

1 ***Candida auris*: multi-omics signature of an emerging and multidrug-resistant**
2 **pathogen**

3 **Running title - *Candida auris*: multi-omics signature**

4 Daniel Zamith-Miranda^{1,2}, Heino M. Heyman³, Levi G. Cleare^{1,2}, Sneha Couvillion⁴,
5 Jeremy Clair³, Erin Bredeweg⁴, Attila Gacsér⁵, Leonardo Nimrichter⁷, Ernesto S.
6 Nakayasu³, and Joshua D. Nosanchuk¹#

7 **Affiliations**

8 ¹- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
9 Bronx, New York, USA.

10 ²- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of
11 Medicine, Bronx, New York, USA.

12 ³- Biological Sciences Division, Pacific Northwest National Laboratory, Richland,
13 Washington, USA.

14 ⁴- Environmental and Molecular Sciences Laboratory, Pacific Northwest National
15 Laboratory, Richland, Washington, USA.

16 ⁵- Department of Microbiology, Interdisciplinary Excellence Centre, University of Szeged,
17 Hungary.

18 ⁶- MTA-SZTE “Lendület” Mycobiome Research Group, University of Szeged, Szeged,
19 Hungary.

20 ⁷- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ,
21 Brazil.

22 #Address correspondence to Joshua D. Nosanchuk, josh.nosanchuk@einstein.yu.edu.

23 **Keywords:** *Candida auris*, antifungal resistance, fluconazole, multi-omics.

24 **Abstract:** *Candida auris* is a recently described pathogenic fungus that is causing invasive
25 outbreaks on all continents. The fungus is of high concern given the numbers of multidrug-
26 resistant strains that have been isolated in distinct sites across the globe. The fact that its
27 diagnosis is still problematic suggests that the spreading of the pathogen remains
28 underestimated. Notably, the molecular mechanisms of virulence and antifungal resistance
29 employed by this new species are largely unknown. In the present work, we compared two
30 clinical isolates of *C. auris* with distinct drug susceptibility profiles and a *Candida albicans*
31 reference strain using a multi-omics approach. Our results show that, despite the distinct
32 drug-resistance profile, both *C. auris* strains appear to be very similar, albeit with a few
33 notable differences. However, when compared to *C. albicans* both *C. auris* strains have
34 major differences regarding their carbon utilization and downstream lipid and protein
35 content, suggesting a multi-factorial mechanism of drug resistance. The molecular profile
36 displayed by *C. auris* helps to explain the antifungal resistance and virulence phenotypes of
37 this new emerging pathogen.

38 **Importance:** *Candida auris* was firstly described in Japan in 2009 and has now been the
39 cause of significant outbreaks across the globe. The high number of isolates that are
40 resistant to one or more antifungals, as well as the high mortality rates from patients with
41 bloodstream infections, has caught the attention of the medical mycology, infectious
42 disease and public health communities to this pathogenic fungus. In the current work, we
43 performed a broad multi-omics approach on two clinical isolates isolated in New York, the
44 most affected area in the USA and found that the omic profile of *C. auris* differs

45 significantly from *C. albicans*. Besides our insights into *C. auris* carbon utilization and
46 lipid and protein content, we believe that the availability of these data will enhance our
47 ability to combat this rapidly emerging pathogenic yeast.

48 **Introduction**

49 *Candida auris* is an emerging pathogenic fungus that was firstly described in 2009 after
50 being isolated from the ear discharge of a patient in Tokyo, Japan (1). After the new species
51 identification, a study in South Korea reported a misidentified *C. auris* strain isolated in
52 1996, which then became the first known case of human *C. auris* infection (2). Despite the
53 fact that bloodstream infections are the main cause of mortality among *Candida spp*
54 infections, *C. auris* strains have been isolated from various sites such as respiratory tract,
55 bones, and central nervous system (3) as well as on a variety of abiotic surfaces (4), which
56 suggests a metabolic plasticity to survive in distinct environments. The reports of *C. auris*
57 outbreaks in all continents suggest that this pathogen is spreading rapidly across the globe
58 and many of the isolated strains are resistant to at least one class of antifungals, or even
59 multidrug-resistant (5-11). *C. auris* produces biofilms and can be very resilient in substrates
60 commonly used in hospitals, features that are correlated with the frequency of reported
61 hospital-associated infections as well as its increased resistance against antifungals (4, 9,
62 12-15). Additionally, its problematic identification suggests that reports regarding infection
63 might be underestimated (16-18).

64 To understand the molecular mechanisms of infection, antifungal resistance and disease
65 employed by this new pathogen, we performed a multi-omics approach using two clinical
66 isolates of *C. auris* that were also compared to a standard *C. albicans* strain. The tested *C.*
67 *auris* strains presented different levels of antifungal resistance, as one of them is highly

68 resistant to fluconazole and slightly resistant to caspofungin. Both *C. auris* strains had very
69 similar metabolic, lipid and protein profiles. However, both strains were significantly
70 distinct when compared to *C. albicans*. Taken together our data show metabolic, lipidomic
71 and proteomic similarities and differences between *C. auris* strains as well as in comparison
72 with *C. albicans*, and our findings provide interesting insights into metabolic features, with
73 some correlating with antifungal resistance.

74 **Methods**

75 **Cell Lines**

76 Two clinical isolates (MMC1 and MMC2) were acquired from Montefiore Medical Center
77 (Bronx, NY, USA) under approved protocols in the Nosanchuk laboratory, and a standard
78 *C. albicans* (ATCC #90028) strain was purchased from the ATCC. The strains were stored
79 in -80 °C. Prior to use in experiments, cells were cultivated in YPD broth and seeded onto
80 Sabouraud agar plates. For each experiment, one colony was inoculated in 10 mL of
81 Sabouraud broth overnight at 30°C before use. Cells were transferred to 200 mL of fresh
82 Sabouraud and incubated for additional 24 hours. After being extensively washed with PBS
83 the cell pellets were frozen until the protein, metabolite and lipid extractions.

84 **Antifungal susceptibility**

85 The antifungal susceptibility tests were carried out according to the CLSI protocol with
86 minor modifications (19, 20). Yeast cells were inoculated in Sabouraud-agar for 48 hours at
87 30 °C and then stored at 4 °C up to one month for experimentation. One colony from each
88 strain was inoculated in liquid Sabouraud and kept for 24 hours at 30°C under constant
89 shaking. Cells were then washed in PBS and plated (2.5×10^3 cells/mL) in 96-well plates

90 containing serial dilutions of amphotericin B, caspofungin and fluconazole. After 48 hours
91 of incubation, cells were visually analyzed and the MIC was determined as the lowest
92 concentration of a given drug that showed no apparent growth within all replicates.

93 **Proteomic analysis**

94 Samples were submitted to metabolite, protein and lipid extraction (MPLEX) according to
95 the protocol by Nakayasu *et al.* (21). Extracted proteins were digested with trypsin and
96 resulting peptides were extracted with 1 mL Discovery C18 SPE columns (Supelco,
97 Bellefonte, PA) as previously described (22). Digested peptides were suspended in water,
98 quantified by BCA assay and 0.5 µg of peptides were loaded into trap column (4 cm x 100
99 µm ID packed in-house with 5 µm C18, Jupiter). Peptide separation was carried out an
100 analytical column (70 cm x 75 µm ID packed with C18, 3 µm particles) using a gradient of
101 acetonitrile/0.1% formic acid (solvent B) in water/0.1% formic acid (solvent A). The flow
102 was set to 300 nL/min with 1% solvent B and kept for 15 min. Then concentration of
103 solvent B was increased linearly as following: 19 min, 8% B; 60 min, 12% B; 155 min,
104 35% B; 203 min, 60% B; 210 min, 75% B; 215 min, 95% B; 220 min, 95% B. Eluting
105 peptides were directly analyzed by electrospray in an orbitrap mass spectrometer (Q-
106 Exactive Plus, Thermo Fisher Scientific) by scanning a window of 400-2000 m/z with
107 resolution of 70,000 at m/z 400. Tandem mass spectra were collected using HCD (32%
108 NCE) on the 12 most intense multiple-charged parent ions at a resolution of 17,500.

109 Mass spectrometry data was analyzed using MaxQuant software (v.1.5.5.1) (23). Peptide
110 identification was performed by searching against the *C. albicans* SC5314 and *C. auris*
111 sequences from Uniprot Knowledge Base (downloaded December 6, 2017). Searching
112 parameters included the variable modifications protein N-terminal acetylation and

113 oxidation of methionine, in addition to carbamidomethylation of cysteine residues. Parent
114 and fragment mass tolerance were kept as the default setting of the software. Only fully
115 tryptic digested peptides were considered, allowing up to two missed cleaved sites per
116 peptide. Quantification of proteins was done using the intensity-based absolute
117 quantification (iBAQ) method (24). Intensities of each protein were normalized by the total
118 iBAQ sum of each sample to obtain a relative number of protein copies (percentage from
119 total). The comparison between the two species was performed by blast searches and
120 considering a cutoff of 40% of sequence similarity to consider a protein orthologous.

121 **Lipid analysis**

122 Extracted lipids were suspended in 100% methanol and analyzed by liquid chromatography
123 tandem mass spectrometry (LC-MS/MS) as described elsewhere (25). The identification of
124 the species was done using LIQUID software and manually inspected for validation (26).
125 Peak intensities of each identified lipid species were extracted with MZmine v2.0 (27).

126 **Gas chromatography-mass spectrometry analysis**

127 Extracted hydrophilic metabolite and lipid fractions were derivatized as described
128 previously (28) and analyzed in an Agilent GC 7890A using an HP-5MS column (30 m ×
129 0.25 mm × 0.25 µm; Agilent Technologies, Santa Clara, CA) coupled with a single
130 quadrupole MSD 5975C (Agilent Technologies). The GC was set to splitless mode with the
131 port temperature at 250 °C. Samples were injected with the oven temperature equilibrated
132 at 60°C. The same temperature was kept for 1 minute and then raised at a 10°C/minute rate
133 to a final temperature of 325°C for 5 minutes hold. A standard mixture of fatty acid methyl
134 ester (FAME) (Sigma Aldrich) was used for calibrating the retention time. Retention time

135 calibration, spectral deconvolution, and peak alignment were done with Metabolite
136 Detector (29). Metabolites were identified by matching against FiehnLib library (30)
137 containing additional metabolites entered in-house and/or the NIST14 GC-MS library. All
138 identified metabolites were manually inspected.

139 **Quantitative analysis and data integration**

140 Protein orthologues, lipids or metabolites were considered significantly different with a p-
141 value ≤ 0.05 using T-test considering equal variance and two-tailed distribution. For
142 comparative analyses, missing values were zero-filled with half of the smallest value of the
143 dataset. Proteins were clustered by the k-means method using Multi-Experiment Viewer
144 (MeV v4.9.0) (31), which was also used to build the heatmaps. Pathway analysis on
145 different protein clusters was performed with DAVID (32), and specific pathways of
146 interested were manually inspected with Wanted v2.1.1 (33). We have recently developed
147 an R package called Rodin (<https://github.com/PNNL-Comp-Mass-Spec/Rodin>), to perform
148 structural ‘lipid ontology’ (LO) enrichment analysis. A web interface Lipid-MiniOn was
149 developed for non-R users (<https://omicstools.pnnl.gov/shiny/lipid-mini-on/>). Briefly, this
150 tool creates automatically LO bins based on the lipids naming and their inferred structure,
151 then it performs enrichment analysis using enrichment statistics to compare a Query list to
152 an Universe (Fisher’s exact test, EASE score, Binomial test, or hypergeometric tests). In
153 this study a Fisher’s exact test was used to perform the enrichment analysis and only the
154 enrichments with a Fisher’s exact p value below 0.05 were considered to be conserved.

