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The auditory mismatch negativity (MMN) is significantly reduced in schizophrenia. Notably, a
similar MMN reduction can be achieved with NMDA receptor (NMDAR) antagonists. Both
phenomena have been interpreted as reflecting an impairment of predictive coding or, more
generally, the “Bayesian brain” notion that the brain continuously updates a hierarchical model
to infer the causes of its sensory inputs. Specifically, predictive coding views perceptual
inference as an NMDAR-dependent process of minimizing hierarchical precision-weighted
prediction errors (PEs). Disturbances of this putative process play a key role in hierarchical
Bayesian theories of schizophrenia. Here, we provide empirical evidence for this clinical
theory, demonstrating the existence of multiple, hierarchically related PEs in a “roving MMN”

paradigm.

We applied a computational model (Hierarchical Gaussian Filter, HGF), to single-trial EEG
data from healthy volunteers that received the NMDAR antagonist S-ketamine in a placebo-
controlled, double-blind, within-subject fashion. Using an unrestricted analysis of the entire
time-sensor space, our computational trial-by-trial analysis indicated that low-level PEs (about
stimulus transitions) are expressed early (102-207ms post-stimulus), while high-level PEs
(about transition probability) are reflected by later components (152-199ms, 215-277ms) of
single-trial responses. Furthermore, we find that ketamine significantly diminished the
expression of high-level PE responses, implying that NMDAR antagonism disrupts inference

on abstract statistical regularities.

Our findings suggest that NMDAR dysfunction impairs hierarchical Bayesian inference about
the world’s statistical structure. Beyond the relevance of this finding for schizophrenia, our
results illustrate the potential of computational single-trial analyses for assessing potential

disease mechanisms.
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The auditory mismatch negativity (MMN), an electrophysiological response to rule violations in
auditory input streams, has long served as an empirical demonstration that the brain learns
the statistical structure of its environment and predicts future sensory inputs (1-3). It plays an
important role in psychiatric research, as it fulfils several criteria for a biomarker of
schizophrenia (4, 5). Most importantly, a reduction in MMN amplitude is one of the most robust

electrophysiological abnormalities in patients with schizophrenia (4-7).

Physiologically, MMN has been shown to depend on intact NMDA (N-methyl-D-aspartic acid)
receptor signalling. Following an initial study in monkeys (8), human EEG studies (9-11) using
the NMDA receptor (NMDAR) antagonist ketamine also found a significant reduction of MMN
responses, although the results show non-trivial variations with ketamine dose, paradigm type
and trial definition (12—-14). From a neuropharmacological perspective, this renders the MMN
paradigm an interesting potential readout of NMDAR function (although with potentially

concomitant effects on AMPA receptor function (15)).

The robust impairment of MMN in schizophrenia, and the fact that a similar MMN reduction
can be achieved with NMDAR antagonists like ketamine, are in line with the long-standing
notion that the pathophysiology of schizophrenia involves NMDAR dysfunction, leading to both
cognitive and perceptual abnormalities and positive symptoms (16—22). This has been
interpreted as an impairment of perceptual inference under a predictive coding view. In this
“Bayesian brain” framework, the brain continuously updates a hierarchical model of its

environment to infer the causes of its sensory inputs and predict future events (23-26).

The auditory MMN is believed to reflect such a model update during perceptual inference within
the auditory processing hierarchy (3, 27, 28). In particular, in predictive coding, each level of a
cortical hierarchy provides predictions about the state of the level below and, in turn, receives
a prediction error (PE) signal that reflects the discrepancy between the prediction and the
actual state of the level below; this PE signal then serves to update the prediction. This

updating process rests on hierarchical message passing between cortical regions, until PEs

3


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528372; this version posted May 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

are minimized on all levels of the hierarchy. While predictions are thought to be communicated
by descending (backward) connections, drawing predominantly on glutamatergic NMDAR
signaling, sensory PEs are signalled by ascending (forward) connections mainly via
glutamatergic AMPA receptors (29). Critically, these ascending PE signals are weighted by the
relative precision of bottom-up (sensory) input compared to predictions (priors) from higher
levels. The MMN, which is a difference waveform, is then commonly interpreted as the
difference in precision-weighted PEs between surprising events (‘deviants’) and more

predictable events (‘standards’).

The predictive coding perspective, which understands the MMN as a reflection of perceptual

inference in the auditory cortical hierarchy, makes two major predictions:

First, multiple and hierarchically related precision-weighted PEs should underlie the MMN (28).
These may become apparent when considering volatility effects during learning (30-32).
Volatility determines the learning rate, and even when the real volatility is low or absent in a
cognitive paradigm, participants still need to infer the adequate level of volatility as they
perform the task. Moreover, in perceptual learning paradigms like MMN, trial-by-trial changes
in evoked responses (as measured by EEG) carry information about the temporal dynamics of
this learning process (33—-38). A suitable model for incorporating volatility in trial-by-trial
Bayesian belief updates is the Hierarchical Gaussian Filter (HGF) (30, 39), which quantifies

the trajectories of hierarchically related PEs.

Second, the expression of precision-weighted PEs should be sensitive to NMDAR
manipulations. According to the framework outlined above, a blockade of NMDARs would lead
to a reduction of top-down (predictive) signalling, resulting in less constrained low-level
inference about the causes of sensory inputs, and potentially aberrant bottom-up (PE)
signalling (19, 20, 40). This could render all events equally surprising and thus blur differences
between standard and deviant events (which define the MMN). Such aberrant hierarchical

Bayesian inference due to disturbances in the relative weighting of prior beliefs and prediction
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errors on multiple (sensory and cognitive) levels is at the heart of current computational

accounts of schizophrenia (16-18, 22, 41, 42).

