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 2 

Abstract 26 

Background: Major Depressive Disorder (MDD) is a clinically heterogeneous disorder. Previous 27 

large-scale genetic studies of MDD have explored genetic risk factors of MDD case-control 28 

status or aggregated sums of depressive symptoms, ignoring possible clinical or genetic 29 

heterogeneity.  30 

Aim: In this study, we present the results of symptom-level genetic analyses and compare SNP-31 

based heritability (h2 SNP) and genetic correlations across major depression symptoms. We further 32 

investigate genetic correlations with a range of psychiatric disorders and other associated traits.  33 

Methods: We have analysed data from the UK biobank and included 148,752 subjects of white 34 

British ancestry with genotype data who completed nine items of a self-rated measure of 35 

depression: the Patient Health Questionnaire (PHQ-9). Genome-Wide Association analyses were 36 

conducted for nine symptoms and two composite measures. LD score regression analysis was 37 

used to calculate SNP-based heritability (h2 SNP) and genetic correlations (rg) across symptoms 38 

and to investigate genetic correlations with 25 external phenotypes. Confirmatory factor analyses 39 

were applied to test whether one, two, or three-factor models best fit the pattern of genetic 40 

correlations across the nine symptoms. 41 

Results: We identified 9 novel genome-wide significant genomic loci, with no overlap in loci 42 

across depression symptoms. h2 SNP ranged from 3% (suicidal ideation) to 11% (fatigue). Genetic 43 

correlations range from 0.54 to 0.96 (all p < 1.39×10−3) with 30 of 36 correlations being 44 

significantly smaller than 1. A 3-factor model provided the best fit to the genetic correlation 45 

matrix, with factors representing “psychological”, “neurovegetative”, and “psychomotor / 46 

concentration” symptoms. The genetic correlations with external phenotypes showed large 47 

variation across the nine symptoms.  48 

Discussion: Patterns of h2 SNP and genetic correlations differed across the nine symptoms of 49 

depression. Our findings suggest that the large phenotypic heterogeneity observed for MDD is 50 

recapitulated at a genetic level. Future studies should investigate how genetic heterogeneity in 51 

MDD influences the efficacy of clinical interventions. 52 

53 
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 3 

Introduction 54 

Clinical depression is a markedly complex and debilitating mental disorder characterised 55 

by sad, irritable or empty mood, diminished pleasure, and cognitive and somatic impairment1. 56 

The heritability of major depressive disorder (MDD) is estimated to be ~37% from twin studies2 57 

with common Single Nucleotide Polymorphisms (SNPs) explaining around 9% of the variation 58 

in liability3. MDD has substantial comorbidity with other psychiatric and substance use disorders 59 

and is related to a wide range of personality, socioeconomic, and human traits4. There is 60 

substantial overlap in the genetic risk factors of MDD and other psychiatric disorders3, including 61 

significant genetic correlations (rg) with schizophrenia (rg = 0.34), bipolar disorder (rg = 0.32), 62 

autism spectrum disorders (rg = 0.44) and ADHD (rg = 0.42). MDD has notably high genetic 63 

overlap with anxiety disorders (rg = 0.80) and neuroticism (rg = 0.70), which may reflect the 64 

overlap in diagnostic criteria between the three traits. Initial efforts to identify genetic variants 65 

associated with major depression were unsuccessful, despite successes with other psychiatric 66 

diseases and traits. While a Genome Wide Association Study (GWAS) of schizophrenia (9,394 67 

cases), for example, detected seven genome-wide significant associations 5, a mega-analysis of 68 

MDD (9240 cases)6 and a meta-analysis of depressive symptoms (N = 34,549)7 found no 69 

significant associations. By 2014, 108 independent genetic loci for schizophrenia had been 70 

identified8, and not a single one for depression. The struggle to identify significant genetic 71 

variants was likely related to low statistical power due to the clinical heterogeneity of MDD9. 72 

 Depression is a polygenic disorder, influenced by the combination of small effects from 73 

many genetic variants which can only be detected in studies with large sample sizes10. Due to the 74 

relatively high prevalence of depression (~15% vs. <1% for schizophrenia), power is lower than 75 

for other diseases with similar numbers of cases but lower prevalence11. Also, depression is less 76 
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heritable than other psychiatric disorders (~37% vs. ~80% for schizophrenia12) and therefore 77 

larger sample sizes are required to obtain similar statistical power to detect significant effects. In 78 

the last two yours, increasing sample size has proved to be effective with the number of genome-79 

wide significant variants increasing steadily with sample size. Hyde, et al. 13 identified 15 80 

genome-wide significant loci associated with self-reported depression (N = 307,354). Another 17 81 

loci were identified across three broad depression phenotypes (N = 322,580)14. The largest 82 

GWAS of major depression to date (N = 480,359) identified 44 significant loci3.  83 

These genetic studies ignored possible clinical heterogeneity in MDD, despite clinical 84 

presentations and symptoms of MDD being diverse. The Diagnostic and Statistical Manual of 85 

Mental Disorders 5th edition (DSM-5) defines major depression by the following symptoms: (1) 86 

depressed mood, (2) diminished interest or pleasure in activities (anhedonia), (3) decrease or 87 

increase in weight or appetite, (4) insomnia or hypersomnia, (5) psychomotor agitation or 88 

retardation, (6) fatigue or loss of energy, (7) feelings of worthlessness or excessive or 89 

inappropriate guilt, (8) diminished ability to think or concentrate, or indecisiveness, and (9) 90 

recurrent thoughts of death or recurrent suicidal ideation15. For a diagnosis of MDD five or more 91 

of these symptoms need to be present during a two week period, with at least one symptom being 92 

depressed mood or anhedonia. Østergaard, et al. 16 highlighted that there are 227 possible 93 

combinations of symptoms meeting DSM-5 criteria, indicating MDD is an extremely 94 

heterogeneous disorder. Further, individual symptoms have been found to differ substantially in 95 

their association with psychosocial impairment, influence from environmental and personality 96 

risk factors, and biological correlates17. GWASs of depression have typically focused on MDD 97 

case-control status or aggregated sums of depressive symptoms. By combining different 98 

symptoms into a single clinical measure, it is implicitly assumed that individual symptoms of 99 
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depression are genetically similar. However, the extreme heterogeneity of depression and 100 

numerous clinical presentations of the disorder suggest that different biological mechanisms 101 

could underlie the diverse subtypes of depression. Supporting this notion, depression symptoms 102 

have been found to differ substantially in heritability (h2 range, 0 – 35%); with somatic and 103 

cognitive symptoms being most heritable18. Further, the diagnostic criteria of MDD were found 104 

to reflect three underlying genetic factors (cognitive / psychomotor symptoms, mood symptoms, 105 

and neurovegetative symptoms) rather than a single factor of genetic risk in a twin study19. 106 

