 vector representing the distribution of segments per cell.

466 To represent an uninfected cell, we set $\tau_0 = [1,0\dots,0]$. The distribution of segments in a cell that

467 has been infected with v virions is then given by:

468
$$\tau_v = \tau * T^v$$

469 With the element of τ_v , representing the probability a cell contains 8 segments and is therefore

470 productively infected.

471 Finally, we use survival analysis to calculate the expected number of virions that must infect a

472 cell before it receives all 8 segments:

473
$$E(v) = \tau_{sub} * (I - T_{sub})^{-1} * 1_{sum}$$

474 wherein T_{sub} represents the upper-left 8x8 matrix of T (in which a cell contains 0 – 7 segments),

475 and τ_{sub} is the first 8 columns of τ_0 , I is the identity matrix, and 1_{sum} is an 8x1 vector that acts to

476 sum each state into a single value. This summary statistic represents the number of transitions

477 required for a cell to leave the semi-infected state or, more simply, the average number of virions

478 required to infect a cell, which we define as the “infectious unit.”

479 To define the impact of semi-infectious particles on the ability of a virus population to

480 establish infection in a naïve population of cells, Monte Carlo simulations were conducted in

481 which varying numbers of virus particles infected a monolayer of cells in a Poisson-distributed

482 manner, with different P_p values. 1000 simulations were run per (P_p , MOI) combination. At each

483 P_p and MOI, the percentage of cells containing 8 segments and the percentage of cells containing

484 between 1 and 7 segments were recorded, as well as the percentage of populations in which at

485 least one cell contained 8 segments following the inoculation. The MOI that led to 50% of cell

486 populations becoming infected (ID_{50}) was calculated for each P_p value based on four-parameter

487 logistic regression of the dose-response curves shown in Figure 3A.

488

489 *Individual-based model of replication*

490 A cellular automaton model of viral spread was developed to investigate the relationships among
491 spatial structure, prevalence of incomplete viral genomes, and viral fitness. The system consists
492 of a 100x100 grid of cells. Each cell contains 0 – 8 unique IAV genome segments. Virions exist on
493 the same grid, in a bound or unbound state. When a virion infects a cell, any missing segments
494 may be delivered, with the probability of delivery defined by P_p , as derived in Figure 1. The
495 simulation begins with a single productively infected cell in the middle of the grid. The following
496 events occur at each time-step (1 minute), and the frequency of each of these events is governed
497 by the parameters listed in Table 1.

498 1) Productive cells (containing 8 segments) produce virions, which are initially bound to the
499 producer cell's surface.

500 2) Free virions may attach to the cell at their current position.

501 3) Bound virions may infect the cell to which they are attached, or be released.

502 4) Free virions diffuse some normally distributed distance $N(\mu = 0, \sigma = \sqrt{2Dt})$, where D is
503 the diffusion coefficient, t is the length of the time-step, μ is the mean and σ is the
504 standard deviation.

505 5) Productive cells may die.

506 6) Infected cells (1 – 8 segments) may become refractory to super-infection.

507 To generate the data shown in Figure 4 and Figure 6B, these events were iterated over multiple
508 rounds of infection up to 96 h post-infection. Ten simulations per (D, P_p) combination were
509 conducted.

510

511 **Experimental Methods**

512 *Cells*

513 Madin-Darby canine kidney (MDCK) cells (contributed by Peter Palese, Icahn School of
514 Medicine at Mount Sinai) were cultured in minimal essential medium (MEM) supplemented with
515 10% fetal bovine calf serum (FCS), penicillin (100 IU), and streptomycin (100 ug/mL). 293T cells
516 (ATCC, CRL-3216) were cultured in Dulbecco's modified essential medium (DMEM)
517 supplemented with 10% FCS.

518 As used herein, "MEM" refers to MEM supplemented with 10% FCS and
519 penicillin/streptomycin at the above concentrations, which was used for maintaining cells in
520 culture. Following infection with influenza viruses, cells were incubated with "virus medium",
521 which herein refers to MEM supplemented with 0.3% bovine serum albumin and
522 penicillin/streptomycin at said concentrations. When their presence is indicated, TPCK-treated
523 trypsin was used at 1 ug/mL, NH₄Cl at 20 mM, HEPES at 50 mM.

524 *Viruses*

525 All viruses were generated by reverse genetics following modification of the influenza
526 A/Panama/2007/99 (H3N2) virus cDNA, which was cloned into pDP2002 (Chen et al. 2012). All
527 viruses were cultured in 9-11 day old embryonated hens' eggs unless otherwise noted below. To
528 limit propagation of defective interfering viral genomes, virus stocks were generated either from
529 a plaque isolate or directly from 293T cells transfected with reverse genetics plasmids. The only
530 genetic modification made to the Pan/99-WT virus was the addition of sequence encoding a 6-
531 His tag plus GGGGS linker following the signal peptide of the HA protein as previously described⁸.

532 A genetically distinct but phenotypically similar virus, referred to herein as "Pan/99-Helper", was
533 generated by the introduction of six or seven silent mutations on each segment, as well as the
534 addition of the HA-tag (sequence: YPYDVPDYA) instead of the 6-His tag. The silent mutations are
535 listed in Supplementary Table 1 and were designed to introduce strain-specific primer binding
536 sites, allowing the presence or absence of each segment to be measured by qRT-PCR. Epitope
537 tags in HA allowed identification of infected cells by flow cytometry.

538 A virus with two distinct forms of the M segment, referred to herein as "Pan/99-M.STOP
539 virus", was constructed. Site-directed mutagenesis was used to introduce nonsense mutations
540 into the pDP2002 plasmid containing the sequence of the M segment in order to abrogate
541 expression of M2 but not M1 (M1.Only), or vice versa (M2.Only). For M2.Only, three in-frame
542 stop codons were introduced downstream of the sequence encoding the shared M1/M2 N-
543 terminus. An in-frame ATG at nucleotide 152 was also disrupted. For M1.Only, three in-frame
544 stop codons were introduced in the M2 coding region downstream of the M1 ORF. In addition,
545 four amino acid changes were made to M2 coding sequence in the region following the splice
546 acceptor site and upstream of the introduced stop codons. Both plasmids were used in
547 conjunction with pDP plasmids encoding the other seven segments to generate a mixed virus
548 population in which each virion contained an M1.Only or M2.Only segment. At 24 h post
549 transfection, 293T cells were washed with 1 mL PBS, then overlaid with 1×10^6 MDCK cells in virus
550 medium plus TPCK-treated trypsin, and incubated at 33°C for 48 h. Supernatant was used to
551 inoculate a plaque assay, and after 48 h a plaque isolate was used to inoculate a 75 cm² flask of
552 MDCK cells. Following 48 h of growth, this stock was aliquoted and used to inoculate a plaque

553 assay. One plaque isolate was diluted and used to inoculate 10-day-old embryonated chickens'
554 eggs for a third passage. Experiments were conducted with this egg passage stock.

555 *Infections*

556 6-well dishes (Corning) were seeded with 4×10^5 MDCK cells in 2 mL MEM, then incubated
557 for 24 h. Prior to inoculation, MEM was removed and cells were washed twice with 1 mL PBS per
558 wash. Inocula containing virus in 200 μ L PBS were added to cells, which were incubated on ice
559 (to permit attachment but not viral entry) for 45 minutes. After inoculation, the monolayer was
560 washed with PBS remove unbound virus before 2 mL virus medium was added and plates were
561 incubated at 33°C. For multi-cycle replication, TPCK-treated trypsin was added to virus medium
562 to a final concentration of 1 μ g/mL. When single-cycle conditions were required, virus medium
563 was removed after 3 h and replaced with 2 mL virus medium containing NH₄Cl and HEPES.

564 *Flow cytometry*

565 At 12 h post-inoculation, virus medium was aspirated from infected cells, and monolayers
566 were washed with PBS. The monolayer was disrupted using 0.05% trypsin + 0.53 mM EDTA in
567 Hank's Balanced Salt Solution (HBSS). After 15 minutes at 37°C, plates were washed with 1 mL
568 FACS buffer (PBS + 1% FCS + 5 mM EDTA) to collect cells and transfer them to 1.7 mL tubes. Cells
569 were spun at 2,500 rpm for 5 minutes, then resuspended in 200 μ L FACS buffer and transferred
570 to 96-well V-bottom plates (Corning). The plate was spun at 2,500 rpm and supernatant
571 discarded. Cells were resuspended in 50 μ L FACS buffer containing antibodies at the following
572 concentrations, then incubated at 4°C for 30 minutes:

573 1.) His Tag-Alexa 647 (5 μ g/mL) (Qiagen, catalog no. 35370)

574 2.) HA Tag-FITC (7 μ g/mL) (Sigma, clone HA-7)

575 After staining, cells were washed by three times by centrifugation and resuspension in
576 FACS buffer. After the final wash, cells were resuspended in 200 uL FACS buffer containing 7-AAD
577 (12.5 ug/mL) and analyzed by flow cytometry using a BD Fortessa.

