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Abstract 
 
The auditory mismatch negativity (MMN) is significantly reduced in schizophrenia. Notably, a 

similar MMN reduction can be achieved with NMDA receptor (NMDAR) antagonists. Both 

phenomena have been interpreted as reflecting an impairment of predictive coding or, more 

generally, the “Bayesian brain” notion that the brain continuously updates a hierarchical model 

to infer the causes of its sensory inputs. Specifically, predictive coding views perceptual 

inference as an NMDAR-dependent process of minimizing hierarchical precision-weighted 

prediction errors (PEs). Disturbances of this putative process play a key role in hierarchical 

Bayesian theories of schizophrenia. Here, we provide empirical evidence for this clinical 

theory, demonstrating the existence of multiple, hierarchically related PEs in a “roving MMN” 

paradigm.  

We applied a computational model (Hierarchical Gaussian Filter, HGF), to single-trial EEG 

data from healthy volunteers that received the NMDAR antagonist S-ketamine in a placebo-

controlled, double-blind, within-subject fashion. Using an unrestricted analysis of the entire 

time-sensor space, our computational trial-by-trial analysis indicated that low-level PEs (about 

stimulus transitions) are expressed early (102-207ms post-stimulus), while high-level PEs 

(about transition probability) are reflected by later components (152-199ms, 215-277ms) of 

single-trial responses. Furthermore, we find that ketamine significantly diminished the 

expression of high-level PE responses, implying that NMDAR antagonism disrupts inference 

on abstract statistical regularities. 

Our findings suggest that NMDAR dysfunction impairs hierarchical Bayesian inference about 

the world’s statistical structure. Beyond the relevance of this finding for schizophrenia, our 

results illustrate the potential of computational single-trial analyses for assessing potential 

disease mechanisms. 
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Introduction 

The auditory mismatch negativity (MMN), an electrophysiological response to rule violations in 

auditory input streams, has long served as an empirical demonstration that the brain learns 

the statistical structure of its environment and predicts future sensory inputs (1–3). It plays an 

important role in psychiatric research, as it fulfils several criteria for a biomarker of 

schizophrenia (4, 5). Most importantly, a reduction in MMN amplitude is one of the most robust 

electrophysiological abnormalities in patients with schizophrenia (4–7).  

Physiologically, MMN has been shown to depend on intact NMDA (N-methyl-D-aspartic acid) 

receptor signalling. Following an initial study in monkeys (8), human EEG studies (9–11) using 

the NMDA receptor (NMDAR) antagonist ketamine also found a significant reduction of MMN 

responses, although the results show non-trivial variations with ketamine dose, paradigm type 

and trial definition (12–14). From a neuropharmacological perspective, this renders the MMN 

paradigm an interesting potential readout of NMDAR function (although with potentially 

concomitant effects on AMPA receptor function (15)). 

The robust impairment of MMN in schizophrenia, and the fact that a similar MMN reduction 

can be achieved with NMDAR antagonists like ketamine, are in line with the long-standing 

notion that the pathophysiology of schizophrenia involves NMDAR dysfunction, leading to both 

cognitive and perceptual abnormalities and positive symptoms (16–22). This has been 

interpreted as an impairment of perceptual inference under a predictive coding view. In this 

“Bayesian brain” framework, the brain continuously updates a hierarchical model of its 

environment to infer the causes of its sensory inputs and predict future events (23–26).  

The auditory MMN is believed to reflect such a model update during perceptual inference within 

the auditory processing hierarchy (3, 27, 28). In particular, in predictive coding, each level of a 

cortical hierarchy provides predictions about the state of the level below and, in turn, receives 

a prediction error (PE) signal that reflects the discrepancy between the prediction and the 

actual state of the level below; this PE signal then serves to update the prediction. This 

updating process rests on hierarchical message passing between cortical regions, until PEs 
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are minimized on all levels of the hierarchy. While predictions are thought to be communicated 

by descending (backward) connections, drawing predominantly on glutamatergic NMDAR 

signaling, sensory PEs are signalled by ascending (forward) connections mainly via 

glutamatergic AMPA receptors (29). Critically, these ascending PE signals are weighted by the 

relative precision of bottom-up (sensory) input compared to predictions (priors) from higher 

levels. The MMN, which is a difference waveform, is then commonly interpreted as the 

difference in precision-weighted PEs between surprising events (‘deviants’) and more 

predictable events (‘standards’).  