A previous MMN study (10) that administered S-ketamine to healthy volunteers focused on the
MMN “slope” — the increase of MMN amplitude with the number of standard repetitions, or
‘memory trace effect’. The study demonstrated a reduction of MMN slope at frontal channels
under ketamine and interpreted this effect as a disturbance of auditory PE processing. While
an important contribution to computational interpretations of MMN, a major limitation of this
previous study was the lack of a formal trial-wise model of PEs. Here, we re-analysed this
dataset, using a computational single-trial EEG analysis guided by the HGF, to directly test the
presence of multiple hierarchically PEs and their susceptibility to NMDA receptor antagonism

by S-ketamine.
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Details on participants, drug administration, and data acquisition have been provided
previously (10, 13); the interested reader is referred to these papers for more information. Here,

we only briefly summarize these aspects and focus on the model-based EEG analysis.

19 healthy subjects (twelve males, mean age: 26 + 5.09 years) gave informed written consent
and participated in the study, which was approved by the Ethics Committee of the University
Hospital of Psychiatry, Zurich. The use of psychoactive drugs was approved by the Swiss
Federal Health Office, Department of Pharmacology and Narcotics (DPN), Bern, Switzerland.
For further examinations prior to inclusion and additional questionnaire assessments, see

(10).

The two sessions (placebo and S-ketamine) that all subjects underwent in a counterbalanced
fashion were separated by at least two weeks. Both subjects and the experimenter interacting
with them were blind to the drug order. For details on the procedure and administration of S-

ketamine, please see Supplementary Material.

Electroencephalographic (EEG) activity was recorded during an auditory “roving” oddball
paradigm, originally developed by (43) and subsequently modified by (44). The EEG was

recorded at a sampling rate of 512 Hz using a Biosemi system with 64 scalp electrodes. Pre-

processing and data analysis was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/)
and included high- and lowpass filtering and rejection of trials contaminated by eye blinks, as

well as bad channels. For details on the paradigm and preprocessing, the reader is referred to
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the Supplementary Material. The average total number of artifact-free trials was 1211 (sd =
201) in the placebo and 1464.6 (sd = 211.2) in the ketamine condition. The number of artifact-
free trials was thus significantly lower in the placebo sessions. However, the resulting non-
sphericity was accommodated by our second-level statistical tests (paired t-tests to assess
group differences), see Methods section. Note that we did not define categorical events like

standard and deviant trials, but instead included all tones in our trial-by-trial analysis.

In what follows, we briefly outline our perceptual model before describing the analysis steps
used to apply this model to single-trial EEG data. For mathematical details of the model, please
refer to the Supplementary Material. In terms of notation, we denote scalars by lower case
italics (e.g., x), vectors by lower case bold letters (e.g., x), and matrices by upper case bold

letters (e.g., X). Trial numbers are indexed by the superscript (k), e.g., x(.

To describe a participant’s perceptual inference and learning during this roving MMN
paradigm, we use a multivariate version of the Hierarchical Gaussian Filter (HGF), a generic
Bayesian model introduced by (30) that has been applied in various contexts, such as
associative learning (31, 45), social learning (32, 46), spatial attention (47), or visual

discrimination (48).

In the present task, participants were exposed to a tone sequence with 7 different tones. Our
modeling approach assumes that in this context, an agent infers two hidden states in the world:
(i) the current (probabilistic) “laws” underlying the observed tone statistics — in our case, a
matrix X, of pair-wise transition probabilities between all tones, and (ii) the current level of
environmental volatility, i.e., how quickly the inferred laws seem to change. This is represented
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in our model by the volatility x5, which is the degree to which the transition probabilities in X,
change from trial to trial. The rationale for tracking this quantity is that agents should learn
faster — i.e., update their beliefs about the statistical laws in the environment according to
prediction errors — if they experience the current environment to be changing rather than stable.
Figure 1 shows a visualization of the corresponding generative model.

Generative Model Beliefs
(probability distributions

over states and transitions)

Belief about Volatility

k &
N, a8

Belief about Transition Matrix

*) (k)
N (p2; s 03,05)

3) Prediction of Transitions

) (M) Bern(ji}"),)

Input (Tones)

Figure 1. The Perceptual Model: A multivariate version of the binary three-level Hierarchical
Gaussian Filter (HGF). The agent infers upon two continuous quantities: The transition
tendencies from one tone (frequency) to another, stored in the transition matrix X, and the
(common) volatility of these tendencies, xz. To employ this model, the agent only has to follow
simple one-step update rules for its beliefs (parameterized by their mean p and variance o)
about these quantities (updates described in the main text details described in the
supplementary material).


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528372; this version posted May 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

On each trial, the agent updates his/her beliefs about these two environmental states, given
the new sensory input (i.e., tone). We denote these updated (posterior) beliefs in the following
by their mean u and their precision (or certainty)  (the inverse of variance, or uncertainty, o).
In the HGF, the general form of the update of the posterior mean at hierarchical level i on trial
kis:
w0 o T 10
—
Aﬂi (o8 (—k)Sl._l. (6)
T

Here, Si(fi denotes the PE about the state on the level below, which is weighted by a ratio of

precisions: ﬁf’_‘)l is the precision of the prediction about the level below (i — 1), while nl-(k) is the
precision of the current belief at the current hierarchical level i. The intuition behind this is that
an agent’s belief updates should be more strongly driven by PEs when the precision of
predictions about the input is high relative to the precision of beliefs in the current estimate

(e.g., when the environment is currently perceived as being volatile).