Nagel, et al. 20 found substantial genetic heterogeneity in neuroticism, a personality trait with 107 

extensive phenotypic and genetic overlap with MDD21, by conducting genetic analyses on the 108 

individual items used to measure neuroticism. 109 

To date, it is not known to what extent genetic risk factors overlap in individual 110 

symptoms of MDD. The aim of the present study is to examine and assess the extent of genetic 111 

heterogeneity in major depression. We conduct genetic analyses on individual symptoms of 112 

depression in 148,752  participants within the UK Biobank, as measured by the nine items of the 113 

Patient Health Questionnaire (PHQ-9)22, a depression measure which directly maps onto the 114 

DSM-5 criteria. In order to examine genetic heterogeneity in depression we (1) conduct 115 

symptom-level GWA analyses and then compare genetic associations and SNP-based heritability 116 

across symptoms; (2) calculate phenotypic and genetic correlations across depression symptoms 117 

and determine their underlying genetic factor structure; and (3) calculate genetic correlations 118 

between individual symptoms and a range of psychiatric disorders and human complex traits. 119 

120 
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Methods 121 

UK Biobank Cohort 122 

UK Biobank (UKBB) is a major health data resource containing phenotypic information 123 

on a wide range of health-related measures and characteristics in over 500,000 participants from 124 

the United Kingdom general population23. Participants were recruited between 2006 and 2010 125 

and provided written informed consent. A total of 157,365 participants completed the PHQ-9, as 126 

part of a UKBB mental health follow-up questionnaire administered online in 2016. 127 

Sample selection 128 

First, participants were included in the present study if they were of white British 129 

ancestry, identified through self-reported ethnicity and genetic principal components. 130 

Participants who self-reported as not white British, but for whom the first two genetic principal 131 

components indicated them to be genetically similar to those of white British ancestry were also 132 

included in order to maximise sample size (these commonly were participants who reported to be 133 

of Irish ancestry).  Second, Participants were excluded if they were identified with schizophrenia 134 

and / or other psychotic disorders, bipolar disorder, cyclothymic disorder, or dissociative identity 135 

disorder, based on self-reported symptoms or diagnosis, reported prescription of an antipsychotic 136 

medication, and/or ICD-10 (The International Classification of Diseases, Tenth Revision) codes 137 

from linked hospital admission records. Third, only participants who provided a response for all 138 

nine items of the PHQ-9 were included (list-wise deletion represented a less than 2% reduction 139 

in sample size). This resulted in a final sample size of 148,752 (see Supplementary Figure 13 for 140 

flow diagram of sample selection).  141 
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PHQ-9 142 

The PHQ-9 is a commonly used self-administered measure of depression containing nine 143 

items that map directly onto the nine DSM diagnostic criteria for major depression22. Each PHQ-144 

9 item assesses the frequency of that symptom over the past two weeks, rated on a four-point 145 

ordinal scale: (0) Not at all, (1) Several days, (2) More than half the days, (3) Nearly every day. 146 

(See Supplementary Table 1 for the nine symptoms of major depression, PHQ-9 items, and 147 

DSM-5 diagnostic criteria). 148 

The PHQ-9 is a psychometrically valid and reliable measure of depression24. Test-retest 149 

reliability was high (r = .84, over a span of 48 hours) and internal consistency was excellent with 150 

Cronbach’s alphas (α) of .89 and .86 in primary care and obstetrics-gynaecology samples, 151 

respectively. The authors also reported good criterion and construct validity. The PHQ-9 was 152 

validated against professional diagnoses of MDD, resulting in 88% sensitivity and 88% 153 

specificity (at a PHQ-9 sum-score of ≥ 10); and scores correlated highly with similar constructs, 154 

such as the 20-item Short-Form General Health Survey (SF-20)25 mental health scale (r = .73). 155 

Internal consistency of the PHQ-9 in the UK Biobank sample in the current study was high 156 

(Cronbach's α = .83).  157 

Depression Item Phenotypes 158 

Each of the nine PHQ-9 items is considered a separate phenotype in the genetic analyses. 159 

The ordinal scale of measurement of these items complicates interpretation of the SNP-based 160 

heritability estimates (amount of phenotypic variance in the item explained by SNPs). SNP-161 

based heritability is an important concept in genetics, essential to understanding the magnitude of 162 

the genetic influence on a particular trait26. To enable a direct comparison across each of the 163 

PHQ-9 items, each ordinal phenotype was transformed to a binary phenotype for heritability 164 
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estimation. The nine items were dichotomised such that an item was considered to be endorsed if 165 

the item score was one or greater (several days, more than half the days, or nearly every day), 166 

and not endorsed if the score was zero (not at all). A cut-off score of one was used in order to 167 

maximise the number of subjects who endorsed an item and hence statistical power, a strategy 168 

that has provided greater benefit in GWASs of depression over ensuring a seamless 169 

phenotype3,11,14,27. In addition to the nine ordinal items and nine binary items, a sum-score (sum 170 

of all ordinal item scores; ranging from 0 to 27) and binary sum-score (number of binary items 171 

endorsed; ranging from 0 to 9) were included as phenotypes. We will present the results from the 172 

binary items and the two sum-scores while results for ordinal items are provided in 173 

supplementary.  174 

Genome-Wide Association Analyses 175 

A total of 20 GWA analyses were conducted (nine ordinal scale depression items, nine 176 

binary items, plus the sum-score and binary sum-score phenotypes) using BOLT-LMM28. 177 