155 **Results**

156 **Antifungal resistance**

157 As *C. auris* is a recently-identified pathogen, its breakpoints for resistance to different
158 antifungals have not been formally established. Given the lack of information, our results
159 were interpreted based on the CDC breakpoint suggestions
160 (<https://www.cdc.gov/fungal/candida-auris/recommendations.html>). MICs for the tested
161 strains against amphotericin B were similar, and all strains had a MIC below 2 μ g/mL, thus
162 being susceptible against this antifungal. MMC2 was considered susceptible as the MIC to
163 caspofungin was below 2 μ g/mL. MMC1 had a MIC of 2 μ g/mL for caspofungin, which
164 qualifies as resistance against this drug. Notably, *C. auris* strains were able to grow when
165 exposed to caspofungin concentrations above their MIC, a phenomenon known as
166 “Paradoxical effect” or “Eagle effect” (34). This effect was previously reported for
167 *Aspergillus* and *Candida* species (34), and was very recently described for *C. auris* (35). *C.*
168 *auris* MMC2 was susceptible to fluconazole, presenting a MIC at 8 μ g/mL. In contrast, *C.*
169 *auris* MMC1 strain was highly resistant as it was able to grow at concentrations of 1000
170 μ g/mL of fluconazole (Table 1). As a reference, we also examined a standard *C. albicans*
171 strain (ATCC #90028), which is susceptible to all the three drugs used in this work.

172 **Proteomic profiling of *C. auris* vs. *C. albicans***

173 The proteomic analysis resulted in the identification of 1869 and 2317 proteins in *C. auris*
174 and *C. albicans*, respectively. To compare the data from these two species, we performed
175 BLAST searches and considered orthologous proteins with more than 40% similarity. Out
176 of the 1869 identified *C. auris* proteins, 1726 (92%) had orthologues in the *C. albicans*
177 genome, whereas 1954 of the 2317 (84%) *C. albicans* proteins had orthologues in the *C.*
178 *auris* genome. Combined, 2323 orthologues were detected in the proteomic analysis.
179 However, only 1357 (58% of total) orthologues were consistently abundant in both

180 *Candida* species (Table 2 and Supplemental Tables S1-S3). This indicates that despite the
181 sequence similarity between these two species their gene expression regulation is much
182 more divergent even in identical culturing conditions.

183 It is noteworthy that the peptides were not identical between the two species and, therefore,
184 a quantitative proteomic analysis comparison cannot be directly achieved across the
185 different samples. To circumvent these issues we performed an absolute quantification of
186 each protein using the intensity-based absolute quantification (iBAQ) method and
187 normalized each protein by a relative number of copies in the cells. The heatmap shown in
188 Figure 1, depicts the orthologues that are differentially abundant between all three *Candida*
189 strains. Clustering these proteins using the k-means method showed a striking similarity
190 between the two *C. auris* isolates, but strong differences between the different species. To
191 better understand the differences between *C. auris* strains and the *Candida* species we
192 performed a function-enrichment analysis, which revealed that pathways such as
193 glycolysis/gluconeogenesis, ribosomes and phagosomes were more abundant in *C.*
194 *albicans*. On the other hand, *C. auris* seems to have a more active tricarboxylic acid (TCA)
195 cycle, along with lipid and amino acid metabolism.

196 **Central carbon metabolism in *C. auris* and *C. albicans***

197 The pathway analysis showed that the glycolytic pathway was enriched in proteins with
198 higher abundance in *C. albicans*, whereas the TCA cycle proteins were enriched with
199 proteins more abundant in *C. auris*. Pyruvate metabolism was enriched in proteins that
200 were more abundant in both species (Figure 1). To validate these observations and to
201 correlate with downstream metabolic pathways, we integrated the proteomics data with a
202 metabolite analysis into a map of central carbon metabolism. Ten out of the fifteen

203 glycolysis/gluconeogenesis proteins were more abundant in *C. albicans* than in *C. auris*,
204 whereas only 2 proteins were consistently more abundant in *C. auris* (Figure 2). In
205 agreement with these observations, lactate, one of the end products of this pathway, was 16
206 fold more abundant in *C. albicans* than *C. auris* MMC1 and 6 fold higher than *C. auris*
207 MMC2 (Figure 2). On the other hand, 14 out of 15 TCA cycle proteins were more abundant
208 in *C. auris* strains than in *C. albicans* (Figure 2). Validating these observations, citrate, and
209 fumarate had similar abundance profiles (Figure 2). In the pyruvate metabolism, proteins
210 were not consistently more abundant in one or the other species. Some differentially
211 abundant proteins seemed to be due to gene isoforms that were preferentially expressed
212 between the species. For example, *C. auris* produces alcohol dehydrogenase Adh2, while
213 *C. albicans* produces Adh5 (Figure 2). Unfortunately, the metabolites of this pathway, such
214 as acetate, acetaldehyde, and ethanol, are small and not detectable in our GC-MS analysis.
215 The fact that different proteins of this pathway are not uniformly more abundant in one of
216 the species makes it more difficult to predict whether the downstream metabolic pathways
217 would be affected. We decided to investigate the ergosterol and glycerolipids biosynthesis
218 pathways in more detail.

219 **Ergosterol biosynthesis pathway in *C. auris* vs. *C. albicans***

220 Fluconazole inhibits the activity of Erg11 (Lanosterol 14-alpha-demethylase), and
221 consequently ergosterol biosynthesis. Due to the remarkable resistance displayed by
222 MMC1 against fluconazole, we performed a comparative analysis of the enzymes and some
223 of the metabolites present in the ergosterol synthesis pathway. Twelve (Erg10, Erg13, Erg8,
224 Erg9, Erg1, Erg7, Erg11, Erg24, Erg27, Erg6, Erg3, and Erg5) out of nineteen of the
225 ergosterol synthesis enzymes are more abundant in *C. auris* than in *C. albicans*, including

226 Erg11 (Figure 3). There are, however, a few exceptions of enzymes from the ergosterol
227 pathway that are more abundant in *C. albicans* than in *C. auris*, which is the case for Idi1
228 and Erg20. Farnesol, a quorum sensing molecule involved with *C. albicans* dimorphism is
229 poorly produced by both *C. auris* strains (Figure 3).

230 **Lipid profile of *C. auris* and *C. albicans***

231 The differential abundance of carbon metabolism, especially in the pyruvate metabolism, is
232 indicative that the fatty acid biosynthesis and consequently the lipid structures could be
233 altered. Considering that lipids are major targets of antifungal drugs (36) and part of
234 resistance mechanisms (37, 38), we analyzed this category of biomolecules. A total of 169
235 lipids from 10 different classes were identified and quantified. The most diverse lipid class
236 was triacylglycerol (TG), with 38 distinct species, followed by phosphatidylcholine (PC)
237 with 28 (Supplemental Tables S4). To compare groups of lipids from different *Candida*
238 species/strains, we clustered lipids based on their abundance and performed an enrichment
239 analysis using a recently developed tool named MiniON (described in Methods). This
240 analysis is analogous to pathway enrichment and determines whether groups of lipids are
241 significantly enriched based on their intrinsic features (class, head group, fatty acid (FA)
242 length and unsaturation, etc.). The results showed that TG and lipids carrying
243 polyunsaturated FAs were enriched in *C. albicans*. Cardiolipins, lipids containing C18:3
244 FAs and glycerolipids carrying C16:1 FA were significantly reduced in the resistant strain
245 MMC1 (Figure 4). Lysophospholipids were enhanced in *C. auris* MMC1 and to a less
246 extent in *C. auris* MMC2 compared to *C. albicans*. The enriched amount of
247 lysophospholipids is an indication of a higher phospholipase activity. We investigated the
248 abundance profiles of enzymes with phospholipase activity in the proteomics data (Table

249 3). Our analysis detected seven phospholipases in *C. auris* and only five in *C. albicans*.

250 Excepting Pld1 (A0A0L0P056), all of them were significantly more abundant in MMC1

251 than in *C. albicans*. Remarkably, the lysophospholipases Plb3 and Plb5 were not detected

252 in *C. albicans*.

253 *C. auris* MMC2 produced more phosphatidylcholines and lipids containing odd FAs

254 compared to *C. auris* MMC1 and *C. albicans* (Figure 3). A GC-MS analysis of the lipid

255 fraction indeed confirmed that C17:0 and C17:1 FAs were more abundant in *C. auris*

256 MMC2 (Figure 5). Both strains of *C. auris* were enriched in sphingoid bases (Figure 3),

257 which was also validated by the detection of phytosphingosine in the GC-MS analysis

258 (Figure 4). In addition to the sphingoid bases, other sphingolipids such as ceramides,

259 hexosylceramides and inositolphosphoceramides were also more abundant in *C. auris*

260 MMC1 (Supplemental table S4).

261 **Cell Wall Integrity (CWI) pathway, and major structural components.**

262 The proteomic analysis showed that proteins involved in the cell wall integrity (CWI)

263 pathway displayed a significant difference between *C. albicans* and *C. auris*. Rom2, Tpk2,

264 and the MAP kinase Mck1 were higher in strain MMC1 when compared to *C. albicans* and

265 the fluconazole susceptible strain MMC2 (Figure 6), suggesting that the MMC1 strain is

266 better suited to respond to antifungal drugs. Notably, the protein Pkc1 was detected only in

267 *C. albicans*, suggesting that *C. auris* may have an alternative pathway to control CWI

268 (Figure 6).

269 The enzymes involved in the synthesis and degradation of the major cell wall

270 polysaccharides (glucans and chitin) and mannoproteins, were particularly distinct when *C.*

271 *albicans* and *C. auris* were compared. Remarkably, chitin remodeling enzymes, β 1,3
272 glucan synthase and most of the mannoprotein remodeling enzymes were higher in *C.*
273 *albicans* when compared to both *C. auris* strains. The only exceptions were glucan 1,3-
274 beta-glucosidase Xog1 and alpha-1,2 mannosyltransferase MN21, which were both more
275 abundant in *C. auris* strains compared to *C. albicans* (Figure 6).

276 **Biofilm transcription factors and proteins**

277 Fungal biofilms are highly resistant to drug treatment due to a combination of factors
278 including cell density and matrix content (39). We compared the abundance of transcription
279 factors and proteins previously reported in biofilm formation and proteins found in the
280 biofilm matrix. Six transcription factors were reported as biofilm regulators in *C. albicans*
281 (40-43). Our results showed that Efg1 and Ndt80 were more abundant in *C. albicans* under
282 planktonic growth conditions with almost no abundance in *C. auris*. Remarkably, only
283 Rob1 was more abundant in *C. auris*, specifically in the resistant strain MMC1. A list of
284 proteins upregulated in *C. albicans* biofilms and biofilm matrix was also investigated
285 (Supplemental Table S5). Out of 24 proteins previously reported upregulated in biofilm
286 (44), 8 were detected in higher levels in the *C. auris* strains when compared to *C. albicans*.

287 **Transporters**

288 The proteomic analysis identified 6 transporters related to drug resistance. Notably, the
289 ABC transporter efflux pump Cdr1 and orf19.4780, an uncharacterized member of the
290 Dha1 family of drug: proton drug antiporter, were significantly higher in the azole-resistant
291 strain MMC1 (Figure 7). The other 4 transporters had higher abundance in other strains

292 (Figure 7), therefore, they are less likely to be involved in the fluconazole resistance of
293 MMC1.