The predictive coding perspective, which understands the MMN as a reflection of perceptual 

inference in the auditory cortical hierarchy, makes two major predictions: 

First, multiple and hierarchically related precision-weighted PEs should underlie the MMN (28). 

These may become apparent when considering volatility effects during learning (30–32). 

Volatility determines the learning rate, and even when the real volatility is low or absent in a 

cognitive paradigm, participants still need to infer the adequate level of volatility as they 

perform the task. Moreover, in perceptual learning paradigms like MMN, trial-by-trial changes 

in evoked responses (as measured by EEG) carry information about the temporal dynamics of 

this learning process (33–38). A suitable model for incorporating volatility in trial-by-trial 

Bayesian belief updates is the Hierarchical Gaussian Filter (HGF) (30, 39), which quantifies 

the trajectories of hierarchically related PEs.  

Second, the expression of precision-weighted PEs should be sensitive to NMDAR 

manipulations. According to the framework outlined above, a blockade of NMDARs would lead 

to a reduction of top-down (predictive) signalling, resulting in less constrained low-level 

inference about the causes of sensory inputs, and potentially aberrant bottom-up (PE) 

signalling (19, 20, 40). This could render all events equally surprising and thus blur differences 

between standard and deviant events (which define the MMN). Such aberrant hierarchical 

Bayesian inference due to disturbances in the relative weighting of prior beliefs and prediction 
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errors on multiple (sensory and cognitive) levels is at the heart of current computational 

accounts of schizophrenia (16–18, 22, 41, 42).  

A previous MMN study (10) that administered S-ketamine to healthy volunteers focused on the 

MMN “slope” – the increase of MMN amplitude with the number of standard repetitions, or 

‘memory trace effect’. The study demonstrated a reduction of MMN slope at frontal channels 

under ketamine and interpreted this effect as a disturbance of auditory PE processing. While 

an important contribution to computational interpretations of MMN, a major limitation of this 

previous study was the lack of a formal trial-wise model of PEs. Here, we re-analysed this 

dataset, using a computational single-trial EEG analysis guided by the HGF, to directly test the 

presence of multiple hierarchically PEs and their susceptibility to NMDA receptor antagonism 

by S-ketamine. 
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Methods and Materials 

Details on participants, drug administration, and data acquisition have been provided 

previously (10, 13); the interested reader is referred to these papers for more information. Here, 

we only briefly summarize these aspects and focus on the model-based EEG analysis.  

 

PARTICIPANTS 

19 healthy subjects (twelve males, mean age: 26 ± 5.09 years) gave informed written consent 

and participated in the study, which was approved by the Ethics Committee of the University 

Hospital of Psychiatry, Zurich. The use of psychoactive drugs was approved by the Swiss 

Federal Health Office, Department of Pharmacology and Narcotics (DPN), Bern, Switzerland. 

For further examinations prior to inclusion  and additional questionnaire assessments, see 

(10). 

 

 

EXPERIMENTAL PROCEDURE AND DATA PREPROCESSING 

The two sessions (placebo and S-ketamine) that all subjects underwent in a counterbalanced 

fashion were separated by at least two weeks. Both subjects and the experimenter interacting 

with them were blind to the drug order. For details on the procedure and administration of S-

ketamine, please see Supplementary Material.  

 

Electroencephalographic (EEG) activity was recorded during an auditory “roving” oddball 

paradigm, originally developed by (43) and subsequently modified by (44). The EEG was 

recorded at a sampling rate of 512 Hz using a Biosemi system with 64 scalp electrodes. Pre-

processing and data analysis was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) 

and included high- and lowpass filtering and rejection of trials contaminated by eye blinks, as 

well as bad channels. For details on the paradigm and preprocessing, the reader is referred to 
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the Supplementary Material. The average total number of artifact-free trials was 1211 (sd = 

201) in the placebo and 1464.6 (sd = 211.2) in the ketamine condition. The number of artifact-

free trials was thus significantly lower in the placebo sessions. However, the resulting non-

sphericity was accommodated by our second-level statistical tests (paired t-tests to assess 

group differences), see Methods section. Note that we did not define categorical events like 

standard and deviant trials, but instead included all tones in our trial-by-trial analysis. 