The specific update equations for the two levels of our model are given in the Supplementary
Material. For a detailed derivation of the update equations and the updates of the precisions,
the interested reader is referred to (30). Usually, in the HGF, subject-specific perceptual
parameters describe the individual learning style of an agent. Since the current paradigm does
not involve behavioral responses to the tones, and thus the model could not be fitted to
behavior, we used the parameters (learning rates on both hierarchical levels, and starting
values of the beliefs) of a surprise-minimizing Bayesian observer for all participants (for details,
see Supplementary Material). The resulting PE trajectories (Figure 2) were subsequently used

as regressors in a general linear model (GLM).
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The MMN has been interpreted as a precision-weighted PE (or model update signal) during
auditory perceptual inference and statistical learning (28, 49, 27, 36, 50, 3, 51). In our model,
two hierarchical levels are updated in response to new auditory inputs: the current estimate of
the transition probabilities (p;), and the current estimate of environmental volatility (13). The
corresponding precision-weighted PEs driving these updates are hierarchically related and are
computed sequentially: the agent first needs to update p, (using the low-level PE about p,)

before evaluating its high-level PE with respect to p,, which is then used to update p;.

The questions we address in this paper are whether these precision-weighted PEs, which we

denote by ¢, and &3,

(i) are reflected by trial-by-trial variations in the amplitude of evoked responses;

(ii) their hierarchical relation in the model is mirrored by a corresponding temporal
relation in their electrophysiological correlates;

(iii) whether NMDAR antagonism by S-ketamine alters the electrophysiological

expression of these PEs.

We looked for manifestations of our two computational quantities (e, and &3) in the event-
related EEG responses for each trial in a time window from 100ms to 400ms post-stimulus.
We focused on this time window in order to model learning-induced modulations of both the

MMN and the P300 waveforms.

The data from each trial in each session were converted into scalp images for all 64 channels
and 91 time points using a voxel size of 4.25 mm x 5.38 mm x 3.33 ms. The images were
constructed using linear interpolation for removed bad channels and smoothing to

accommodate for between-subject spatial variability in channel space.
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Our vectors of precision-weighted PEs served as regressors in a GLM of trial-wise EEG signals
for each subject and each session separately, correcting for multiple comparisons over the

entire time-sensor matrix, using Gaussian random field theory (52). We did not orthogonalise

the regressors. summarizes the analysis steps for the model-based GLM.
Model GLM SPM
€3 B ,...»»-"""Nw“( ©2 = ';i _7_’4%( 60
-- - : ,» f o, PST Q ; 40
c?2 ‘wﬂ“)L { Sl I R A e e N 25 W J"J o 0
- > - > 0
trials trials F(1.18)
“ Single-trial model-based First level: GLM with Second level:
estimates of prediction error parametric regressors Statistical Parametric Maps

Figure 2. Sketch of the analysis pipeline for the model-based analysis. First, we simulated an
agent’s beliefs using our hierarchical Bayesian model, which provided us with an estimate of
precision-weighted PE on two hierarchical levels (e, and &3) for each trial in each session. At
first glance, it may seem that the e;regressor simply amounts to a drift-like signal. This,
however, is not the case; the design of our experiment, with prolonged trains of identical stimuli
that exchange each other, leads to separate monotonic changes in log-volatility estimates for
standard and deviant trials, with jump-like transitions between them (see Figure S1C). Second,
we used these estimates as parametric regressors in a GLM of the single-trial EEG signal in
each session of each subject separately (peri-stimulus time window of 100 - 400 ms after tone
onset) and computed the first level statistics. Third, the beta values for each quantity and each
subject in each session entered the second level analysis. We performed random effects group
analysis across all 19 participants separately for each drug condition in one-sample T-tests
and used F-Tests to examine correlations of EEG amplitudes with our computational quantities
of interest, resulting in thresholded F maps across within-trial time and sensor space. PST =
peri-stimulus time.

Random effects group analysis across all 19 participants was performed using a standard
summary statistics approach (53). We employed one-sample T-tests as second level models,
separately for each drug condition, and used F-tests to simultaneously examine positive and
negative relations of EEG amplitudes with the trajectories of our computational quantities. To
examine differences between the two drug conditions, we tested for reduced responses under

ketamine using a paired t-test.
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For all analyses, we report any results that survived family-wise error (FWE) correction, based
on Gaussian random field theory, across the entire volume (timexsensor space) at the cluster
level (p<0.05) with a cluster defining threshold (CDT) of p<0.001 (54). Notably, all reported
results also survive whole-volume correction at the peak-level (p<0.05); the associated p-

values are not included in the main text but listed in the tables.
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Results

Placebo
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Figure 3. Results of the model-based EEG analysis in the placebo condition: effects of the
high- and the low-level PE. Upper part: The left side always shows an F-map across the scalp
dimension y (from posterior to anterior, x-axis), and across peristimulus time (y-axis), at the
spatial x-location indicated above the map. Significant F values (p < 0.05, whole-volume FWE-
corrected at the cluster-level with a cluster-defining threshold of p < 0.001) are marked by white
contours. Time-windows of significant correlations are indicated by the yellow bars next to the
colored clusters of significant F values. The scalp maps next to the F-maps always show the
F-map at the indicated peristimulus time point, corresponding to the peak of that cluster, across
a 2D representation of the sensor layout. We found significant correlations of the EEG signal
with our two computational quantities across fronto-central and temporal channels. For the
lower-level PE, ¢, the correlation peaked at 121 ms post-stimulus at central channels, for the
higher-level PE, €3, it peaked at 180 ms at frontal channels, at 184 ms at temporal channels
(not shown here), and at 266 ms post-stimulus at left central channels. Lower part: Average
EEG responses to the 10% highest and the 10% lowest PE values at exemplary sensors within
significant clusters. Green: High values in low-level PEs correlated with an increased negativity
between 102 and 207 ms post-stimulus (sensor C1). Red: High values in high-level PEs
correlated with an increased negativity between 145 and 188 ms post-stimulus (sensor F1),
and an increased central positivity between 215 and 277 ms post-stimulus (sensor C1).
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For each computational quantity of interest, our model-based EEG analysis proceeded in two
steps: first, we performed whole-volume (spatiotemporal) analyses to search for
representations of our quantities in single-trial EEG responses; second, we examined whether
these electrophysiological representations of trial-wise PEs differed significantly between