294 **Discussion**

295 *C. auris* is an emerging pathogen that is causing extremely worrisome outbreaks across the
296 globe. One remarkable feature of this fungus is the frequency of resistance against at least
297 one class of antifungals. In addition, multidrug-resistant strains have been isolated from all
298 continents. The search for a new class of antifungal drug has been a major challenge in the
299 medical mycology community and this quest becomes even more urgent with the spread of
300 a multidrug-resistant fungal organism like *C. auris*. In the current work, two strains of *C.*
301 *auris* isolated in the Bronx, USA were analyzed by a multi-omics approach in order to
302 better understand the molecular repertoire employed by this pathogen. In parallel to *C.*
303 *auris*, we also performed the same analyses with a reference strain of *C. albicans*.

304 We found that MMC2 and the *C. albicans* strain were susceptible to amphotericin B,
305 caspofungin and fluconazole, but MMC1 was resistant to both caspofungin and
306 fluconazole. *C. auris* MMC2 MIC value of fluconazole was approximately at 8 µg/mL,
307 which based on the CDC report, would make it a susceptible strain, even though the MIC
308 was about 10 times higher than for *C. albicans*. Although MMC1 just met resistance
309 criteria to caspofungin, its resistance to fluconazole was impressive, as even 1 mg/mL was
310 not able to totally inhibit growth. The “Eagle effect”, also known as “paradoxical effect”
311 was observed in both *C. auris* strains after treatment with caspofungin, as growth occurred
312 at concentrations higher than the MIC.

313 The protein profiles from *C. auris* and *C. albicans* were qualitatively and quantitatively
314 distinct, and both strains of *C. auris* presented very few differences from one another
315 (Supplemental Table S3). The major observed difference between *C. auris* and *C. albicans*
316 was in their central carbon metabolism. While proteins in the glycolysis pathway were
317 upregulated in *C. albicans*, *C. auris* showed an enrichment of proteins in the TCA cycle.
318 These results show that *C. auris* favors respiration, which is already known to be an
319 important mechanism of fluconazole resistance in *C. albicans* by increasing ATP
320 production and reducing oxidative stress, resulting in better overall fitness of the cell (45).
321 In *S. cerevisiae*, overexpression of HMG1 or deletion ERG2, can significantly increase
322 susceptibility to fluconazole, whereas deletion of HMG1, ERG6 and ERG3, as well as
323 overexpression of ERG11 are associated with fluconazole resistance (46). Therefore, we
324 integrated the data of proteins and metabolites of the ergosterol biosynthesis pathway.
325 Despite the extreme resistance of MMC1 against fluconazole, the abundance of Erg11 in
326 this strain is similar to the observed for MMC2. On the other hand, higher abundance of
327 Erg2 and lower abundance of Erg3 of MMC1 compared to the MMC2 isolate are in
328 agreement with drug-resistance phenotype of MMC1. The higher abundance of Idi1 and
329 Erg20 in *C. albicans* diverges part of the pathway to produce more isoprenoids, while *C.*
330 *auris* has a more robust production of ergosterol, which is possibly involved in fluconazole
331 resistance. Recently, sequence divergences/mutations on ERG11 in *C. auris* have been
332 shown to be associated with resistance to azoles (47). However, the ERG11 mutations by
333 themselves cannot explain why the level of fluconazole resistance was lower (up to 128
334 $\mu\text{g/mL}$) when the *C. auris* gene was expressed in *S. cerevisiae* (48). Therefore, our data

335 combined with reports from the literature suggest that the fluconazole resistance in *C. auris*
336 is due to modifications of multiple steps in the ergosterol biosynthesis pathway.

337 The lipids detected in *C. auris* were qualitatively similar to those found in *C. albicans*.
338 However, a quantitative analysis showed that *C. albicans* has more lipids involved with
339 energy storage, while *C. auris* has more structural glycerophospholipids and
340 lysophospholipids. The resistant strain (MMC1) has a remarkable abundance of
341 lysophospholipids, suggesting intense phospholipase activity. Phospholipases are virulence
342 factors in a variety of pathogenic fungi where their activity is important for invasiveness,
343 morphology, and persistence of infection (49-51). Phospholipase activity was recently
344 described in *C. auris* isolates (52). In the current work, the evaluated *C. auris* strains were
345 found to produce seven enzymes with phospholipase activity, while *C. albicans* had five of
346 them. In addition, most of these enzymes were more abundant in *C. auris*, particularly in
347 the resistance strain (MMC1). Corroborating these findings, an increased content of
348 lysophospholipids was previously reported in a *C. albicans* strain adapted *in vitro* to higher
349 concentrations of fluconazole (53). It is possible that this class of enzymes is more finely
350 employed by *C. auris* than by *C. albicans* to promote survival and environmental
351 adaptation for the fungus. Regarding its biological role during the host-pathogen
352 interaction, lysophosphatidylcholine is a “find me” signal released by apoptotic cells to
353 induce the recruitment of phagocytes to remove apoptotic bodies before an episode of
354 secondary necrosis and enhanced inflammation (54). The MMC1 strain also had a higher
355 abundance of sphingolipids, which can also be correlated with resistance to antifungals.
356 These lipids are important for the assembly of membrane platforms where proteins such as

357 drug efflux pumps are present in membrane microenvironments responsible for the export
358 of drugs (37).

359 The response orchestrated by the CWI signaling pathway is central during cell wall and
360 membrane perturbation (55). Sensors at fungal cell surface initiate a downstream cascade in
361 order to adapt the cells under stress conditions controlling cell wall biogenesis and cell
362 integrity (55). Remarkably, we observed that the enzymes involved with cell wall
363 remodeling are reduced in both *C. auris* strains. However, some CWI proteins are
364 specifically higher in the resistant strain, suggesting that the response to external signals,
365 such as drug treatment, could be promptly controlled by the cell wall metabolism and help
366 to explain the resistant phenotype in the MMC1 strain.

367 The efflux of drugs mediated by efflux pumps is an important mechanism of antifungal
368 resistance employed by *Candida spp* (37, 56, 57). From six distinct drug efflux transporters
369 produced by the analyzed organisms, two of them (Cdr1 and orf19.4780) were more
370 abundant in the fluconazole-resistant *C. auris* strain (MMC1) than in the other strains.
371 Previous publications showed that *C. auris* yeast cells, organized in a biofilm, are more
372 resistant to antifungals than planktonic cells and correlated this phenotype with the
373 increased expression of CDR1 (13). The impact of these efflux pumps is important during
374 early stages of biofilm formation but decreases when it becomes mature. In mature
375 biofilms, resistance is increased by the ability of matrix components to limit drug diffusion
376 along with the presence of persistent cells (58). Notably, the *C. auris* strain MMC1 has a
377 significant increase in proteins associated with biofilm formation and a higher abundance of
378 superoxide dismutase, an enzyme involved with reactive oxygen species (ROS)
379 detoxification and overexpressed in miconazole-tolerant persisters (58). Furthermore, a

380 number of proteins characterized in the biofilm matrix were also higher in the resistant *C.*

381 *auris* strain.

382 The comprehensive multi-omics approach used in this study has enabled us to begin to
383 uncover and characterize the molecular profile of the emerging pathogen *C. auris*, which
384 suggest a multifactorial mechanism of drug resistance in MMC1, including major
385 differences in carbon utilization, sphingolipids, glycerolipids, sterols, cell wall and efflux
386 pumps. Further functional omic studies that include larger numbers of *C. auris* isolates will
387 likely have significant impact on our understanding of the biology of this remarkable
388 fungus and may facilitate the development of new therapeutic approaches to combat this
389 frequently multidrug resistant yeast.

390 **Disclosure**

391 Authors wish to declare that there are no conflicts of interest.

392 **Acknowledgments**

393 The authors thank Erika Zink, Jeremy Teuton and Jeremy Zucker for technical assistance.
394 Joshua D. Nosanchuk and Ernesto S. Nakayasu are partially supported by NIH R21
395 AI124797. Attila Gacser is supported by NKFIH K 123952, GINOP 2-3-2-15-2016-
396 00015 and GINOP 2.3.3-15-2016-00006. Ministry of Human Capacities, Hungary grant
397 20391-3/2018/FEKUSTRAT is acknowledged. Parts of this work were performed in the
398 Environmental Molecular Science Laboratory, a U.S. Department of Energy (DOE)
399 national scientific user facility at Pacific Northwest National Laboratory (PNNL) in
400 Richland, WA.

401 **References**

402 1. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. 2009. *Candida auris*
403 sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in
404 a Japanese hospital. *Microbiol Immunol* 53:41-4.

405 2. Lee WG, Shin JH, Uh Y, Kang MG, Kim SH, Park KH, Jang H-C. 2011. First Three Reported
406 Cases of Nosocomial Fungemia Caused by *Candida auris*. *Journal of Clinical Microbiology*
407 49:3139-3142.

408 3. Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, Manuel R, Brown
409 CS. 2018. *Candida auris*: a Review of the Literature. *Clin Microbiol Rev* 31.

410 4. Kean R, Sherry L, Townsend E, McKloud E, Short B, Akinbobola A, Mackay WG, Williams C,
411 Jones BL, Ramage G. 2018. Surface disinfection challenges for *Candida auris*: an *in vitro*
412 study. *Journal of Hospital Infection* 98:433-436.

413 5. Sarma S, Upadhyay S. 2017. Current perspective on emergence, diagnosis and drug
414 resistance in *Candida auris*. *Infect Drug Resist* 10:155-165.

415 6. Prakash A, Sharma C, Singh A, Kumar Singh P, Kumar A, Hagen F, Govender NP, Colombo
416 AL, Meis JF, Chowdhary A. 2016. Evidence of genotypic diversity among *Candida auris*
417 isolates by multilocus sequence typing, matrix-assisted laser desorption ionization time-of-
418 flight mass spectrometry and amplified fragment length polymorphism. *Clin Microbiol
419 Infect* 22:277 e1-9.

420 7. Oh BJ, Shin JH, Kim MN, Sung H, Lee K, Joo MY, Shin MG, Suh SP, Ryang DW. 2011. Biofilm
421 formation and genotyping of *Candida haemulonii*, *Candida pseudohaemulonii*, and a
422 proposed new species (*Candida auris*) isolates from Korea. *Med Mycol* 49:98-102.

423 8. Chowdhary A, Anil Kumar V, Sharma C, Prakash A, Agarwal K, Babu R, Dinesh KR, Karim S,
424 Singh SK, Hagen F, Meis JF. 2014. Multidrug-resistant endemic clonal strain of *Candida
425 auris* in India. *Eur J Clin Microbiol Infect Dis* 33:919-26.

426 9. Calvo B, Melo AS, Perozo-Mena A, Hernandez M, Francisco EC, Hagen F, Meis JF, Colombo
427 AL. 2016. First report of *Candida auris* in America: Clinical and microbiological aspects of
428 18 episodes of candidemia. *J Infect* 73:369-74.

429 10. Schelenz S, Hagen F, Rhodes JL, Abdolrasouli A, Chowdhary A, Hall A, Ryan L, Shackleton J,
430 Trimlett R, Meis JF, Armstrong-James D, Fisher MC. 2016. First hospital outbreak of the
431 globally emerging *Candida auris* in a European hospital. *Antimicrob Resist Infect Control*
432 5:35.

433 11. Chowdhary A, Sharma C, Meis JF. 2017. *Candida auris*: A rapidly emerging cause of
434 hospital-acquired multidrug-resistant fungal infections globally. *PLoS Pathog* 13:e1006290.