Associations between SNPs and a phenotype are tested using a linear mixed model in order to 178 

correct for population structure and cryptic relatedness. While BOLT-LMM is based on a 179 

quantitative trait model, it can be used to analyse binary traits by treating them as continuous and 180 

applying a transformation.  Ordinal items are treated as continuous. An issue when analysing 181 

binary traits in BOLT-LMM is the inflated type 1 error rates for rare SNPs when the number of 182 

cases and controls are very unbalanced29. In practice, all of the traits we consider here have a 183 

case proportion which is large enough (3%) for this not to be a problem30.  184 

Analyses were limited to autosomal SNPs with high imputation quality score (INFO 185 

score ≥ 0.80) and a minor allele frequency of 1% or higher, resulting in 9,413,637 SNPs being 186 

tested for association. Sex and age were included as covariates. GWAS results were annotated 187 
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using the FUMA GWAS platform31. The conventional genome-wide significance threshold of 188 

p < 5×10−8 was applied. Due to the exploratory nature of the analyses and the high correlation 189 

between the 20 phenotypes, we decided not to correct for multiple testing of the 20 phenotypes 190 

as this would lead to increased type-II error rate and reduced power. 191 

Significant SNPs were clumped into blocks high in linkage disequilibrium (the non-192 

random association of alleles at a specific locus; LD) using a threshold of r2 < 0.10 (correlation 193 

between allele frequencies of two SNPs; as calculated by PLINK). Independent significant SNPs 194 

were defined as the SNP with the lowest p-value within an LD block. Genomic risk loci (distinct, 195 

fixed positions on a chromosome) were identified by merging independent SNPs if r2 ≥ 0.10 and 196 

their LD blocks are physically close to each other at a distance of 1,000 kb. 197 

LDSC analyses 198 

Estimates of the variance in each phenotype attributable to the additive effects of all 199 

SNPs (SNP-based heritability; h2 SNP) were calculated via single-trait LD Score Regression using 200 

GWAS summary statistics from our analyses32 (see Supplementary methods). In order to 201 

interpret h2 SNP for binary items estimates are converted to a normally distributed liability scale, 202 

because liability scale heritability is independent of prevalence and can be compared across 203 

different phenotypes and populations33. The population prevalence of PHQ-9 items was 204 

estimated from our UK Biobank sample (population prevalence = sample prevalence; see Table 205 

1). We applied a Bonferroni corrected significance threshold for the 11 h2 SNP estimates (p < 206 

4.55×10−3). 207 

Cross-trait LD Score Regression34 was used to estimate genetic correlations (rg) between 208 

each of the nine binary items. We applied a Bonferroni corrected significance threshold for these 209 

36 rg tests (p < 1.39×10−3). Additionally, we also calculated pairwise genetic correlations 210 
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between our phenotypes (9 depression items and sum-scores) and 25 other psychiatric, substance 211 

use, socioeconomic and human traits with publicly available GWAS summary statistics (see 212 

Supplementary Table 2).  Multiple testing was corrected for by adjusting p values based on false 213 

discovery rate (FDR) across all tests. 214 

Hierarchical Cluster Analysis 215 

A hierarchical cluster analysis was conducted to examine the underlying genetic structure 216 

between depression items. Implemented in the hclust function in R35, items are grouped into 217 

similar clusters based on a measure of dissimilarity between each pair of items and the results are 218 

presented in a cluster dendrogram. Dissimilarity was defined as one minus the genetic correlation 219 

(1 - rg). 220 

Confirmatory Factor Analyses 221 

Confirmatory factor analyses (CFA) were conducted based on genetic covariances 222 

between items, in order to quantitatively assess the genetic factor structure of the PHQ-9 223 

identified in the cluster analysis. The fit of a one-factor baseline model and two and three-factor 224 

models identified in the cluster analysis were compared. 225 

𝜒2 likelihood ratio tests are very sensitive to large samples and often produce spurious 226 

positive results36. Given the very large sample size in the present study, model fit was evaluated 227 

with a range of alternative fit indices. These indices (and their commonly used thresholds for 228 

acceptable model fit) include: NFI (≥ .95), AGFI (≥ .95), RMSEA (≤ .06), and SRMR (≤ .06)37. 229 

Models were compared using AIC and BIC indices, which take into account both model fit and 230 

complexity. The most parsimonious model is the model with the lowest AIC and BIC values. 231 

232 
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Results 233 

Descriptive Statistics 234 

The final sample (N = 148,752) was 56% female, ranging in age from 38 to 72 years old 235 

(M = 55.93, SD = 7.73). The distribution of responses to all PHQ-9 items (on the ordinal scale) 236 

are displayed in Supplementary Table 3. The distribution of item scores varied considerably 237 

across items; sleep problems and fatigue had the highest endorsement rates while suicidal 238 

ideation and psychomotor changes had the lowest rates. Sum-scores ranged from 0 to 27, with a 239 

mean of 2.71 (SD = 3.61). Endorsement rates of binary depression items are shown in Table 1. 240 

The number of symptoms endorsed ranged from zero to nine, with a mean of 2.02 (SD = 2.20). 241 

GWA Analyses 242 

Genome-wide association analyses of the 9 binary depression items plus sum-score 243 

phenotypes identified a total of 326 genome-wide significant SNPs (p < 5×10−8), tagged by 13 244 

independent SNPs. Two lead SNPs were significant in more than one phenotype, such that across 245 

all phenotypes there are 11 unique, independent genome-wide significant SNPs. These SNPs 246 

mapped onto nine genomic risk loci (see Table 2 for results, Supplementary Figures 1-10 for QQ 247 

plots and Manhattan plots of all phenotypes; and Supplementary Table 4 for the ordinal item 248 

GWAS results).  249 

Heritability Estimates 250 

Estimates of the proportion of phenotypic variance in each item attributable to the 251 

additive effects of all SNPs (SNP-based heritability; h2 SNP) varied considerably across the nine 252 

items (see Figure 1 and Supplementary Table 5). All estimates were significant after Bonferroni 253 

correction (p < 4.55×10−3). The amount of variance explained by common SNPs ranged from 3% 254 

of variance in suicidal ideation up to 11% of the variance in fatigue (mean h2 SNP across the nine 255 
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depression items was 7%). h2 SNP estimates for the sum-score and no. symptoms phenotypes were 256 

6% and 7%, respectively. 257 

Inter-item Phenotypic and Genetic Correlations 258 

Spearman correlations between all pairs of PHQ-9 depression items showed that all items 259 

were positively correlated with each other phenotypically and remained significant after 260 

Bonferroni correction for 36 tests (p < 1.39×10−3). Coefficients ranged from .19 to .69, with the 261 

strongest association between anhedonia and depressed mood, the two core symptoms of MDD 262 

