

1 **Investigating Genetic Heterogeneity in Major Depression Through Item-level**
2 **Genetic Analyses of the PHQ-9**
3

4 Jackson G. Thorp^a, Andries T. Marees^{a,b}, Jue-Sheng Ong^c, Jiyuan An^c, Stuart MacGregor^c, Eske
5 M. Derk^{a,d}
6

7 ^a Translational Neurogenomics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane,
8 Queensland, Australia

9 ^b Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands

10 ^c Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland,
11 Australia

12 ^d School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane,
13 Queensland, Australia

14

15

16 **Correspondence:**

17 Jackson Thorp
18 Translational Neurogenomics Laboratory
19 300 Herston Road
20 Brisbane, QLD 4006
21 Jackson.Thorp@qimrberghofer.edu.au

Eske Derk^s
Translational Neurogenomics Laboratory
300 Herston Road
Brisbane, QLD 4006
Eske.Derk^s@qimrberghofer.edu.au

23

24 **Running head:**

25 GENETIC HETEROGENEITY IN MAJOR DEPRESSION

26

Abstract

27 Background: Major Depressive Disorder (MDD) is a clinically heterogeneous disorder. Previous
28 large-scale genetic studies of MDD have explored genetic risk factors of MDD case-control
29 status or aggregated sums of depressive symptoms, ignoring possible clinical or genetic
30 heterogeneity.

31 Aim: In this study, we present the results of symptom-level genetic analyses and compare SNP-
32 based heritability (h^2_{SNP}) and genetic correlations across major depression symptoms. We further
33 investigate genetic correlations with a range of psychiatric disorders and other associated traits.

34 Methods: We have analysed data from the UK biobank and included 148,752 subjects of white
35 British ancestry with genotype data who completed nine items of a self-rated measure of
36 depression: the Patient Health Questionnaire (PHQ-9). Genome-Wide Association analyses were
37 conducted for nine symptoms and two composite measures. LD score regression analysis was
38 used to calculate SNP-based heritability (h^2_{SNP}) and genetic correlations (r_g) across symptoms
39 and to investigate genetic correlations with 25 external phenotypes. Confirmatory factor analyses
40 were applied to test whether one, two, or three-factor models best fit the pattern of genetic
41 correlations across the nine symptoms.

42 Results: We identified 9 novel genome-wide significant genomic loci, with no overlap in loci
43 across depression symptoms. h^2_{SNP} ranged from 3% (suicidal ideation) to 11% (fatigue). Genetic
44 correlations range from 0.54 to 0.96 (all $p < 1.39 \times 10^{-3}$) with 30 of 36 correlations being
45 significantly smaller than 1. A 3-factor model provided the best fit to the genetic correlation
46 matrix, with factors representing “psychological”, “neurovegetative”, and “psychomotor /
47 concentration” symptoms. The genetic correlations with external phenotypes showed large
48 variation across the nine symptoms.

49 Discussion: Patterns of h^2_{SNP} and genetic correlations differed across the nine symptoms of
50 depression. Our findings suggest that the large phenotypic heterogeneity observed for MDD is
51 recapitulated at a genetic level. Future studies should investigate how genetic heterogeneity in
52 MDD influences the efficacy of clinical interventions.

53

54

Introduction

55 Clinical depression is a markedly complex and debilitating mental disorder characterised
56 by sad, irritable or empty mood, diminished pleasure, and cognitive and somatic impairment¹.
57 The heritability of major depressive disorder (MDD) is estimated to be ~37% from twin studies²
58 with common Single Nucleotide Polymorphisms (SNPs) explaining around 9% of the variation
59 in liability³. MDD has substantial comorbidity with other psychiatric and substance use disorders
60 and is related to a wide range of personality, socioeconomic, and human traits⁴. There is
61 substantial overlap in the genetic risk factors of MDD and other psychiatric disorders³, including
62 significant genetic correlations (r_g) with schizophrenia ($r_g = 0.34$), bipolar disorder ($r_g = 0.32$),
63 autism spectrum disorders ($r_g = 0.44$) and ADHD ($r_g = 0.42$). MDD has notably high genetic
64 overlap with anxiety disorders ($r_g = 0.80$) and neuroticism ($r_g = 0.70$), which may reflect the
65 overlap in diagnostic criteria between the three traits. Initial efforts to identify genetic variants
66 associated with major depression were unsuccessful, despite successes with other psychiatric
67 diseases and traits. While a Genome Wide Association Study (GWAS) of schizophrenia (9,394
68 cases), for example, detected seven genome-wide significant associations⁵, a mega-analysis of
69 MDD (9240 cases)⁶ and a meta-analysis of depressive symptoms ($N = 34,549$)⁷ found no
70 significant associations. By 2014, 108 independent genetic loci for schizophrenia had been
71 identified⁸, and not a single one for depression. The struggle to identify significant genetic
72 variants was likely related to low statistical power due to the clinical heterogeneity of MDD⁹.