578 This approach was modified slightly when staining for M1 and M2. After staining for His
579 and HA (where indicated), cells were washed once with 200 uL FACS buffer, then resuspended in
580 100 uL BD Cytofix/Cytoperm buffer and incubated at 4°C for 20 minutes. BD Cytoperm/Cytowash
581 (perm/wash) buffer was added to each well, and cells were spun at 2,500 rpm for 5 minutes.
582 After a second wash, cells were resuspended in 50 uL perm/wash buffer containing antibodies at
583 the following concentrations:

584 1.) Anti-M1 GA2B conjugated to Pacific Blue (4 ug/mL) (ThermoFisher)
585 2.) Anti-M2 14C2 conjugated to PE (4 ug/mL) (Santa Cruz)

586 Following another 30 minutes of staining at 4° C, cells were washed three times (as
587 described above) with perm/wash buffer, then resuspended in FACS buffer without 7-AAD just
588 prior to analysis on the BD Fortessa.

589 *Quantification of P_p values*

590 A single cell sorting assay was used to measure the frequency with which individual
591 genome segments are delivered to an infected cell. 4×10^5 MDCK cells were seeded into a 6-well
592 dish, then counted the next day just before inoculation. Cells were then washed 3x with PBS and
593 co-inoculated with the virus of interest (Pan/99-WT, MOI = 0.5 PFU/cell) and helper virus
594 (Pan/99-Helper, MOI = 3.0 PFU/cell) in a volume of 200 uL. Cells were incubated at 33°C for 60
595 minutes, after which they were washed 3x with PBS, and 2 mL of virus medium was added. After
596 incubation at 33°C for 60 minutes, medium was removed and cells were washed 3x with PBS

597 before addition of Cell Dissociation Buffer (Corning) containing 0.1% EDTA (w/v) to release cells
598 from the plate surface. Cells were harvested by resuspension in MEM, followed by a series of
599 three washes in 2 mL FACS buffer (2% FCS in PBS). Cells were resuspended in PBS containing 1%
600 FCS, 10 mM HEPES, and 0.1% EDTA and filtered immediately prior to sorting on a BD Aria II. After
601 gating to exclude debris and doublets, one event was sorted into each well of a 96-well plate
602 containing MDCK cell monolayers at 30% confluence in 50 μ L virus medium containing TPCK-
603 treated trypsin. After sorting, an additional 50 μ L of medium was added to a final volume of 100
604 μ L per well, and plates were spun at 1,800 rpm for 2 minutes to help each sorted cell attach to
605 the plate surface. Plates were incubated at 33°C for 48 h to allow outgrowth of virus from this
606 single infected cell.

607 RNA was extracted from infected cells using a ZR-96 Viral RNA Kit (Zymo Research) as per
608 manufacturer instructions. Extracted RNA was converted to cDNA using universal influenza
609 primers (given in Supplementary Table 2), Maxima RT (Thermo Scientific, 100 U/sample) and
610 RiboLock RNase inhibitor (Thermo Scientific, 28 U/sample) according to manufacturer
611 instructions. After conversion, cDNA was diluted 1:4 with nuclease-free water and used as
612 template (4 μ L/reaction) for segment-specific qPCR using SsoFast EvaGreen Supermix (Bio-Rad)
613 in 10 μ L reactions. Primers for each segment of Pan/99-WT virus, as well as the PB2 and PB1
614 segments of Pan/99-Helper virus, are given in Supplementary Table 2, and were used at final
615 concentrations of 200 nM each.

616 P_p was calculated using the following correction factor to account for the frequency of co-
617 infection:

618

$$P_P = \frac{\ln(1 - \frac{C}{A})}{\ln(1 - \frac{B}{A})}$$

619 where A is the number of Helper⁺ cells, B is the number of wells positive for any WT segment,
620 and C is the number of wells positive for the WT segment in question.

621 *Single-cycle growth curves*

622 Cells were inoculated with Pan/99-WT virus at MOIs of 1, 3, 6, 10, or 20 PFU/cell, and
623 incubated with 2 mL virus medium at 33° C. After 3 h, virus medium was replaced with virus
624 medium containing NH₄Cl and HEPES. 100 uL of medium was collected at 3, 4.5, 6, 8, 12, 18, 24,
625 and 48 h post-inoculation (with replacement by fresh medium to keep volumes consistent) for
626 virus quantification by plaque assay. At 12 h post-inoculation, cells were harvested and stained
627 for analysis of HA expression by flow cytometry.

628 *Impact of secondary spread on complementation of incomplete genomes*

629 To optimize the approach of using Pan/99-Helper to activate and thereby detect semi-
630 infected cells, we co-inoculated cells with a low MOI (0.01 PFU/cell) of Pan/99-WT virus and a
631 range of Pan/99-Helper virus MOIs and measured expression of WT HA after 12 h. We observed
632 a biphasic relationship between helper virus MOI and the benefit provided to WT virus
633 (Supplementary Figure 3C). As more Helper virus was added, the percentage of cells expressing
634 WT HA initially increased as more cells became co-infected and thus capable of expressing the
635 WT HA protein. But, as the Helper MOI increased further, a competitive effect was observed and
636 the probability of detecting WT HA expression was decreased. Observing that Pan/99-Helper
637 virus provided the greatest benefit—a 2-fold increase in the frequency of WT HA expression—at

638 an MOI of 0.3 PFU/cell, we used that amount in further complementation experiments. Based on
639 measured P_p values, this dose is estimated to contain an average of 27 particles/cell.

640 In single cycle replication conditions, cells were inoculated on ice with Pan/99-WT virus
641 over a range of MOIs (0.1, 0.3, 0.6, 1 PFU/cell) and, at the same time, with Pan/99-Helper virus
642 (MOI = 0.3 PFU/cell) or PBS. After inoculation, cells were washed with 1 mL PBS, 2 mL virus
643 medium (no trypsin) was added, and cells were incubated at 33°C for 3 h, after which initial virus
644 medium was replaced with virus medium containing NH₄Cl and HEPES. At 12 h post-inoculation,
645 cells were collected and stained for WT and Helper HA expression as described above.

646 In multi-cycle replication conditions, cells were inoculated on ice with Pan/99-WT at an
647 MOI of 0.01 or 0.002 PFU/cell, and then incubated at 33°C with virus medium containing TPCK-
648 treated trypsin to allow for multi-cycle growth. After 12 h, cells were washed with 1 mL PBS, then
649 inoculated on ice with Pan/99-Helper virus (MOI = 0.3 PFU/cell), or PBS. After inoculation, cells
650 were washed with 1 mL PBS, 2 mL virus medium (no trypsin) was added, and cells were incubated
651 at 33°C for 3 h, after which initial virus medium was replaced with virus medium containing NH₄Cl
652 and HEPES. At 12 h post-inoculation with Pan/99-Helper virus, cells were collected and stained
653 for WT and Helper HA expression as described above. The amount of complementation provided
654 by Pan/99-Helper virus was calculated using the equation:

$$655 \%Enrichment = \frac{\%WT^+|Helper^+ - \%WT^+|Helper^-}{\%WT^+|Helper^-} * 100$$

656

657 *Digital droplet PCR (ddPCR)*

658 Primers and probes (listed in Supplementary Table 3) were diluted to concentrations of
659 900 nM and 250 nM per primer and probe, respectively. 22 uL reactions were prepared with 11

660 uL Bio-Rad SuperMix for Probes (1X final concentration), 6.6 uL of diluted primers (900
661 nM/primer, final concentration) and probes (250 nM/probe, final concentration), and 4.4 uL of
662 diluted cDNA. 20 uL of each reaction mixture was partitioned into droplets using a Bio-Rad QX200
663 droplet generator per manufacturer instructions. PCR conditions were: 1.) 95° C for 10 minutes,
664 2.) 40 cycles of A.) 94° C for 30 seconds and B.) 57° C for 1 minute, 3.) 98° C for 10 minutes, and
665 hold at 4°C. Droplets were then read on Bio-Rad QX200 droplet reader, and the number of cDNA
666 copies/uL was calculated.

667 *Guinea pig infections*

668 Female Hartley guinea pigs were obtained from Charles River Laboratories (Wilmington, MA) and
669 housed by Emory University Department of Animal Resources. All experiments were conducted
670 in accordance with an approved Institutional Animal Care and Use Committee protocol. For ID₅₀
671 estimation and analysis of viral shedding, guinea pigs were anesthetized by intramuscular
672 injection with 30 mg/kg / 4 mg/kg ketamine/xylazine, then inoculated intranasally with 300 uL
673 virus diluted in PBS. Nasal washes were collected in PBS on days 1, 2, 3, 5, and 7 as described in⁴²,
674 and titered by RT ddPCR targeting the NS segment. For transmission experiments, inoculated
675 guinea pigs were individually housed in Caron 6040 environmental chambers at 10°C and 20%
676 relative humidity. At 24 h post-inoculation, one naïve guinea pig was introduced to each cage
677 with one inoculated animal. Nasal washes were collected on days 2, 4, 6, and 8, and titered by
678 plaque assay.