(see Figure 2).  263 

Summary statistics from the GWASs of the nine binary items were used to calculate 264 

genetic correlations (rg) between items.  All correlations were significant after correcting for 265 

multiple testing (p < 1.39×10−3) and were in the same direction (see Figure 2). Estimated rg’s 266 

ranged from .54 (suicidal ideation / psychomotor changes; s.e = .15) to .96 (psychomotor 267 

changes / concentration problems; s.e = .11), with a mean rg of .77. Thirty out of the 36 genetic 268 

correlations were significantly less than one (95% CI did not include one), indicating substantial 269 

genetic heterogeneity across the PHQ-9 items (partly unique genetic risk factors contribute to the 270 

majority of pairs of depressive symptoms; see Figure 2 and Supplementary Table 6). Some of the 271 

genetic correlations that were not significantly different from 1 were relatively low, but have 272 

large standard errors which explains their overlap with 1.  273 

A very similar pattern of genetic correlations emerged for the ordinal items (rg range: .55 274 

to .96), such that the Pearson correlation between the set of binary item rg’s and ordinal item rg’s 275 

was high, r = .90, p < .001 (see Supplementary Figure 11).  276 
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The Pearson correlation between the genetic correlations and phenotypic correlations was 277 

moderate, r = .48, p = .003, suggesting phenotypic correlations do not map one to one with 278 

genetic correlations (see Supplementary Figure 12).  279 

Genetic Clustering Analysis 280 

A hierarchical clustering analysis based on genetic covariance between the nine 281 

depression items revealed two main genetic clusters: the first cluster including anhedonia, 282 

depressed mood, suicidal ideation, and low self-esteem (psychological symptoms); and the 283 

second cluster including psychomotor changes, concentration problems, fatigue, appetite change, 284 

and sleep problems (somatic symptoms; see Figure 3). Further exploration of the cluster 285 

dendrogram suggests the somatic symptoms cluster could again be split into two clusters: 286 

“neurovegetative” symptoms (fatigue, appetite change, and sleep problems); and “psychomotor / 287 

concentration” symptoms. 288 

Confirmatory Factor Analyses 289 

CFA of the genetic factor structure found that all three models provided good fit to the 290 

data (see Supplementary Table 7). Comparison of models based on AIC and BIC values found 291 

that the three-factor model was the most parsimonious model compared to the one-factor model  292 

and the two-factor model (substantially lower AIC and BIC values). These results suggest the 293 

PHQ-9 is reflected genetically by three factors, comprising “psychological”, “neurovegetative”, 294 

and “psychomotor / concentration” symptoms. 295 

Genetic Correlations with External Traits 296 

Genetic correlations of the nine depression items, sum-score and binary sum-score with 297 

25 other psychiatric, substance use, socioeconomic and human traits are displayed in Figure 4. 298 
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Correlations significant after correcting for false discovery rate (FDR) are indicated by non-299 

white squares (see Supplementary Table 8). 300 

Individual depression items correlated as expected with closely related traits, supporting 301 

the validity of the individual symptom phenotypes in the present study. For example, appetite 302 

change had a substantially stronger positive genetic correlation with body mass index (rg = .61) 303 

than the other eight depression symptoms (rg’s range between .10 to .29); and sleep problems 304 

had a strong, positive correlation with insomnia (rg = .71). All symptoms were negatively 305 

correlated with subjective well-being (rg range = -.54 to -.91), with suicidal ideation having the 306 

strongest association. Furthermore, all items positively correlated (and showed a similar pattern) 307 

with the other MDD and overall depression phenotypes. 308 

Genetic overlap with other psychiatric disorders and traits differed substantially across 309 

depression symptoms, such as with anxiety disorders (rg range = .50 to .93), neuroticism (rg 310 

range = .49 to .85), schizophrenia (rg range = .09 to .32), and insomnia (rg range = .31 to .71). 311 

Furthermore, bipolar disorder was significantly correlated with 4 out of 9 depression items only 312 

(sleep problems, low self-esteem, concentration problems, and psychomotor changes). Anorexia 313 

nervosa overlapped with just three items, with genetic correlations even being in different 314 

directions (low self-esteem rg = .28, psychomotor changes rg = .27, and appetite change rg = -.26). 315 

316 
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Discussion 317 

In the present study, we investigated genetic heterogeneity in major depression by 318 

conducting genetic analyses on individual symptoms of MDD in 148,752 participants from the 319 

UK Biobank. We identified nine genomic risk loci across the nine MDD symptoms and sum-320 

score phenotypes, all have not been associated with major depression in previous 321 

GWASs3,7,13,14,27,38-43. Our results revealed substantial genetic heterogeneity in depression 322 

symptoms with no overlap in significant loci across PHQ items. Though we acknowledge that 323 

the lack of overlap may be due to low statistical power to detect all true associations, we 324 

highlight some notable examples where a specific symptom of depression is linked to a gene that 325 

was previously found to be associated with a strongly related phenotype. For the item “sleep 326 

problems”, we found SNPs that implicate PAX8 (based on proximity), a transcription factor 327 

related to thyroid follicular cell development and expression of thyroid-specific genes, 328 

replicating previous studies linking this gene to sleep duration44-46. In addition, SNPs associated 329 

with “depressed mood” influenced the expression of KLHDC8B (protein coding gene involved in 330 

cytokinesis). This gene has been previously linked to depressed affect, a sub-cluster of 331 

neuroticism that is strongly related to depression47. Neither of these genes were implicated in the 332 

largest GWASs of overall depression3,14, illustrating the importance of exploring genetic 333 

associations for specific symptoms of depression. 334 

SNP-based heritability analyses revealed that individual depression symptoms were 335 

differentially heritable (h2 SNP ranging from 3 to 11%), suggesting that depression symptoms 336 

differ in their relative proportions of common SNP contributions. Notably, items within the 337 