73 Depression is a polygenic disorder, influenced by the combination of small effects from
74 many genetic variants which can only be detected in studies with large sample sizes¹⁰. Due to the
75 relatively high prevalence of depression (~15% vs. <1% for schizophrenia), power is lower than
76 for other diseases with similar numbers of cases but lower prevalence¹¹. Also, depression is less

77 heritable than other psychiatric disorders (~37% vs. ~80% for schizophrenia¹²) and therefore
78 larger sample sizes are required to obtain similar statistical power to detect significant effects. In
79 the last two years, increasing sample size has proved to be effective with the number of genome-
80 wide significant variants increasing steadily with sample size. Hyde, et al. ¹³ identified 15
81 genome-wide significant loci associated with self-reported depression (N = 307,354). Another 17
82 loci were identified across three broad depression phenotypes (N = 322,580)¹⁴. The largest
83 GWAS of major depression to date (N = 480,359) identified 44 significant loci³.

84 These genetic studies ignored possible clinical heterogeneity in MDD, despite clinical
85 presentations and symptoms of MDD being diverse. The Diagnostic and Statistical Manual of
86 Mental Disorders 5th edition (DSM-5) defines major depression by the following symptoms: (1)
87 depressed mood, (2) diminished interest or pleasure in activities (anhedonia), (3) decrease or
88 increase in weight or appetite, (4) insomnia or hypersomnia, (5) psychomotor agitation or
89 retardation, (6) fatigue or loss of energy, (7) feelings of worthlessness or excessive or
90 inappropriate guilt, (8) diminished ability to think or concentrate, or indecisiveness, and (9)
91 recurrent thoughts of death or recurrent suicidal ideation¹⁵. For a diagnosis of MDD five or more
92 of these symptoms need to be present during a two week period, with at least one symptom being
93 depressed mood or anhedonia. Østergaard, et al. ¹⁶ highlighted that there are 227 possible
94 combinations of symptoms meeting DSM-5 criteria, indicating MDD is an extremely
95 heterogeneous disorder. Further, individual symptoms have been found to differ substantially in
96 their association with psychosocial impairment, influence from environmental and personality
97 risk factors, and biological correlates¹⁷. GWASs of depression have typically focused on MDD
98 case-control status or aggregated sums of depressive symptoms. By combining different
99 symptoms into a single clinical measure, it is implicitly assumed that individual symptoms of

100 depression are genetically similar. However, the extreme heterogeneity of depression and
101 numerous clinical presentations of the disorder suggest that different biological mechanisms
102 could underlie the diverse subtypes of depression. Supporting this notion, depression symptoms
103 have been found to differ substantially in heritability (h^2 range, 0 – 35%); with somatic and
104 cognitive symptoms being most heritable¹⁸. Further, the diagnostic criteria of MDD were found
105 to reflect three underlying genetic factors (cognitive / psychomotor symptoms, mood symptoms,
106 and neurovegetative symptoms) rather than a single factor of genetic risk in a twin study¹⁹.
107 Nagel, et al. ²⁰ found substantial genetic heterogeneity in neuroticism, a personality trait with
108 extensive phenotypic and genetic overlap with MDD²¹, by conducting genetic analyses on the
109 individual items used to measure neuroticism.