ketamine and placebo.

By fitting computational trajectories to participants’ single-trial EEG data, we found that under
placebo, there was a significant trial-by-trial relation between sgk) (the precision-weighted
transition PE) and EEG activity between 102ms and 207ms post-stimulus, peaking at 121ms
at central channels (whole-volume cluster-level FWE corrected, p=2.8e-08, with a cluster-
defining threshold (CDT) of p<0.001; ; ). This time window includes the typical
time when the negativity of the roving MMN is observed (43, 44, 49). This suggests that the
MMN typically observed in roving MMN paradigms reflects the difference in low-level precision-
weighted PEs about stimulus transitions between the subsets of trials labeled as ‘standards’

and ‘deviants’ by the experimenter.

Under ketamine infusion, we found a similar activation pattern, with significant clusters of
activity at fronto-central electrodes between 10ms and 188ms (p=3.1e-08), and at left temporal

channels between 105ms and 188ms, peaking at 141ms post-stimulus (p=6.3e-06; ,

).
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Peak Coordinates peak-level cluster-level

x [mm] Yy [mm] ¢ [ms] F{l,ls} Z=  DPrue ke Prwe

Higher-level PE (e3) 60 —46 184 58.79 491 0.003 681  0.004
64 36 184 56.94 1.87 0.004
—21 -9 266 35.13 4.2 0.045 852 0.002

—3 -3 234 33.32 1.13  0.058

=21 24 180 31.64 4.06 0.073 541  0.009

17 67 152 17.58 3.27 '0.333
Lower-level PE (g2) -8 -9 121 70.07 5.15 0.001 3746 0.000
—4 -3 152 63.46 5.02 0.002
17 2 164  60.35 1.95 0.003
x [mm]  y[mm] t[ms] Tyg Z=  peae ke Drwe
Higher-level PE (&3) —4 2 223 5.95 4.37 0.025 685  0.005

Table 1. Significant representations of the two computational quantities under placebo, and
drug differences for the representation of the higher-level PE ¢; in Placebo vs. Ketamine
condition. The table lists the peak coordinates, F/t values, corresponding Z values, whole-
volume FWE-corrected p-values at the voxel level, cluster size (ke) and FWE-corrected p-
values at the cluster level of voxels showing significant correlations of EEG signal with the
trajectory of one of the precision-weighted PEs €3 and ¢, (F-test, p < 0.05 whole-volume FWE-
corrected at the cluster-level with a cluster-defining threshold of p < 0.001), and, for the drug
difference, of voxels showing significantly stronger representation of €3 under placebo
compared to the ketamine condition (paired t-test, p < 0.05 whole-volume FWE-corrected at
the cluster-level with a cluster-defining threshold of p < 0.001). No significant drug differences
were found for the lower-level PE.

High-level precision-weighted prediction errors

In the placebo condition, we found a significant trial-by-trial relation between s§k> (the precision-

weighted PE that serves to update volatility estimates) and EEG activity, both in an early time
window (152ms to 199ms, peaking at 184ms at right temporal channels, p=0.004, and from
145ms to 188ms, peaking at 180ms at frontal channels, p=0.009) and in a later time window
(between 215ms and 277ms, peaking at 266ms post-stimulus, p=0.002; ; ),
where high-level prediction errors correlated with an increased central positivity corresponding

to the P3a component of the auditory evoked potential (55).
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Under ketamine, we found a similar relationship of EEG amplitudes with the higher-level PE in
the early time window (148ms to 211ms, peaking at 160ms at left temporal channels, p=0.04,
and 156ms to 215ms, peaking at 207ms at fronto-central channels, p=0.008), but the later
cluster occurred only much later (297ms to 398ms, peaking at 375ms at left temporal channels,
p=0.021, and 324ms to 398ms, peaking at 398ms at fronto-central channels, p=0.001; Figure
S2, Table S3). While the timing of this late effect is reminiscent of the P3b component, its scalp
distribution was not centered on parietal channels, as would be characteristic for P3b (55, 56),

but instead looked very similar to the earlier cluster, with a peak at fronto-central channels.

Effects of ketamine on PE representations

Placebo > Ketamine

Effect on ¢, (Lower-level PE) Effect on 3 (Higher-level PE)
r=-—12.8 mm r = —4.3 mm
400 400 6
4
2
PST PST
(ms) (ms) 250 0
Tasy = 3.07 207 -2
(n.s.)