679

680

681

682 **Figure Legends**

683 **Figure 1 — Incomplete genomes are common in Pan/99 virus infection.**

684 (A) Segment-specific P_p values were measured by a single-cell sorting assay. Each set of colored
685 points corresponds to eight P_p values measured in a single experimental replicate, with thirteen
686 independent replicates performed. Horizontal bars indicate the mean and shading shows the
687 95% CI. Segments encoding the polymerase subunits PB2, PB1, and PA were present significantly
688 less frequently than others ($p < 0.001$, ANOVA). (B) Using each replicate's P_p values as input
689 parameters, the computational model from Fonville et al. was used to predict the frequency of
690 reassortment across multiple levels of infection²⁴. Black circles represent experimental data from
691 Fonville et al. and show levels of reassortment observed following single cycle coinfection of
692 MDCK cells with Pan/99-WT and a Pan/99 variant viruses. Colors correspond to the legend shown
693 in panel A. (C) Pairwise correlations between segments (r) are shown as color intensities
694 represented by a color gradient (below).

695 **Figure 2 — Incomplete genomes require complementation for productive infection at the**
696 **cellular level.**

697 (A) The expected number of segments delivered upon infection with a single virion was calculated
698 for two extreme values of P_p (0.10, 0.90) and the estimated P_p of Pan/99 virus (0.58). (B) The
699 percentage of virions expected to initiate productive infection was plotted as a function of P_p .
700 Colored points correspond to the average P_p value of each experimental replicate in Fig. 1 and
701 therefore show the prediction for Pan/99 virus. (C) The probability that a cell will be productively
702 infected following infection with a given number of virions was calculated for the same P_p values
703 as in (A). (D) The expected number of virions required to make a cell productively infected is

704 plotted as a function of P_p . As in (B), colored points correspond to the average P_p value of each
705 Pan/99 experimental replicate in Fig. 1.

706

707 **Figure 3 — Requirement for co-infection poses a barrier to establishing an infection in a**
708 **population of cells.**

709 To define the impact of IVGs on the ability of a virus population to establish infection in a naïve
710 population of cells, simulations were conducted in which varying numbers of virus particles with
711 varying P_p values infected a monolayer of cells ($N = 100$ simulations per (P_p , MOI) combination).
712 (A) At each P_p and MOI, the percentage of populations in which at least one cell contained 8
713 segments following the inoculation was calculated. (B) The MOI that led to 50% of cell
714 populations becoming infected (ID_{50}) was plotted as a function of P_p .

715

716 **Figure 4 — The fitness costs of incomplete genomes may be mitigated by spatially structured**
717 **spread.**

718 The dynamics of multi-cycle replication in a 100x100 grid of cells were simulated, starting from a
719 single cell in the center of the grid. (A) The initial growth rate (estimated by the number of cells
720 infected in the first 12 h) is shown across a range of diffusion coefficients for a virus with $P_p = 1.0$
721 (black) and $P_p = 0.58$ (green). (B, C) The fitness cost of IVGs, as measured by the reduction in initial
722 growth rate (B) and the reduction in the number of virions produced at peak (C) are shown across
723 a range of diffusion coefficients. The vertical dashed line represents the estimated value of D
724 ($5.825 \text{ um}^2/\text{s}$) for a spherical IAV particle in water. Each point shows the mean of 10 simulations.
725 Curves were generated by local regression. Shading represents 95% CI.

726

727 **Figure 5 — Burst size of Pan/99 virus is constant over a range of high MOIs.**

728 (A) MDCK cells were inoculated with Pan/99-WT virus at MOIs of 1, 3, 6, 10, and 20 PFU/cell
729 under single-cycle conditions. Infectious titers at each time point are shown, with MOI indicated
730 by the colors defined in the legend. Dashed line indicates the limit of detection (50 PFU/mL). (B)
731 Fraction of cells expressing HA, as measured by flow cytometry, at each MOI. (C) Burst size in PFU
732 produced per HA⁺ cell. In all panels, mean and standard error are plotted and colors correspond
733 to the legend in panel A.

734

735 **Figure 6 — Complementation of incomplete genomes occurs efficiently at high MOI and during**
736 **secondary spread from low MOI.**

737 (A) A well-mixed inoculation was simulated as in Fig. 3. The percentage of infected cells that
738 contain fewer than 8 segments is shown at a range of MOIs for $P_p = 0.58$. (B) An infection in which
739 multi-cycle replication occurs with spatial structure was simulated as in Fig. 4. The maximum
740 number of cells that become semi-infected in each simulation is shown for a range of diffusion
741 coefficients. (C) The extent to which the presence of Pan/99-Helper virus increased WT HA
742 positivity (% Enrichment) was evaluated at the outset of infection (open circles) and following
743 secondary spread (filled circles). To gauge potential for complementation at the outset of
744 infection, cells were simultaneously inoculated with Pan/99-WT virus and Pan/99-Helper, then
745 incubated under single-cycle conditions for 12 h. To test the impact of secondary spread on
746 potential for complementation, cells were inoculated with Pan/99-WT at low MOI and incubated

747 under multi-cycle conditions for 12 h, then inoculated with Pan/99-Helper and incubated under
748 single-cycle conditions for 12 h. Shading represents 95% CI. IVGs = incomplete viral genomes

749

750 **Figure 7 — Dependence on complementation hinders viral infectivity.**

751 (A) Mutation scheme used to generate M1.Only and M2.Only segments. (B) Copies of M1.Only,
752 M2.Only, and NS segments in three separate Pan/99-M.STOP virus stocks were quantified by
753 digital droplet PCR. (C) Cells were inoculated with Pan/99-M.STOP virus and incubated under
754 single-cycle conditions before staining for HA, M1, and M2 expression. The percentage of cells
755 expressing M1, M2, and HA within M1⁺ or M2⁺ subpopulations is shown at each dilution. Curves
756 represent linear regression with shading representing 95% CI. (D) Titers of WT and M.STOP virus
757 stocks were quantified by ddPCR targeting the NS segment, ddPCR targeting (any) M segment,
758 immunotitration by flow cytometry, plaque assay, tissue culture ID₅₀, and guinea pig ID₅₀. All
759 results are normalized to the ratio of NS ddPCR copy numbers.

760

761 **Figure 8 – Dependence on complementation hinders viral transmission but has a more modest
762 effect on replication.**

763 (A) Guinea pigs were inoculated with 10⁷ RNA copies of Pan/99-WT virus or Pan/99-M.STOP
764 virus, and nasal washes were collected over 7 days to monitor shedding. NS segment copy
765 number per mL of nasal lavage fluid is plotted. (B) Guinea pigs were inoculated with 8 x
766 GPID₅₀ of Pan/99-WT virus or Pan/99-M.STOP virus and co-housed with uninfected
767 partners after 24 h. Nasal washes were collected over the course of 8 days to monitor
768 shedding kinetics and transmission between cagemates. NS segment copy number per

769 mL of nasal lavage fluid is plotted. Horizontal dotted line represents the limit of detection
770 (335 RNA copies/mL).

771 **References Cited**

772 1 Pauly, M. D., Procario, M. C. & Lauring, A. S. A novel twelve class fluctuation test reveals
773 higher than expected mutation rates for influenza A viruses. *Elife* **6**,
774 doi:10.7554/eLife.26437 (2017).

775 2 Chao, L., Tran, T. T. & Tran, T. T. The advantage of sex in the RNA virus phi 6. *Genetics* **147**,
776 953-959 (1997).

777 3 Ince, W. L., Gueye-Mbaye, A., Bennink, J. R. & Yewdell, J. W. Reassortment complements
778 spontaneous mutation in influenza A virus NP and M1 genes to accelerate adaptation to
779 a new host. *Journal of virology* **87**, 4330-4338, doi:10.1128/jvi.02749-12 (2013).

780 4 Chao, L., Tran, T. R. & Matthews, C. Muller Ratchet and the Advantage of Sex in the Rna
781 Virus-Phi-6. *Evolution; international journal of organic evolution* **46**, 289-299, doi:Doi
782 10.2307/2409851 (1992).

783 5 Chao, L. Fitness of RNA virus decreased by Muller's ratchet. *Nature* **348**, 454-455,
784 doi:10.1038/348454a0 (1990).