435 12. Welsh RM, Bentz ML, Shams A, Houston H, Lyons A, Rose LJ, Litvintseva AP. 2017. Survival,
436 Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast *Candida*
437 *auris* on a Plastic Health Care Surface. *Journal of Clinical Microbiology* 55:2996-3005.

438 13. Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD, Rautemaa-
439 Richardson R, Williams C, Ramage G. 2018. Transcriptome Assembly and Profiling of
440 *Candida auris* Reveals Novel Insights into Biofilm-Mediated Resistance. *mSphere* 3.

441 14. Sherry L, Ramage G, Kean R, Borman A, Johnson EM, Richardson MD, Rautemaa-
442 Richardson R. 2017. Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant
443 *Candida auris*. *Emerg Infect Dis* 23:328-331.

444 15. Vallabhaneni S, Kallen A, Tsay S, Chow N, Welsh R, Kerins J, Kemble SK, Pacilli M, Black SR,
445 Landon E, Ridgway J, Palmore TN, Zelzany A, Adams EH, Quinn M, Chaturvedi S, Greenko J,
446 Fernandez R, Southwick K, Furuya EY, Calfee DP, Hamula C, Patel G, Barrett P, Lafaro P,
447 Berkow EL, Moulton-Meissner H, Noble-Wang J, Fagan RP, Jackson BR, Lockhart SR,
448 Litvintseva AP, Chiller TM. 2016. Investigation of the First Seven Reported Cases of

449 *Candida auris*, a Globally Emerging Invasive, Multidrug-Resistant Fungus - United States,
450 May 2013-August 2016. MMWR Morb Mortal Wkly Rep 65:1234-1237.

451 16. Ghosh AK, Paul S, Sood P, Rudramurthy SM, Rajbanshi A, Jillwin TJ, Chakrabarti A. 2015.
452 Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the rapid
453 identification of yeasts causing bloodstream infections. Clin Microbiol Infect 21:372-8.

454 17. Mizusawa M, Miller H, Green R, Lee R, Durante M, Perkins R, Hewitt C, Simner PJ, Carroll
455 KC, Hayden RT, Zhang SX. 2017. Can Multidrug-Resistant *Candida auris* Be Reliably
456 Identified in Clinical Microbiology Laboratories? Journal of Clinical Microbiology 55:638-
457 640.

458 18. Leach L, Zhu Y, Chaturvedi S. 2018. Development and Validation of a Real-Time PCR Assay
459 for Rapid Detection of *Candida auris* from Surveillance Samples. J Clin Microbiol 56.

460 19. de-Souza-Silva CM, Guilhelmelli F, Zamith-Miranda D, de Oliveira MA, nio, Nosanchuk JD,
461 Silva-Pereira I, Albuquerque P, cia. 2018. Broth Microdilution In Vitro Screening: An Easy
462 and Fast Method to Detect New Antifungal Compounds. doi:doi:10.3791/57127:e57127.

463 20. Anonymous. Clinical and Laboratory Standards Institute (CLSI). Reference Method for
464 Broth Dilution Antifungal Susceptibility Testing of Yeast. 4th ed. Clinical and Laboratory
465 Standards Institute, Wayne, PA CLSI standard M27:ISBN 1-56238-826-6.

466 21. Nakayasu ES, Nicora CD, Sims AC, Burnum-Johnson KE, Kim YM, Kyle JE, Matzke MM,
467 Shukla AK, Chu RK, Schepmoes AA, Jacobs JM, Baric RS, Webb-Robertson BJ, Smith RD,
468 Metz TO. 2016. MPLEX: a Robust and Universal Protocol for Single-Sample Integrative
469 Proteomic, Metabolomic, and Lipidomic Analyses. mSystems 1.

470 22. Matos Baltazar L, Nakayasu ES, Sobreira TJ, Choi H, Casadevall A, Nimrichter L, Nosanchuk
471 JD. 2016. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles
472 Released by *Histoplasma capsulatum*. mSphere 1.

473 23. Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized
474 p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat Biotechnol*
475 26:1367-72.

476 24. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M.
477 2011. Global quantification of mammalian gene expression control. *Nature* 473:337-42.

478 25. Dautel SE, Kyle JE, Clair G, Sontag RL, Weitz KK, Shukla AK, Nguyen SN, Kim Y-M, Zink EM,
479 Luders T, Frevert CW, Gharib SA, Laskin J, Carson JP, Metz TO, Corley RA, Ansong C. 2017.
480 Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung.
481 *Scientific Reports* 7:40555.

482 26. Kyle JE, Crowell KL, Casey CP, Fujimoto GM, Kim S, Dautel SE, Smith RD, Payne SH, Metz
483 TO. 2017. LIQUID: an-open source software for identifying lipids in LC-MS/MS-based
484 lipidomics data. *Bioinformatics* 33:1744-1746.

485 27. Pluskal T, Castillo S, Villar-Briones A, Orešič M. 2010. MZmine 2: Modular framework for
486 processing, visualizing, and analyzing mass spectrometry-based molecular profile data.
487 *BMC Bioinformatics* 11:395.

488 28. Kim YM, Schmidt BJ, Kidwai AS, Jones MB, Deatherage Kaiser BL, Brewer HM, Mitchell HD,
489 Palsson BO, McDermott JE, Heffron F, Smith RD, Peterson SN, Ansong C, Hyduke DR, Metz
490 TO, Adkins JN. 2013. *Salmonella* modulates metabolism during growth under conditions
491 that induce expression of virulence genes. *Mol Biosyst* 9:1522-34.

492 29. Hiller K, Hangebrauk J, Jager C, Spura J, Schreiber K, Schomburg D. 2009.
493 MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS
494 based metabolome analysis. *Anal Chem* 81:3429-39.

495 30. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O. 2009. FiehnLib:
496 mass spectral and retention index libraries for metabolomics based on quadrupole and
497 time-of-flight gas chromatography/mass spectrometry. *Anal Chem* 81:10038-48.

498 31. Howe EA, Sinha R, Schlauch D, Quackenbush J. 2011. RNA-Seq analysis in MeV.
499 *Bioinformatics* 27:3209-10.

500 32. Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large
501 gene lists using DAVID bioinformatics resources. *Nat Protoc* 4:44-57.

502 33. Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstuck M,
503 Czauderna T, Klukas C, Schreiber F. 2012. VANTED v2: a framework for systems biology
504 applications. *BMC Syst Biol* 6:139.

505 34. Wagener J, Loiko V. 2018. Recent Insights into the Paradoxical Effect of Echinocandins.
506 *Journal of Fungi* 4:5.

507 35. Kordalewska M, Lee A, Park S, Berrio I, Chowdhary A, Zhao Y, Perlin DS. 2018.
508 Understanding echinocandin resistance in the emerging pathogen *Candida auris*.
509 *Antimicrob Agents Chemother* doi:10.1128/aac.00238-18.

510 36. Pan J, Hu C, Yu JH. 2018. Lipid Biosynthesis as an Antifungal Target. *J Fungi (Basel)* 4.

511 37. Mukhopadhyay K, Prasad T, Saini P, Pucadyil TJ, Chattopadhyay A, Prasad R. 2004.
512 Membrane Sphingolipid-Ergosterol Interactions Are Important Determinants of Multidrug
513 Resistance in *Candida albicans*. *Antimicrobial Agents and Chemotherapy* 48:1778-1787.

514 38. Mukhopadhyay K, Kohli A, Prasad R. 2002. Drug Susceptibilities of Yeast Cells Are Affected
515 by Membrane Lipid Composition. *Antimicrobial Agents and Chemotherapy* 46:3695-3705.

516 39. Silva S, Rodrigues C, Araújo D, Rodrigues M, Henriques M. 2017. *Candida* Species Biofilms'
517 Antifungal Resistance. *Journal of Fungi* 3:8.

518 40. Nobile Clarissa J, Fox Emily P, Nett Jeniel E, Sorrells Trevor R, Mitrovich Quinn M, Hernday
519 Aaron D, Tuch Brian B, Andes David R, Johnson Alexander D. 2012. A Recently Evolved
520 Transcriptional Network Controls Biofilm Development in *Candida albicans*. *Cell* 148:126-
521 138.

522 41. Vandeputte P, Pradervand S, Ischer F, Coste AT, Ferrari S, Harshman K, Sanglard D. 2012.
523 Identification and Functional Characterization of Rca1, a Transcription Factor Involved in
524 both Antifungal Susceptibility and Host Response in *Candida albicans*. *Eukaryotic Cell*
525 11:916-931.

526 42. Maiti P, Ghorai P, Ghosh S, Kamthan M, Tyagi RK, Datta A. 2015. Mapping of functional
527 domains and characterization of the transcription factor Cph1 that mediate
528 morphogenesis in *Candida albicans*. *Fungal Genetics and Biology* 83:45-57.

529 43. Khalaf RA, Zitomer RS. 2001. The DNA Binding Protein Rfg1 Is a Repressor of Filamentation
530 in *Candida albicans*. *Genetics* 157:1503-1512.

531 44. Seneviratne CJ, Wang Y, Jin L, Abiko Y, Samaranayake LP. 2008. *Candida albicans* biofilm
532 formation is associated with increased anti-oxidative capacities. *PROTEOMICS* 8:2936-
533 2947.

534 45. Guo H, Xie SM, Li SX, Song YJ, Zhong XY, Zhang H. 2017. Involvement of mitochondrial
535 aerobic respiratory activity in efflux-mediated resistance of *C. albicans* to fluconazole. *J*
536 *Mycol Med* 27:339-344.

537 46. Bhattacharya S, Esquivel BD, White TC. 2018. Overexpression or Deletion of Ergosterol
538 Biosynthesis Genes Alters Doubling Time, Response to Stress Agents, and Drug
539 Susceptibility in *Saccharomyces cerevisiae*. *MBio* 9.

540 47. Hou X, Lee A, Jimenez-Ortigosa C, Kordalewska M, Perlin DS, Zhao Y. 2018. Rapid Detection
541 of ERG11-Associated Azole Resistance and FKS-Associated Echinocandin Resistance in
542 *Candida auris*. *Antimicrob Agents Chemother* doi:10.1128/AAC.01811-18.

543 48. Healey KR, Kordalewska M, Jimenez Ortigosa C, Singh A, Berrio I, Chowdhary A, Perlin DS.
544 2018. Limited ERG11 Mutations Identified in Isolates of *Candida auris* Directly Contribute
545 to Reduced Azole Susceptibility. *Antimicrob Agents Chemother* 62.

546 49. Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J, Fonzi W, Mirbod F, Nakashima S,
547 Nozawa Y, Ghannoum MA. 1998. Cloning and Disruption of caPLB1, a Phospholipase B
548 Gene Involved in the Pathogenicity of *Candida albicans*. *Journal of Biological Chemistry*
549 273:26078-26086.

550 50. Santangelo R, Zoellner H, Sorrell T, Wilson C, Donald C, Djordjevic J, Shounan Y, Wright L.
551 2004. Role of Extracellular Phospholipases and Mononuclear Phagocytes in Dissemination
552 of Cryptococcosis in a Murine Model. *Infection and Immunity* 72:2229-2239.

553 51. Evans RJ, Li Z, Hughes WS, Djordjevic JT, Nielsen K, May RC. 2015. Cryptococcal
554 phospholipase B1 is required for intracellular proliferation and control of titan cell
555 morphology during macrophage infection. *Infect Immun* 83:1296-304.