 

 

MODEL-BASED ANALYSIS 

In what follows, we briefly outline our perceptual model before describing the analysis steps 

used to apply this model to single-trial EEG data. For mathematical details of the model, please 

refer to the Supplementary Material. In terms of notation, we denote scalars by lower case 

italics (e.g., 𝑥), vectors by lower case bold letters (e.g., 𝐱), and matrices by upper case bold 

letters (e.g., 𝐗). Trial numbers are indexed by the superscript (𝑘), e.g., 𝑥(𝑘). 

 

Perceptual Model: The Hierarchical Gaussian Filter (HGF) 

To describe a participant’s perceptual inference and learning during this roving MMN 

paradigm, we use a multivariate version of the Hierarchical Gaussian Filter (HGF), a generic 

Bayesian model introduced by (30) that has been applied in various contexts, such as 

associative learning (31, 45), social learning (32, 46), spatial attention (47), or visual 

discrimination (48).  

In the present task, participants were exposed to a tone sequence with 7 different tones. Our 

modeling approach assumes that in this context, an agent infers two hidden states in the world: 

(i) the current (probabilistic) “laws” underlying the observed tone statistics – in our case, a 

matrix  𝐗2 of pair-wise transition probabilities between all tones, and (ii) the current level of 

environmental volatility, i.e., how quickly the inferred laws seem to change. This is represented 
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in our model by the volatility 𝑥3, which is the degree to which the transition probabilities in 𝐗2 

change from trial to trial. The rationale for tracking this quantity is that agents should learn 

faster – i.e., update their beliefs about the statistical laws in the environment according to 

prediction errors – if they experience the current environment to be changing rather than stable. 

Figure 1 shows a visualization of the corresponding generative model. 

 

Figure 1. The Perceptual Model: A multivariate version of the binary three-level Hierarchical 

Gaussian Filter (HGF). The agent infers upon two continuous quantities: The transition 

tendencies from one tone (frequency) to another, stored in the transition matrix X2, and the 

(common) volatility of these tendencies, x3. To employ this model, the agent only has to follow 

simple one-step update rules for its beliefs (parameterized by their mean μ and variance σ) 

about these quantities (updates described in the main text details described in the 

supplementary material).  
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On each trial, the agent updates his/her beliefs about these two environmental states, given 

the new sensory input (i.e., tone). We denote these updated (posterior) beliefs in the following 

by their mean 𝜇 and their precision (or certainty) 𝜋 (the inverse of variance, or uncertainty, 𝜎). 

In the HGF, the general form of the update of the posterior mean at hierarchical level 𝑖 on trial 

𝑘 is: 

Δ𝜇𝑖
(𝑘)

∝
𝜋̂𝑖−1

(𝑘)

𝜋𝑖
(𝑘)

𝛿𝑖−1
(𝑘)

. (6) 

Here, 𝛿𝑖−1
(𝑘)

 denotes the PE about  the state on the level below, which is weighted by a ratio of 

precisions: 𝜋̂𝑖−1
(𝑘)

 is the precision of the prediction about the level below (𝑖 − 1), while 𝜋𝑖
(𝑘)

 is the 

precision of the current belief at the current hierarchical level 𝑖. The intuition behind this is that 

an agent’s belief updates should be more strongly driven by PEs when the precision of 

predictions about the input is high relative to the precision of beliefs in the current estimate 

(e.g., when the environment is currently perceived as being volatile).  

The specific update equations for the two levels of our model are given in the Supplementary 

Material. For a detailed derivation of the update equations and the updates of the precisions, 

the interested reader is referred to (30). Usually, in the HGF, subject-specific perceptual 

parameters describe the individual learning style of an agent. Since the current paradigm does 

not involve behavioral responses to the tones, and thus the model could not be fitted to 

behavior, we used the parameters (learning rates on both hierarchical levels, and starting 

values of the beliefs) of a surprise-minimizing Bayesian observer for all participants (for details, 

see Supplementary Material). The resulting PE trajectories (Figure 2) were subsequently used 

as regressors in a general linear model (GLM).   

 

Computational quantities: The precision-weighted prediction errors 
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The MMN has been interpreted as a precision-weighted PE (or model update signal) during 

auditory perceptual inference and statistical learning (28, 49, 27, 36, 50, 3, 51). In our model, 

two hierarchical levels are updated in response to new auditory inputs: the current estimate of 

the transition probabilities (𝛍𝟐), and the current estimate of environmental volatility (𝜇3). The 

corresponding precision-weighted PEs driving these updates are hierarchically related and are 

computed sequentially: the agent first needs to update 𝛍𝟐 (using the low-level PE about 𝛍𝟏) 

before evaluating its high-level PE with respect to 𝛍𝟐, which is then used to update 𝜇3.  