"""""""" 145 ms -4
100 100 -6
anterior posterior anterior posterior Tas)

Figure 4. Drug effect on the representation of the lower-level PE (¢, left) and the higher-level
PE (g3, right). The left side always shows a T-map for the paired T-test (Placebo — Ketamine)
across the scalp dimension y (from posterior to anterior, x-axis), and across peristimulus time
(y-axis), at the spatial x-location indicated above the map. Significant T values (p < 0.05, whole-
volume FWE-corrected at the cluster-level with a cluster-defining threshold of p < 0.001) are
marked by white contours. Time-windows of significant correlations are indicated by the yellow
bars next to the colored clusters of significant F values. The scalp map next to the T-map
shows the T-map at the indicated peristimulus time point, corresponding to the peak of that
cluster, across a 2D representation of the sensor layout. The effect of the higher-level PE was
stronger under placebo compared to ketamine between 207 ms and 250 ms post-stimulus,
peaking at 223 ms at fronto-central channels. No significant drug effects were found for the
lower-level PE.
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We tested for drug differences in activity elicited by precision-weighted PEs using paired t-
tests at the second level. We found no significant differences in activation by sgk) in the

ketamine compared to the placebo condition. In contrast, the activation by eék), the higher-level
PE informing volatility estimates, was significantly reduced under ketamine as compared to
placebo in a time window between 207ms and 250ms post stimulus, peaking at 223ms across
fronto-central channels (p = 0.005; ; ). That is, the trial-by-trial relation between
EEG signal and the higher-level PE was significantly more pronounced under placebo than

under ketamine in this time window.
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Current theories of schizophrenia conceptualize psychotic symptoms as disturbed hierarchical
Bayesian inference, characterized by an imbalance in the relative weight (precision) assigned
to prior beliefs (or predictions) and new sensory information that elicits PEs (18, 19, 22).
Neurobiologically, this disturbance of hierarchical Bayesian inference is thought to result from
alterations of NMDAR-dependent synaptic plasticity and to be reflected by abnormalities in
perceptual paradigms, such as the auditory mismatch negativity (MMN) (16, 17, 21). Based on
a computational single-trial analysis of the MMN under ketamine, the results from the current
study are largely supportive of two major predictions: (i) multiple and hierarchically related
precision-weighted PEs should underlie the MMN, and (ii) the expression of precision-weighted

PEs should be sensitive to NMDAR manipulations.

The auditory MMN has been interpreted as reflecting model updates in an auditory processing
hierarchy (27, 36, 49). In our Bayesian learning model, levels of a belief hierarchy are updated
in response to two different precision-weighted PE signals (30): a low-level PE that quantifies
the mismatch between expected and actual tone transitions and a higher-level PE that
guantifies the change in estimated uncertainty about transition probabilities in the light of new
input and which is used to update estimates of environmental volatility. Effects of volatility on

mismatch signals have been reported previously (57-59).

Notably, in the present study, the observed timing of low-level and high-level precision-
weighted PE responses under placebo coincided with the timing of MMN and P3a components,
respectively, previously shown to reflect related, but dissociable stages of automatic deviance
processing (60, 61). Furthermore, the temporal succession of these two PE signatures

mirrored the temporal order as predicted by the computational model.

18


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528372; this version posted May 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We found that ketamine changed the electrophysiological expression of the higher-level (but
not lower-level) PE. Other authors have reported ketamine-induced changes of the deviant-
related negativity at an earlier time corresponding to our lower-level PE representation and the
classical MMN latency (9, 10). One difficulty for comparing these reports to the current results
is that the timing of ketamine effects in previously reported ERP analyses strongly depended
on the type of MMN paradigm, the definition of “standards”, and the choice of electrodes and
time windows (9-14). For example, using classical averaging-based ERP analysis restricted
to the early MMN time window (100 to 200ms after tone onset) and a subset of fronto-central
and temporal channels, Schmidt and colleagues (10) found an attenuation of early MMN
amplitudes in frontal channels under ketamine in the same dataset used here. By contrast, our
model-based analysis, which considers all sensors and time points under multiple comparison
correction, locates the dominant effect of ketamine in the time window of the P3a. This is also
consistent with another set of ERP results from the same dataset (13) — where, across all
sensors and time points, a significant drug effect was found exclusively in a time window (220-
240ms) that was later than the classical MMN latency — and with literature on how ketamine

attenuates later ERP components such as the P3 (12, 56, 62).

Our finding that ketamine altered high-level PEs can also be compared to previous dynamic
causal modeling (DCM) studies that examined the effects of ketamine during auditory roving
MMN paradigms. While these studies (which used different approaches to modeling the input
stream) gave different answers, both localized the effect of ketamine at higher levels of the
auditory hierarchy. One study found that the effect of ketamine was best explained by changes
of inhibition within frontal sources (63). Previous DCM analyses of our own dataset (13)
suggested reduced bottom-up connectivity from auditory cortex (A1) to superior temporal gyrus
(STG) under ketamine, compatible with disturbed computation of higher-level PEs in STG by

impairing message passing from Al.
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Interestingly, in our study, the high-level PE showed an effect under ketamine both in early and
late time windows (Table 2). While the late effect corresponded to the P3a under placebo, it
occurred later under ketamine, around the typical time of ERP components related to
conscious processing and context updating (55, 64, 65). Speculatively, this could reflect a less
automatic, stimulus-driven processing (as typically associated with P3a) (55, 56, 65) of

volatility under ketamine.

It is important to note that our results do not allow for a unique interpretation of ketamine effects
in computational terms. If one assumes a strictly monotonic relation between EEG amplitude
and PEs, our finding suggests that ketamine reduces learning about environmental volatility.
Depending on context, this can both lead to inflated estimates of volatility (slowed
representation of stability after periods of inconstancy) or diminished ones (in the opposite
case). A previous study using ketamine found reduced stabilization of an internal model of
environmental regularities during instrumental learning (66). One may be tempted to interpret
this as an overestimation of volatility under ketamine; however, the previous model derived

from a different computational concept, making direct comparisons problematic.