556 52. Larkin E, Hager C, Chandra J, Mukherjee PK, Retuerto M, Salem I, Long L, Isham N, Kovanda
557 L, Borroto-Esoda K, Wring S, Angulo D, Ghannoum M. 2017. The Emerging Pathogen
558 *Candida auris*: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of
559 SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm
560 Formation. *Antimicrob Agents Chemother* 61.

561 53. Singh A, Mahto KK, Prasad R. 2013. Lipidomics and in Vitro Azole Resistance in *Candida*
562 *albicans*. *OMICS: A Journal of Integrative Biology* 17:84-93.

563 54. Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, Wesselborg S, Lauber
564 K. 2008. Migration to Apoptotic “Find-me” Signals Is Mediated via the Phagocyte Receptor
565 G2A. *Journal of Biological Chemistry* 283:5296-5305.

566 55. Dichtl K, Samantaray S, Wagener J. 2016. Cell wall integrity signalling in human pathogenic
567 fungi. *Cellular Microbiology* 18:1228-1238.

568 56. Fonseca E, Silva S, Rodrigues CF, Alves CT, Azeredo J, Henriques M. 2014. Effects of
569 fluconazole on *Candida glabrata* biofilms and its relationship with ABC transporter gene
570 expression. *Biofouling* 30:447-457.

571 57. Rocha MFG, Bandeira SP, Alencar LP, Melo LM, Sales JA, Paiva MdAN, Teixeira CEC,
572 Castelo-Branco DdSCM, Pereira-Neto WdA, Cordeiro RdA, Sidrim JJC, Brilhante RSN. 2017.
573 Azole resistance in *Candida albicans* from animals: Highlights on efflux pump activity and
574 gene overexpression. *Mycoses* 60:462-468.

575 58. Bink A, Vandenbosch D, Coenye T, Nelis H, Cammue BPA, Thevissen K. 2011. Superoxide
576 Dismutases Are Involved in *Candida albicans* Biofilm Persistence against Miconazole.
577 *Antimicrobial Agents and Chemotherapy* 55:4033-4037.

578

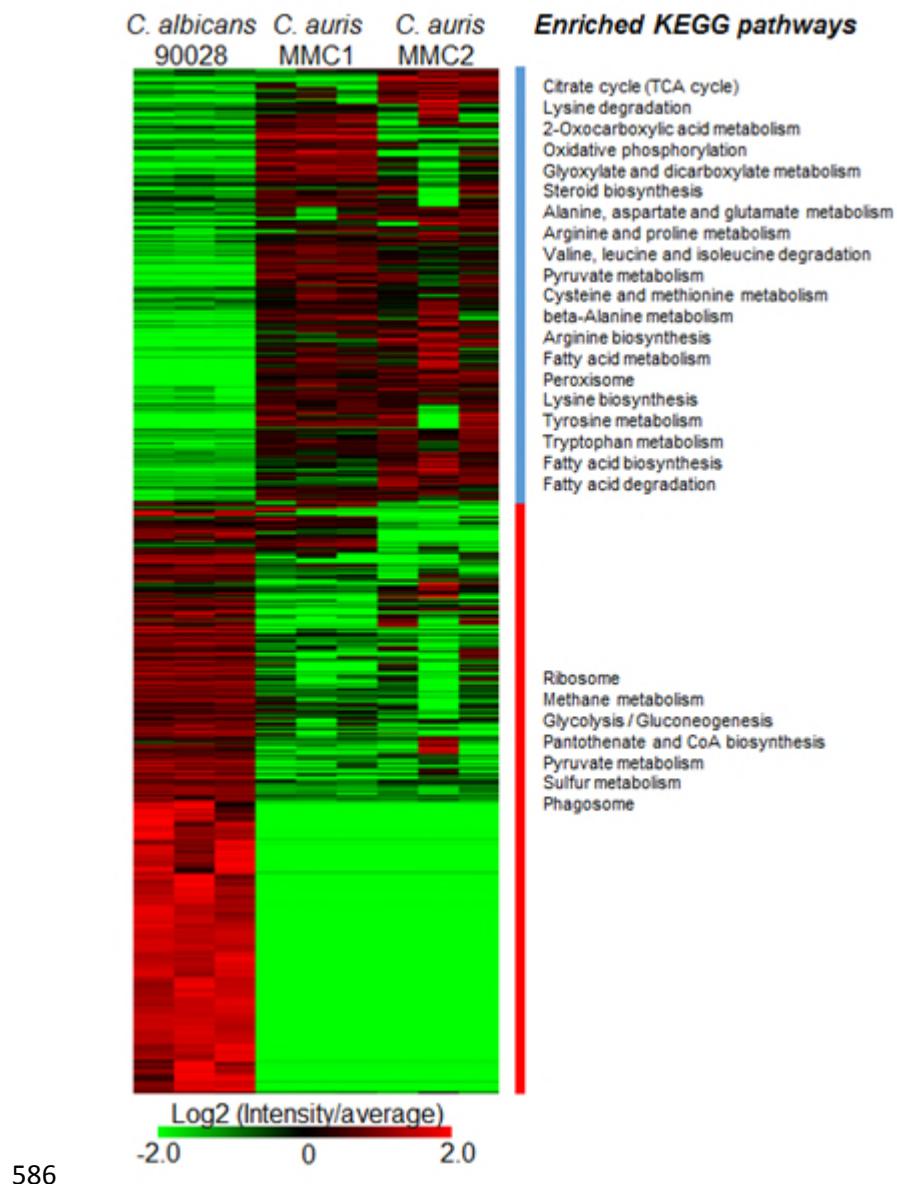
579 **Figures and Tables**

580 **Table 1. Antifungal susceptibility test using the broth microdilution**

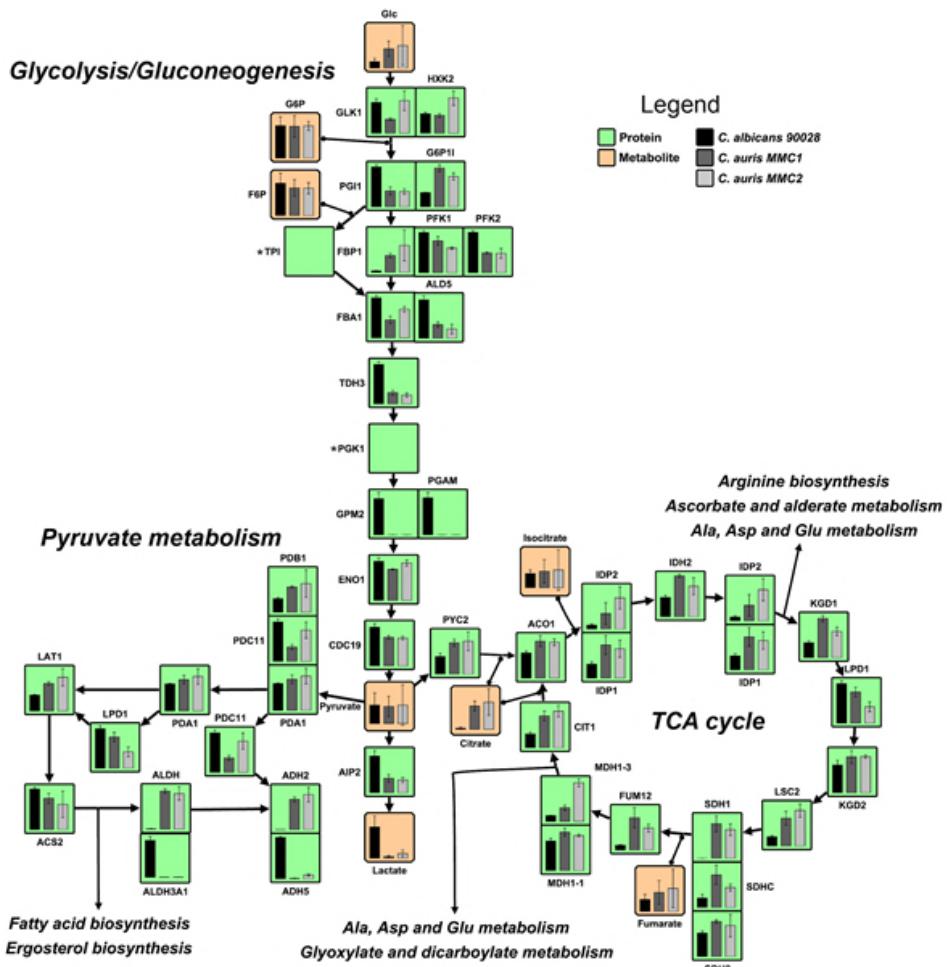
Organism/Strain	Amphotericin B (μ g/mL)	Caspofungin (μ g/mL)	Fluconazole (μ g/mL)
<i>Candida auris</i> MMC1	1.6	2	> 256*
<i>Candida auris</i> MMC2	0.8	1.6	8
<i>Candida albicans</i>	1.3	0.3	0.75

581 *MMC1 was resistant to fluconazole concentrations of 1000 µg/mL

582 **Table 2 - Identified orthologous proteins in *C. albicans* and *C. auris***

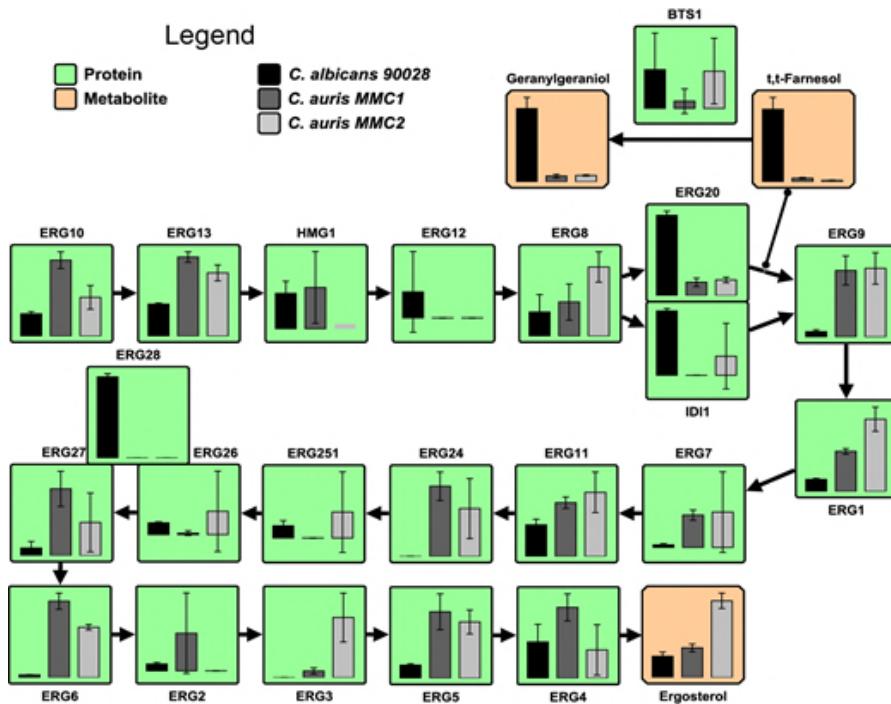

	<i>C. albicans</i>	<i>C. auris</i>
Identified proteins	2317	1869
Non-orthologues	363	143
Orthologues	1954	1726
Total orthologues	2323	
Orthologues present in both species	1357	