“neurovegetative” symptom cluster were most highly heritable, consistent with a previous report 338 
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that found somatic symptoms (such as sleep problems and appetite changes) to have a stronger 339 

heritable basis 18. 340 

Genetic correlations between depression symptoms ranged from moderate (rg < .60) to 341 

high (rg > .90), suggesting that while some symptoms have high genetic overlap, a substantial 342 

amount of genetic variation is not shared between symptoms. This indicates extensive genetic 343 

heterogeneity in major depression, in line with the finding that depression represents multiple 344 

dimensions of genetic risk19 and previous associations between individual symptoms and specific 345 

polymorphisms48. 346 

The underlying genetic structure between symptoms was best explained by three genetic 347 

clusters. This suggests there are risk factors specific to clusters which could indicate underlying 348 

biology specific to either “neurovegetative”, “psychological” or “psychomotor / concentration” 349 

symptoms of depression. This is consistent with symptoms differing in their biological 350 

correlates, with neurovegetative symptoms such as weight gain, increased appetite, and sleep 351 

problems being associated with higher levels of inflammation markers49,50. These clusters were 352 

not in full agreement with the three genetic factors found by Kendler, et al. 19 based on an 353 

analysis of twin data. As an example, in the Kendler study, suicidal ideation loaded onto the 354 

same factor as psychomotor changes and concentration problems, while we find that suicidal 355 

ideation clusters with symptoms of depressed mood, anhedonia, and low self-esteem that 356 

together form a “psychological symptoms” factor. However results are not easily comparable 357 

given that they derived factors from a twin study (and therefore captured rare genetic variants as 358 

well as common SNPs), used a subset of eight symptoms (appetite changes did not load onto any 359 

factor), and symptom phenotypes came from structured clinical interview rather than a self-360 

report measure such as the PHQ-9. 361 
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Results from genetic correlations between items and a range of external traits lead us to 362 

note three general observations. First, genetic correlations with external traits differed 363 

substantially between symptoms providing evidence for genetic heterogeneity in major 364 

depression. In agreement with previous findings for major depression3,14, all symptoms 365 

overlapped with anxiety, schizophrenia, ADHD, insomnia, neuroticism, and subjective well-366 

being, however the proportion of overlap varied considerably across symptoms. For example, 367 

anxiety disorders had a substantially higher genetic correlation with “suicidal ideation” than the 368 

other items. This supports a strong phenotypic association, with over 70% of people with a 369 

history of suicide attempt having an anxiety disorder, compared to ~33% in the general 370 

population51. Second, some traits (such as bipolar disorder, cannabis lifetime use, cigarettes per 371 

day, and intelligence) were genetically correlated with a subset of items only. Bipolar disorder 372 

for example, was genetically correlated with only four items (low self-esteem, concentration, 373 

psychomotor changes, and sleep problems), suggesting that the moderate genetic overlap 374 

between bipolar and major depression52 is predominately driven by these selected symptoms. 375 

This highlights how insight into the genetic architecture between traits can be gained from 376 

conducting symptom-level analyses. Third, we found traits that were genetically correlated with 377 

individual items, but not with the sum-score phenotypes. Anorexia nervosa did not overlap with 378 

aggregate measures of depression symptoms as operationalized in the sum-score phenotypes, in 379 

agreement with Howard, et al. 14 who similarly found no genetic overlap between anorexia and 380 

their three overall depression phenotypes. Yet, anorexia nervosa was genetically correlated with 381 

appetite change, low self-esteem, and psychomotor changes. Interestingly, the overlap with 382 

appetite change was in the opposite direction compared to the other two items. This finding 383 
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emphasises the importance of analysing individual symptoms of a disorder, as important 384 

information is ignored by relying on sum-scores or overall phenotypes.  385 

Limitations 386 

The findings and conclusions of this study should be interpreted in view of some key 387 

limitations. First, despite having the largest sample available to date, the current study is still 388 

underpowered to detect significant SNPs. Given the relatively high prevalence and phenotypic 389 

heterogeneity of depression, much larger sample sizes are needed compared to other psychiatric 390 

disorders11. To not reduce power further we did not correct for multiple testing (of 11 GWA 391 

analyses) and hence our GWAS results require independent replication. Second, depression items 392 

were analysed in isolation, regardless of the overall MDD status of the participant. For example, 393 

a participant could strongly endorse the symptom fatigue, yet have no other signs of depression 394 

and hence the endorsement of fatigue is unrelated to major depression. Nevertheless, it is 395 

possible that fatigue, regardless of the context it occurs in, possesses the same underlying genetic 396 

basis. Third, we used a PHQ-9 cut-off score of 1 to dichotomise items in order to maximise the 397 

number of cases and improve statistical power. A PHQ-9 item score of one does not meet the 398 

diagnostic criteria for endorsement, hence the phenotypes may represent a predisposition to 399 

rather than full endorsement of the particular symptom. Fourth, our results may be affected by 400 

ascertainment bias due to healthy volunteerism within the UKBB. As such our sample could 401 

represent a truncated version of the population’s genetic distribution for symptoms (people on far 402 

end of liability scale may be less likely to participate), hence resulting in reduced number of 403 

cases for some symptoms or reduced variation between cases and controls. 404 
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Implications 405 

The recent success in the discovery of genetic variants associated with depression has 406 

been driven by ever increasing sample sizes, an approach that has been favoured over reducing 407 

phenotypic heterogeneity. Consequently, GWASs have been conducted on a diverse range of 408 

depression-related phenotypes that often include a small subset of symptoms, generally with the 409 

view that the increase in sample size can overcome the lack of clinical precision. While this has 410 

indeed been proven to be effective at increasing the number of significant variants identified, our 411 

finding of symptom-level genetic heterogeneity raises questions about this approach. Using 412 

broad diagnostic phenotypes ignores the unique genetic factors associated with specific 413 

symptoms of depression that would likely provide useful information to further unravel the 414 

genetic architecture of MDD. Further, our finding of genetic heterogeneity across MDD 415 

symptoms implicates that patients with MDD show variation in disease pathogenesis. This 416 

variation may be linked to response to clinical interventions, such that patients presenting with 417 

specific symptom patterns (e.g., characterized primarily by neurovegetative symptoms) may be 418 

expected to respond differently.  419 

Conclusion 420 

Our results provide convincing evidence that major depression is a genetically 421 

heterogeneous disorder, and highlight the utility of analysing the genetics of individual items or 422 

symptoms of a psychiatric disorder. Insights into the genetic aetiology and underlying biology of 423 

MDD will be maximised by combining large-scale genetic studies of broad clinical definitions 424 

with follow-up studies of more refined phenotypic measures of specific diagnostic subtypes. 425 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528067doi: bioRxiv preprint 

https://doi.org/10.1101/528067
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Table and Figure legends 

Table 1: Sample sizes and prevalence of all binary PHQ-9 items. 