110 To date, it is not known to what extent genetic risk factors overlap in individual
111 symptoms of MDD. The aim of the present study is to examine and assess the extent of genetic
112 heterogeneity in major depression. We conduct genetic analyses on individual symptoms of
113 depression in 148,752 participants within the UK Biobank, as measured by the nine items of the
114 Patient Health Questionnaire (PHQ-9)²², a depression measure which directly maps onto the
115 DSM-5 criteria. In order to examine genetic heterogeneity in depression we (1) conduct
116 symptom-level GWA analyses and then compare genetic associations and SNP-based heritability
117 across symptoms; (2) calculate phenotypic and genetic correlations across depression symptoms
118 and determine their underlying genetic factor structure; and (3) calculate genetic correlations
119 between individual symptoms and a range of psychiatric disorders and human complex traits.
120

121

Methods

122 **UK Biobank Cohort**

123 UK Biobank (UKBB) is a major health data resource containing phenotypic information
124 on a wide range of health-related measures and characteristics in over 500,000 participants from
125 the United Kingdom general population²³. Participants were recruited between 2006 and 2010
126 and provided written informed consent. A total of 157,365 participants completed the PHQ-9, as
127 part of a UKBB mental health follow-up questionnaire administered online in 2016.

128 **Sample selection**

129 First, participants were included in the present study if they were of white British
130 ancestry, identified through self-reported ethnicity and genetic principal components.
131 Participants who self-reported as not white British, but for whom the first two genetic principal
132 components indicated them to be genetically similar to those of white British ancestry were also
133 included in order to maximise sample size (these commonly were participants who reported to be
134 of Irish ancestry). Second, Participants were excluded if they were identified with schizophrenia
135 and / or other psychotic disorders, bipolar disorder, cyclothymic disorder, or dissociative identity
136 disorder, based on self-reported symptoms or diagnosis, reported prescription of an antipsychotic
137 medication, and/or ICD-10 (The International Classification of Diseases, Tenth Revision) codes
138 from linked hospital admission records. Third, only participants who provided a response for all
139 nine items of the PHQ-9 were included (list-wise deletion represented a less than 2% reduction
140 in sample size). This resulted in a final sample size of 148,752 (see Supplementary Figure 13 for
141 flow diagram of sample selection).

142 **PHQ-9**

143 The PHQ-9 is a commonly used self-administered measure of depression containing nine
144 items that map directly onto the nine DSM diagnostic criteria for major depression²². Each PHQ-
145 9 item assesses the frequency of that symptom over the past two weeks, rated on a four-point
146 ordinal scale: (0) Not at all, (1) Several days, (2) More than half the days, (3) Nearly every day.
147 (See Supplementary Table 1 for the nine symptoms of major depression, PHQ-9 items, and
148 DSM-5 diagnostic criteria).

149 The PHQ-9 is a psychometrically valid and reliable measure of depression²⁴. Test-retest
150 reliability was high ($r = .84$, over a span of 48 hours) and internal consistency was excellent with
151 Cronbach's alphas (α) of .89 and .86 in primary care and obstetrics-gynaecology samples,
152 respectively. The authors also reported good criterion and construct validity. The PHQ-9 was
153 validated against professional diagnoses of MDD, resulting in 88% sensitivity and 88%
154 specificity (at a PHQ-9 sum-score of ≥ 10); and scores correlated highly with similar constructs,
155 such as the 20-item Short-Form General Health Survey (SF-20)²⁵ mental health scale ($r = .73$).
156 Internal consistency of the PHQ-9 in the UK Biobank sample in the current study was high
157 (Cronbach's $\alpha = .83$).

158 **Depression Item Phenotypes**

159 Each of the nine PHQ-9 items is considered a separate phenotype in the genetic analyses.
160 The ordinal scale of measurement of these items complicates interpretation of the SNP-based
161 heritability estimates (amount of phenotypic variance in the item explained by SNPs). SNP-
162 based heritability is an important concept in genetics, essential to understanding the magnitude of
163 the genetic influence on a particular trait²⁶. To enable a direct comparison across each of the
164 PHQ-9 items, each ordinal phenotype was transformed to a binary phenotype for heritability

165 estimation. The nine items were dichotomised such that an item was considered to be endorsed if
166 the item score was one or greater (several days, more than half the days, or nearly every day),
167 and not endorsed if the score was zero (not at all). A cut-off score of one was used in order to
168 maximise the number of subjects who endorsed an item and hence statistical power, a strategy
169 that has provided greater benefit in GWASs of depression over ensuring a seamless
170 phenotype^{3,11,14,27}. In addition to the nine ordinal items and nine binary items, a *sum-score* (sum
171 of all ordinal item scores; ranging from 0 to 27) and *binary sum-score* (number of binary items
172 endorsed; ranging from 0 to 9) were included as phenotypes. We will present the results from the
173 binary items and the two sum-scores while results for ordinal items are provided in
174 supplementary.