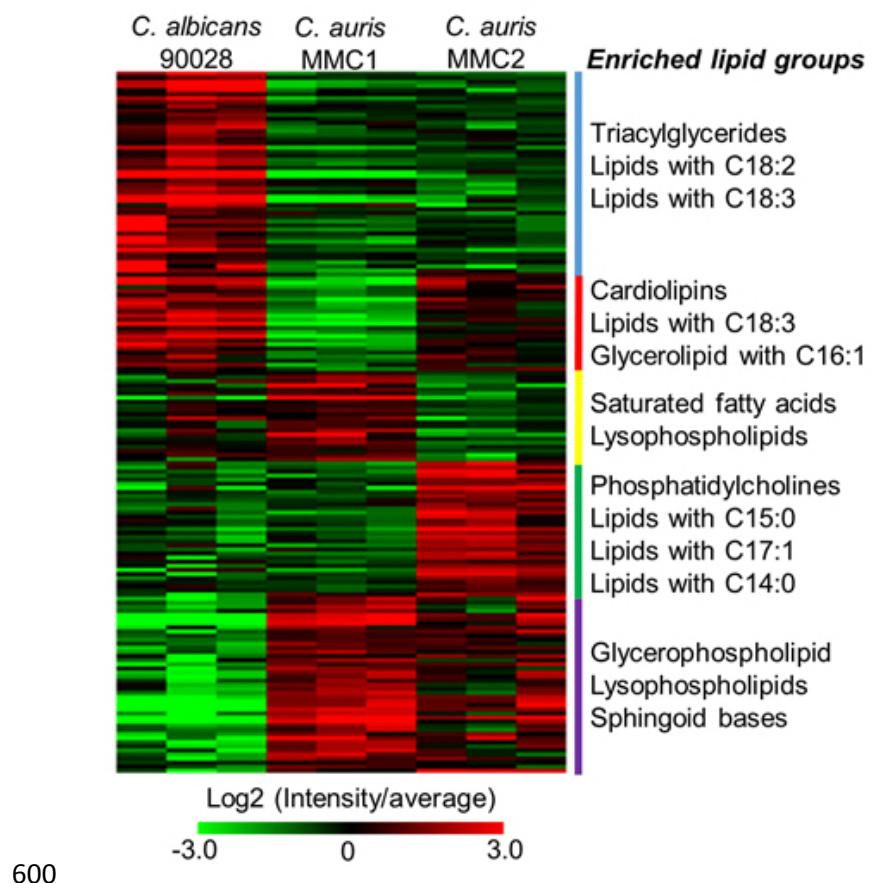
583 **Table 3. Proteins with phospholipase activity in *C. auris* and *C. albicans***


Protein names	<i>C. auris</i> - Uniprot	<i>C. albicans</i>	MMC1	MMC2
Plc2p	A0A0L0P5S6	-	++	+
Patatin-like phospholipase domain-containing protein	A0A0L0NS42	--	++	-
Lysophospholipase	A0A0L0NWB3	ND	++	++
Lysophospholipase	A0A0L0P465	ND	+	++
Doa1p	A0A0L0NP71	+	++	++
Phospholipase	A0A0L0P056	++	+	+
Lysophospholipase Nte1 (Intracellular phospholipase B)	A0A0L0P1C1	++	-	-

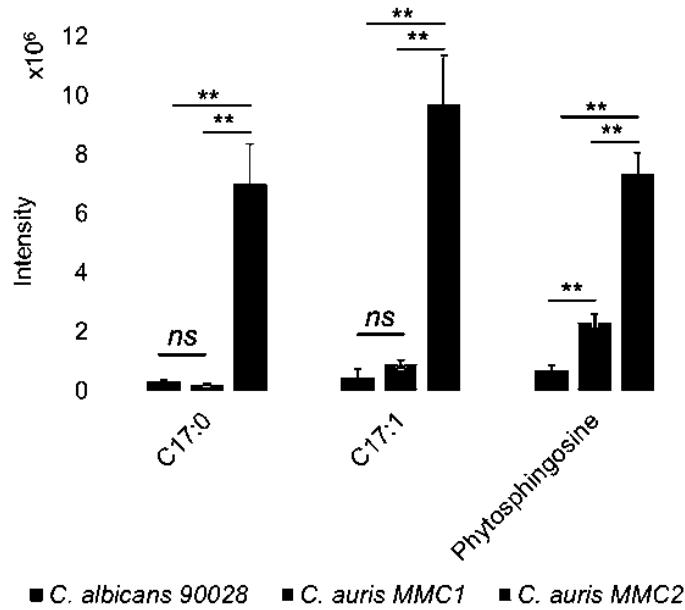
584

585 **Figures and captions**

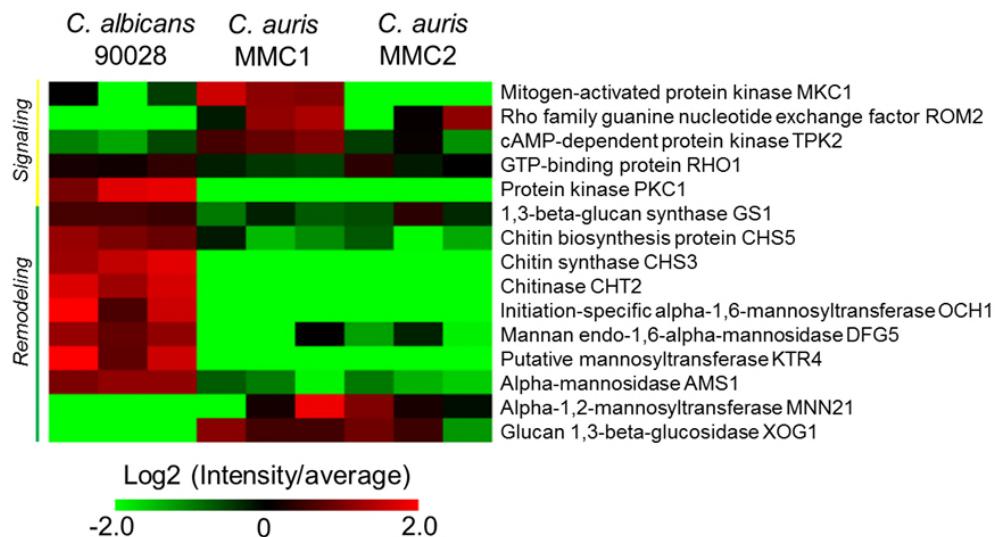

587 **Figure 1: Abundance of proteins in *C. auris* and *C. albicans*.** Proteins are listed in the
588 heatmap with enriched KEGG pathways separated into two clusters based on the protein
589 abundance between the two *Candida* species.



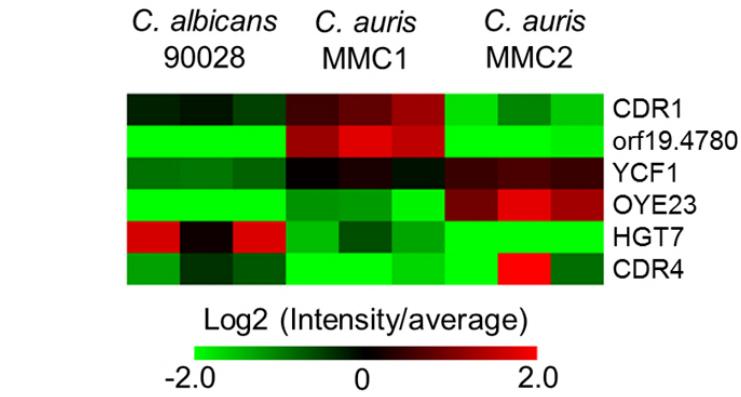
590


591 **Figure 2 - Central carbon metabolism of *C. auris* and *C. albicans*.** The figure shows the
592 relative abundance of proteins (green boxes) and the production of metabolites (orange
593 boxes) involved in the central carbon metabolism in both *C. albicans* and *C. auris*. Paralog
594 proteins were grouped and posted side-by-side in the map. *Genes that were only annotated
595 in the *C. albicans* genome.

596



601 **Figure 4. Lipid species found in *C. auris* and *C. albicans*.** The abundance of all detected
602 lipids is shown above in the heatmap. Lipids were grouped in clusters based on their
603 abundance between different species/strains. Enrichment of lipid intrinsic features (head
604 group, fatty acid length, fatty acid unsaturation, etc.) is listed by the side of each cluster.



605

606 **Figure 5. Fatty acids and sphingoid bases analyzed by GC-MS.** The graph indicates the
607 abundance of lipids containing odd FA and phytosphingosine for both *Candida*
608 species/strains. ** p-value ≤ 0.01 .

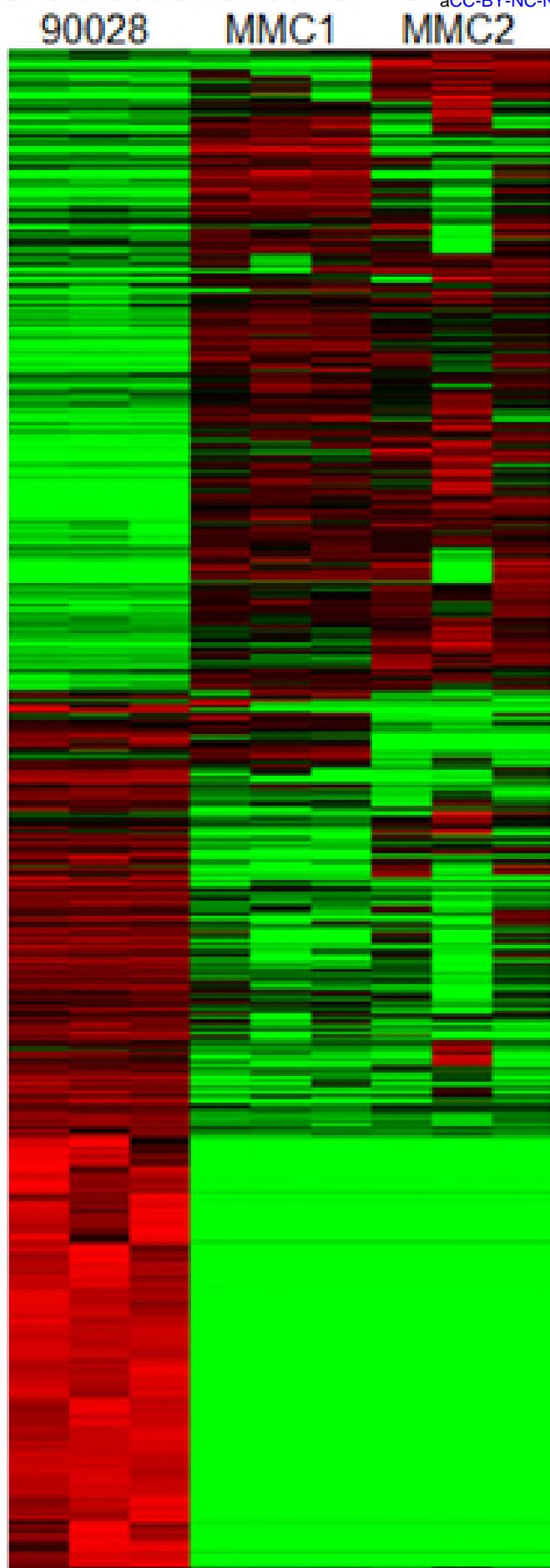
610 **Figure 6. Cell wall integrity pathway.** The heatmap includes signaling and major cell wall
611 polysaccharides synthesis/degradation enzymes found in *C. auris* and *C. albicans*.

612

613 **Figure 7 – Protein abundance profile of drug resistance related transporters.** The
614 heatmap shows the detected transporters involved with drug resistance and their
615 abundances in both *Candida* species/strains.