Table 2: GWAS Results for binary PHQ-9 items and sum-score phenotypes. 

Figure 1. SNP-based heritability estimates and 95% confidence intervals (95% CI) for the nine 

depression items and sum-score phenotypes. 

Figure 2. Inter-item genetic and phenotypic correlations. 

Figure 3. Cluster dendrogram of inter-item genetic correlations. 

Figure 4. Genetic correlations between PHQ-9 items and a range of other complex traits 

(psychiatric, substance use, and socioeconomic phenotypes) based on publicly available 

summary statistics.  
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Tables 

Table 1: Sample sizes and prevalence rates of all binary PHQ-9 items.  

 

Item N 

endorsed 

N not 

endorsed 

Prevalence 

% 

Anhedonia 27,288 121,464 18.3 

Depressed mood 32,263 116,489 21.7 

Sleep problems 72,302 76,450 48.6 

Fatigue 73,924 74,828 49.7 

Appetite changes 26,757 121,995 18.0 

Low self-esteem 28,206 120,546 19.0 

Concentration problems 26,229 122,523 17.6 

Psychomotor changes 7,914 140,838 5.3 

Suicidal ideation 6,064 142,688 4.1 
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Table 2: GWAS Results for binary PHQ-9 items and sum-score phenotypes 

Gen. 

locus 

SNP id  Chr BP A1 A2 Freq 

A1 

Phenotype β SE p-value nSNPs nearest gene eQTL genes 

1 rs2279681 1 201861016 C G 0.657 Sum-score 0.093 0.014 5.60E-11 25 SHISA4 SHISA4, LMOD1 

Binary sum-score 0.023 0.004 8.60E-09 6 SHISA4 

2 rs62158169 2 114081827 C T 0.784 Sleep problems 0.015 0.002 1.40E-10 22 PAX8 FOXD4L1, CBWD2 

3 rs137997194 3 48824937 A G 0.955 Depressed mood -0.023 0.004 7.70E-10 15 PRKAR2A AMT, KLHDC8B 

rs143756010 3 49312248 C T 0.956 Binary sum-score -0.053 0.009 7.40E-09 15 C3orf62 AMT, NICN1, RNF123 

4 rs12492113 3 50521402 G A 0.875 Binary sum-score -0.037 0.006 1.20E-10 114 CACNA2D2 C3orf18, CACNA2D2, 

CYB561D2, DOCK3, 

HEMK1, HYAL1, 

LSMEM2, RBM6, 

MANF, MAPKAPK3 

Sum-score -0.124 0.020 1.30E-09 76 CACNA2D2 

Appetite changes -0.013 0.002 8.80E-09 28 CACNA2D2 

5 rs13127129 4 30501860 A G 0.499 Sleep problems 0.010 0.002 4.90E-08 1 PCDH7 - 

6 rs7073667 10 107809043 T C 0.452 Sleep problems 0.010 0.002 4.30E-08 12 RP11-298H24.1 - 

7 rs140920627 11 41577268 C A 0.988 Anhedonia -0.037 0.007 3.70E-08 1 RP11-124G5.3 - 

8 rs840161 12 57323523 A G 0.366 Binary sum-score -0.021 0.004 3.90E-08 1 SDR9C7 - 

9 rs2335859 19 7871837 T G 0.602 Anhedonia -0.009 0.001 9.80E-09 10 EXOSC3P2 - 

 

 

 

Note: Table displays SNPs significant at p < 5×10−8 and independent at r2 < 0.10. Genomic risk loci (Gen. locus) are defined by r2 < 

0.10, window size 1,000kb. Chromosome (Chr), location in base pairs (BP) on Hg19, effect allele (A1), allele 2 (A2), frequency of 

effect allele (Freq A1), effect size beta ( β), standard error of beta (SE), p-value, and number of SNPs clumped under lead SNP 

(nSNPs) are shown. Proximity (nearest gene) and eQTL (eQTL genes) mapping results are given. eQTL mapping limited to significant 

(FDR < .05) cis-eQTLs from GTEx v753 and the CommonMind Consortium (CMC)54. SNP rs137997194 and rs143756010 are tagging 

the same signal, but was the SNP with lowest p-value in “depressed mood” and “binary sum-score”, respectively.  
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Figures 

 

Figure 1. SNP-based heritability estimates and 95% confidence intervals (95% CI) for the nine 

depression items and sum-score phenotypes. 

 

 

 

Note: heritability estimated via single-trait LD Score Regression. The dotted line indicates the 

SNP-based heritability of major depression (h2 SNP = ~0.09)3. All estimates are significant after 

multiple testing correction (p < 4.55×10−3). 
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Figure 2. Inter-item genetic and phenotypic correlations.  

 

 

Note: Genetic correlations (rg) above diagonal and phenotypic correlations (rs) below diagonal. 

Genetic correlations estimated using cross-trait LD Score Regression. All correlations are 

significant at p < 1.39×10−3. Black squares indicate correlation is not significantly different from 

one (95% CI includes 1).  
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Figure 3. Cluster dendrogram of inter-item genetic correlations. 

 

 

Note: distance is a measure of dissimilarity, defined as one minus the genetic correlation (1 - rg). 
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Figure 4. Genetic correlations between PHQ-9 items and a range of other complex traits 

(psychiatric, substance use, and socioeconomic phenotypes) based on publicly available 

summary statistics. 

 

Note: white squares indicate correlations that do not meet significance after correcting for FDR. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528067doi: bioRxiv preprint 

https://doi.org/10.1101/528067
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Acknowledgments 

This work was conducted using the UK Biobank Resource (application number 25331). The UK 

Biobank was established by the Wellcome Trust medical charity, Medical Research Council 

(UK), Department of Health (UK), Scottish Government, and Northwest Regional Development 

Agency. It also had funding from the Welsh Assembly Government, British Heart Foundation, 

and Diabetes UK. 

S.M. is supported by a National Health and Medical Research Council (NHMRC) Fellowship. 

A.T.M. is supported by the Foundation Volksbond Rotterdam. 