The HGF parameters allow for expression of individual differences in learning (with potential
relations to neuromodulatory mechanisms (30, 67)). A main limitation of our approach is that
we cannot infer upon such subject-specific learning styles, simply because the MMN paradigm
does not provide behavioral responses to which the model could be fitted. Similar to (37), we
therefore used the parameters of a surprise-minimizing Bayesian observer for each of the tone
sequences and simulated belief trajectories accordingly. An important future extension of HGF
applications to MMN paradigms would be the formulation of a forward model from belief
updates to EEG signals. This would allow for estimating subject-specific model parameters

from single-trial EEG data directly.
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A second limitation concerns the relatively small sample size (N=19). This renders it difficult to
interpret negative results, such as the lack of ketamine effects on low-level PEs. This will need

to be addressed in future studies with larger samples and/or meta-analyses.

This study presents evidence for the role of hierarchically related PEs in the auditory MMN.
While ketamine-induced reductions of MMN have been reported previously, our study enables
two new insights by taking an explicitly computational perspective and analyzing trial-by-trial
belief updates. First, we offer an interpretation of two mismatch-related ERP components, the
MMN and the P3a, in terms of hierarchically related PEs that are expressed trial-by-trial and
reflect the updating of a hierarchical model of the environment's statistical structure.
Additionally, a reduced expression of the higher-level PE under infusion of S-ketamine
suggests a disturbance of high-level inference about environmental volatility by perturbation of

NMDA receptors.

Our results are clinically important as they support a bridge between physiology (NMDAR
function) and computation (hierarchical Bayesian inference) as proposed by predictive coding
theories of schizophrenia. By linking physiological indices of abnormal perceptual inference to
their algorithmic interpretation in terms of hierarchically related PEs, the present work provides
a starting point for future attempts to understand individual alterations of MMN in schizophrenia
mechanistically. We hope that this will contribute to the development of computational assays

for improved differential diagnosis and treatment prediction in schizophrenia (68—70).

21


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528372; this version posted May 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

This study was supported by the University of Zurich (KES), the René and Susanne Braginsky
Foundation (KES), the SNF Ambizione PZ0O0OP3_167952 (AOD), the Swiss Neuromatrix (MK,
FXV), and the Hefter Research Institute (FXV). The authors report no biomedical financial

interest or potential conflicts of interest.

1. Paavilainen P, Jaramillo M, Naatanen R, Winkler | (1999): Neuronal populations in the
human brain extracting invariant relationships from acoustic variance. Neurosci Lett.
265: 179-182.

2. Naatanen R, Jacobsen T, Winkler | (2005): Memory-based or afferent processes in
mismatch negativity (MMN): A review of the evidence. Psychophysiology. 42: 25-32.

3. Winkler | (2007): Interpreting the Mismatch Negativity. J Psychophysiol. 21: 147-163.

4. Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC (2018): Meta-analysis of
mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr
Res. 191: 25-34.

5. Todd J, Harms L, Schal | U, Michie PT (2013): Mismatch negativity: Translating the
potential. Front Psychiatry. 4: 1-22.

6. Umbricht D, Krljes S (2005): Mismatch negativity in schizophrenia: a meta-analysis.
Schizophr Res. 76: 1-23.

7. Erickson MA, Ruffle A, Gold JM (2016): A Meta-Analysis of Mismatch Negativity in
Schizophrenia: From Clinical Risk to Disease Specificity and Progression. Biol
Psychiatry. 79: 980-987.

8. Javitt DC, Steinschneider M, Schroeder CE, Arezzo JC (1996): Role of cortical N-methyl-
D-aspartate receptors in auditory sensory memory and mismatch negativity generation:
implications for schizophrenia. Proc Natl Acad Sci U S A. 93: 11962-7.

9. Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, Javitt DC (2000): Ketamine-
induced deficits in auditory and visual context-dependent processing in healthy
volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen
Psychiatry. 57: 1139-47.

10. Schmidt A, Bachmann R, Kometer M, Csomor PA, Stephan KE, Seifritz E, Vollenweider
FX (2012): Mismatch Negativity Encoding of Prediction Errors Predicts S-ketamine-
Induced Cognitive Impairments. Neuropsychopharmacology. 37: 865—-875.

11. Heekeren K, Daumann J, Neukirch A, Stock C, Kawohl W, Norra C, et al. (2008):
Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist
model of psychosis. Psychopharmacology (Berl). 199: 77-88.

12. Oranje B, Van Berckel BNM, Kemner C, Van Ree JM, Kahn RS, Verbaten MN (2000):
The effects of a sub-anaesthetic dose of ketamine on human selective attention.
Neuropsychopharmacology. 22: 293-302.

22


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528372; this version posted May 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

available under aCC-BY-NC-ND 4.0 International license.

Schmidt A, Diaconescu AO, Kometer M, Friston KJ, Stephan KE, Vollenweider FX
(2013): Modeling ketamine effects on synaptic plasticity during the mismatch negativity.
Cereb Cortex. 23: 2394—-2406.

Roser P, Haussleiter IS, Chong H-J, Maier C, Kawohl W, Norra C, Juckel G (2011):
Inhibition of cerebral type 1 cannabinoid receptors is associated with impaired auditory
mismatch negativity generation in the ketamine model of schizophrenia.
Psychopharmacology (Berl). 218: 611-620.

Shi W-X, Zhang X-X (2003): Dendritic Glutamate-Induced Bursting in the Prefrontal
Cortex: Further Characterization and Effects of Phencyclidine. J Pharmacol Exp Ther.
305: 680-687.

