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Abstract

Genome-wide association studies (GWAS) have discovered hundreds of loci associated with complex
brain disorders, and provide the best current insights into the etiology of these idiopathic traits.
However, it remains unclear in which cell types these variants are active, which is essential for
understanding etiology and subsequent experimental modeling. Here we integrate GWAS results with
single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell
types underlying psychiatric disorders, neurological diseases, and brain complex traits. We show that
psychiatric disorders are predominantly associated with cortical and hippocampal excitatory neurons,
and medium spiny neurons from the striatum. Cognitive traits were generally associated with similar
cell types but their associations were driven by different genes. Neurological diseases were
associated with different cell types, which is consistent with other lines of evidence. Notably, we found
that Parkinson’s disease is not only genetically associated with dopaminergic neurons but also with
serotonergic neurons and cells of the oligodendrocyte lineage. Using post-mortem brain
transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease
progression. QOur study provides an important framework for understanding the cellular basis of
complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease.

Introduction
Understanding the genetic basis of complex brain disorders is critical for identifying individuals at risk,

designing prevention strategies, and developing rational therapeutics. In the last 50 years, twin
studies have shown that psychiatric disorders, neurological diseases, and cognitive traits are strongly
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influenced by genetic factors, explaining a mean of ~50% of the variance in liability ', and GWAS
have identified thousands of highly significant loci 2-5. However, interpretation of GWAS results
remains challenging. First, >90% of the identified variants are located in non-coding regions &,
complicating precise identification of risk genes and mechanisms. Second, extensive linkage
disequilibrium present in the human genome confounds efforts to pinpoint causal variants and the
genes they influence . Finally, it remains unclear in which tissues and cell types these variants are
active, and how they disrupt specific biological networks to impact disease risk.

Functional genomic studies from brain are now seen as critical for interpretation of GWAS findings as
they can identify functional regions (e.g., open chromatin, enhancers, transcription factor binding
sites) and target genes (via chromatin interactions and eQTLs) 7. Gene regulation varies substantially
across tissues and cell types 89, and hence it is critical to perform functional genomic studies in
empirically identified cell types or tissues.

Multiple groups have developed strategies to identify tissues associated with complex traits 1014, but
few have focused on the identification of salient cell types within a tissue. Furthermore, studies aiming
to identify relevant cell types often used only a small number of cell types derived from one or few
different brain regions 412-18, For example, we recently showed that, among 24 brain cell types, four
types of neurons were consistently associated with schizophrenia 2. We were explicit that this
conclusion was limited by the relatively few brain regions we studied; other cell types from unsampled
regions could conceivably contribute to the disorder.

Here, we integrate a wider range of gene expression data — tissues across the human body and
single-cell gene expression data from an entire nervous system — to identify tissues and cell types
underlying a large number of complex traits (Figure 1A,B). We expand on our prior work by showing
that additional cell types are associated with schizophrenia. We also find that psychiatric and cognitive
traits are generally associated with similar cell types whereas neurological disorders are associated
with different cell types. Notably, we show that Parkinson’s disease is consistently associated with
dopaminergic neurons (as expected), but also with serotonergic neurons and oligodendrocytes
providing new clues into its etiology.

Results

Genetic correlations among complex traits

Our goal was to use GWAS results to identify relevant tissues and cell types. Our primary focus was
human phenotypes whose etiopathology is based in the central nervous system. We thus obtained
18 sets of GWAS summary statistics from European samples for brain-related complex traits. These
were selected because they had at least one genome-wide significant association (as of 2018; e.g.,
Parkinson’s disease, schizophrenia, and 1Q). For comparison, we included GWAS summary statistics
for 8 diseases and traits with large sample sizes whose etiopathology is not rooted in the central
nervous system (e.g., type 2 diabetes). The selection of these conditions allowed contrasts of tissues
and cells highlighted by our primary interest in brain phenotypes with non-brain traits. For Parkinson’s
disease, we meta-analyzed summary statistics from a published GWAS ™ (9,581 cases, 33,245
controls) with self-reported Parkinson’s disease from 23andMe (12,657 cases, 941,588 controls) after
finding a high genetic correlation (r;) 2° between the samples (r;=0.87, s.e=0.068). In this new meta-
analysis, we identified 61 independent loci associated with Parkinson’s disease (49 reported
previously'® and 12 novel) (Figure S1).

We estimated the genetic correlations (r;) between these 26 traits. We confirmed prior reports 2122
that psychiatric disorders were strongly inter-correlated (e.g., high positive correlations for
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schizophrenia, bipolar disorder, and MDD) and shared little overlap with neurological disorders
(Figure S2 and Table S1). Parkinson’s disease was genetically correlated with intracranial volume 18
(1;=0.29, s.e=0.05) and amyotrophic lateral sclerosis (ALS, 7,=0.19, s.e=0.08), while ALS was
negatively correlated with intelligence (1;=-0.24, s.e=0.06) and hippocampal volume (1;=-0.24,
s.e=0.12). There is substantial genetic heterogeneity across traits, which is a necessary (but not
sufficient) condition for trait associations with different tissues or cell types.

Association of traits with tissues using bulk-tissue RNA-seq

We first aimed to identify the human tissues showing enrichment for genetic associations using bulk-
tissue RNA-seq (53 tissues) from GTEx & (Figure 1A). To robustly identify the tissues implied by these
26 GWAS, we used two approaches (MAGMA 23 and LDSC '324) which employ different assumptions
(Methods). MAGMA tested for a positive relationship between gene expression specificity and gene-
level genetic associations whereas LDSC tested whether the 10% most specific genes in each tissue
were enriched for trait heritability (Figure 1B).

Examination of most non-brain traits found, as expected, associations with salient tissues. For
example, as shown in Figure 1D and Table S2, inflammatory bowel disease was strongly associated
with immune tissues (whole blood, spleen) and alimentary tissues impacted by the disease (terminal
ileum and transverse colon,). Coronary artery disease was most associated with aorta and coronary
artery. Age at menopause was most associated with reproductive tissues, and type 2 diabetes with
pancreas. Thus, our approach can identify the expected tissue associations given the
pathophysiology of the different traits.

For brain-related traits (Figure S3 and Table S2), 12 of 18 traits were significantly associated with
one or more GTEXx brain regions. For example, schizophrenia, intelligence, educational attainment,
neuroticism, and MDD were most significantly associated with brain cortex or frontal cortex.
Schizophrenia also had several possible associations with non-brain tissues (e.g., adrenal gland,
heart) (Figure 1C); these were less significant by 10 or more logs, and were significant by MAGMA
or LDSC but not both. Interestingly, these non-brain tissues are electrically excitable and/or
prominently muscular. Myocytes share some functions with neurons (e.g., maintaining a membrane
potential, depolarization, repolarization). These other tissues can be expected to have minor overlap
with brain neurons: adrenal gland (GTEx sampled both adrenal cortex and medulla, the latter is a
neuroendocrine tissue containing sympathetic neurons); heart is muscular; esophageal muscular
layer (but not mucosa); three arterial samples (which have an important muscular layer); cervix (a
muscular structure, more ectocervix than the endocervical lining); and uterus (muscular).

Parkinson’s disease was most significantly associated with substantia nigra and spinal cord (Figure
1C). Autism and ADHD were most strongly associated with basal ganglia structures (putamen and
nucleus accumbens). Alzheimer’s disease was associated with tissues with prominent roles in
immunity (whole blood and spleen) consistent with other studies 2526, Stroke was associated with
coronary artery and aorta (consistent with a role of arterial pathology in stroke) 27. Traits with no or
unexpected associations could occur because the primary GWAS had insufficient sample size for its
genetic architecture 28 or because the tissue RNA-seq data omitted the correct tissue or cell type.

Most brain-related traits were strongly associated with the cerebellum. Although theories postulate a
cerebellar role in the etiology of psychiatric disorders 2230, an alternative explanation is that cerebellum
has a high proportion of neurons (78-81% 3'.32). We hypothesized that the relative proportion of
neurons in the different brain regions could confound our tissue-trait association analysis for brain
disorders leading to more significant associations for traits with a neuronal basis in brain regions with
high neuronal proportions. To test this hypothesis, we obtained estimates of neuronal proportions in
different brain regions (from mouse single-cell RNA-seq 3') and tested whether the strength of the
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tissue-trait association (-logioP) was correlated with the estimated neuronal proportions of the
different brain regions. For most traits, the association strength was positively correlated with the
proportion of neurons in the brain region (Figure S4), suggesting that cerebellar associations are at
least partly due to its high neuronal proportion.