175 **Genome-Wide Association Analyses**

176 A total of 20 GWA analyses were conducted (nine ordinal scale depression items, nine
177 binary items, plus the sum-score and binary sum-score phenotypes) using BOLT-LMM²⁸.
178 Associations between SNPs and a phenotype are tested using a linear mixed model in order to
179 correct for population structure and cryptic relatedness. While BOLT-LMM is based on a
180 quantitative trait model, it can be used to analyse binary traits by treating them as continuous and
181 applying a transformation. Ordinal items are treated as continuous. An issue when analysing
182 binary traits in BOLT-LMM is the inflated type 1 error rates for rare SNPs when the number of
183 cases and controls are very unbalanced²⁹. In practice, all of the traits we consider here have a
184 case proportion which is large enough (3%) for this not to be a problem³⁰.

185 Analyses were limited to autosomal SNPs with high imputation quality score (INFO
186 score ≥ 0.80) and a minor allele frequency of 1% or higher, resulting in 9,413,637 SNPs being
187 tested for association. Sex and age were included as covariates. GWAS results were annotated

188 using the FUMA GWAS platform³¹. The conventional genome-wide significance threshold of
189 $p < 5 \times 10^{-8}$ was applied. Due to the exploratory nature of the analyses and the high correlation
190 between the 20 phenotypes, we decided not to correct for multiple testing of the 20 phenotypes
191 as this would lead to increased type-II error rate and reduced power.

192 Significant SNPs were clumped into blocks high in linkage disequilibrium (the non-
193 random association of alleles at a specific locus; LD) using a threshold of $r^2 < 0.10$ (correlation
194 between allele frequencies of two SNPs; as calculated by PLINK). Independent significant SNPs
195 were defined as the SNP with the lowest p-value within an LD block. Genomic risk loci (distinct,
196 fixed positions on a chromosome) were identified by merging independent SNPs if $r^2 \geq 0.10$ and
197 their LD blocks are physically close to each other at a distance of 1,000 kb.

198 **LDSC analyses**

199 Estimates of the variance in each phenotype attributable to the additive effects of all
200 SNPs (SNP-based heritability; h^2_{SNP}) were calculated via single-trait LD Score Regression using
201 GWAS summary statistics from our analyses³² (see Supplementary methods). In order to
202 interpret h^2_{SNP} for binary items estimates are converted to a normally distributed liability scale,
203 because liability scale heritability is independent of prevalence and can be compared across
204 different phenotypes and populations³³. The population prevalence of PHQ-9 items was
205 estimated from our UK Biobank sample (population prevalence = sample prevalence; see Table
206 1). We applied a Bonferroni corrected significance threshold for the 11 h^2_{SNP} estimates ($p <$
207 4.55×10^{-3}).

208 Cross-trait LD Score Regression³⁴ was used to estimate genetic correlations (r_g) between
209 each of the nine binary items. We applied a Bonferroni corrected significance threshold for these
210 36 r_g tests ($p < 1.39 \times 10^{-3}$). Additionally, we also calculated pairwise genetic correlations

211 between our phenotypes (9 depression items and sum-scores) and 25 other psychiatric, substance
212 use, socioeconomic and human traits with publicly available GWAS summary statistics (see
213 Supplementary Table 2). Multiple testing was corrected for by adjusting p values based on false
214 discovery rate (FDR) across all tests.

215 **Hierarchical Cluster Analysis**

216 A hierarchical cluster analysis was conducted to examine the underlying genetic structure
217 between depression items. Implemented in the `hclust` function in R³⁵, items are grouped into
218 similar clusters based on a measure of dissimilarity between each pair of items and the results are
219 presented in a cluster dendrogram. Dissimilarity was defined as one minus the genetic correlation
220 ($1 - r_g$).