Stephan KE, Friston KJ, Frith CD (2009): Dysconnection in Schizophrenia: From
abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 35: 509-527.

Friston KJ, Brown HR, Siemerkus J, Stephan KE (2016): The dysconnection hypothesis
(2016). Schizophr Res. 176: 83-94.

Sterzer P, Adams RA, Fletcher P, Frith C, Lawrie SM, Muckli L, et al. (2018): The
Predictive Coding Account of Psychosis. Biol Psychiatry. 84.

Corlett PR, Honey GD, Fletcher PC (2016): Prediction error, ketamine and psychosis: An
updated model. J Psychopharmacol. 30: 1145-1155.

Corlett PR, Honey GD, Krystal JH, Fletcher PC (2011): Glutamatergic model psychoses:
Prediction error, learning, and inference. Neuropsychopharmacology. 36: 294—-315.

Stephan KE, Baldeweg T, Friston KJ (2006): Synaptic Plasticity and Dysconnection in
Schizophrenia. Biol Psychiatry. 59: 929-939.

Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ (2013): The computational
anatomy of psychosis. Front Psychiatry. 4: 1-26.

Dayan P, Hinton GE, Neal RM, Zemel RS (1995): The Helmholtz Machine. Neural
Comput. 7: 889-904.

Doya K, Ishii S, Pouget A, Rao RPN (2011): Bayesian brain: probabilistic approaches to
neural coding. Cambridge, Mass.: MIT Press.

Friston KJ (2010): The free-energy principle: a unified brain theory? Nat Rev Neurosci.
11: 127-38.

Rao RPN, Ballard DH (1999): Predictive Coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nat Neurosci. 2: 79-87.

Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009): The mismatch negativity: A review
of underlying mechanisms. Clin Neurophysiol. 120: 453—-463.

Lieder F, Stephan KE, Daunizeau J, Garrido MI, Friston KJ (2013): A
Neurocomputational Model of the Mismatch Negativity. PLoS Comput Biol. 9:
e1003288.

Self MW, Kooijmansa RN, Super H, Lammec VA, Roelfsema PR (2012): Different
glutamate receptors convey feedforward and recurrent processing in macaque V1. Proc
Natl Acad Sci. 109: 11031-11036.

Mathys CD, Daunizeau J, Friston KJ, Stephan KE (2011): A Bayesian foundation for
individual learning under uncertainty. Front Hum Neurosci. 5: 1-20.

Iglesias S, Mathys CD, Brodersen KH, Kasper L, Piccirelli M, denOuden HEM, Stephan
KE (2013): Hierarchical Prediction Errors in Midbrain and Basal Forebrain during

23


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528372; this version posted May 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sensory Learning. Neuron. 80: 519-530.

32. Diaconescu AO, Mathys CD, Weber LAE, Daunizeau J, Kasper L, Lomakina El, et al.
(2014): Inferring on the Intentions of Others by Hierarchical Bayesian Learning. PLoS
Comput Biol. 10.

33. Kolossa A, Kopp B, Fingscheidt T (2015): A computational analysis of the neural bases
of Bayesian inference. Neuroimage. 106: 222—-237.

34. Mars RB, Debener S, Gladwin TE, Harrison LM, Haggard P, Rothwell JC, Bestmann S
(2008): Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect
Dynamic Changes in the Degree of Surprise. J Neurosci. 28: 12539-12545.

35. Ostwald D, Spitzer B, Guggenmos M, Schmidt TT, Kiebel SJ, Blankenburg F (2012):
Evidence for neural encoding of Bayesian surprise in human somatosensation.
Neuroimage. 62: 177-188.

36. Lieder F, Daunizeau J, Garrido Ml, Friston KJ, Stephan KE (2013): Modelling Trial-by-
Trial Changes in the Mismatch Negativity. PLoS Comput Biol. 9. doi:
10.1371/journal.pcbi.1002911.

37. Stefanics G, Heinzle J, Horvath AA, Stephan KE (2018): Visual Mismatch and Predictive
Coding: A Computational Single-Trial ERP Study. J Neurosci. 38: 4020-4030.

38. Jepma M, Murphy PR, Nassar MR, Rangel-Gomez M, Meeter M, Nieuwenhuis S (2016):
Catecholaminergic Regulation of Learning Rate in a Dynamic Environment. PLoS
Comput Biol. 12: e1005171.

39. Mathys CD, Lomakina El, Daunizeau J, Iglesias S, Brodersen KH, Friston KJ, Stephan
KE (2014): Uncertainty in perception and the Hierarchical Gaussian Filter. Front Hum
Neurosci. 8: 1-24.

40. Corlett PR, Honey GD, Fletcher PC (2007): From prediction error to psychosis: ketamine
as a pharmacological model of delusions. J Psychopharmacol. 21: 238-252.

41. Fletcher PC, Frith CD (2009): Perceiving is believing: a Bayesian approach to explaining
the positive symptoms of schizophrenia. Nat Rev Neurosci. 10: 48-58.

42. Corlett PR (2017): | Predict, Therefore | Am: Perturbed Predictive Coding Under
Ketamine and in Schizophrenia. Biol Psychiatry. 81: 465—-466.

43. Cowan N, Winkler I, Teder W, Naatanen R (1993): Memory prerequisites of mismatch
negativity in the auditory event-related potential (ERP). J Exp Psychol Learn Mem
Cogn. 19: 909-21.

44. Baldeweg T, Klugman A, Gruzelier J, Hirsch SR (2004): Mismatch negativity potentials
and cognitive impairment in schizophrenia. Schizophr Res. 69: 203-17.