In conclusion, we show that tissue-level gene expression allows identification of relevant tissues for
complex traits. Cellular heterogeneity can confound these associations for related tissues, highlighting
the need to test for trait-gene expression associations at the cell type level.

Association of brain phenotypes with cell types from the mouse central and peripheral nervous system

We leveraged gene expression data from 231 cell types from the mouse central and peripheral
nervous system 38! to systematically map brain-related traits to cell types (Figures 2, S5-6). Our use
of mouse data to inform human genetic findings was carefully considered (see Discussion).

As in our previous study of schizophrenia based on a small number of brain regions '2, we found the
strongest signals for pyramidal neurons from the cortex, pyramidal neurons from the CA1 region of
the hippocampus, one type of excitatory neuron from the dorsal midbrain, D2 medium spiny neurons
from the striatum, and interneurons from the hippocampus (Figure 2 and Table S3). We also
observed that many other types of neurons were associated with schizophrenia albeit less
significantly (e.g., excitatory neurons from the thalamus and inhibitory neurons from the hindbrain)
(Figure S6). The cell type with the strongest schizophrenia association (TEGLU4) is located in layer
5 of the cortex. The association of TEGLU4 cells is consistent with our prior report '2 and with results
from other groups including significant schizophrenia heritability enrichment in open chromatin
regions in layer 5 excitatory neurons in mouse 33 and in open chromatin regions from human cortical
neurons 34, This pattern of replication 2 and consistency in orthogonal data types 32 34 is notable, and
implies an important role of cortical excitatory neurons in schizophrenia. Moreover, excitatory neurons
from cortical layer 5 project to the superior colliculus 3° (implicated in attentional target selection) and
to the striatum 3. The eighth most significant cell type (MEGLUB6, a midbrain excitatory neuron) is
located in the superior colliculus, while the twelfth top cell type (MSN2, D2 medium spiny neurons) is
located in the striatum. These findings may imply a brain circuit etiologically important for
schizophrenia.

Educational attainment, intelligence, bipolar disorder, neuroticism, and MDD had similar cellular
association patterns to schizophrenia (Figures S5-7 and Table S3). Projecting neurons from the
telencephalon (excitatory neurons from the cortex, hippocampus, amygdala, granule neurons and
neuroblasts from the dentate gyrus and medium spiny neurons from the striatum) were significantly
more associated with psychiatric and cognitive traits than any other category of cell types (Figure
S6). We did not observe any significant associations with immune or vascular cells for any psychiatric
disorder or cognitive traits.

For body mass index (BMI), the pattern of associations contrasted with psychiatric and cognitive traits
(Figure 2, S5-S7) as it had the strongest associations with neurons located in the midbrain,
hypothalamus and solitary nucleus (HBGLUS), followed by cortical excitatory neurons (Figure 2B).
The hypothalamus is known to play a major role in weight regulation 3¢, and the solitary nucleus is
involved in gustatory processing and projects to the hypothalamus %7. These results suggest functional
connections between these cell types.

Neurological disorders generally implicated fewer cell types, possibly because neurological GWAS

had lower signal than GWAS of cognitive, anthropometric, and psychiatric traits (Figure S8).
Consistent with the genetic correlations reported above, the pattern of associations for neurological
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disorders was distinct from psychiatric disorders (Figures S5 and S7), again reflecting that
neurological disorders have minimal functional overlap with psychiatric disorders 2! (Figure S2).

Stroke and migraine were significantly associated with arterial smooth muscle cells (VSMCA)
consistent with an important role of vascular process in these traits. The overall pattern of association
of stroke and migraine were negatively correlated with psychiatric, cognitive traits, and BMI (Figure
S7), as stroke and migraine appear to have a predominant non-neuronal origin.

The hallmark of Parkinson’s disease is degeneration of dopaminergic neurons in the substantia nigra,
and we found that these cells (MBDOP2) were strongly associated with the disorder (Figure 2B). In
addition to the degeneration of dopaminergic neurons, cell loss in other brain regions can occur 383,
We found that many of the cell types reported to degenerate in Parkinson’s disease also show strong
associations (Figure 2B and Table S3), including serotonergic raphe nucleus neurons 40 (HBSER2,
top hit) and cholinergic neurons of the pons 4! (HBCHO2). We also identified significant associations
in cells of the medulla (HBINH4 and HBGLU2), the region associated with the earliest lesions in
Parkinson’s disease 38. Therefore, our results capture expected features of Parkinson’s disease and
suggest that biological mechanisms intrinsic to these neuronal cell types lead to their selective loss.
However, we also found associations for eight different cell types from the oligodendrocyte lineage
with Parkinson’s disease (NFOL2, MFOL1, COP1, NFOL1, MOL1, MFOL2, COP2, MOL2) (Figure 2
and Table S3), indicating a strong glial component. This finding was unexpected but consistent with
the strong association of the spinal cord at the tissue level (Figure 1C), as the spinal cord contains
the highest proportion of oligodendrocytes (71%) in the nervous system 3.

Cell type-specific and trait-associated genes are enriched in specific biological functions

Understanding which biological functions are dysregulated in different cell types is a key component
of the etiology of complex traits. To obtain insights into the biological functions driving cell-type/trait
associations, we evaluated GO term enrichment of genes that were specifically expressed (top 20%
in a given cell type) and highly associated with a trait (top 10% MAGMA gene-level genetic
association). Genes that were highly associated with schizophrenia and specific to excitatory neurons
from the cortex (TEGLU4), excitatory neurons from the hippocampus (TEGLU24), excitatory neurons
from the midbrain (MEGLUG), or medium spiny neurons (MSN2) were enriched for GO terms related
to neurogenesis, synapses, and voltage-gated channels (Table S4), suggesting that these functions
may be fundamental to schizophrenia. Similarly, genes highly associated with educational attainment,
intelligence, bipolar disorder, neuroticism, and MDD and highly specific to their most associated cell
types (TEGLU4 for educational attainment, TEGLU10 for intelligence, TEGLU24 for bipolar disorder,
TEGLU4 for neuroticism, and TEGLU10 for MDD) were strongly enriched in neurogenesis, synaptic
processes and voltage-gated channels (Table S4).

Genes highly associated with Parkinson’s disease and highly specific to the top cell type (HBSER2)
were significantly enriched in terms related to regulation of protein localization, lysosomal transport,
and intracellular vesicles (Table S4). Genes highly specific to the second top cell type (MBDOP2)
were enriched in terms related to endosomes and synaptic vesicles (Table S4), while highly specific
genes for the most associated type of oligodendrocytes (NFOL2) were enriched in terms related to
endosomes (Table S4). These results support the hypothesis that intracellular trafficking, lysosomal
transport, and synaptic vesicles play a role in the etiology of Parkinson’s disease #2.

Taken together, we show that cell type-trait associations are driven by genes belonging to specific
biological pathways, providing insight into the etiology of complex brain related traits.

Distinct traits are associated to similar cell types, but through different genes
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As noted above, the pattern of associations of psychiatric and cognitive traits were highly correlated
across the 231 different cell types tested (Figure S7). For example, the Spearman rank correlation of
cell type associations (-log10P) between schizophrenia and intelligence was 0.94 (0.93 for educational
attainment) as both traits had the strongest signal in cortical excitatory neurons and little signal in
immune or vascular cells. In addition, we observed that genes driving the association signal in the top
cell types of the two traits were enriched in relatively similar GO terms involving neurogenesis and
synaptic processes. We evaluated two possible explanations for these findings: (a) schizophrenia and
intelligence are both associated with the same genes that are specifically expressed in the same cell
types or (b) schizophrenia and intelligence are associated with different sets of genes that are both
highly specific to the same cell types. Given that these two traits have a significant negative genetic
correlation (1;=-0.22, from GWAS results alone) (Figure S2 and Table S1), we hypothesized that the
strong overlap in cell type associations for schizophrenia and intelligence was due to the second
explanation.

To evaluate these hypotheses, we tested whether cell type gene expression specificity was positively
correlated with gene-level genetic association for schizophrenia controlling for the gene-level genetic
association of intelligence. We found that the pattern of associations were largely unaffected by
controlling the schizophrenia cell type association analysis for the gene-level genetic association of
intelligence and vice versa (Figure S9). Similarly, we found that controlling for educational attainment
had little effect on the schizophrenia association and vice versa (Figure S10). In other words, genes
driving the cell type associations of schizophrenia appear to be distinct from genes driving the cell
types associations of cognitive traits.