The questions we address in this paper are whether these precision-weighted PEs, which we 

denote by 𝜀2 and 𝜀3,  

(i) are reflected by trial-by-trial variations in the amplitude of evoked responses;  

(ii) their hierarchical relation in the model is mirrored by a corresponding temporal 

relation in their electrophysiological correlates; 

(iii) whether NMDAR antagonism by S-ketamine alters the electrophysiological 

expression of these PEs. 

 

Single-trial EEG analysis: The General Linear Model 

We looked for manifestations of our two computational quantities (𝜀2 and 𝜀3) in the event-

related EEG responses for each trial in a time window from 100ms to 400ms post-stimulus. 

We focused on this time window in order to model learning-induced modulations of both the 

MMN and the P300 waveforms.  

 

The data from each trial in each session were converted into scalp images for all 64 channels 

and 91 time points using a voxel size of 4.25 mm × 5.38 mm × 3.33 ms. The images were 

constructed using linear interpolation for removed bad channels and smoothing to 

accommodate for between-subject spatial variability in channel space. 
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Our vectors of precision-weighted PEs served as regressors in a GLM of trial-wise EEG signals 

for each subject and each session separately, correcting for multiple comparisons over the 

entire time-sensor matrix, using Gaussian random field theory (52). We did not orthogonalise 

the regressors. Figure 2 summarizes the analysis steps for the model-based GLM. 

 

 

Figure 2. Sketch of the analysis pipeline for the model-based analysis. First, we simulated an 

agent’s beliefs using our hierarchical Bayesian model, which provided us with an estimate of 

precision-weighted PE on two hierarchical levels (𝜀2 and 𝜀3) for each trial in each session. At 

first glance, it may seem that the 𝜀3regressor simply amounts to a drift-like signal. This, 

however, is not the case; the design of our experiment, with prolonged trains of identical stimuli 

that exchange each other, leads to separate monotonic changes in log-volatility estimates for 

standard and deviant trials, with jump-like transitions between them (see Figure S1C). Second, 

we used these estimates as parametric regressors in a GLM of the single-trial EEG signal in 

each session of each subject separately (peri-stimulus time window of 100 - 400 ms after tone 

onset) and computed the first level statistics. Third, the beta values for each quantity and each 

subject in each session entered the second level analysis. We performed random effects group 

analysis across all 19 participants separately for each drug condition in one-sample T-tests 

and used F-Tests to examine correlations of EEG amplitudes with our computational quantities 

of interest, resulting in thresholded F maps across within-trial time and sensor space. PST = 

peri-stimulus time. 

 

Random effects group analysis across all 19 participants was performed using a standard 

summary statistics approach (53). We employed one-sample T-tests as second level models, 

separately for each drug condition, and used F-tests to simultaneously examine positive and 

negative relations of EEG amplitudes with the trajectories of our computational quantities. To 

examine differences between the two drug conditions, we tested for reduced responses under 

ketamine using a paired t-test. 
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For all analyses, we report any results that survived family-wise error (FWE) correction, based 

on Gaussian random field theory, across the entire volume (timesensor space) at the cluster 

level (p<0.05) with a cluster defining threshold (CDT) of p<0.001 (54). Notably, all reported 

results also survive whole-volume correction at the peak-level (p<0.05); the associated p-

values are not included in the main text but listed in the tables. 
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Results 

 

Figure 3. Results of the model-based EEG analysis in the placebo condition: effects of the 

high- and the low-level PE. Upper part: The left side always shows an F-map across the scalp 

dimension y (from posterior to anterior, x-axis), and across peristimulus time (y-axis), at the 

spatial x-location indicated above the map. Significant F values (p < 0.05, whole-volume FWE-

corrected at the cluster-level with a cluster-defining threshold of p < 0.001) are marked by white 

contours. Time-windows of significant correlations are indicated by the yellow bars next to the 

colored clusters of significant F values. The scalp maps next to the F-maps always show the 