616 **Supplementary Tables**

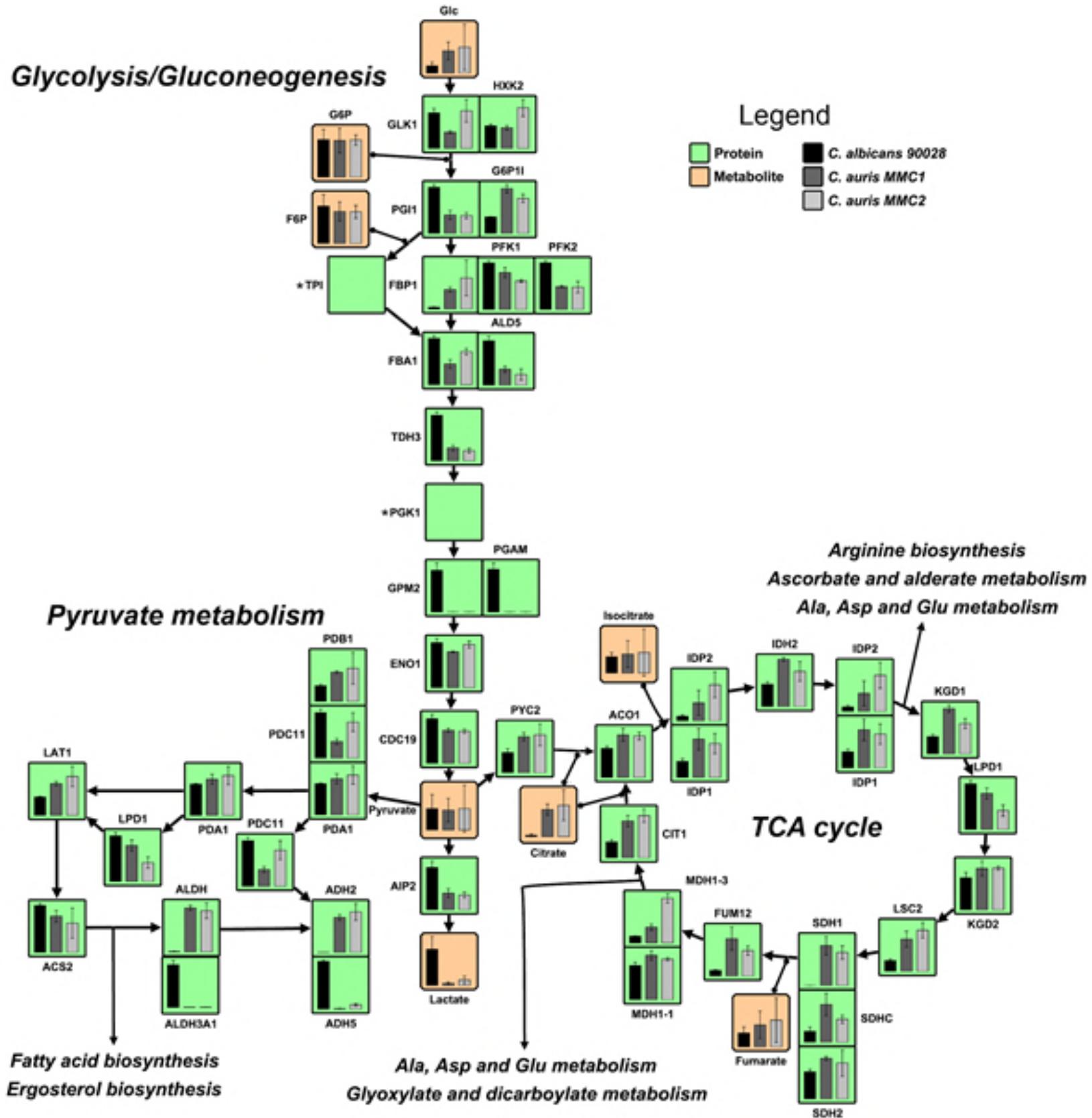
617 **Supplemental Table S1** - Proteomic analysis of *C. auris* isolates. Protein abundances were
618 normalized into relative copies numbers (see material and methods for details).


619 **Supplemental Table S2** - Proteomic analysis of *C. albicans* strain 90028. Protein
620 abundances were normalized into relative copies numbers (see material and methods for
621 details).

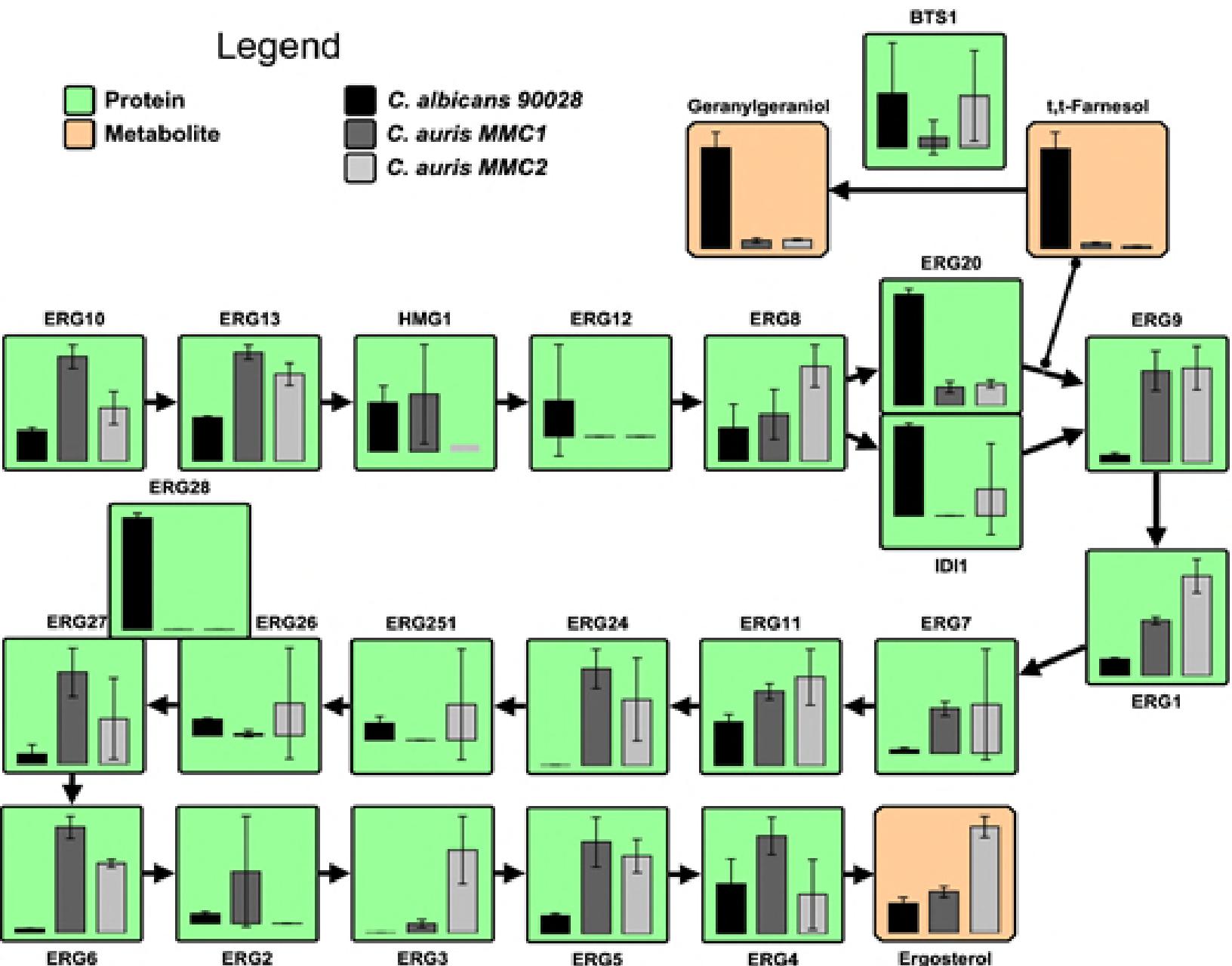
622 **Supplemental Table S3** - Comparative analysis of *C. albicans* strain 90028 vs. *C. auris*
623 isolates. Protein abundances were normalized into relative copies numbers. Then values
624 were divided by the average of the between all samples and transformed into Log2 scale
625 (see material and methods for details). Statistically significant comparisons are highlighted
626 in blue, while less and more abundant proteins are highlighted in green and red scales,
627 respectively.

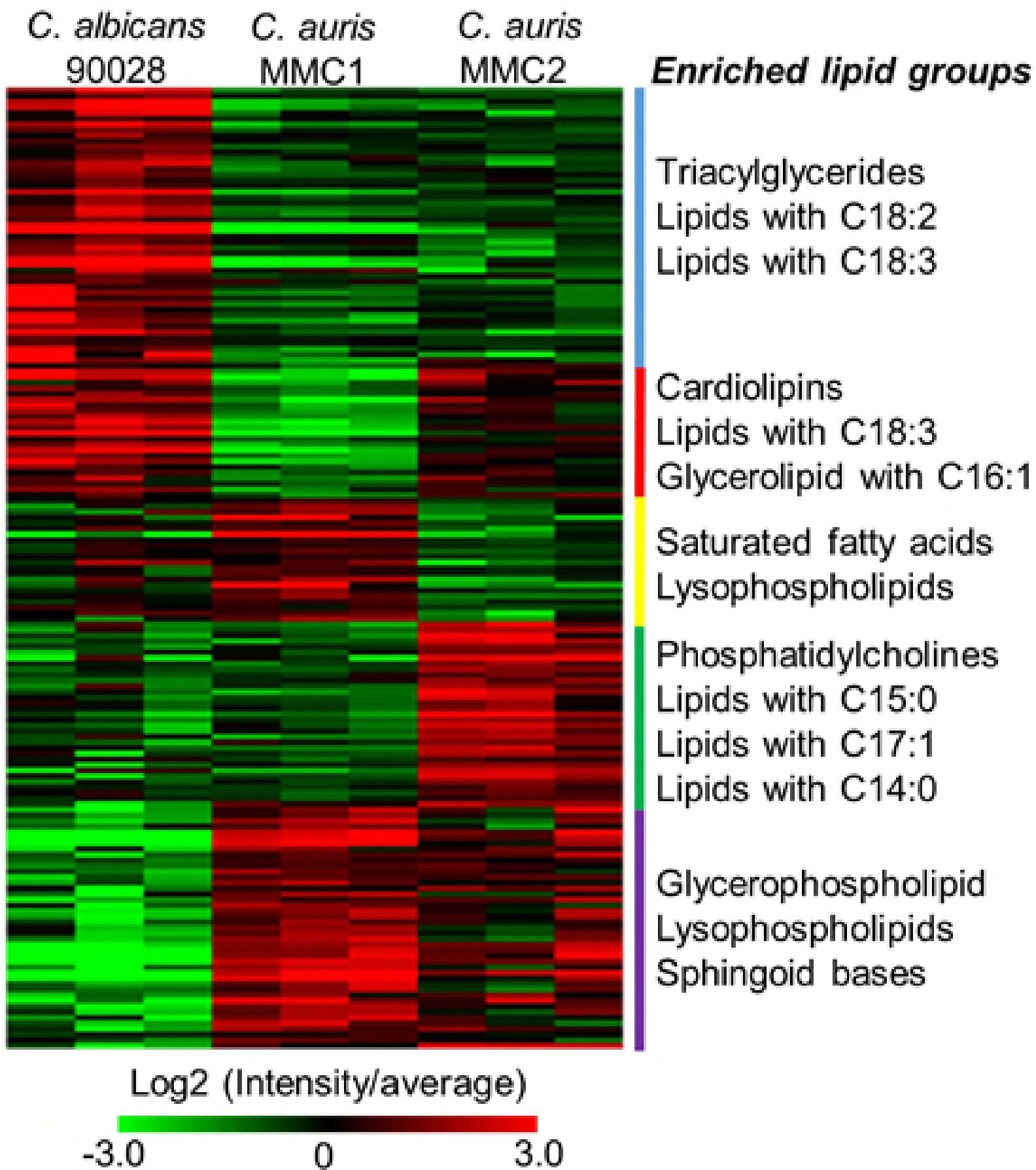
628 **Supplemental Table S4** - Comparative lipidomic analysis of *C. albicans* strain 90028 vs.
629 *C. auris* isolates. Lipid intensities were divided by the average of the between all samples
630 and transformed into Log2 scale (see material and methods for details). Statistically
631 significant comparisons are highlighted in blue, while less and more abundant lipids are
632 highlighted in green and red scales, respectively.