Multiple cell types are independently associated with brain complex traits

Many neuronal cell types passed our stringent significance threshold for multiple brain traits (Figure
2 and S5). This could be because gene expression specificity profiles are highly correlated across
cell types and/or because many cell types are independently associated with the different traits. In
order to address this, we performed univariate conditional analysis using MAGMA, testing whether
cell type associations remained significant after controlling for gene expression specificity from other
cell types (Table S5). We observed that multiple cell types were independently associated with
educational attainment (Figure S11), intelligence (Figure S12) and BMI (Figure S13). No cell type
remained significantly associated with bipolar disorder (Figure S14), neuroticism (Figure S15), MDD
(Figure S16), and age at menarche (Figure S17) after conditioning on a single cell type (TEGLU18,
TEGLU15, TEGLU10 and MEINH11 respectively). As these GWAS tend to have a lower number of
genome-wide significant hits, it is possible that other cell types could independently contribute to these
traits but that power is currently insufficient to detect independent effects. Multiple cell types could
explain all significant associations for intracranial volume (Figure S18), anorexia nervosa (Figure
S$19) and autism (Figure S20).

We observed that seven types of projecting excitatory neurons from the telencephalon were
independently associated with schizophrenia (TEGLU20, TEGLU9, TEGLU13, TEGLU15, TEGLU18,
TEGLU4 and TEGLU24), while one type of medium spiny neurons (MSN2) was sufficient to explain
the signal of telencephalon projecting inhibitory neurons (Figure S21). In addition, two types of
telencephalon inhibitory interneurons were independently associated with schizophrenia (DEINH1 in
thalamus and TEINH13 in hippocampus). TEINH13 is a Reln and Ndnf expressing interneuron
subtype and corresponds to ‘Cortical Interneuron 16’ which was the most associated interneuron
subtype in our previous study '2. We also observed independent signals in olfactory inhibitory
neurons, cholinergic and monoaminergic neurons, peptidergic neurons, diencephalon and
mesencephalon neurons, hindbrain neurons, cerebellum neurons, glutamatergic neuroblasts, and
oligodendrocytes.
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For Parkinson’s disease, the association of HBSER2 (serotonergic neurons located in the raphe
nuclei) was not independent of MBDOP2 (dopaminergic neurons from the ventral midbrain) and vice-
versa. HBSER2 and MBDOP2 remained significant after conditioning on different types of
oligodendrocytes. Conditioning on HBSER2 attenuated the oligodendrocyte signal to below our
significance threshold, while conditioning on MBDOP2 resulted in one type of oligodendrocytes
(COP1) remaining significant (Figure S22). Therefore, it seems that while the associations with
monoaminergic neurons (MBDOP2 and HBSER2) depend on each another, those with MBDOP2 and
COP1 are independent, suggesting a critical involvement of these two different cell types in
Parkinson’s disease.

Replication in other single-cell RNA-seq datasets

To assess the robustness of our results, we repeated these analyses in independent RNA-seq
datasets. A key caveat is that these other datasets did not sample the entire nervous system as in
the analyses above. First, we used a single-cell RNA-seq dataset that identified 565 cell types in 690K
single cells from 9 mouse brain regions (frontal cortex, striatum, globus pallidus externus/nucleus
basalis, thalamus, hippocampus, posterior cortex, entopeduncular nucleus/subthalamic nucleus,
substantia nigra/ventral tegmental area, and cerebellum) 43. We found similar patterns of association
in this external dataset (Figure S23-S24, Table S3, and Table S6). Notably, for schizophrenia, we
strongly replicated associations with cortical excitatory neurons, excitatory neurons from the CA1
region of the hippocampus, medium spiny neurons, and interneurons (Figure S24). We also observed
similar cell type associations for other psychiatric traits (Figure S24-S25). For neurological disorders,
we replicated the associations of: Parkinson’s disease with dopaminergic neurons from the ventral
midbrain and oligodendrocytes (serotonergic neurons were not sampled); for stroke and migraine with
arterial smooth muscle cells; and Alzheimer’s disease with activated microglia (Figure S24), a cell
type previously associated with the disease '1-44.

Second, we reanalyzed these GWAS datasets using our previous single-cell RNA-seq dataset (24
cell types from the neocortex, hippocampus, striatum, hypothalamus midbrain, and specific
enrichment for oligodendrocytes, serotonergic neurons, dopaminergic neurons and cortical
parvalbuminergic interneurons, 9970 single cells; Figure 3 and Table S7). We again found strong
associations of pyramidal neurons from the somatosensory cortex, pyramidal neurons from the CA1
region of the hippocampus, and medium spiny neurons from the striatum with psychiatric and
cognitive traits. We replicated the associations of: Parkinson’s disease with adult dopaminergic
neurons and oligodendrocytes (serotonergic neurons replicated with LDSC only); migraine with
vascular cells; stroke with endothelial cells; Alzheimer with microglia and intracranial volume with
neuronal progenitors and neuroblasts (suggesting that drivers of intracranial volume are cell types
implicated in increasing cell mass). While medium spiny neurons were strongly associated with
multiple brain related traits in this dataset, we did not identify any technical reasons that could explain
this result (see Table S8 for summary statistics on this dataset).

Third, we evaluated a human single-nuclei RNA-seq dataset consisting of 15 different cell types from
cortex and hippocampus #® (Figure 4A and Table S9). We replicated our findings with psychiatric and
cognitive traits being associated with pyramidal neurons (excitatory) and interneurons (inhibitory) from
the somatosensory cortex and from the CA1 region of the hippocampus. We also replicated the
association of Parkinson’s disease with oligodendrocytes (dopaminergic and serotonergic neurons
were not sampled) and the association of Alzheimer’s disease with microglia.

Fourth, we evaluated a human single-nuclei RNA-seq dataset consisting of 31 different cell types

from 3 different brain regions (visual cortex, frontal cortex and cerebellum) (Figure 4B and Table
$10). We replicated the association of psychiatric disorders and cognitive traits with excitatory and
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inhibitory neurons and the association of Alzheimer’s disease with microglia. However,
oligodendrocytes were not significantly associated with Parkinson’s disease in this dataset.

Most cell type-trait associations were attenuated using human single-nuclei data compared with
mouse single-cell RNA-seq data, suggesting that the transcripts that are lost by single-nuclei RNA-
seq are important for a large number of disorders and/or that the controlled condition of mouse
experiments provide more accurate gene expression quantifications (see Discussion and Figure
$26).

Comparison with case/control differentially expressed genes at the cell type level

We compared our findings for Alzheimer’s disease with a recent study that performed differential
expression analysis at the cell type level between 24 Alzheimer’s cases and 24 controls #6 (prefrontal
cortex, Brodmann area 10). We tested whether the top 500, top 1000 and top 2000 most differentially
expressed genes (no pathology vs pathology) in six different cell types (excitatory neurons, inhibitory
neurons, oligodendrocytes, oligodendrocytes precursor cells, astrocyte and microglia) were enriched
in genetic associations with Alzheimer’s disease using MAGMA. Consistently with our results (Table
S3, Figure 3 and Figure 4), we found that genes differentially expressed in microglia were the most
associated with Alzheimer’s disease genetics (Table S11), indicating that our approach appropriately
highlight the relevant cell type at a fraction of the cost of a case-control single cell RNA-seq study. As
performing case-control single cell RNA-seq studies in the entire nervous system is currently cost
prohibitive, the consistency of our results with the case-control study of Alzheimer’s disease suggests
that our results could be leveraged to target specific brain regions and cell types in future case-control
genomic studies of brain disorders.

Validation of oligodendrocyte pathology in Parkinson’s disease

We investigated the role of oligodendrocyte lineage cells in Parkinson’s disease. First, we tested
whether oligodendrocytes were significantly associated with Parkinson’s disease conditioning on the
top neuronal cell type in the different replication datasets and found: (a) oligodendrocytes were
associated with Parkinson’s disease in a human replication dataset at a Bonferroni significant level
(P=9e-5) 45; (b) in the other replication datasets, oligodendrocytes were associated with Parkinson’s
disease at a nominal level (P=7e-4, P=0.014, P=0.019) 449; and (c) combining the conditional
evidence from all datasets, oligodendrocytes were significantly associated with Parkinson’s disease
independently of the top neuronal association (P=7.3e-10, Fisher’s combined probability test).

Second, we used EWCE ' to test whether genes with rare variants associated with Parkinson’s
disease (Table S12) were specifically expressed in cell types from the mouse nervous system. We
found that dopaminergic neurons (MBDOP2) were the most significantly enriched (Table $S13) and
enrichment were again found for cholinergic (HBCHO4 and HBCHO3) and serotonergic (HBSER1
and HBSERS3) neurons. However, we did not observe any significant enrichments in the
oligodendrocyte lineage for genes associated with rare variants in Parkinsonism.