785 6 Luijckx, P. *et al.* Higher rates of sex evolve during adaptation to more complex
786 environments. *Proceedings of the National Academy of Sciences of the United States of
787 America* **114**, 534-539, doi:10.1073/pnas.1604072114 (2017).

788 7 Becks, L. & Agrawal, A. F. The evolution of sex is favoured during adaptation to new
789 environments. *PLoS biology* **10**, e1001317, doi:10.1371/journal.pbio.1001317 (2012).

790 8 Marshall, N., Priyamvada, L., Ende, Z., Steel, J. & Lowen, A. C. Influenza virus reassortment
791 occurs with high frequency in the absence of segment mismatch. *PLoS pathogens* **9**,
792 e1003421, doi:10.1371/journal.ppat.1003421 (2013).

793 9 Essere, B. *et al.* Critical role of segment-specific packaging signals in genetic reassortment
794 of influenza A viruses. *Proceedings of the National Academy of Sciences of the United
795 States of America* **110**, E3840-3848, doi:10.1073/pnas.1308649110 (2013).

796 10 White, M. C., Steel, J. & Lowen, A. C. Heterologous Packaging Signals on Segment 4, but
797 Not Segment 6 or Segment 8, Limit Influenza A Virus Reassortment. *J Virol* **91**,
798 doi:10.1128/JVI.00195-17 (2017).

799 11 Phipps, K. L. *et al.* Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort
800 Efficiently but Produce Attenuated Progeny. *J Virol* **91**, doi:10.1128/JVI.00830-17 (2017).

801 12 Villa, M. & Lassig, M. Fitness cost of reassortment in human influenza. *PLoS Pathog* **13**,
802 e1006685, doi:10.1371/journal.ppat.1006685 (2017).

803 13 Yang, J. R. *et al.* Reassortment and mutations associated with emergence and spread of
804 oseltamivir-resistant seasonal influenza A/H1N1 viruses in 2005-2009. *PLoS one* **6**, e18177,
805 doi:10.1371/journal.pone.0018177 (2011).

806 14 Simonsen, L. *et al.* The genesis and spread of reassortment human influenza A/H3N2
807 viruses conferring adamantane resistance. *Molecular biology and evolution* **24**, 1811-
808 1820, doi:10.1093/molbev/msm103 (2007).

809 15 Nelson, M. I. *et al.* Multiple reassortment events in the evolutionary history of H1N1
810 influenza A virus since 1918. *PLoS pathogens* **4**, e1000012,
811 doi:10.1371/journal.ppat.1000012 (2008).

812 16 Holmes, E. C. *et al.* Whole-genome analysis of human influenza A virus reveals multiple
813 persistent lineages and reassortment among recent H3N2 viruses. *PLoS biology* **3**, e300,
814 doi:10.1371/journal.pbio.0030300 (2005).

815 17 Hutchinson, E. C., von Kirchbach, J. C., Gog, J. R. & Digard, P. Genome packaging in
816 influenza A virus. *The Journal of general virology* **91**, 313-328, doi:10.1099/vir.0.017608-
817 0 (2010).

818 18 Dou, D. *et al.* Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA
819 Viral Genome Labeling Method. *Cell reports* **20**, 251-263,
820 doi:10.1016/j.celrep.2017.06.021 (2017).

821 19 Brooke, C. B. *et al.* Most influenza a virions fail to express at least one essential viral
822 protein. *Journal of virology* **87**, 3155-3162, doi:10.1128/jvi.02284-12 (2013).

823 20 Heldt, F. S., Kupke, S. Y., Dorl, S., Reichl, U. & Frensing, T. Single-cell analysis and stochastic
824 modelling unveil large cell-to-cell variability in influenza A virus infection. *Nat Commun* **6**,
825 8938, doi:10.1038/ncomms9938 (2015).

826 21 Diefenbacher, M., Sun, J. & Brooke, C. B. The parts are greater than the whole: the role of
827 semi-infectious particles in influenza A virus biology. *Current opinion in virology* **33**, 42-
828 46, doi:10.1016/j.coviro.2018.07.002 (2018).

829 22 Nakatsu, S. *et al.* Complete and Incomplete Genome Packaging of Influenza A and B
830 Viruses. *MBio* **7**, doi:10.1128/mBio.01248-16 (2016).

831 23 Chou, Y. Y. *et al.* One influenza virus particle packages eight unique viral RNAs as shown
832 by FISH analysis. *Proceedings of the National Academy of Sciences of the United States of
833 America* **109**, 9101-9106, doi:10.1073/pnas.1206069109 (2012).

834 24 Fonville, J. M., Marshall, N., Tao, H., Steel, J. & Lowen, A. C. Influenza Virus Reassortment
835 Is Enhanced by Semi-infectious Particles but Can Be Suppressed by Defective Interfering
836 Particles. *PLoS pathogens* **11**, e1005204, doi:10.1371/journal.ppat.1005204 (2015).

837 25 Brooke, C. B., Ince, W. L., Wei, J., Bennink, J. R. & Yewdell, J. W. Influenza A virus
838 nucleoprotein selectively decreases neuraminidase gene-segment packaging while
839 enhancing viral fitness and transmissibility. *Proc Natl Acad Sci U S A* **111**, 16854-16859,
840 doi:10.1073/pnas.1415396111 (2014).

841 26 Gao, Q. & Palese, P. Rewiring the RNAs of influenza virus to prevent reassortment.
842 *Proceedings of the National Academy of Sciences of the United States of America* **106**,
843 15891-15896, doi:10.1073/pnas.0908897106 (2009).

844 27 Lakdawala, S. S. *et al.* Influenza a virus assembly intermediates fuse in the cytoplasm. *PLoS
845 Pathog* **10**, e1003971, doi:10.1371/journal.ppat.1003971 (2014).

846 28 Marsh, G. A., Hatami, R. & Palese, P. Specific residues of the influenza A virus
847 hemagglutinin viral RNA are important for efficient packaging into budding virions.
848 *Journal of virology* **81**, 9727-9736, doi:10.1128/jvi.01144-07 (2007).

849 29 Marsh, G. A., Rabadan, R., Levine, A. J. & Palese, P. Highly conserved regions of influenza
850 a virus polymerase gene segments are critical for efficient viral RNA packaging. *Journal of
851 virology* **82**, 2295-2304, doi:10.1128/jvi.02267-07 (2008).

852 30 Han, G. Z. & Worobey, M. Homologous recombination in negative sense RNA viruses.
853 *Viruses* **3**, 1358-1373, doi:10.3390/v3081358 (2011).

854 31 Cheung, T. K. *et al.* Generation of recombinant influenza A virus without M2 ion-channel
855 protein by introduction of a point mutation at the 5' end of the viral intron. *J Gen Virol* **86**,
856 1447-1454, doi:86/5/1447 [pii]
857 10.1099/vir.0.80727-0 (2005).

858 32 Watanabe, T., Watanabe, S., Ito, H., Kida, H. & Kawaoka, Y. Influenza A virus can undergo
859 multiple cycles of replication without M2 ion channel activity. *J Virol* **75**, 5656-5662,
860 doi:10.1128/JVI.75.12.5656-5662.2001 (2001).

861 33 Takeda, M., Pekosz, A., Shuck, K., Pinto, L. H. & Lamb, R. A. Influenza a virus M2 ion
862 channel activity is essential for efficient replication in tissue culture. *J Virol* **76**, 1391-1399
863 (2002).

864 34 Lonsdale, R. *et al.* A rapid method for immunotitration of influenza viruses using flow
865 cytometry. *J Virol Methods* **110**, 67-71, doi:S0166093403001022 [pii] (2003).

866 35 Russell, A. B., Trapnell, C. & Bloom, J. D. Extreme heterogeneity of influenza virus infection
867 in single cells. *eLife* **7**, doi:10.7554/eLife.32303 (2018).

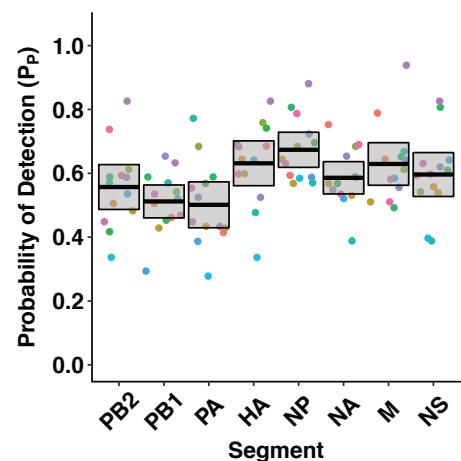
868 36 Fukuyama, S. *et al.* Multi-spectral fluorescent reporter influenza viruses (Color-flu) as
869 powerful tools for in vivo studies. *Nature communications* **6**, 6600,
870 doi:10.1038/ncomms7600 (2015).