221 **Confirmatory Factor Analyses**

222 Confirmatory factor analyses (CFA) were conducted based on genetic covariances
223 between items, in order to quantitatively assess the genetic factor structure of the PHQ-9
224 identified in the cluster analysis. The fit of a one-factor baseline model and two and three-factor
225 models identified in the cluster analysis were compared.

226 χ^2 likelihood ratio tests are very sensitive to large samples and often produce spurious
227 positive results³⁶. Given the very large sample size in the present study, model fit was evaluated
228 with a range of alternative fit indices. These indices (and their commonly used thresholds for
229 acceptable model fit) include: NFI ($\geq .95$), AGFI ($\geq .95$), RMSEA ($\leq .06$), and SRMR ($\leq .06$)³⁷.
230 Models were compared using AIC and BIC indices, which take into account both model fit and
231 complexity. The most parsimonious model is the model with the lowest AIC and BIC values.

232

233

Results

234 **Descriptive Statistics**

235 The final sample ($N = 148,752$) was 56% female, ranging in age from 38 to 72 years old
236 ($M = 55.93$, $SD = 7.73$). The distribution of responses to all PHQ-9 items (on the ordinal scale)
237 are displayed in Supplementary Table 3. The distribution of item scores varied considerably
238 across items; sleep problems and fatigue had the highest endorsement rates while suicidal
239 ideation and psychomotor changes had the lowest rates. Sum-scores ranged from 0 to 27, with a
240 mean of 2.71 ($SD = 3.61$). Endorsement rates of binary depression items are shown in Table 1.
241 The number of symptoms endorsed ranged from zero to nine, with a mean of 2.02 ($SD = 2.20$).

242 **GWA Analyses**

243 Genome-wide association analyses of the 9 binary depression items plus sum-score
244 phenotypes identified a total of 326 genome-wide significant SNPs ($p < 5 \times 10^{-8}$), tagged by 13
245 independent SNPs. Two lead SNPs were significant in more than one phenotype, such that across
246 all phenotypes there are 11 unique, independent genome-wide significant SNPs. These SNPs
247 mapped onto nine genomic risk loci (see Table 2 for results, Supplementary Figures 1-10 for QQ
248 plots and Manhattan plots of all phenotypes; and Supplementary Table 4 for the ordinal item
249 GWAS results).

250 **Heritability Estimates**

251 Estimates of the proportion of phenotypic variance in each item attributable to the
252 additive effects of all SNPs (SNP-based heritability; h^2_{SNP}) varied considerably across the nine
253 items (see Figure 1 and Supplementary Table 5). All estimates were significant after Bonferroni
254 correction ($p < 4.55 \times 10^{-3}$). The amount of variance explained by common SNPs ranged from 3%
255 of variance in suicidal ideation up to 11% of the variance in fatigue (mean h^2_{SNP} across the nine

256 depression items was 7%). h^2 SNP estimates for the sum-score and no. symptoms phenotypes were
257 6% and 7%, respectively.

258 **Inter-item Phenotypic and Genetic Correlations**

259 Spearman correlations between all pairs of PHQ-9 depression items showed that all items
260 were positively correlated with each other phenotypically and remained significant after
261 Bonferroni correction for 36 tests ($p < 1.39 \times 10^{-3}$). Coefficients ranged from .19 to .69, with the
262 strongest association between anhedonia and depressed mood, the two core symptoms of MDD
263 (see Figure 2).

264 Summary statistics from the GWASs of the nine binary items were used to calculate
265 genetic correlations (r_g) between items. All correlations were significant after correcting for
266 multiple testing ($p < 1.39 \times 10^{-3}$) and were in the same direction (see Figure 2). Estimated r_g 's
267 ranged from .54 (suicidal ideation / psychomotor changes; $s.e = .15$) to .96 (psychomotor
268 changes / concentration problems; $s.e = .11$), with a mean r_g of .77. Thirty out of the 36 genetic
269 correlations were significantly less than one (95% CI did not include one), indicating substantial
270 genetic heterogeneity across the PHQ-9 items (partly unique genetic risk factors contribute to the
271 majority of pairs of depressive symptoms; see Figure 2 and Supplementary Table 6). Some of the
272 genetic correlations that were not significantly different from 1 were relatively low, but have
273 large standard errors which explains their overlap with 1.