Third, we applied EWCE ' to test whether genes that are up/down-regulated in human post-mortem
Parkinson’s disease brains (from six separate cohorts) were enriched in specific cell types (Figure
5). Three of the studies had a case-control design and measured gene expression in: (a) the
substantia nigra of 9 controls and 16 cases %, (b) the medial substantia nigra of 8 controls and 15
cases %', and (c) the lateral substantia nigra of 7 controls and 9 cases 5'. In all three studies,
downregulated genes in Parkinson’s disease were specifically enriched in dopaminergic neurons
(consistent with the loss of this particular cell type in disease), while upregulated genes were
significantly enriched in cells from the oligodendrocyte lineage. This suggests that an increased
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oligodendrocyte activity or proliferation could play a role in Parkinson’s disease etiology. Surprisingly,
no enrichment was observed for microglia, despite recent findings 5253,

We also analyzed gene expression data from post-mortem human brains which had been scored by
neuropathologists for their Braak stage 54. Differential expression was calculated between brains with
Braak scores of zero (controls) and brains with Braak scores of 1—2, 3—4 and 5—6. At the latter
stages (Braak scores 3—4 and 5—6), downregulated genes were specifically expressed in
dopaminergic neurons, while upregulated genes were specifically expressed in oligodendrocytes
(Figure 5), as observed in the case-control studies. Moreover, Braak stage 1 and 2 are characterized
by little degeneration in the substantia nigra and, consistently, we found that downregulated genes
were not enriched in dopaminergic neurons at this stage. Notably, upregulated genes were already
strongly enriched in oligodendrocytes at Braak Stages 1-2. These results not only support the genetic
evidence indicating that oligodendrocytes may play a causal role in Parkinson’s disease, but indicate
that their involvement precedes the emergence of pathological changes in the substantia nigra.

Discussion

In this study, we used gene expression data from cells sampled from the entire nervous system to
systematically map cell types to GWAS results from multiple psychiatric, cognitive, and neurological
complex phenotypes.

We note several limitations. First, we again emphasize that we can implicate a particular cell type but
it is premature to exclude cell types for which we do not have data '2. Second, we used gene
expression data from mouse to understand human phenotypes. We believe our approach is
appropriate for several reasons. (A) Crucially, the key findings replicated in human data. (B) Single-
cell RNA-seq is achievable in mouse but difficult in human neurons (where single-nuclei RNA-seq is
typical 4548.70.71) In brain, differences between single-cell and single-nuclei RNA-seq are important as
transcripts that are missed by sequencing nuclei are important for psychiatric disorders, and we
previously showed that dendritically-transported transcripts (important for schizophrenia) are
specifically depleted from nuclei datasets 2 (we confirmed this finding in four additional datasets,
Figure S26). (C) Correlations in gene expression for cell type across species is high (median
correlation 0.68, Figure S27), and as high or higher than correlations across methods within cell type
and species (single-cell vs single-nuclei RNA-seq, median correlation 0.6) 72. (D) We evaluated
protein-coding genes with 1:1 orthologs between mouse and human. These constitute most human
protein-coding genes, and these genes are generally highly conserved particularly in the nervous
system. We did not study genes present in one species but not in the other. (E) More specifically, we
previously showed that gene expression data cluster by cell type and not by species 2, indicating
broad conservation of core brain cellular functions across species. (F) We used a large number of
genes to map cell types to traits (~1500 genes with LDSC for each cell type, ~15,000 genes with
MAGMA), minimizing potential bias due to individual genes differentially expressed across species.
(G) If there were strong differences in cell type gene expression between mouse and human, we
would not expect that specific genes in mouse cell types would be enriched in genetic associations
with human disorders. However, it remains possible that some cell types have different gene
expression patterns between mouse and human, are only present in one species, have a different
functions or are involved in different brain circuits.

A third limitation is that gene expression data were from adolescent mice. Although many psychiatric
and neurological disorders have onsets in adolescence, some have onsets earlier (autism) or later
(Alzheimer’'s and Parkinson's disease). It is thus possible that some cell types are vulnerable at
specific developmental times. Data from studies mapping cell types across brain development and
aging are required to resolve this issue.
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For schizophrenia, we replicated and extended our previous findings 2. In two independent datasets,
we found significant associations with excitatory neurons from the cortex/hippocampus, D2 medium
spiny neurons from the striatum, and interneurons (e.g., for MSN2-schizophrenia, the approximate
probability of this degree of replication is P<1e-29, Fisher’s combined probability test). These results
are consistent with the strong schizophrenia heritability enrichment observed in open chromatin
regions from: human dorsolateral prefrontal cortex %5; human cortical, striatal and hippocampal
neurons 34; and mouse open chromatin regions from cortical excitatory and inhibitory neurons 33. This
degree of replication in independent transcriptomic datasets from multiple groups along with
consistent findings using orthogonal open chromatin data is notable, and strongly implicates these
cell types in the etiology of schizophrenia.

As in mouse open chromatin data 33, we observed the strongest schizophrenia association for
excitatory neurons located in the layer 5 of the cortex (TEGLU4). In addition, other types of projecting
excitatory neurons were independently associated with schizophrenia (TEGLU20, TEGLU9,
TEGLU13, TEGLU15, TEGLU18, TEGLU24) and were located in the deep layers of the cortex (layer
5-6), the subiculum, the CA1 region of the hippocampus, and the piriform cortex. This is intriguing as
layer 5 excitatory neurons project to the striatum and the superior colliculus 3%, where some of the
most schizophrenia-associated cell types are located (MSN2, a type of D2 medium spiny neurons
and MEGLUSG, a type of excitatory neuron). In addition, excitatory neurons from the CA1 region of the
hippocampus are known to primarily project to the subiculum, which then projects to many cortical
and subcortical regions %. This suggests the potential salience of a circuit between independently
associated cell types in schizophrenia.

Moreover, we found that brain phenotypes with 30 or more associations (e.g., MDD, bipolar disorder,
educational attainment, intelligence, and neuroticism) implicated largely similar cell types as
schizophrenia with the strongest signal for excitatory neurons from the cortex and hippocampus,
medium spiny neurons, interneurons and specific types of midbrain neurons. These biological findings
are consistent with genetic and epidemiological evidence of a general psychopathy factor underlying
diverse clinical psychiatric disorders 215758, Although intelligence and educational attainment
implicated similar cell types, conditional analyses showed that the same cell types were implicated
for different reasons. This suggests that different sets of genes highly specific to the same cell types
contribute independently to schizophrenia and cognitive traits.

A number of studies have argued that the immune system plays a causal role in some psychiatric
disorders 5960, Qur results did not implicate any brain immune cell types in psychiatric disorders. We
interpret these negative findings cautiously as we did not fully sample the immune system. It is also
possible that a small number of genes are active in immune cell types and that these cell types play
an important role in the etiology of psychiatric disorders. Finally, if immune functions are salient for a
small subset of patients, GWAS may not identify these loci without larger and more detailed studies.

Our findings for neurological disorders were strikingly different from psychiatric disorders. In contrast
to previous studies that either did not identify any cell type associations with Parkinson’s disease 6
or identified significant associations with cell types from the adaptive immune system 53, we found
that dopaminergic neurons and oligodendrocytes were consistently and significantly associated with
the disease. It is well established that loss of dopaminergic neurons in the substantia nigra is a
hallmark of Parkinson’s disease. Our findings suggest that dopaminergic neuron loss in Parkinson’s
disease is at least partly due to biological mechanisms intrinsic to dopaminergic neurons. In addition,
we found significant associations for other cell types that degenerate in Parkinson’s disease (e.g.,
raphe nucleus serotonergic neurons and cholinergic neurons of the pons), suggesting that specific
pathological mechanisms may be shared across these neuronal cell types and lead to their
degeneration. The best characterized trait shared between the vulnerable cell types is that they all
have long, highly branched, unmyelinated and relatively thin axons 62. Two theories for the selective
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vulnerability of neuronal populations in Parkinson’s disease currently exist: the “spread Lewy
pathology model” assumes cell-to-cell contacts enabling spreading of prion-like a-synuclein
aggregates ©3; and the “threshold theory” 6485 which proposes that the vulnerable cell types
degenerate due to molecular/functional biological similarities in a cell-autonomous fashion. While both
theories are compatible and can co-exist, our findings support the existence of cell autonomous
mechanisms contributing to selective vulnerability. We caution that we have not tested all cell types
which are known to degenerate (e.g., noradrenergic cells of the locus coeruleus), nor do we know if
all the cell types we found to be associated show degeneration or functional impairment. However,
analysis of the cellular mechanisms in the three main cell types associated to Parkinson’s disease
(dopaminergic neurons, serotonergic neurons and oligodendrocytes) revealed endosomal and
lysosomal trafficking as plausible common pathogenic mechanism.