633 **Supplemental Table S5** - Comparative analysis of proteins from *C. albicans* strain 90028
634 and *C. auris* isolates involved with biofilm. Protein abundances were normalized into
635 relative copies numbers. Then values were divided by the average of the between all
636 samples and transformed into Log2 scale (see material and methods for details).

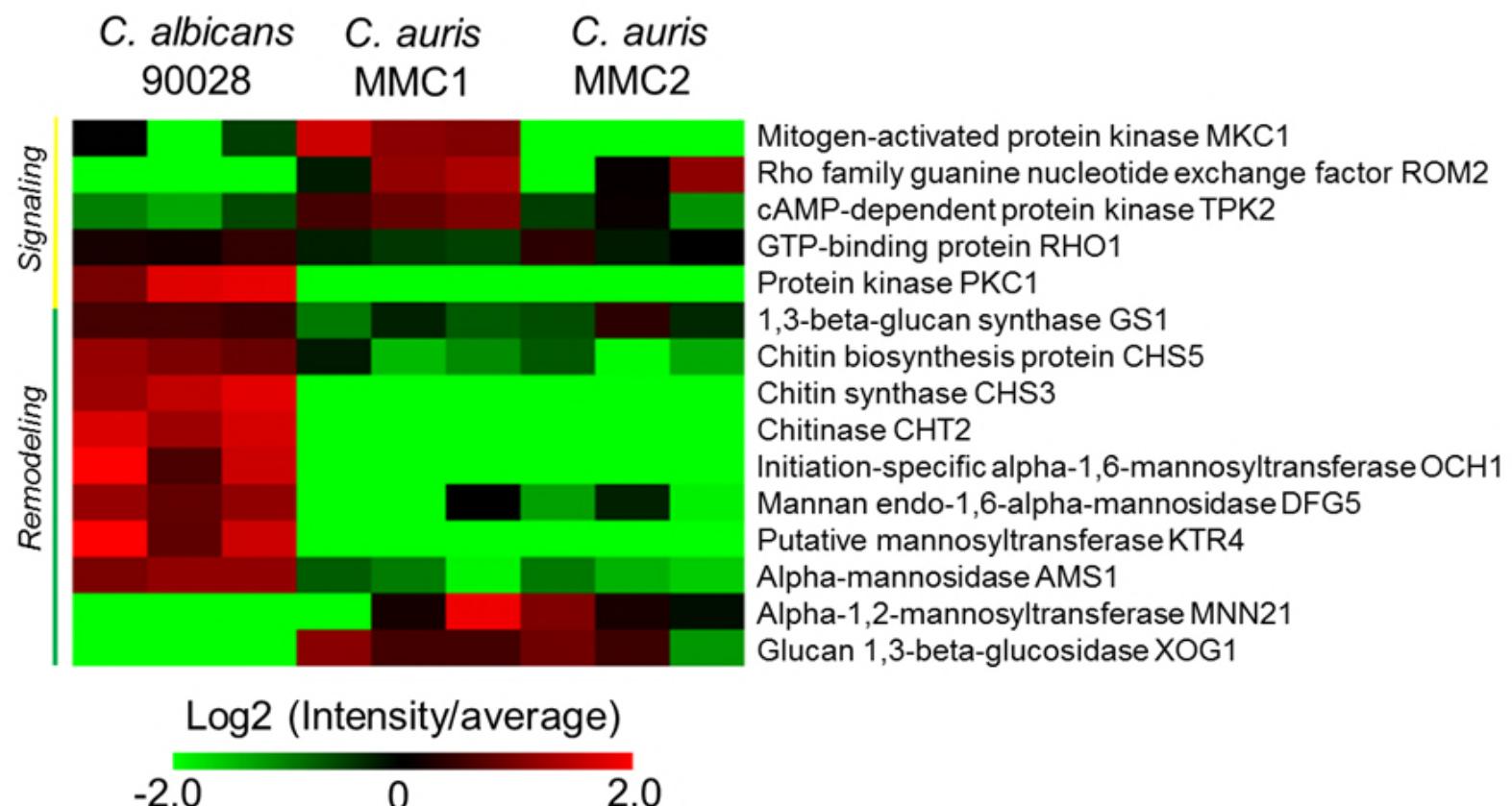

C. albicans C. auris C. auris Enriched KEGG pathways

Citrate cycle (TCA cycle)
Lysine degradation
2-Oxocarboxylic acid metabolism
Oxidative phosphorylation
Glyoxylate and dicarboxylate metabolism
Steroid biosynthesis
Alanine, aspartate and glutamate metabolism
Arginine and proline metabolism
Valine, leucine and isoleucine degradation
Pyruvate metabolism
Cysteine and methionine metabolism
beta-Alanine metabolism
Arginine biosynthesis
Fatty acid metabolism
Peroxisome
Lysine biosynthesis
Tyrosine metabolism
Tryptophan metabolism
Fatty acid biosynthesis
Fatty acid degradation


Ribosome
Methane metabolism
Glycolysis / Gluconeogenesis
Pantothenate and CoA biosynthesis
Pyruvate metabolism
Sulfur metabolism
Phagosome






Legend

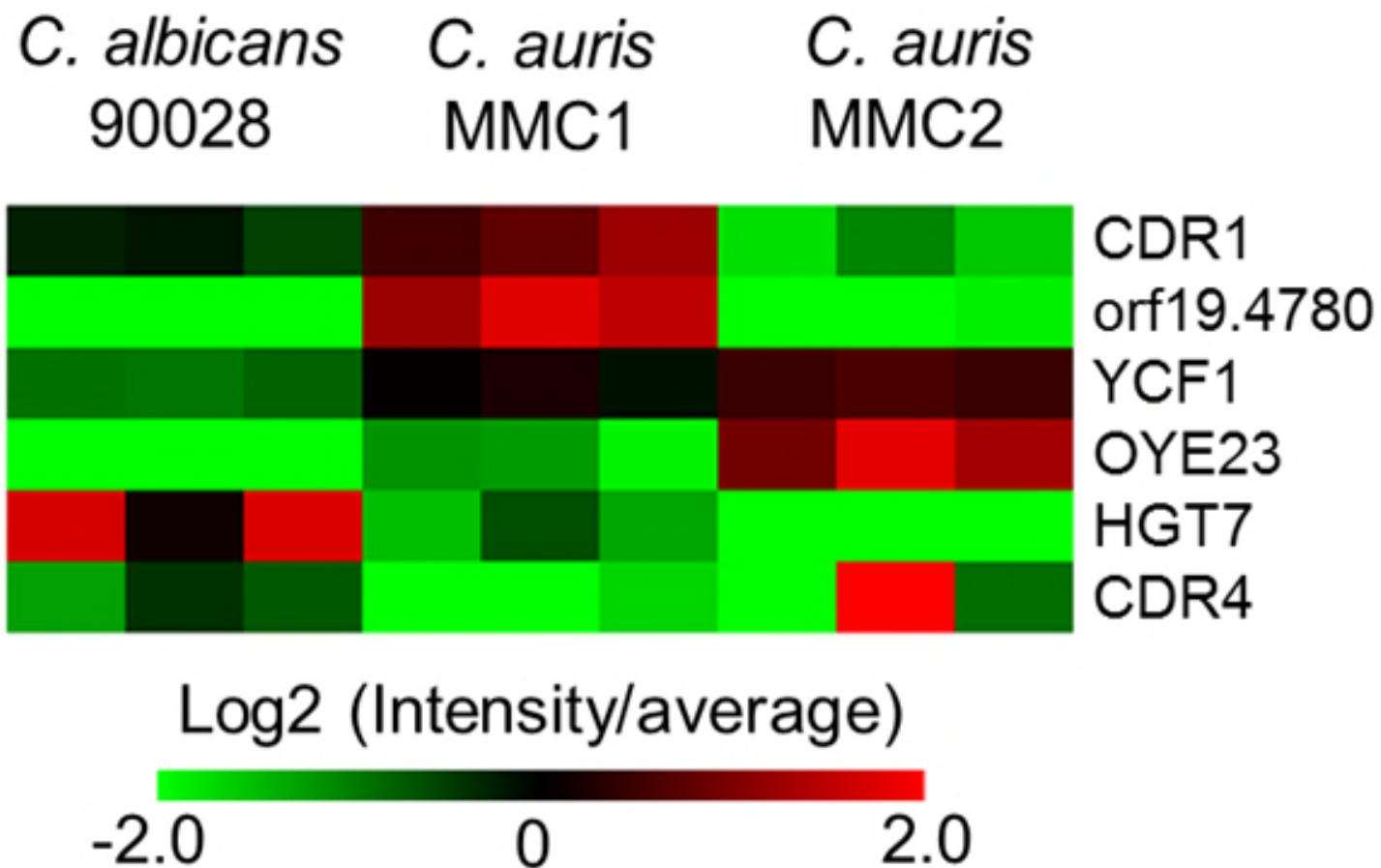

 Protein	 <i>C. albicans</i> 90028
 Metabolite	 <i>C. auris</i> MMC1
	 <i>C. auris</i> MMC2

Table 1. Antifungal susceptibility test using the broth microdilution

Organism/Strain	Amphotericin B ($\mu\text{g/mL}$)	Caspofungin ($\mu\text{g/mL}$)	Fluconazole ($\mu\text{g/mL}$)
<i>Candida auris</i> MMC1	1.6	2	> 256*
<i>Candida auris</i> MMC2	0.8	1.6	8
<i>Candida albicans</i>	1.3	0.3	0.75

*MMC1 was resistant to fluconazole concentrations of 1000 $\mu\text{g/mL}$

Table 2 - Identified orthologous proteins in *C. albicans* and *C. auris*

	<i>C. albicans</i>	<i>C. auris</i>
Identified proteins	2317	1869
Non-orthologues	363	143
Orthologues	1954	1726
Total orthologues	2323	
Orthologues present in both species	1357	

Table 3. Proteins with phospholipase activity in *C. auris* and *C. albicans*

Protein names	<i>C. auris</i> - Uniprot	<i>C.</i> <i>albicans</i>	MMC1	MMC2
Plc2p	A0A0L0P5S6	-	++	+
Patatin-like phospholipase domain-containing protein	A0A0L0NS42	--	++	-
Lysophospholipase	A0A0L0NWB3	ND	++	++
Lysophospholipase	A0A0L0P465	ND	+	++
Doa1p	A0A0L0NP71	+	++	++
Phospholipase	A0A0L0P056	++	+	+
Lysophospholipase Nte1 (Intracellular phospholipase B)	A0A0L0P1C1	++	-	-