274 A very similar pattern of genetic correlations emerged for the ordinal items (r_g range: .55
275 to .96), such that the Pearson correlation between the set of binary item r_g 's and ordinal item r_g 's
276 was high, $r = .90$, $p < .001$ (see Supplementary Figure 11).

277 The Pearson correlation between the genetic correlations and phenotypic correlations was
278 moderate, $r = .48$, $p = .003$, suggesting phenotypic correlations do not map one to one with
279 genetic correlations (see Supplementary Figure 12).

280 **Genetic Clustering Analysis**

281 A hierarchical clustering analysis based on genetic covariance between the nine
282 depression items revealed two main genetic clusters: the first cluster including anhedonia,
283 depressed mood, suicidal ideation, and low self-esteem (psychological symptoms); and the
284 second cluster including psychomotor changes, concentration problems, fatigue, appetite change,
285 and sleep problems (somatic symptoms; see Figure 3). Further exploration of the cluster
286 dendrogram suggests the somatic symptoms cluster could again be split into two clusters:
287 “neurovegetative” symptoms (fatigue, appetite change, and sleep problems); and “psychomotor /
288 concentration” symptoms.

289 **Confirmatory Factor Analyses**

290 CFA of the genetic factor structure found that all three models provided good fit to the
291 data (see Supplementary Table 7). Comparison of models based on AIC and BIC values found
292 that the three-factor model was the most parsimonious model compared to the one-factor model
293 and the two-factor model (substantially lower AIC and BIC values). These results suggest the
294 PHQ-9 is reflected genetically by three factors, comprising “psychological”, “neurovegetative”,
295 and “psychomotor / concentration” symptoms.

296 **Genetic Correlations with External Traits**

297 Genetic correlations of the nine depression items, sum-score and binary sum-score with
298 25 other psychiatric, substance use, socioeconomic and human traits are displayed in Figure 4.

299 Correlations significant after correcting for false discovery rate (FDR) are indicated by non-
300 white squares (see Supplementary Table 8).

301 Individual depression items correlated as expected with closely related traits, supporting
302 the validity of the individual symptom phenotypes in the present study. For example, appetite
303 change had a substantially stronger positive genetic correlation with body mass index ($r_g = .61$)
304 than the other eight depression symptoms (r_g 's range between .10 to .29); and sleep problems
305 had a strong, positive correlation with insomnia ($r_g = .71$). All symptoms were negatively
306 correlated with subjective well-being (r_g range = -.54 to -.91), with suicidal ideation having the
307 strongest association. Furthermore, all items positively correlated (and showed a similar pattern)
308 with the other MDD and overall depression phenotypes.

309 Genetic overlap with other psychiatric disorders and traits differed substantially across
310 depression symptoms, such as with anxiety disorders (r_g range = .50 to .93), neuroticism (r_g
311 range = .49 to .85), schizophrenia (r_g range = .09 to .32), and insomnia (r_g range = .31 to .71).
312 Furthermore, bipolar disorder was significantly correlated with 4 out of 9 depression items only
313 (sleep problems, low self-esteem, concentration problems, and psychomotor changes). Anorexia
314 nervosa overlapped with just three items, with genetic correlations even being in different
315 directions (low self-esteem $r_g = .28$, psychomotor changes $r_g = .27$, and appetite change $r_g = -.26$).
316