The strong association of oligodendrocytes with Parkinson’s disease was unexpected. A possible
explanation is that this association could be due to a related disorder (e.g., multiple system atrophy,
characterized by Parkinsonism and accumulation of a-synuclein in glial cytoplasmic inclusions ©6).
However, this explanation is unlikely as multiple system atrophy is a very rare disorder; hence, only
a few patients are likely to have been included in the Parkinson’s disease GWAS which could not
have affected the GWAS results. In addition, misdiagnosis is unlikely to have led to the association
of Parkinson’s disease with oligodendrocytes. Indeed, we found a high genetic correlation between
self-reported diagnosis from the 23andMe cohort and a previous GWAS of clinically-ascertained
Parkinson’s disease ™. In addition, self-report of Parkinson’s disease in 23andMe subjects was
confirmed by a neurologist in all 50 cases evaluated 7.

We did not find an association of oligodendrocytes with Parkinsonism for genes affected by rare
variants although this result may reflect the low power and insufficient number of genes. However,
prior evidence has suggested an involvement of oligodendrocytes in Parkinson’s disease. For
example, a-synuclein-containing inclusions have been reported in oligodendrocytes in Parkinson’s
disease brains . These inclusions (“coiled bodies”) are typically found throughout the brainstem
nuclei and fiber tracts . Although the presence of coiled bodies in oligodendrocytes is a common,
specific, and well-documented neuropathological feature of Parkinson’s disease, the importance of
this cell type and its early involvement in disease has not been fully recognized. Our findings suggest
that intrinsic genetic alterations in oligodendrocytes occur at an early stage of disease, which
precedes the emergence of neurodegeneration in the substantia nigra, arguing for a key role of this
cell type in Parkinson’s disease etiology.

Taken together, we integrated genetics and single-cell gene expression data from the entire nervous
system to systematically identify cell types underlying brain complex traits. We believe that this a
critical step in the understanding of the etiology of brain disorders and that these results will guide
modelling of brain disorders and functional genomic studies.

Methods

GWAS results

Our goal was to use GWAS results to identify relevant tissues and cell types. Our primary focus was
human phenotypes whose etiopathology is based in the central nervous system. We thus obtained
18 sets of GWAS summary statistics from European samples for brain-related complex traits. These
were selected because they had at least one genome-wide significant association (as of 2018; e.g.,
Parkinson’s disease, schizophrenia, and 1Q). For comparison, we included GWAS summary statistics
for 8 diseases and traits with large sample sizes whose etiopathology is not rooted in the central
nervous system (e.g., type 2 diabetes). The selection of these conditions allowed contrasts of tissues
and cells highlighted by our primary interest in brain phenotypes with non-brain traits.
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The phenotypes were: schizophrenia 2, educational attainment 3, intelligence 15, body mass index 8,
bipolar disorder 73, neuroticism 4, major depressive disorder 74, age at menarche 75, autism 76, migraine
77, amyotrophic lateral sclerosis 78, ADHD 7°, Alzheimer’s disease &, age at menopause 8!, coronary
artery disease &, height 5, hemoglobin A1c 83, hippocampal volume 84, inflammatory bowel disease
85 intracranial volume 8, stroke &, type 2 diabetes mellitus 88, type 2 diabetes adjusted for BMI 88,
waist-hip ratio adjusted for BMI 8°, and anorexia nervosa .

For Parkinson’s disease, we performed an inverse variance-weighted meta-analysis °' using
summary statistics from Nalls et al. " (9,581 cases, 33,245 controls) and summary statistics from
23andMe (12,657 cases, 941,588 controls). We found a very high genetic correlation (r;) 2° between
results from these cohorts (r;=0.87, s.e=0.068) with little evidence of sample overlap (LDSC bivariate
intercept=0.0288, s.e=0.0066). The P-values from the meta-analysis strongly deviated from the
expected (Figure S28) but was consistent with polygenicity (LDSC intercept=1.0048, s.e=0.008)
rather than uncontrolled inflation 20.

Gene expression data

We collected publicly available single-cell RNA-seq data from different studies. The core dataset of
our analysis is a study that sampled more than 500K single cells from the entire mouse nervous
system (19 regions) and identified 265 cell types 3' (note that after filtering on unique molecular
identifier (UMI) counts, described below, only 231 of these cell types are used). The 231 cell types
that passed quality control expressed a median of 13736 genes, had a median UMI total count of
~1M and summed the expression of a median of 691 single cells (Table S14). The replication datasets
were: 1) a mouse study that sampled 690K single cells from 9 brain regions and identified 565 cell
types®? (note that after filtering on UMI counts, described below, only 414 of these cell types are used);
2) our prior mouse study of ~10K cells from 5 different brain regions (and samples enriched for
oligodendrocytes, dopaminergic neurons, serotonergic neurons and cortical parvalbuminergic
interneurons) that identified 24 broad categories and 149 refined cell types '2; 3) a study that sampled
19,550 nuclei from frozen adult human post-mortem hippocampus and prefrontal cortex and identified
16 cell types 45; 4) a study that generated 36,166 single-nuclei expression measurements (after quality
control) from the human visual cortex, frontal cortex and cerebellum 48, We obtained bulk tissues
RNA-seq gene expression data from 53 tissues from the GTEx consortium 8 (v7, median across
samples).

Gene expression data processing

All datasets were processed uniformly. First we computed the mean expression for each gene in each
cell type from the single-cell expression data (if this statistics was not provided by the authors). We
used the pre-computed median expression across individuals for the GTEx dataset. We filtered out
any genes with non-unique names, genes not expressed in any cell types, non-protein coding genes,
and, for mouse datasets, genes that had no expert curated 1:1 orthologs between mouse and human
(Mouse Genome Informatics, The Jackson laboratory, version 11/22/2016). In addition, we filtered
out any cell type with less than 200,000 total UMIs. Gene expression was then scaled to a total of 1M
UMIs (or transcript per million (TPM)) for each cell type/tissue. We then calculated a metric of gene
expression specificity by dividing the expression of each gene in each cell type by the total expression
of that gene in all cell types, leading to values ranging from 0 to 1 for each gene (0: meaning that the
gene is not expressed in that cell type, 0.6: that 60% of the total expression of that gene is performed
in that cell type, 1: that 100% of the expression of that gene is performed in that cell type). Specificity
measures were than transformed to a normal distribution within each cell type so that each cell type
had a comparable specificity distribution using the rmtransform function from the GenABEL R package
(Figure S29) . Our genome-wide specificity metrics were highly correlated for related tissues/cell
types and lowly correlated for unrelated tissues/cell types (Table S15 and Table S16), which allowed
us to cluster related tissues as expected (Figure S30 and Figure S31). Similarly, the top 10% most
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specific genes (Table S17 and Table S18) in each tissue/cell partially overlapped for related
tissues/cell types, did not overlap for unrelated tissue/cell types and allowed to cluster related
tissues/cell types as expected (Figure S32 and Figure S33).

MAGMA primary and conditional analyses

MAGMA (v1.06b) 23 is a program for gene-set enrichment analysis using GWAS summary statistics.
Briefly, MAGMA computes a gene-level association statistic by averaging P-values of SNPs located
around a gene (taking into account LD structure). The gene-level association statistic is then
transformed to a Z-value. MAGMA can then be used to test whether a gene set (binary variable) or a
continuous variable (e.g. specificity measures of all genes) are predictors of the gene-level
association statistic of the trait (Z-value) in a linear regression framework. MAGMA accounts for a
number of important covariates such as gene size, gene density, mean sample size for tested SNPs
per gene, the inverse of the minor allele counts per gene and the log of these metrics.

For each GWAS summary statistics, we excluded any SNPs with INFO score <0.6, with MAF < 1%
or with estimated odds ratio > 25 or smaller than 1/25, the MHC region (chr6:25-34 Mb) for all GWAS
and the APOE region (chr19:45020859-45844508) for Alzheimer's GWAS. We set a window of 35kb
upstream to 10kb downstream of the gene coordinates to compute gene-level association statistics
and used the European reference panel from the phase 3 of the 1000 genomes project * as the
reference population. For each trait, we then used MAGMA to test whether the standard normalized
gene expression specificity per cell type was associated with gene-level genetic association with the
trait. We performed a one-sided test as we were only interested in finding whether an increase in
gene expression specificity was associated with an increase in gene-level genetic association with
the trait. The significance threshold was set to 0.005 divided by the number of tissues/cell types.