F-map at the indicated peristimulus time point, corresponding to the peak of that cluster, across 

a 2D representation of the sensor layout. We found significant correlations of the EEG signal 

with our two computational quantities across fronto-central and temporal channels. For the 

lower-level PE, ε2, the correlation peaked at 121 ms post-stimulus at central channels, for the 

higher-level PE, ε3, it peaked at 180 ms at frontal channels, at 184 ms at temporal channels 

(not shown here), and at 266 ms post-stimulus at left central channels. Lower part: Average 

EEG responses to the 10% highest and the 10% lowest PE values at exemplary sensors within 

significant clusters. Green: High values in low-level PEs correlated with an increased negativity 

between 102 and 207 ms post-stimulus (sensor C1). Red: High values in high-level PEs 

correlated with an increased negativity between 145 and 188 ms post-stimulus (sensor F1), 

and an increased central positivity between 215 and 277 ms post-stimulus (sensor C1). 
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For each computational quantity of interest, our model-based EEG analysis proceeded in two 

steps: first, we performed whole-volume (spatiotemporal) analyses to search for 

representations of our quantities in single-trial EEG responses; second, we examined whether 

these electrophysiological representations of trial-wise PEs differed significantly between 

ketamine and placebo. 

Low-level precision-weighted prediction errors 

By fitting computational trajectories to participants’ single-trial EEG data, we found that under 

placebo, there was a significant trial-by-trial relation between ε2
(k)

 (the precision-weighted 

transition PE) and EEG activity between 102ms and 207ms post-stimulus, peaking at 121ms 

at central channels (whole-volume cluster-level FWE corrected, p=2.8e-08, with a cluster-

defining threshold (CDT) of p<0.001; Figure 3; Table 1). This time window includes the typical 

time when the negativity of the roving MMN is observed (43, 44, 49). This suggests that the 

MMN typically observed in roving MMN paradigms reflects the difference in low-level precision-

weighted PEs about stimulus transitions between the subsets of trials labeled as ‘standards’ 

and ‘deviants’ by the experimenter.  

Under ketamine infusion, we found a similar activation pattern, with significant clusters of 

activity at fronto-central electrodes between 10ms and 188ms (p=3.1e-08), and at left temporal 

channels between 105ms and 188ms, peaking at 141ms post-stimulus (p=6.3e-06; Figure S2, 

Table S3). 
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Table 1. Significant representations of the two computational quantities under placebo, and 

drug differences for the representation of the higher-level PE ε3 in Placebo vs. Ketamine 

condition. The table lists the peak coordinates, F/t values, corresponding Z values, whole-

volume FWE-corrected p-values at the voxel level, cluster size (kE) and FWE-corrected p-

values at the cluster level of voxels showing significant correlations of EEG signal with the 

trajectory of one of the precision-weighted PEs ε3 and ε2 (F-test, p < 0.05 whole-volume FWE-

corrected at the cluster-level with a cluster-defining threshold of p < 0.001), and, for the drug 

difference, of voxels showing significantly stronger representation of ε3 under placebo 

compared to the ketamine condition (paired t-test, p < 0.05 whole-volume FWE-corrected at 

the cluster-level with a cluster-defining threshold of p < 0.001). No significant drug differences 

were found for the lower-level PE. 

 

High-level precision-weighted prediction errors 

In the placebo condition, we found a significant trial-by-trial relation between ε3
(k)

 (the precision-

weighted PE that serves to update volatility estimates) and EEG activity, both in an early time 

window (152ms to 199ms, peaking at 184ms at right temporal channels, p=0.004, and from 

145ms to 188ms, peaking at 180ms at frontal channels, p=0.009) and in a later time window 

(between 215ms and 277ms, peaking at 266ms post-stimulus, p=0.002; Figure 3; Table 1), 

where high-level prediction errors correlated with an increased central positivity corresponding 

to the P3a component of the auditory evoked potential (55).   
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Under ketamine, we found a similar relationship of EEG amplitudes with the higher-level PE in 

the early time window (148ms to 211ms, peaking at 160ms at left temporal channels, p=0.04, 

and 156ms to 215ms, peaking at 207ms at fronto-central channels, p=0.008), but the later 

cluster occurred only much later (297ms to 398ms, peaking at 375ms at left temporal channels, 

p=0.021, and 324ms to 398ms, peaking at 398ms at fronto-central channels, p=0.001; Figure 

S2, Table S3). While the timing of this late effect is reminiscent of the P3b component, its scalp 

distribution was not centered on parietal channels, as would be characteristic for P3b (55, 56), 

but instead looked very similar to the earlier cluster, with a peak at fronto-central channels. 