45. Weilnhammer VA, Stuke H, Sterzer P, Schmack K (2018): The Neural Correlates of
Hierarchical Predictions for Perceptual Decisions. J Neurosci. 38: 5008-5021.

46. Diaconescu AO, Mathys CD, Weber LAE, Kasper L, Mauer J, Stephan KE (2017):
Hierarchical prediction errors in midbrain and septum during social learning. Soc Cogn
Affect Neurosci. 12: 618-634.

47.Vossel S, Mathys CD, Daunizeau J, Bauer M, Driver J, Friston KJ, Stephan KE (2014):
Spatial attention, precision, and bayesian inference: A study of saccadic response
speed. Cereb Cortex. 24: 1436-1450.

48. Auksztulewicz R, Friston KJ, Nobre AC (2017): Task relevance modulates the
behavioural and neural effects of sensory predictions. PLOS Biol. 15: e2003143.

24


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528372; this version posted May 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

available under aCC-BY-NC-ND 4.0 International license.

Garrido M, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, Kilner JM (2008): The
functional anatomy of the MMN: A DCM study of the roving paradigm. Neuroimage. 42:
936-944.

Wacongne C, Changeux J-P, Dehaene S (2012): A Neuronal Model of Predictive Coding
Accounting for the Mismatch Negativity. J Neurosci. 32: 3665-3678.

Naaténen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler | (2001): ‘Primitive
intelligence’ in the auditory cortex. Trends Neurosci. 24: 283-288.

Kilner JM, Friston KJ (2010): Topological inference for EEG and MEG. Ann Appl Stat. 4.

Penny WD, Holmes AJ (2007): Chapter 12 : Random effects analysis. In: Penny WD,
Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, editors. Stat Parametr Mapp Anal
Funct Brain Images. London: Academic Press, pp 156—-165.

Flandin G, Friston KJ (2017): Analysis of family-wise error rates in statistical parametric
mapping using random field theory. Hum Brain Mapp. . doi: 10.1002/hbm.23839.

Polich J (2007): Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol.
118: 2128-2148.

Watson TD, Petrakis IL, Edgecombe J, Perrino A, Krystal JH, Mathalon DH (2009):
Modulation of the cortical processing of novel and target stimuli by drugs affecting
glutamate and GABA neurotransmission. Int J Neuropsychopharmacol. 12: 357.

Dzafic I, Randeniya R, Garrido MI (2018): Reduced top-down connectivity as an
underlying mechanism for psychotic experiences in healthy people. bioRxiv. 296988.

Todd J, Heathcote A, Whitson LR, Mullens D, Provost A, Winkler | (2014): Mismatch
negativity (MMN) to pitch change is susceptible to order-dependent bias. Front
Neurosci. 8: 180.

Summerfield C, Wyart V, Johnen VM, de Gardelle V (2011): Human Scalp
Electroencephalography Reveals that Repetition Suppression Varies with Expectation.
Front Hum Neurosci. 5: 67.

Rinne T, Sarkka A, Degerman A, Schrdger E, Alho K (2006): Two separate mechanisms
underlie auditory change detection and involuntary control of attention. Brain Res. 1077:
135-143.

Lecaignard F, Bertrand O, Gimenez G, Mattout J, Caclin A (2015): Implicit learning of
predictable sound sequences modulates human brain responses at different levels of
the auditory hierarchy. Front Hum Neurosci. 9: 505.

Rosburg T, Schmidt A (2018): Potential Mechanisms for the Ketamine-Induced
Reduction of P3b Amplitudes. Front Behav Neurosci. 12: 308.

Rosch RE, Auksztulewicz R, Leung PD, Friston KJ, Baldeweg T (2018, August 13):
Selective Prefrontal Disinhibition in a Roving Auditory Oddball Paradigm Under N-
Methyl-D-Aspartate Receptor Blockade. Biol Psychiatry Cogn Neurosci Neuroimaging.
0. doi: 10.1016/j.bpsc.2018.07.003.

Horvéath J, Winkler |, Bendixen A (2008): Do N1/MMN, P3a, and RON form a strongly
coupled chain reflecting the three stages of auditory distraction? Biol Psychol. 79: 139—
147.

Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L (2009): Neural
signature of the conscious processing of auditory regularities. Proc Natl Acad Sci U S A.
106: 1672-7.

Vinckier F, Gaillard R, Palminteri S, Rigoux L, Salvador A, Fornito A, et al. (2016):

25


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528372; this version posted May 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Confidence and psychosis: a neuro-computational account of contingency learning
disruption by NMDA blockade. Mol Psychiatry. 21: 946-955.

67. Vossel S, Bauer M, Mathys CD, Adams RA, Dolan RJ, Stephan KE, Friston KJ (2014):
Cholinergic Stimulation Enhances Bayesian Belief Updating in the Deployment of
Spatial Attention. J Neurosci. 34: 15735-15742.

68. Adams RA, Huys QJM, Roiser JP (2016): Computational Psychiatry: towards a
mathematically informed understanding of mental iliness. J Neurol Neurosurg
Psychiatry. 87: 53-63.

69. Mathys CD (2016): How could we get nosology from computation? Comput Psychiatry
New Perspect Ment Ilin. MIT Press, pp 121-135.

70. Stephan KE, Iglesias S, Heinzle J, Diaconescu AO (2015): Translational Perspectives for
Computational Neuroimaging. Neuron. 87: 716—732.

26


https://doi.org/10.1101/528372
http://creativecommons.org/licenses/by-nc-nd/4.0/