MAGMA can also perform conditional analyses given its linear regression framework. We used
MAGMA to test whether cell types were associated with a specific trait conditioning on the gene-level
genetic association of another trait (Z-value from MAGMA .out file) or to look for associations of cell
types conditioning on gene expression specificity from other cell types by adding these variables as
covariate in the model.

To test whether MAGMA was well-calibrated, we randomly permuted the gene labels of the
schizophrenia gene-level association statistic file a thousand times. We then looked for association
between cell type specific gene expression and the randomized gene-level schizophrenia association
statistics. We observed that MAGMA was slightly conservative with less than 5% of the random
samplings having a P-value <0.05 (Figure S34) for all cell types. Our significance threshold
(0.005/231=2.2e-5) was lower than the minimum P-value obtained with the permuted gene labels
(1000 permutations*231 cell types=231,000 tests, minimum P-value=2.5e-5).

We also evaluated the effect of varying window sizes (for the SNPs to gene assignment step of
MAGMA) on the schizophrenia cell type associations strength (-logio(P)). We observed strong
Pearson correlations in cell type associations strength (-log1o(P)) across the different window sizes
tested (Figure S35). Our selected window size (35kb upstream to 10 kb downstream) had Pearson
correlations ranging from 0.94 to 0.98 with the other window sizes, indicating that our results are
robust to this parameter.

LD score regression analysis

We used partitioned LD score regression  to test whether the top 10% most specific genes of each
cell type (based on our specificity metric described above) were enriched in heritability for the diverse
traits. Only genes with at least 1TPM or 1 UMI per million in at least one cell type were used for this
analysis. In order to capture most regulatory elements that could contribute to the effect of the region
on the trait, we extended the gene coordinates by 100kb upstream and by 100kb downstream of each
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gene as previously 3. SNPs located in 100kb regions surrounding the top 10% most specific genes
in each cell type were added to the baseline model (consisting of 53 different annotations)
independently for each cell type (one file for each cell type). We then selected the heritability
enrichment p-value as a measure of the association of the cell type with the traits. The significance
threshold was set to 0.005 divided by the number of tissues/cell types. All plots show the mean -
log1o(P) of partitioned LDscore regression and MAGMA. All results for MAGMA or LDSC are available
in supplementary data files.

We evaluated the effect of varying window sizes and varying the percentage of most specific genes
on the schizophrenia cell type associations strength (-logioP). We observed strong Pearson
correlations in cell type associations strength (-log1oP) across the different percentage and window
sizes tested (Figure S36). Our selected window size (100 kb upstream to 100 kb downstream, top
10% most specific genes) had Pearson correlations ranging from 0.95 to 1 with the other window
sizes and percentage, indicating that our results are robust to these parameters.

MAGMA vs LDSC ranking

In order to test whether the cell type ranking obtained using MAGMA and LDSC in the Zeisel et al.
dataset 3' were similar, we computed the Spearman rank correlation of the cell types association
strength (-log10P) between the two methods for each complex trait. The Spearman rank correlation
was strongly correlated with A;. (a measure of the deviation of the GWAS test statistics from the
expected) (Spearman p=0.9) (Figure S37) and with the average number of cell types below our
stringent significance threshold using LDSC and MAGMA (Spearman p=0.75), indicating that the
overall ranking of the cell types is very similar between the two methods, provided that the GWAS is
well powered (Figure S38). In addition, we found that A,;. was strongly correlated with the strength
of association of the top tissue (-log1oP) in the GTEx dataset (Pearson correlation=0.84) (Figure S39),
indicating that cell type — trait associations are stronger for well powered GWAS.

Dendritic depletion analysis

This analysis was performed as previously described '2. In brief, all datasets were reduced to a set of
six common cell types: pyramidal neurons, interneurons, astrocytes, microglia and oligodendrocyte
precursors. Specificity was recalculated using only these six cell types. Comparisons were then made
between pairs of datasets (denoted in the graph with the format ‘X versus Y’). The difference in
specificity for a set of dendrite enriched genes is calculated between the datasets. Differences in
specificity are also calculated for random sets of genes selected from the background gene set. The
probability and z-score for the difference in specificity for the dendritic genes is thus estimated.
Dendritically enriched transcripts were obtained from Supplementary Table 10 of Cajigas et al. %. For
the Kl dataset 12, we used S1 pyramidal neurons. For the Zeisel 2018 dataset 3' we used all ACTE*
cells as astrocytes, TEGLU* as pyramidal neurons, TEINH* as interneurons, OPC as oligodendrocyte
precursors and MGL* as microglia. For the Saunders dataset “3, we used all Neuron.Slc17a7 cellt
ypes from FC, HC or PC as pyramidal neurons; all Neuron.Gad1Gad2 cell types from FC, HC or PC
as interneurons; Polydendrocye as OPCs; Astrocyte as astrocytes, and Microglia as microglia. The
Lake datasets both came from a single publication “8 which had data from frontal cortex, visual cortex
and cerebellum. The cerebellum data was not used here. Data from frontal and visual cortices were
analyzed separately. All other datasets were used as described in our previous publication 2. The
code and data for this analysis are available as an R package (see code availability below).

GO term enrichment

We tested whether genes that were highly specific to a trait-associated cell type (top 20% in a given
cell type) AND highly associated with the genetics of the traits (top 10% MAGMA gene-level genetic
association) were enriched in biological functions using the topGO R package °7. As background, we
used genes that were highly specific to the cell type (top 20%) OR highly associated with the trait (top
10% MAGMA gene-level genetic association).
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Parkinson’s disease rare variant enrichments

We searched the literature for genes associated with Parkinsonism on the basis of rare and familial
mutations. We found 66 genes (listed in Table S11). We used the EWCE R package ' (see code
availability below) to test for cell type enrichment using the same specificity matrix used for the LDSC
and MAGMA analysis. Ten thousand bootstrapping replicates were used.

Parkinson’s disease post-mortem transcriptomes

The Moran dataset 5" was obtained from GEO (accession GSE8397). Processing of the U133a and
U133b Cel files was done separately. The data was read in using the ReadAffy function from the R
affy package %, then Robust Multi-array Averaging (RMA) was applied. The U133a and U133b array
expression data were merged after applying RMA. Probe annotations and mapping to HGNC symbols
was done using the biomaRt R package . Differential expression analysis was performed using
limma 10 taking age and gender as covariates. The Lesnick dataset ° was obtained from GEO
(accession GSE7621). Data was processed as for the Moran dataset: however, age was not available
to use as a covariate. The Disjkstra dataset 5 was obtained from GEO (accession GSE49036) and
processed as above: the gender and RIN values were used as covariates. As the transcriptome
datasets measured gene expression in the substantia nigra, we only kept cell types that are present
in the substantia nigra or ventral midbrain for our EWCE ' analysis. We computed a new specificity
matrix based on the substantia nigra or ventral midbrain cells using the EWCE ''. The EWCE analysis
was performed on the 500 most up or down regulated genes using 10,000 bootstrapping replicates.

Code availability

The code used to generate these results is available at: https:/github.com/jbryois/scBRNA disease.
An R package for performing cell type enrichments using magma is also available from:
https://github.com/NathanSkene/MAGMA_Celltyping.