871 37 Gallagher, M. E., Brooke, C. B., Ke, R. & Koelle, K. Causes and Consequences of Spatial
872 Within-Host Viral Spread. *Viruses* **10**, doi:10.3390/v10110627 (2018).

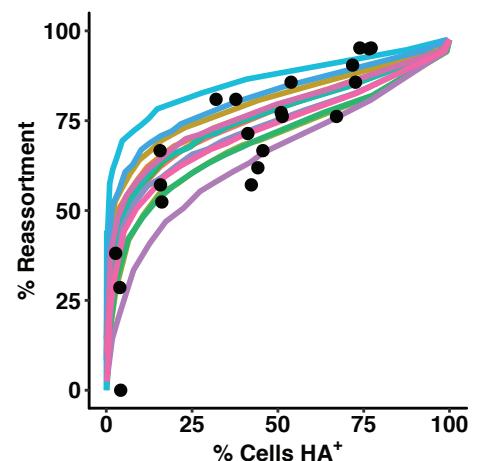
873 38 Karlsson, E. A. *et al.* Visualizing real-time influenza virus infection, transmission and
874 protection in ferrets. *Nat Commun* **6**, 6378, doi:10.1038/ncomms7378 (2015).

875 39 Handel, A., Akin, V., Pilyugin, S. S., Zarnitsyna, V. & Antia, R. How sticky should a virus be?
876 The impact of virus binding and release on transmission fitness using influenza as an
877 example. *J R Soc Interface* **11**, 20131083, doi:10.1098/rsif.2013.1083 (2014).

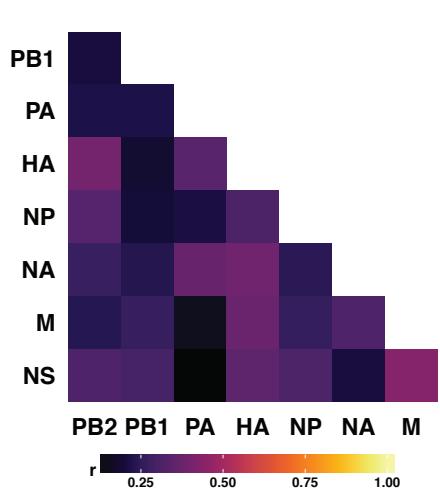
878 40 Widdicombe, J. H. Regulation of the depth and composition of airway surface liquid. *J
879 Anat* **201**, 313-318 (2002).

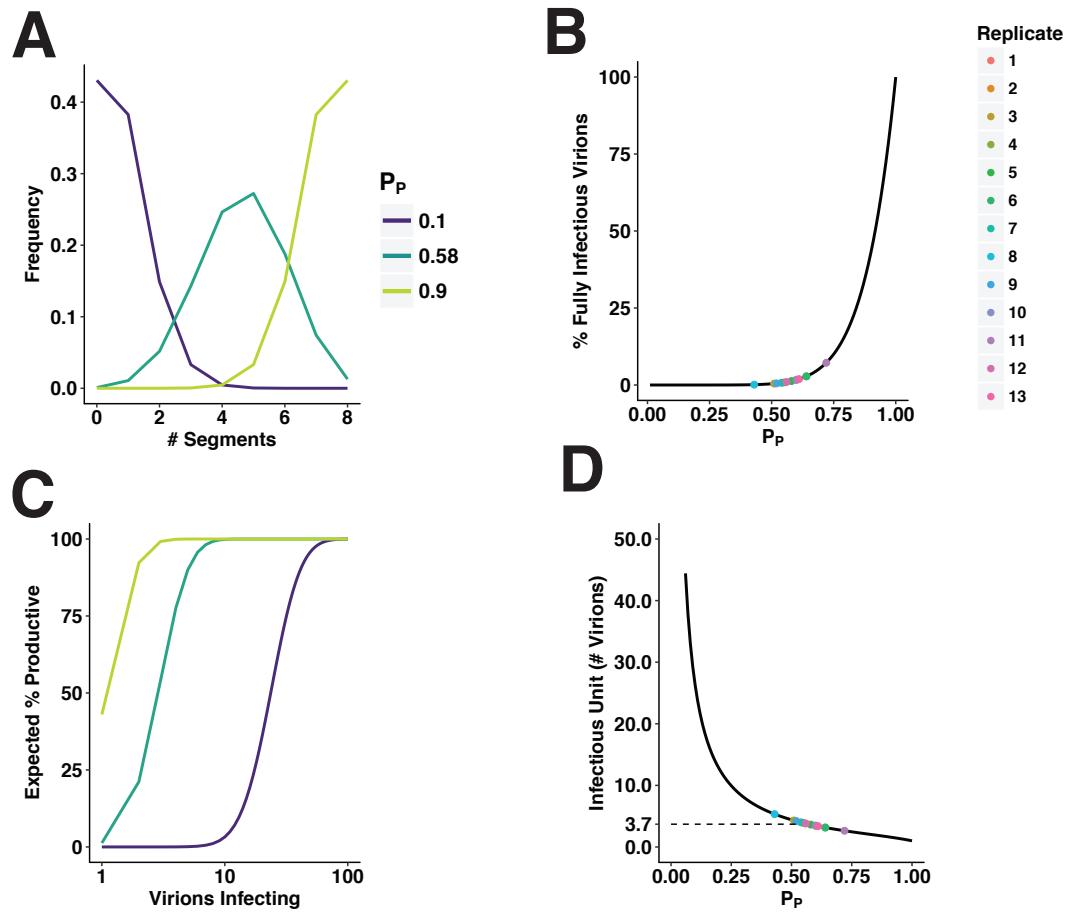

880 41 McCrone, J. T. *et al.* Stochastic processes constrain the within and between host evolution
881 of influenza virus. *eLife* **7**, doi:10.7554/eLife.35962 (2018).

882 42 Lowen, A. C., Mubareka, S., Tumpey, T. M., Garcia-Sastre, A. & Palese, P. The guinea pig
883 as a transmission model for human influenza viruses. *Proceedings of the National
884 Academy of Sciences of the United States of America* **103**, 9988-9992,
885 doi:10.1073/pnas.0604157103 (2006).


886

887


A


B

C

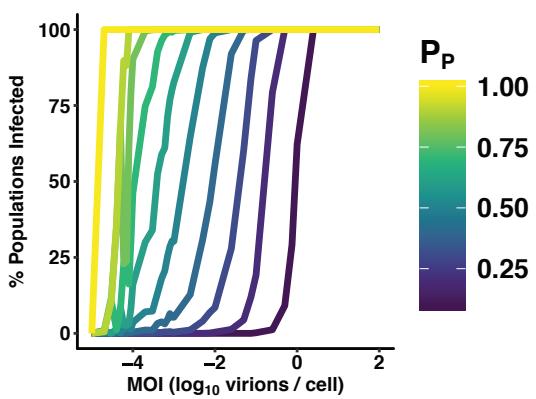


Fig. 1

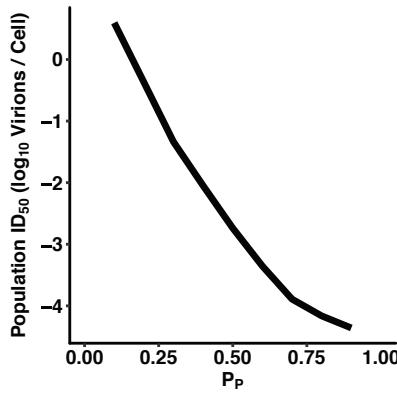
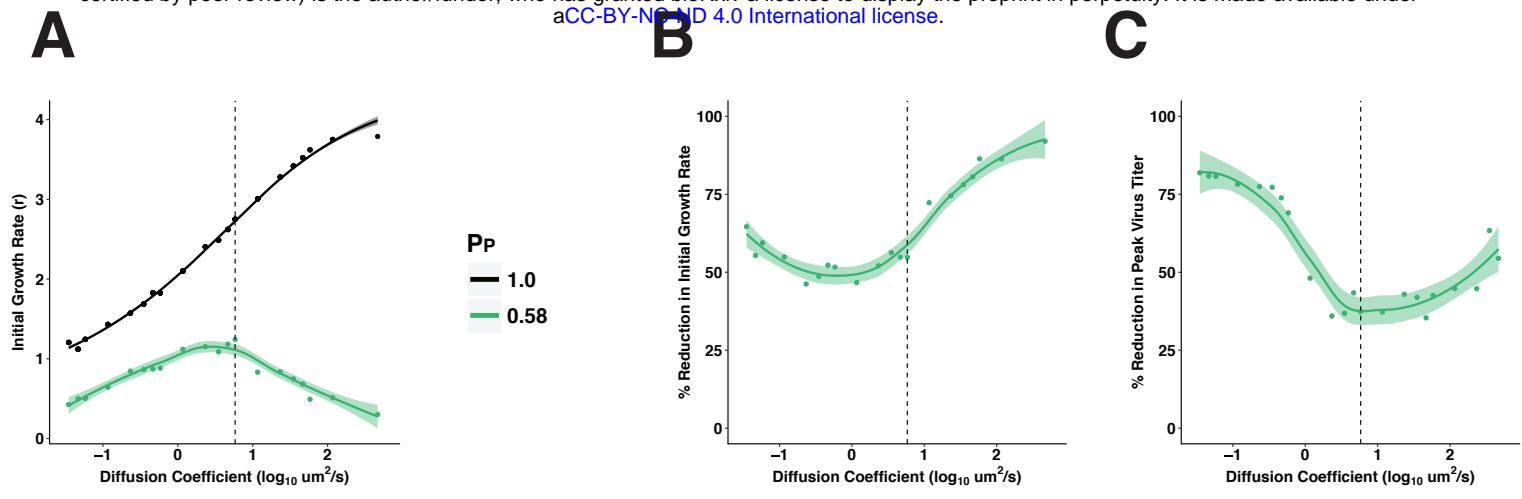