 

Effects of ketamine on PE representations 

 

Figure 4. Drug effect on the representation of the lower-level PE (ε2, left) and the higher-level 

PE (ε3, right). The left side always shows a T-map for the paired T-test (Placebo – Ketamine) 

across the scalp dimension y (from posterior to anterior, x-axis), and across peristimulus time 

(y-axis), at the spatial x-location indicated above the map. Significant T values (p < 0.05, whole-

volume FWE-corrected at the cluster-level with a cluster-defining threshold of p < 0.001) are 

marked by white contours. Time-windows of significant correlations are indicated by the yellow 

bars next to the colored clusters of significant F values. The scalp map next to the T-map 

shows the T-map at the indicated peristimulus time point, corresponding to the peak of that 

cluster, across a 2D representation of the sensor layout. The effect of the higher-level PE was 

stronger under placebo compared to ketamine between 207 ms and 250 ms post-stimulus, 

peaking at 223 ms at fronto-central channels. No significant drug effects were found for the 

lower-level PE. 
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We tested for drug differences in activity elicited by precision-weighted PEs using paired t-

tests at the second level. We found no significant differences in activation by ε2
(k)

 in the 

ketamine compared to the placebo condition. In contrast, the activation by ε3
(k)

, the higher-level 

PE informing volatility estimates, was significantly reduced under ketamine as compared to 

placebo in a time window between 207ms and 250ms post stimulus, peaking at 223ms across 

fronto-central channels (p = 0.005; Figure 4; Table 1). That is, the trial-by-trial relation between 

EEG signal and the higher-level PE was significantly more pronounced under placebo than 

under ketamine in this time window. 
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Discussion 

Current theories of schizophrenia conceptualize psychotic symptoms as disturbed hierarchical 

Bayesian inference, characterized by an imbalance in the relative weight (precision) assigned 

to prior beliefs (or predictions) and new sensory information that elicits PEs (18, 19, 22). 

Neurobiologically, this disturbance of hierarchical Bayesian inference is thought to result from 

alterations of NMDAR-dependent synaptic plasticity and to be reflected by abnormalities in 

perceptual paradigms, such as the auditory mismatch negativity (MMN) (16, 17, 21). Based on 

a computational single-trial analysis of the MMN under ketamine, the results from the current 

study are largely supportive of two major predictions: (i) multiple and hierarchically related 

precision-weighted PEs should underlie the MMN, and (ii) the expression of precision-weighted 

PEs should be sensitive to NMDAR manipulations.  

 

 MULTIPLE, HIERARCHICALLY RELATED PREDICTION ERRORS UNDERLIE THE MMN  

The auditory MMN has been interpreted as reflecting model updates in an auditory processing 

hierarchy (27, 36, 49). In our Bayesian learning model, levels of a belief hierarchy are updated 

in response to two different precision-weighted PE signals (30): a low-level PE that quantifies 

the mismatch between expected and actual tone transitions and a higher-level PE that 

quantifies the change in estimated uncertainty about transition probabilities in the light of new 

input and which is used to update estimates of environmental volatility. Effects of volatility on 

mismatch signals have been reported previously (57–59). 

Notably, in the present study, the observed timing of low-level and high-level precision-

weighted PE responses under placebo coincided with the timing of MMN and P3a components, 

respectively, previously shown to reflect related, but dissociable stages of automatic deviance 

processing  (60, 61). Furthermore, the temporal succession of these two PE signatures 

mirrored the temporal order as predicted by the computational model.  
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KETAMINE INTERFERES WITH HIGH-LEVEL BELIEF UPDATES 

We found that ketamine changed the electrophysiological expression of the higher-level (but 

not lower-level) PE. Other authors have reported ketamine-induced changes of the deviant-

related negativity at an earlier time corresponding to our lower-level PE representation and the 

classical MMN latency (9, 10). One difficulty for comparing these reports to the current results 

is that the timing of ketamine effects in previously reported ERP analyses strongly depended 

on the type of MMN paradigm, the definition of “standards”, and the choice of electrodes and 

time windows (9–14). For example, using classical averaging-based ERP analysis restricted 

to the early MMN time window (100 to 200ms after tone onset) and a subset of fronto-central 

and temporal channels, Schmidt and colleagues (10) found an attenuation of early MMN 

amplitudes in frontal channels under ketamine in the same dataset used here. By contrast, our 

model-based analysis, which considers all sensors and time points under multiple comparison 

correction, locates the dominant effect of ketamine in the time window of the P3a. This is also 

consistent with another set of ERP results from the same dataset (13) – where, across all 

sensors and time points, a significant drug effect was found exclusively in a time window (220-

240ms) that was later than the classical MMN latency – and with literature on how ketamine 

attenuates later ERP components such as the P3 (12, 56, 62).  