Data availability

All single-cell expression data are publicly available. Most summary statistics used in this study are
publicly available. The migraine GWAS can be obtained by contacting the authors 77. The Parkinson’s
disease summary statistics from 23andMe can be obtained under an agreement that protects the
privacy of 23andMe research participants (https:/research.23andme.com/collaborate/#publication ).
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Figure 1: Study design and tissue-level associations. Heat map of trait — tissue/cell types associations
(-log10P) for the selected traits. (A) Trait — tissue/cell types associations were performed using
MAGMA (testing for a positive correlation between gene expression specificity and gene-level genetic
associations) and LDSC (testing for heritability enrichment of the top 10% most specific genes in each
tissue/cell type). (B) Tissue — trait associations for selected brain related traits. (C) Tissue — trait
associations for selected non-brain related traits. (D) The mean strength of association (-log1oP) of
MAGMA and LDSC is shown and the bar color indicates whether the tissue is significantly associated
with both methods, one method or none (significance threshold: P=0.005/53). Traits are ordered
based on hierarchical clustering of the gene expression specificities. Tissue label in panel C and D
might require zooming on the pdf.
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Figure 2: Association of brain related traits with cell types from the entire nervous
Associations between all cell types and the following traits are shown: schizophrenia (SCZ), body
mass index (BMI), Parkinson’s disease (PAR) and stroke (STR). (A) The ten most associated cell
types are shown for the same traits. (B) The mean strength of association (-log1,P) of MAGMA and
LDSC is shown and the bar color indicates whether the cell type is significantly associated with both
methods, one method or none (significance threshold: P=0.005/231). Cluster label corresponding to
Zeisel et al. 3" are shown on the left of panel A (requires zooming on the pdf).
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Figure 3: Replication of cell type — trait associations in 24 cell types from 5 different brain regions.
Associations for the top 10 cell types for all traits with at least one significant cell type with at least
one method are shown. The mean strength of association (-log1oP) of MAGMA and LDSC is shown
and the bar color indicates whether the cell type is significantly associated with both methods, one
method or none (significance threshold: P=0.05/24).
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Figure 4: Human replication of cell type — trait associations. Cell type - trait associations for 15 cell
types (derived from single-nuclei RNA-seq) from 2 different brain regions (cortex, hippocampus). (A)
Cell type - trait associations for 31 cell types (derived from single-nuclei RNA-seq) from 3 different
brain regions (frontal cortex, visual cortex and cerebellum). (B) The mean strength of association (-
log10P) of MAGMA and LDSC is shown and the bar color indicates whether the cell type is significantly
associated with both methods, one method or none (significance threshold: P=0.05/15 for panel A
and P=0.05/31 for panel B).
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Figure 5: Enrichment of Parkinson’s disease differentially expressed genes in cell types from the
substantia nigra. Enrichment of the 500 most up/down regulated genes (Braak stage 0 vs Braak stage
1—2, 3—4 and 5—6, as well as cases vs controls) in postmortem human substantia nigra gene
expression samples. The enrichments were obtained using EWCE". A star shows significant
enrichments after multiple testing correction (P<0.05/(25*4).
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Figure S1: Manhattan plot of Parkinson’s disease meta-analysis. The black dotted line represents
the genome-wide significance threshold (5x10-8).
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Figure S2: Genetic correlation across traits. The genetic correlation across traits were computed
using LDSC1'. Traits are ordered based on hierarchical clustering.
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Figure S3: Tissue — trait associations for all traits. The mean strength of association (-log1oP) of
MAGMA and LDSC is shown and the bar color indicates whether the tissue is significantly associated
with both methods, one method or none (significance threshold: P=0.005/53). Tissues are ordered
based on hierarchical clustering of the gene expression specificities.
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Figure S4: Correlation between the proportion of neurons in diverse brain regions and strength of
tissue — trait associations. Correlation between the proportion of neurons in diverse brain regions and
strength of tissue — trait associations (-log1oP) are shown for LDSC and MAGMA (A). The strength of
associations (-logioP) are shown (B) with a dotted line representing the 5% false discovery rate
threshold. SCZ (schizophrenia), EDU (educational attainment), INT (intelligence), BMI (body mass
index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD (Major depressive
disorder), MEN (age at menarche), ICV (intracranial volume), ASD (autism spectrum disorder), STR
(stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention
deficit hyperactivity disorder), ALZ (Alzheimer’s disease), HIP (hippocampal volume).
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Figure S5: Associations of brain related traits with cell types from the entire nervous system.
Association between cell types and the following traits are shown: SCZ (schizophrenia), EDU
(educational attainment), INT (intelligence), BMI (body mass index), BIP (bipolar disorder), NEU
(neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at menarche),
ICV (intracranial volume), ASD (autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG
(migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention deficit hyperactivity disorder), ALZ
(Alzheimer’s disease), HIP (hippocampal volume). The mean strength of association (-logioP) of
MAGMA and LDSC is shown and the bar color indicates whether the cell type is significantly
associated with both methods, one method or none (significance threshold: P=0.005/231).
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Figure S6: Cell type — trait associations grouped by broad categories of cell types. Boxplot of the
mean association strength (-logioPmacma, -10g10PLpsc) between gene expression specificity and brain
related traits by broad categories of cell types (level 3 from Zeisel et al. 20183%"). The black dotted
horizontal bar represents our significance threshold: 0.005/231 (231 cell types tested). Statistical
difference in the mean association strength are indicated by * (P<0.05/(3*18), Wilcoxon test) (3 tests
for 18 traits).
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Figure S7: Correlation in cell type associations across traits. The Spearman rank correlations
between the cell types associations across traits (-log1oP) are shown. SCZ (schizophrenia), EDU
(educational attainment), INT (intelligence), BMI (body mass index), BIP (bipolar disorder), NEU
(neuroticism), PAR (Parkinson’s disease), MDD (Major depressive disorder), MEN (age at menarche),
ICV (intracranial volume), ASD (autism spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG
(migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention deficit hyperactivity disorder), ALZ
(Alzheimer’s disease), HIP (hippocampal volume).
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Figure S8:

GWAS signal to noise ratio (Acc) by category of GWAS trait. Boxplot of the Agc of the

different GWAS by category of trait. Aac was estimated using LDSC for each GWAS.
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Associations of cell types with schizophrenia/intelligence conditioning on gene-level

genetic association of intelligence/schizophrenia. MAGMA association strength for each cell type
before and after conditioning on gene-level genetic association for another trait. The black bar
represents the significance threshold (P=0.005/231). SCZ (schizophrenia), INT (intelligence). The
different color distinguishes high-level grouping of the cell types (ex. immune cells).

Page 30 of 63


https://doi.org/10.1101/528463
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528463; this version posted July 25, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Immune

Vascular

Enteric glia

Astrocytes

Oligodendrocytes

Sensory neurons

Sympathetic neurons

Enteric neurons

Glutamatergic neuroblasts
Cerebellum neurons

Hindbrain neurons

Di- and mesencephalon
neurons

Spinal cord neurons

Peptidergic neurons

Cholinergic and
monoaminergic neurons

Telencephalon inhibitory
interneurons

Olfactory inhibitory neurons
Non-glutamatergic Neurobl.
Tel. projecting inhibitory
Dentate gyrus granule

Telencephalon projecting
Excitatory neurons

SCZ (Pardinas et al., 2018) onl!

T

0

0

20

available under aCC-BY-NC-ND 4.0 International license.

CZ Pardifas et al., 2018) cond EDU . EDU (Lee et al., 2018) onl! - EDU (Lee et al., 2018) cond SCZ
r = :

F ’ '

— |~ —

= -

E_ |

E) 0 Ed 0 20 EC) 10 Ed EJ

EN
Mean (-log1oP)

Figure S10: Associations of cell types with schizophrenia/educational attainment conditioning on
gene-level genetic association of educational attainment/schizophrenia. MAGMA association strength
for each cell type before and after conditioning on gene-level genetic association for another trait. The
black bar represents the significance threshold (P=0.005/231). SCZ (schizophrenia), EDU
(educational attainment). The different color distinguishes high-level grouping of the cell types (ex.
immune cells).
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Figure S11: Univariate conditional analysis for educational attainment. MAGMA association strength
for each cell type before (1st column) and after conditioning on the 231 cell types from the nervous
system. A red star is shown if the association is significant (P<0.005/231). The histogram indicates