Fig. 2


A

B

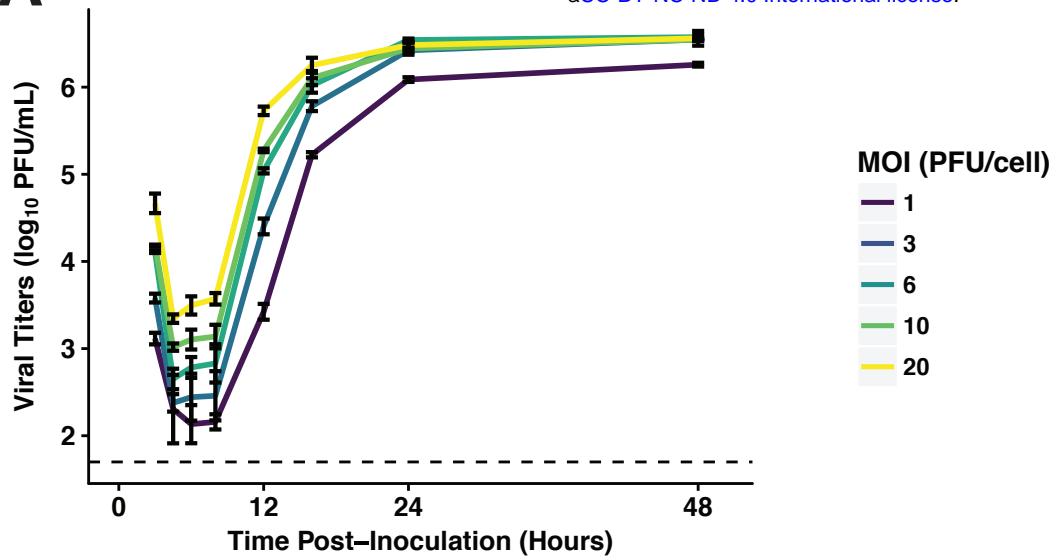


Fig. 3

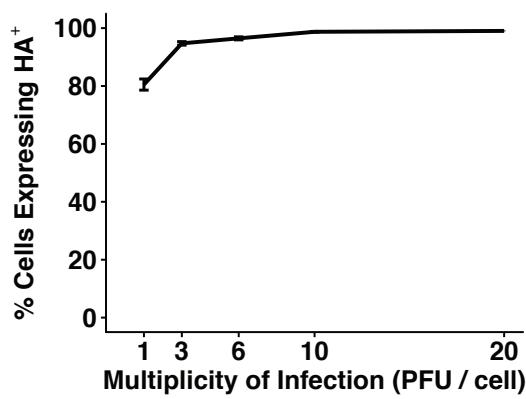
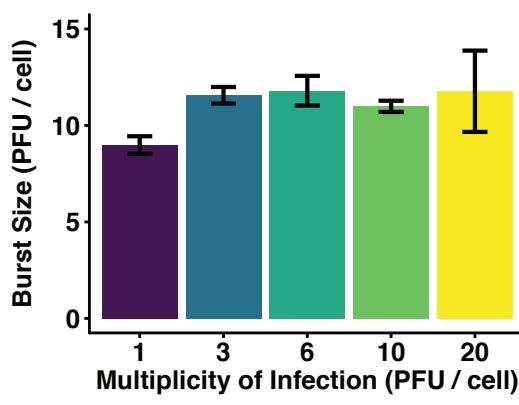
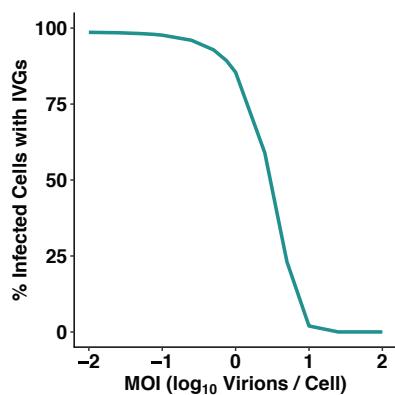


Fig. 4


A

B



C

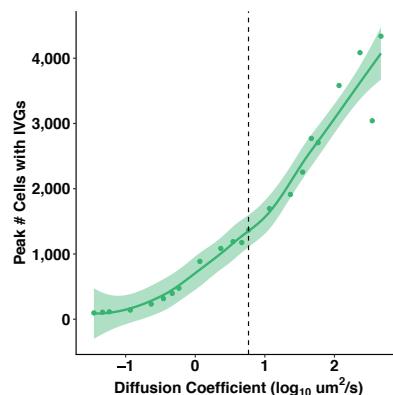
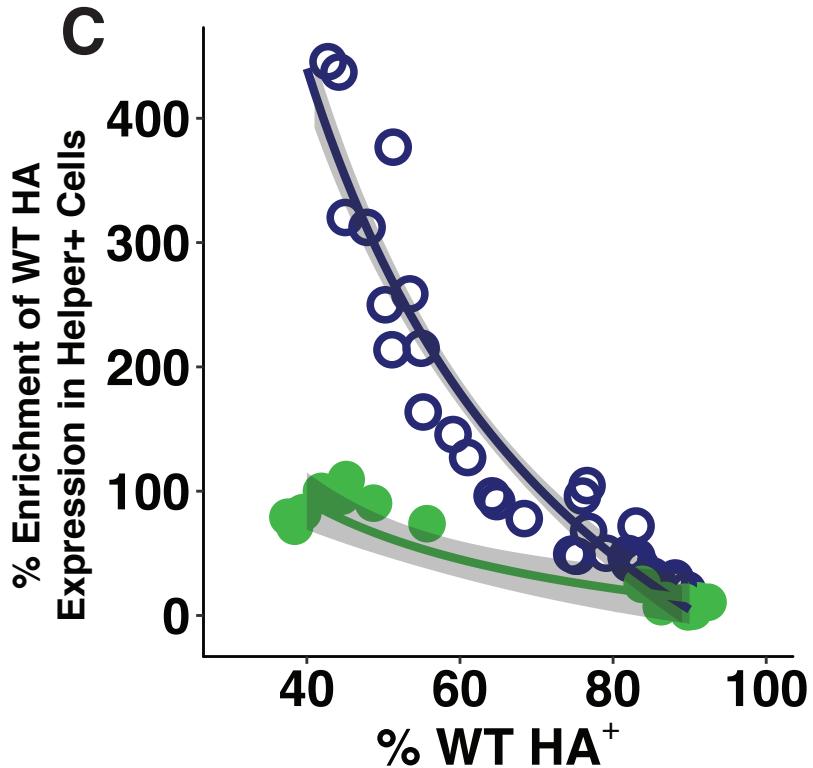