 

Conflicts of interest 

The authors declared no potential conflicts of interest with respect to the research, authorship 

and/or publication of this article. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528067doi: bioRxiv preprint 

https://doi.org/10.1101/528067
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

References 

1 Christian, O. et al. Major depressive disorder. Nature Reviews Disease Primers 2, 

doi:10.1038/nrdp.2016.65 (2016). 

2 Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: 

review and meta-analysis. The American journal of psychiatry 157, 1552-1562, 

doi:10.1176/appi.ajp.157.10.1552 (2000). 

3 Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine 

the genetic architecture of major depression. Nature Genetics, doi:10.1038/s41588-018-

0090-3 (2018). 

4 Lee, S. H. et al. Genetic relationship between five psychiatric disorders estimated from 

genome-wide SNPs. Nature genetics 45, 984 (2013). 

5 Ripke, S. et al. Genome-wide association study identifies five new schizophrenia loci. 

Nature genetics 43, 969 (2011). 

6 Ripke, S. et al. A mega-analysis of genome-wide association studies for major depressive 

disorder. Mol Psychiatry 18, 497-511, doi:10.1038/mp.2012.21 (2013). 

7 Hek, K. et al. A genome-wide association study of depressive symptoms. Biol Psychiatry 

73, 667-678, doi:10.1016/j.biopsych.2012.09.033 (2013). 

8 Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. 

Nature 511, 421 (2014). 

9 Levinson, D. F. et al. Genetic studies of major depressive disorder: why are there no 

genome-wide association study findings and what can we do about it? Biological 

psychiatry 76, 510-512, doi:10.1016/j.biopsych.2014.07.029 (2014). 

10 Wray, N. R. et al. Research Review: Polygenic methods and their application to 

psychiatric traits. Journal of Child Psychology and Psychiatry 55, 1068-1087, 

doi:10.1111/jcpp.12295 (2014). 

11 Wray, N. R. et al. Genome-wide association study of major depressive disorder: new 

results, meta-analysis, and lessons learned. Mol Psychiatry 17, 36-48, 

doi:10.1038/mp.2010.109 (2012). 

12 Hilker, R. et al. Heritability of Schizophrenia and Schizophrenia Spectrum Based on the 

Nationwide Danish Twin Register. Biol Psychiatry 83, 492-498, 

doi:10.1016/j.biopsych.2017.08.017 (2018). 

13 Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major 

depression in individuals of European descent. Nature Genetics 48, 1031, 

doi:10.1038/ng.3623 

https://www.nature.com/articles/ng.3623#supplementary-information (2016). 

14 Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK 

Biobank identifies variants in excitatory synaptic pathways. Nature Communications 9, 

1470, doi:10.1038/s41467-018-03819-3 (2018). 

15 American Psychiatric Association. Diagnostic and statistical manual of mental disorders 

(DSM-5®).  (American Psychiatric Pub, 2013). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528067doi: bioRxiv preprint 

http://www.nature.com/articles/ng.3623#supplementary-information
https://doi.org/10.1101/528067
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

16 Østergaard, S. D., Jensen, S. O. W. & Bech, P. The heterogeneity of the depressive 

syndrome: when numbers get serious. Acta Psychiatrica Scandinavica 124, 495-496, 

doi:10.1111/j.1600-0447.2011.01744.x (2011). 

17 Fried, E. I. & Nesse, R. M. Depression is not a consistent syndrome: An investigation of 

unique symptom patterns in the STAR*D study. Journal of Affective Disorders 172, 96-

102, doi:https://doi.org/10.1016/j.jad.2014.10.010 (2015). 

18 Jang, K. L., Livesley, W. J., Taylor, S., Stein, M. B. & Moon, E. C. Heritability of 

individual depressive symptoms. Journal of Affective Disorders 80, 125-133, 

doi:https://doi.org/10.1016/S0165-0327(03)00108-3 (2004). 

19 Kendler, K. S., Aggen, S. H. & Neale, M. C. Evidence for multiple genetic factors 

underlying dsm-iv criteria for major depression. JAMA Psychiatry 70, 599-607, 

doi:10.1001/jamapsychiatry.2013.751 (2013). 

20 Nagel, M., Watanabe, K., Stringer, S., Posthuma, D. & van der Sluis, S. Item-level 

analyses reveal genetic heterogeneity in neuroticism. Nature Communications 9, 905, 

doi:10.1038/s41467-018-03242-8 (2018). 

21 John M. Hettema , M. D., Ph.D. ,, Michael C. Neale , P. D., John M. Myers , M. S., Carol 

A. Prescott , P. D. & Kenneth S. Kendler , M. D. A Population-Based Twin Study of the 

Relationship Between Neuroticism and Internalizing Disorders. American Journal of 

Psychiatry 163, 857-864, doi:10.1176/ajp.2006.163.5.857 (2006). 

22 Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ‐9. Journal of General 

Internal Medicine 16, 606-613, doi:doi:10.1046/j.1525-1497.2001.016009606.x (2001). 

23 Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 

Nature 562, 203-209, doi:10.1038/s41586-018-0579-z (2018). 

24 Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ‐9: validity of a brief 

depression severity measure. Journal of general internal medicine 16, 606-613 (2001). 

25 Stewart, A. L., Hays, R. D. & Ware, J. E., Jr. The MOS short-form general health survey. 

Reliability and validity in a patient population. Medical care 26, 724-735 (1988). 

26 Yang, J., Zeng, J., Goddard, M. E., Wray, N. R. & Visscher, P. M. Concepts, estimation 

and interpretation of SNP-based heritability. Nature Genetics 49, 1304, 

doi:10.1038/ng.3941 

https://www.nature.com/articles/ng.3941#supplementary-information (2017). 

27 Hall, L. S. et al. Genome-wide meta-analyses of stratified depression in Generation 

Scotland and UK Biobank. Translational Psychiatry 8, 9, doi:10.1038/s41398-017-0034-

1 (2018). 

28 Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in 

large cohorts. Nature Genetics 47, 284, doi:10.1038/ng.3190 

https://www.nature.com/articles/ng.3190#supplementary-information (2015). 

29 Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness 

in large-scale genetic association studies. Nature Genetics 50, 1335-1341, 

doi:10.1038/s41588-018-0184-y (2018). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528067doi: bioRxiv preprint 

http://www.nature.com/articles/ng.3941#supplementary-information
http://www.nature.com/articles/ng.3190#supplementary-information
https://doi.org/10.1101/528067
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

30 Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association 

for biobank-scale datasets. Nature Genetics 50, 906-908, doi:10.1038/s41588-018-0144-6 

(2018). 