the scale (-log1oP). The label of each cell type that is being conditioned on is shown at the bottom
(requires zooming on the pdf).
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Figure S12: Univariate conditional analysis for intelligence. MAGMA association strength for each
cell type before (15t column) and after conditioning on the 231 cell types from the nervous system.
Red stars indicate significance (P<0.005/231). The histogram indicates the scale (-log:oP). The label
of each cell type that is being conditioned on is shown at the bottom (requires zooming on the pdf).
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Figure S13: Univariate condltlonal anaIyS|s for body mass index. MAGMA assoma’uon strength for
each cell type before (1st column) and after conditioning on the 231 cell types from the nervous
system. A red star is shown if the association is significant (P<0.005/231). The histogram indicates
the scale (-log1oP). The label of each cell type that is being conditioned on is shown at the bottom
(requires zooming on the pdf).
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Figure S14: Univariate conditional analysis for bipolar disorder. MAGMA association strength for
each cell type before (15t column) and after conditioning on the 231 cell types from the nervous
system. A red star is shown if the association is significant (P<0.005/231). The histogram indicates
the scale (-logioP). The label of each cell type that is being conditioned on is shown at the bottom
(requires zooming on the pdf).
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Figure S15: Univariate conditional analysis for neuroticism. MAGMA association strength for each
cell type before (1st column) and after conditioning on the 231 cell types from the nervous system. A
dot is shown if the association is significant (P<0.005/231). The histogram indicates the scale (-
log10P). The label of each cell type that is being conditioned on is shown at the bottom (requires
zooming on the pdf).
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Figure S16: Univariate conditional analysis for major depressive disorder. MAGMA association
strength for each cell type before (15t column) and after conditioning on the 231 cell types from the
nervous system. A red star is shown if the association is significant (P<0.005/231). The histogram
indicates the scale (-log1oP). The label of each cell type that is being conditioned on is shown at the
bottom (requires zooming on the pdf).
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Figure S17: Univariate conditional analysis for age at menarche. MAGMA association strength for
each cell type before (15t column) and after conditioning on the 231 cell types from the nervous
system. A red star is shown if the association is significant (P<0.005/231). The histogram indicates
the scale (-logioP). The label of each cell type that is being conditioned on is shown at the bottom
(requires zooming on the pdf).
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Figure S18: Univariate conditional e. MAGMA association strength for
each cell type before (15t column) and after conditioning on the 231 cell types from the nervous
system. A red star is shown if the association is significant (P<0.005/231). The histogram indicates
the scale (-logioP). The label of each cell type that is being conditioned on is shown at the bottom
(requires zooming on the pdf).
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Figure S19: Univariate conditional analysis for anorexia nervosa. MAGMA association strength for
each cell type before (15t column) and after conditioning on the 231 cell types from the nervous
system. A red star is shown if the association is significant (P<0.005/231). The histogram indicates
the scale (-logioP). The label of each cell type that is being conditioned on is shown at the bottom
(requires zooming on the pdf).
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Figure S20: Univariate conditional analysis for autism. MAGMA association strength for each cell
type before (1st column) and after conditioning on the 231 cell types from the nervous system. A red
star is shown if the association is significant (P<0.005/231). The histogram indicates the scale (-
log1oP). The label of each cell type that is being conditioned on is shown at the bottom (requires
zooming on the pdf).
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Figure S21: Conditional cell type associations for schizophrenia. The MAGMA cell types association
results are shown before (first column) and after conditioning on gene expression specificity from
different cell types. The red arrow indicates the cell types that are being conditioned on. The black
bar represents the significance threshold (P=0.005/231). The different color represents the different
classes of cell types (i.e. immune cells, vascular cells, etc.). The conditional analysis was performed
by conditioning on the most significant cell type per class, followed by conditional analysis on
individual cell types that remained significant within the class.
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Figure S22: Univariate conditional analysis for Parkinson’s disease. MAGMA association strength for
each cell type before (15t column) and after conditioning on the 231 cell types from the nervous
system. A red star is shown if the association is significant (P<0.005/231). The histogram indicates
the scale (-logioP). The label of each cell type that is being conditioned on is shown at the bottom
(requires zooming on the pdf).
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Figure S23: Replication of cell type — trait associations in 414 cell types from 9 different brain regions.
The mean strength of association (-log1oP) of MAGMA and LDSC is shown and the bar color indicates
whether the cell type is significantly associated with both methods, one method or none (significance
threshold: P=0.05/414). SCZ (schizophrenia), EDU (educational attainment), INT (intelligence), BMI
(body mass index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD
(Major depressive disorder), MEN (age at menarche), ICV (intracranial volume), ASD (autism
spectrum disorder), STR (stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral

sclerosis), ADHD (attention deficit hyperactivity disorder), ALZ (Alzheimer’s disease), HIP
(hippocampal volume).
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Figure S24: Top associated cell types with brain related traits among 414 cell types from 9 different
brain regions. The mean strength of association (-log1oP) of MAGMA and LDSC is shown for the ten
top cell types for each trait. The bar color indicates whether the cell type is significantly associated
with both methods, one method or none (significance threshold=0.05/414). If multiple cell types with
the same label are strongly associated with a trait, only the first label is shown. The label shown
correspond to the label of the most similar cell type in our main dataset (231 cell types from entire
mouse nervous system). The most similar cell type is defined as the cell type with the highest
Spearman rank correlation in gene expression specificity.
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Figure S25: Correlation in cell type associations across traits in a replication data set (414 cell types,
9 brain regions). Spearman rank correlations for cell types associations (-log1oP) across traits are
shown. SCZ (schizophrenia), EDU (educational attainment), INT (intelligence), BMI (body mass
index), BIP (bipolar disorder), NEU (neuroticism), PAR (Parkinson’s disease), MDD (Major depressive
disorder), MEN (age at menarche), ICV (intracranial volume), ASD (autism spectrum disorder), STR
(stroke), AN (anorexia nervosa), MIG (migraine), ALS (amyotrophic lateral sclerosis), ADHD (attention
deficit hyperactivity disorder), ALZ (Alzheimer’s disease), HIP (hippocampal volume).
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Figure S26: Single nuclei datasets are systematically depleted of dendritically enriched transcripts
relative to single-cell datasets. Each bar represents a comparison between two datasets (X versus
Y), with the bootstrapped z-scores representing the extent to which dendritically enriched transcripts
% have lower specificity for pyramidal neurons in dataset Y relative to that in dataset X. Larger z-
scores indicate greater depletion of dendritically enriched transcripts, and red bars indicate a
statistically significant depletion (P < 0.05, by bootstrapping).

Pearson correlation accross species (DroNc-seq from Habib et al. 2017)
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Figure S27: Gene expression correlation within cell type across species. Pearson correlation of gene
expression (logz(expression) +1) between mouse and human cell types with matching names (from
Habib et al. 2017 45).
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Figure S28: Quantile-quantile plot of Parkinson’s disease meta-analysis. Quantile-quantile plot of the
meta-analyzed pvalues for Parkinson’s disease. The y-axis is truncated for clarity. The grey zone
around the red line represents the 95% confidence interval for the null distribution.
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Figure S29: Distribution of specificity metrics for selected cell types from the mouse nervous system.
The distribution of gene expression specificities are shown for 12 of the 231 cell types from Zeisel et
al. 3'. The bar on the left of each subplots represents genes that are not expressed in the cell type.
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Figure S30: Correlation of the tissue specificity metrics in the GTEx dataset. Spearman rank
correlations of the genome-wide gene specificity metric of each tissue are shown. These specificity
metrics are used in the MAGMA approach.
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Figure S31: Correlation of the cell type specificity metrics in the mouse nervous system (Zeisel et al.
2018). Spearman rank correlations of the genome-wide gene specificity metric of each cell type are
shown. These specificity metrics are used in the MAGMA approach
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Figure S32: Jaccard index for the top 10% most specific genes in each tissue in the GTEx dataset.
Jaccard index were calculated between the top 10% most specific genes in each tissue from the
GTEx dataset. These gene sets are used in the LDSC approach.
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Figure S33: Jaccard index for the top 10% most specific genes in each cell type in the mouse nervous
system (Zeisel et al. 2018). Jaccard index were calculated between the top 10% most specific genes
in each cell type from the mouse nervous system (Zeisel et al. 2018). These gene sets are used in
the LDSC approach.
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Figure S34: Number of MAGMA associations with P<0.05 using permuted gene-level genetic
associations. Gene labels were randomly permuted a thousand times for the schizophrenia MAGMA
gene-level genetic associations (231 cell types * 1000 permuted labels=230,000 associations with
permuted gene labels). The number of permutations with P < 0.05 is shown in blue. The black
horizontal bar shows expected number of random associations with P < 0.05 (231,000*0.05=11,550).
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Figure S35: Correlation in schizophrenia cell type association strengths with different window sizes
using MAGMA. Pearson correlations of the cell type association strength (-log1oP) across different
window sizes using MAGMA. The diagonal shows the distribution of the (-log1oP) for each window
size.
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Figure S36: Correlation in schizophrenia cell type association strengths with different window sizes
and percentages of most specific genes using LDSC. Pearson correlations of the cell type association
strength (-log1oP) across different window sizes and percentages of most specific genes using LDSC.
The diagonal shows the distribution of the (-log1oP) for the cell type associations using different
parameters.
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Figure S37: Correlation between A, and similarity in cell type ordering between MAGMA and LDSC.
LDSC11" was used to obtain A;. (a measure of the deviation of the GWAS statistics from the expected)
for each GWAS. Spearman rank correlation was used to test for similarity in association strength (-
log10P) between MAGMA and LDSC for each GWAS among 231 cell types from the nervous system.
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using MAGMA and LDSC. Spearman rank correlation was used to test for similarity in association
strength (-log1oP) between MAGMA and LDSC among 231 cell types from the nervous system.
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associated with the trait (-log1o(Pmacma)). Pearson correlation=0.84.
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