Fig. 5


A

B

C


Single cycle conditions, with Helper virus added at time of WT virus inoculation

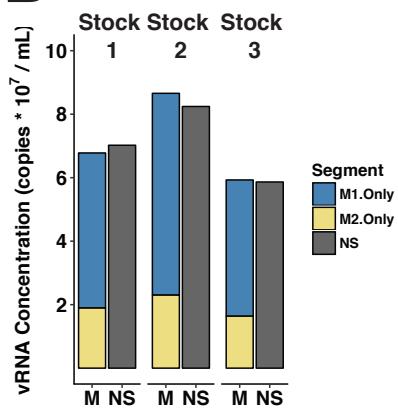
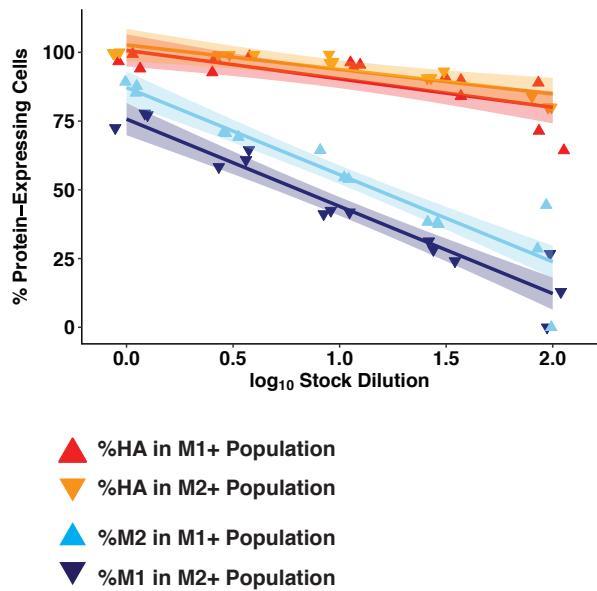
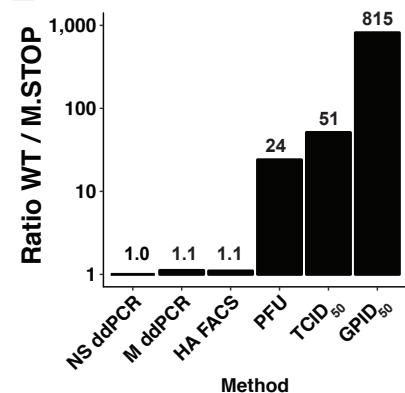
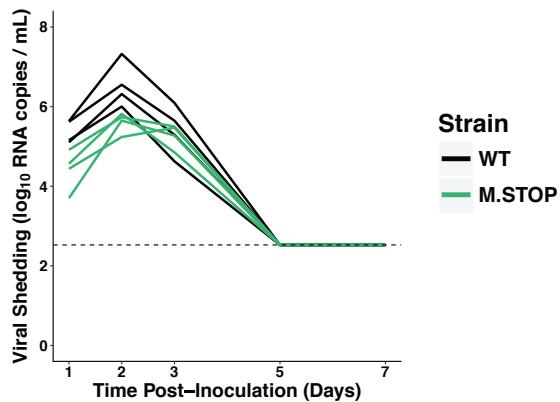

Secondary spread of WT virus allowed prior to detection of IVGs w/ Helper virus

Fig. 6


A


B

C



D

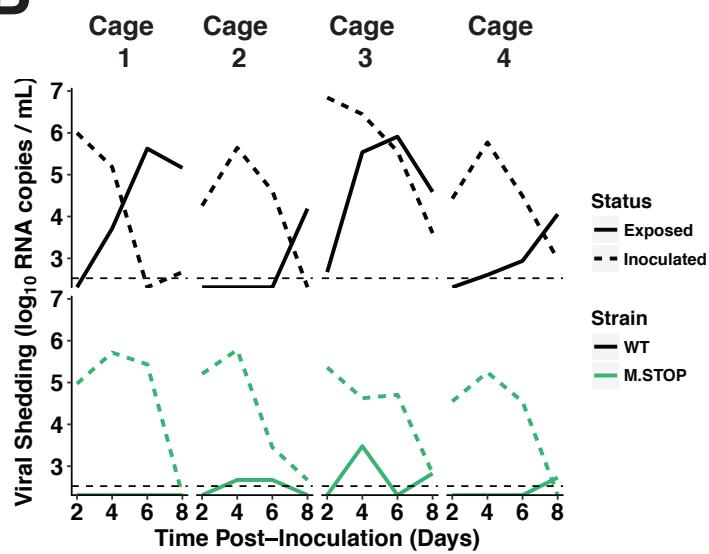
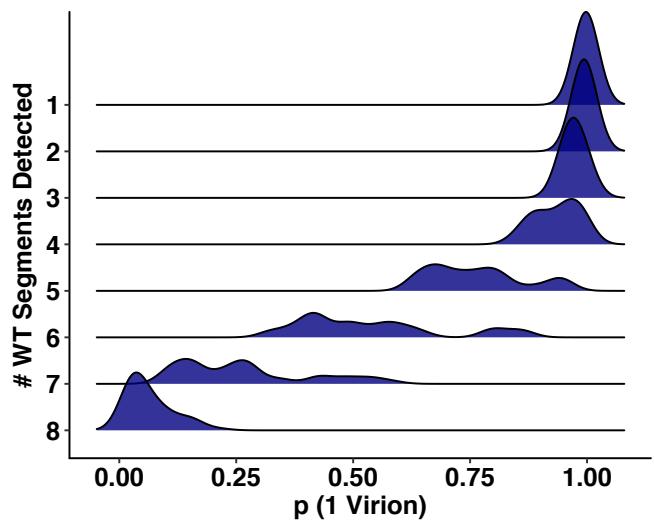
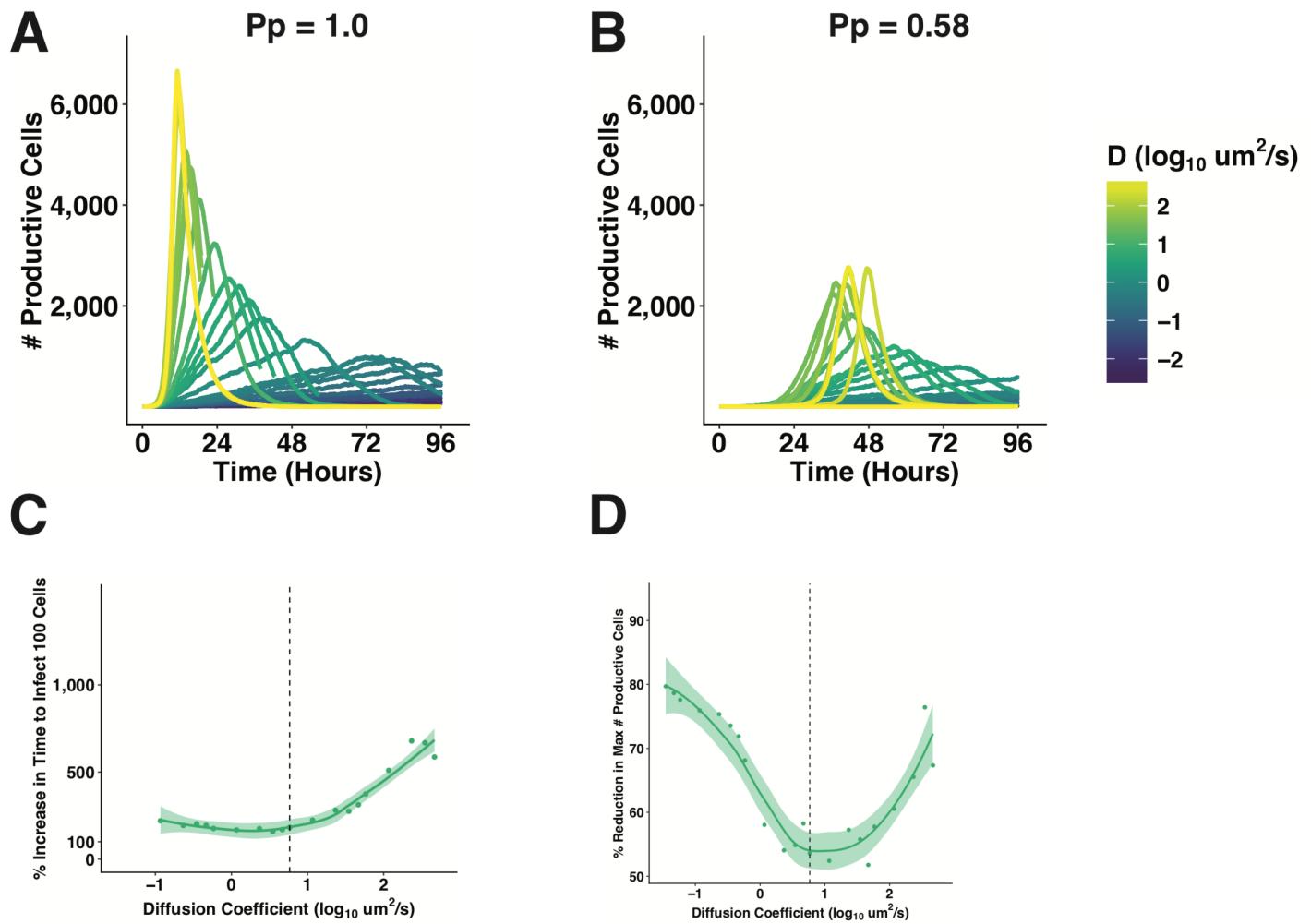