31 Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Functional mapping and 

annotation of genetic associations with FUMA. Nature communications 8, 1826 (2017). 

32 Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from 

polygenicity in genome-wide association studies. Nature genetics 47, 291 (2015). 

33 Lee, S. H., Wray, Naomi R., Goddard, Michael E. & Visscher, Peter M. Estimating 

Missing Heritability for Disease from Genome-wide Association Studies. American 

Journal of Human Genetics 88, 294-305, doi:10.1016/j.ajhg.2011.02.002 (2011). 

34 Bulik-Sullivan, B. K. et al. An atlas of genetic correlations across human diseases and 

traits. Nature Genetics 47, 1236, doi:10.1038/ng.3406 

https://www.nature.com/articles/ng.3406#supplementary-information (2015). 

35 Müllner, D. fastcluster: Fast hierarchical, agglomerative clustering routines for R and 

Python. Journal of Statistical Software 53, 1-18 (2013). 

36 Martin-Löf, P. The Notion of Redundancy and Its Use as a Quantitative Measure of the 

Discrepancy between a Statistical Hypothesis and a Set of Observational Data [with 

Discussion]. Scandinavian Journal of Statistics, 3-18 (1974). 

37 Kline, R. B. Principles and practice of structural equation modeling. 2nd edn,  (Guilford, 

2005). 

38 Power, R. A. et al. Genome-wide Association for Major Depression Through Age at 

Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric 

Genomics Consortium(). Biological Psychiatry 81, 325-335, 

doi:10.1016/j.biopsych.2016.05.010 (2017). 

39 Okbay, A. et al. Genetic variants associated with subjective well-being, depressive 

symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics 

48, 624, doi:10.1038/ng.3552 

https://www.nature.com/articles/ng.3552#supplementary-information (2016). 

40 Li, X. et al. Common variants on 6q16.2, 12q24.31 and 16p13.3 are associated with 

major depressive disorder. Neuropsychopharmacology 43, 2146-2153, 

doi:10.1038/s41386-018-0078-9 (2018). 

41 Kohli, Martin A. et al. The Neuronal Transporter Gene SLC6A15 Confers Risk to Major 

Depression. Neuron 70, 252-265, doi:https://doi.org/10.1016/j.neuron.2011.04.005 

(2011). 

42 Direk, N. et al. An Analysis of Two Genome-wide Association Meta-analyses Identifies a 

New Locus for Broad Depression Phenotype. Biological Psychiatry 82, 322-329, 

doi:https://doi.org/10.1016/j.biopsych.2016.11.013 (2017). 

43 Cai, N. et al. Sparse whole-genome sequencing identifies two loci for major depressive 

disorder. Nature 523, 588 (2015). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528067doi: bioRxiv preprint 

http://www.nature.com/articles/ng.3406#supplementary-information
http://www.nature.com/articles/ng.3552#supplementary-information
https://doi.org/10.1101/528067
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

44 Gottlieb, D. J. et al. Novel loci associated with usual sleep duration: the CHARGE 

Consortium Genome-Wide Association Study. Mol Psychiatry 20, 1232-1239, 

doi:10.1038/mp.2014.133 (2015). 

45 Jones, S. E., Tyrrell, J. & Wood, A. R. Genome-Wide Association Analyses in 128,266 

Individuals Identifies New Morningness and Sleep Duration Loci.  12, e1006125, 

doi:10.1371/journal.pgen.1006125 (2016). 

46 Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify 

new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nature 

genetics 49, 274-281, doi:10.1038/ng.3749 (2017). 

47 Nagel, M. et al. Meta-analysis of genome-wide association studies for neuroticism in 

449,484 individuals identifies novel genetic loci and pathways. Nature Genetics 50, 920-

927, doi:10.1038/s41588-018-0151-7 (2018). 

48 Myung, W. et al. Genetic association study of individual symptoms in depression. 

Psychiatry Research 198, 400-406, doi:https://doi.org/10.1016/j.psychres.2011.12.037 

(2012). 

49 Motivala, S. J., Sarfatti, A., Olmos, L. & Irwin, M. R. Inflammatory markers and sleep 

disturbance in major depression. Psychosomatic medicine 67, 187-194, 

doi:10.1097/01.psy.0000149259.72488.09 (2005). 

50 Lamers, F. et al. Evidence for a differential role of HPA-axis function, inflammation and 

metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry 18, 692-

699, doi:10.1038/mp.2012.144 (2013). 

51 Nepon, J., Belik, S.-L., Bolton, J. & Sareen, J. The relationship between anxiety disorders 

and suicide attempts: findings from the National Epidemiologic Survey on Alcohol and 

Related Conditions. Depression and Anxiety 27, 791-798, doi:doi:10.1002/da.20674 

(2010). 

52 Consortium, C.-D. G. o. t. P. G. Identification of risk loci with shared effects on five 

major psychiatric disorders: a genome-wide analysis. The Lancet 381, 1371-1379 (2013). 

53 Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics 45, 

580, doi:10.1038/ng.2653 

https://www.nature.com/articles/ng.2653#supplementary-information (2013). 

54 Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for 

schizophrenia. Nature Neuroscience 19, 1442, doi:10.1038/nn.4399 

https://www.nature.com/articles/nn.4399#supplementary-information (2016). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2019. ; https://doi.org/10.1101/528067doi: bioRxiv preprint 

http://www.nature.com/articles/ng.2653#supplementary-information
http://www.nature.com/articles/nn.4399#supplementary-information
https://doi.org/10.1101/528067
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Running head:
	Abstract
	Introduction
	Methods
	UK Biobank Cohort
	Sample selection
	PHQ-9
	Depression Item Phenotypes
	Genome-Wide Association Analyses
	LDSC analyses
	Hierarchical Cluster Analysis
	Confirmatory Factor Analyses

	Results
	Descriptive Statistics
	GWA Analyses
	Heritability Estimates
	Inter-item Phenotypic and Genetic Correlations
	Genetic Clustering Analysis
	Confirmatory Factor Analyses
	Genetic Correlations with External Traits

	Discussion
	Limitations
	Implications

	Table and Figure legends
	Tables
	Figures
	Acknowledgments
	Conflicts of interest
	References