Our finding that ketamine altered high-level PEs can also be compared to previous dynamic 

causal modeling (DCM) studies that examined the effects of ketamine during auditory roving 

MMN paradigms. While these studies (which used different approaches to modeling the input 

stream) gave different answers, both localized the effect of ketamine at higher levels of the 

auditory hierarchy. One study found that the effect of ketamine was best explained by changes 

of inhibition within frontal sources (63). Previous DCM analyses of our own dataset (13) 

suggested reduced bottom-up connectivity from auditory cortex (A1) to superior temporal gyrus 

(STG) under ketamine, compatible with disturbed computation of higher-level PEs in STG by 

impairing message passing from A1. 
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Interestingly, in our study, the high-level PE showed an effect under ketamine both in early and 

late time windows (Table 2). While the late effect corresponded to the P3a under placebo, it 

occurred later under ketamine, around the typical time of ERP components related to 

conscious processing and context updating (55, 64, 65). Speculatively, this could reflect a less 

automatic, stimulus-driven processing (as typically associated with P3a) (55, 56, 65) of 

volatility under ketamine.  

It is important to note that our results do not allow for a unique interpretation of ketamine effects 

in computational terms. If one assumes a strictly monotonic relation between EEG amplitude 

and PEs, our finding suggests that ketamine reduces learning about environmental volatility. 

Depending on context, this can both lead to inflated estimates of volatility (slowed 

representation of stability after periods of inconstancy) or diminished ones (in the opposite 

case). A previous study using ketamine found reduced stabilization of an internal model of 

environmental regularities during instrumental learning (66). One may be tempted to interpret 

this as an overestimation of volatility under ketamine; however, the previous model derived 

from a different computational concept, making direct comparisons problematic.  

 

LIMITATIONS 

The HGF parameters allow for expression of individual differences in learning (with potential 

relations to neuromodulatory mechanisms (30, 67)). A main limitation of our approach is that 

we cannot infer upon such subject-specific learning styles, simply because the MMN paradigm 

does not provide behavioral responses to which the model could be fitted. Similar to (37), we 

therefore used the parameters of a surprise-minimizing Bayesian observer for each of the tone 

sequences and simulated belief trajectories accordingly. An important future extension of HGF 

applications to MMN paradigms would be the formulation of a forward model from belief 

updates to EEG signals. This would allow for estimating subject-specific model parameters 

from single-trial EEG data directly. 
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A second limitation concerns the relatively small sample size (N=19). This renders it difficult to 

interpret negative results, such as the lack of ketamine effects on low-level PEs. This will need 

to be addressed in future studies with larger samples and/or meta-analyses. 

 

CONCLUSION AND OUTLOOK 

This study presents evidence for the role of hierarchically related PEs in the auditory MMN. 

While ketamine-induced reductions of MMN have been reported previously, our study enables 

two new insights by taking an explicitly computational perspective and analyzing trial-by-trial 

belief updates. First, we offer an interpretation of two mismatch-related ERP components, the 

MMN and the P3a, in terms of hierarchically related PEs that are expressed trial-by-trial and 

reflect the updating of a hierarchical model of the environment’s statistical structure. 

Additionally, a reduced expression of the higher-level PE under infusion of S-ketamine 

suggests a disturbance of high-level inference about environmental volatility by perturbation of 

NMDA receptors.  

Our results are clinically important as they support a bridge between physiology (NMDAR 

function) and computation (hierarchical Bayesian inference) as proposed by predictive coding 

theories of schizophrenia. By linking physiological indices of abnormal perceptual inference to 

their algorithmic interpretation in terms of hierarchically related PEs, the present work provides 

a starting point for future attempts to understand individual alterations of MMN in schizophrenia 

mechanistically. We hope that this will contribute to the development of computational assays 

for improved differential diagnosis and treatment prediction in schizophrenia (68–70). 
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