Fig. 7

A

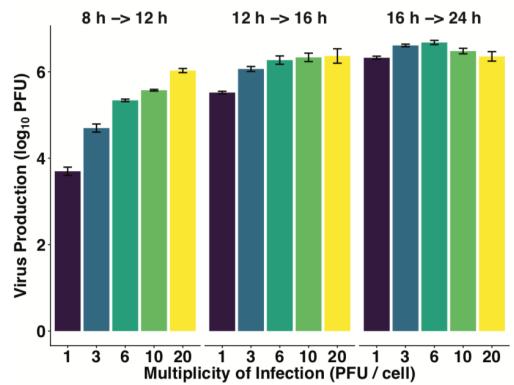


B

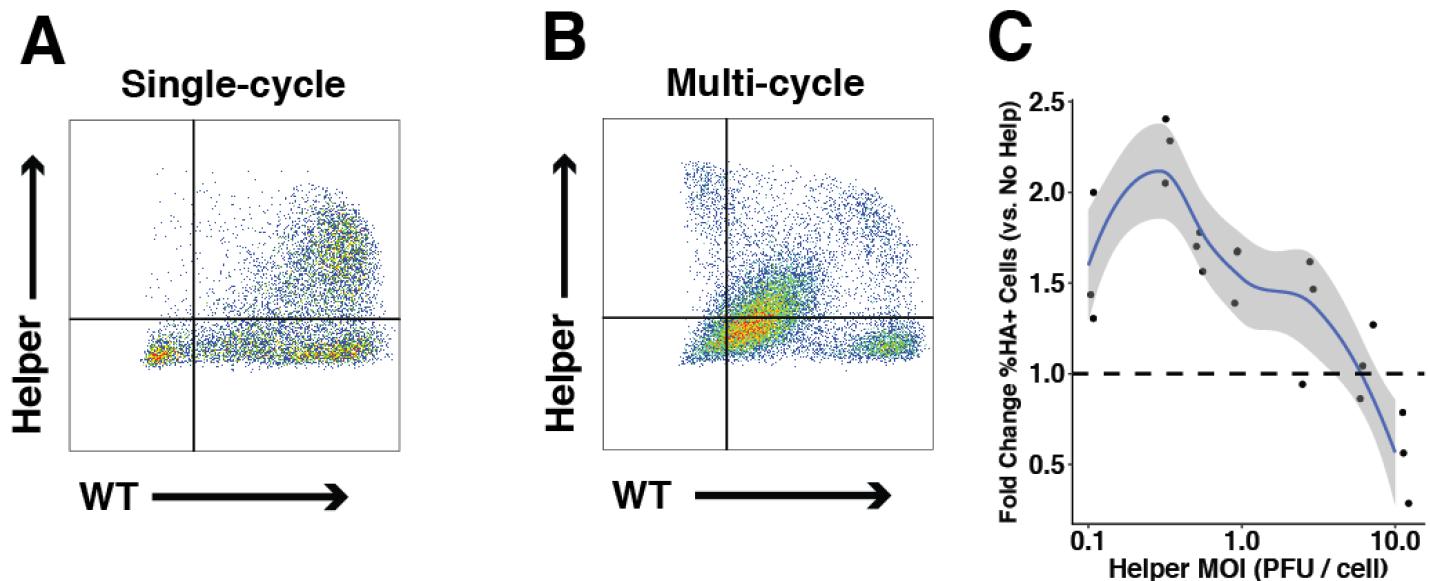

Fig. 8

Supplementary Figure 1

Supplementary Figure 1. Cells containing more segments were likely to have been infected with multiple virions. Bayes' rule was used to calculate the probability that each cell was infected with exactly 1 virion, based on the number of infected cells in each experiment, and each cell's combination of segment presences and absences. The distribution of probabilities is shown stratified by the number of segments present per cell. This figure relates to Figure 1C.


Supplementary Figure 2

Supplementary Figure 2. Impact of incomplete genomes and spatial structure on the dynamics and efficiency of IAV infection. (A, B) The dynamics of infection, in terms of productively infected cells, are shown for a virus with no incomplete genomes ($P_p = 1.0$), and a frequency of incomplete genomes similar to Pan/99-WT virus ($P_p = 0.58$). (C,D) The fitness costs of IVGs, in terms of the time taken to productively infect 100 cells (C), and the peak number of virions produced (D), are shown for a range of diffusion coefficients. This figure relates to Figure 4.


Supplementary Figure 3

A

Supplementary Figure 3. Across a range of high MOIs, the multiplicity of infection impacts the kinetics of viral amplification. The amount of virus produced (in PFU) in three distinct time periods post-infection was calculated at each MOI. This figure relates to Figure 5.

Supplementary Figure 4

Supplementary Figure 4. Representative flow plots with staining for WT and Helper HA proteins, and optimization of Helper MOI. (A,B) Representative flow cytometry measurement of Pan/99-WT HA when Pan/99-Helper virus was added simultaneously (A), or following 12 h of multi-cycle replication (B). Pan/99-WT MOI = 0.1 PFU/cell for simultaneous co-infection, 0.01 PFU/cell for multi-cycle replication. Pan/99-Helper virus MOI was 0.3 PFU/cell in both cases. (C) Cells were inoculated with Pan/99-WT (MOI = 0.01 PFU/cell) and Pan/99-Helper at a range of MOI, then incubated under single-cycle conditions before staining for expression of WT and Helper HA proteins. The extent to which Pan/99-Helper increased numbers of WT HA⁺ cells (relative to controls infected with only Pan/99-WT) was calculated at each Pan/99-Helper MOI. Curve and ribbon represent mean and 95% confidence interval, respectively, of local regression. This figure relates to Figure 6.

Supplementary Table 1 — Genotype of Pan/99-Helper virus

Segment	Mutations relative to Pan/99-WT
PB2	A550C, G552A, A555C, C556T, A617C, T621C, T622A, C623G
PB1	C346T, T348G, A351G, T441A, T444A, A447T
PA	G603A, T604A, C605G, C747T, T750C, G753A
HA	T308C, C311A, C313T, A464T, C467G, T470A
NP	C537T, T538A, C539G, G606C, A609T, G615C
NA	C418G, T421A, A424C, T511A, T514A, A517G
M	C413T, C415G, A418C, A517G, G523A, A526C
NS	A210C, G212A, G215A, T218C, C329T, C335T, A341G

Supplementary Table 2 — Primers for single-cell assay

Primer Name	Sequence (5' — 3')	Virus targeted
PB2 537F wt	TGAAGTGGGAGCCAGGATAC	Pan/99-WT
PB2 640R wt	ATGCAACCATCAAGGGAGAA	Pan/99-WT
PB1 332F wt	TTGAGAGCTCATGCCCTGAA	Pan/99-WT
PB1 459R wt	GTTGGCTAATGCAGTTGCTG	Pan/99-WT
PA 595F wt	TTTCGTCAGTCCGAAAGAGG	Pan/99-WT
PA 741R wt	AGCTTGCCTCAATGCAGCCG	Pan/99-WT
HA 266F wt	ACCCTCATTGTGATGGCTTC	Pan/99-WT
HA 452R wt	GTTCCATTCTGAGCGACTCC	Pan/99-WT
NP 520F wt	ATGGATCCCGAGAATGTGCTC	Pan/99-WT
NP 625R wt	TCAGCTCCATCACCATTGTC	Pan/99-WT
NA 408F wt	ATCAATTGCCCTTGGACAG	Pan/99-WT
NA 528R wt	CCCAAATGAAATGGAACACC	Pan/99-WT
M 402F wt	GTTGCATGGGCCTCATATAC	Pan/99-WT
M 535R wt	ATTGGTTGTTGCCACCATTG	Pan/99-WT
NS 173F wt	CCATGTTGAAAGCAGATTG	Pan/99-WT
NS 321R wt	GGGCATTAGCATGAACCACT	Pan/99-WT
PB2 537F var	TGAAGTGGGAGCCGAATCT	Pan/99-Helper
PB2 640R var	ATGCAACCATCAACGGACTG	Pan/99-Helper
PB1 332F var	TTGAGAGCTCATGCCCTGAG	Pan/99-Helper
PB1 459R var	GTTGGCTAATGCTGTAGCAG	Pan/99-Helper
UnivF(A) + 6	GCGCGCAGCAAAAGCAGG	Pan/99-WT and Pan/99-Helper
UnivF(G) + 6	GCGCGCAGCGAAAGCAGG	Pan/99-WT and Pan/99-Helper

Supplementary Table 3 — Primers and probes for ddPCR

Primer/Probe Name	Sequence (5' — 3')
M2 F	ACTCATCCTAGCTCCAG
M2 R	CCGTGTTGAAGAGTCG
M2.Only Probe (M2 WT)	HEX - CCATTCGTTCTGATAGGTCTG - BHQ1
M1.Only Probe (M2 Mutant)	6-FAM - CCATACGCTCTGGTACGTCTG - BHQ1
NS F	ACCTGCTTCGCGATAACATAAC
NS R	AGGGGTCTTCCACTTTTG
NS Probe	6-FAM – AGAAACTGGTCATGCTAATGCCA - BHQ1