317

Discussion

318 In the present study, we investigated genetic heterogeneity in major depression by
319 conducting genetic analyses on individual symptoms of MDD in 148,752 participants from the
320 UK Biobank. We identified nine genomic risk loci across the nine MDD symptoms and sum-
321 score phenotypes, all have not been associated with major depression in previous
322 GWASs^{3,7,13,14,27,38-43}. Our results revealed substantial genetic heterogeneity in depression
323 symptoms with no overlap in significant loci across PHQ items. Though we acknowledge that
324 the lack of overlap may be due to low statistical power to detect all true associations, we
325 highlight some notable examples where a specific symptom of depression is linked to a gene that
326 was previously found to be associated with a strongly related phenotype. For the item “sleep
327 problems”, we found SNPs that implicate *PAX8* (based on proximity), a transcription factor
328 related to thyroid follicular cell development and expression of thyroid-specific genes,
329 replicating previous studies linking this gene to sleep duration⁴⁴⁻⁴⁶. In addition, SNPs associated
330 with “depressed mood” influenced the expression of *KLHDC8B* (protein coding gene involved in
331 cytokinesis). This gene has been previously linked to depressed affect, a sub-cluster of
332 neuroticism that is strongly related to depression⁴⁷. Neither of these genes were implicated in the
333 largest GWASs of overall depression^{3,14}, illustrating the importance of exploring genetic
334 associations for specific symptoms of depression.

335 SNP-based heritability analyses revealed that individual depression symptoms were
336 differentially heritable (h^2 SNP ranging from 3 to 11%), suggesting that depression symptoms
337 differ in their relative proportions of common SNP contributions. Notably, items within the
338 “neurovegetative” symptom cluster were most highly heritable, consistent with a previous report

339 that found somatic symptoms (such as sleep problems and appetite changes) to have a stronger
340 heritable basis¹⁸.

341 Genetic correlations between depression symptoms ranged from moderate ($r_g < .60$) to
342 high ($r_g > .90$), suggesting that while some symptoms have high genetic overlap, a substantial
343 amount of genetic variation is not shared between symptoms. This indicates extensive genetic
344 heterogeneity in major depression, in line with the finding that depression represents multiple
345 dimensions of genetic risk¹⁹ and previous associations between individual symptoms and specific
346 polymorphisms⁴⁸.

347 The underlying genetic structure between symptoms was best explained by three genetic
348 clusters. This suggests there are risk factors specific to clusters which could indicate underlying
349 biology specific to either “neurovegetative”, “psychological” or “psychomotor / concentration”
350 symptoms of depression. This is consistent with symptoms differing in their biological
351 correlates, with neurovegetative symptoms such as weight gain, increased appetite, and sleep
352 problems being associated with higher levels of inflammation markers^{49,50}. These clusters were
353 not in full agreement with the three genetic factors found by Kendler, et al.¹⁹ based on an
354 analysis of twin data. As an example, in the Kendler study, suicidal ideation loaded onto the
355 same factor as psychomotor changes and concentration problems, while we find that suicidal
356 ideation clusters with symptoms of depressed mood, anhedonia, and low self-esteem that
357 together form a “psychological symptoms” factor. However results are not easily comparable
358 given that they derived factors from a twin study (and therefore captured rare genetic variants as
359 well as common SNPs), used a subset of eight symptoms (appetite changes did not load onto any
360 factor), and symptom phenotypes came from structured clinical interview rather than a self-
361 report measure such as the PHQ-9.

362 Results from genetic correlations between items and a range of external traits lead us to
363 note three general observations. First, genetic correlations with external traits differed
364 substantially between symptoms providing evidence for genetic heterogeneity in major
365 depression. In agreement with previous findings for major depression^{3,14}, all symptoms
366 overlapped with anxiety, schizophrenia, ADHD, insomnia, neuroticism, and subjective well-
367 being, however the proportion of overlap varied considerably across symptoms. For example,
368 anxiety disorders had a substantially higher genetic correlation with “suicidal ideation” than the
369 other items. This supports a strong phenotypic association, with over 70% of people with a
370 history of suicide attempt having an anxiety disorder, compared to ~33% in the general
371 population⁵¹. Second, some traits (such as bipolar disorder, cannabis lifetime use, cigarettes per
372 day, and intelligence) were genetically correlated with a subset of items only. Bipolar disorder
373 for example, was genetically correlated with only four items (low self-esteem, concentration,
374 psychomotor changes, and sleep problems), suggesting that the moderate genetic overlap
375 between bipolar and major depression⁵² is predominately driven by these selected symptoms.
376 This highlights how insight into the genetic architecture between traits can be gained from
377 conducting symptom-level analyses. Third, we found traits that were genetically correlated with
378 individual items, but not with the sum-score phenotypes. Anorexia nervosa did not overlap with
379 aggregate measures of depression symptoms as operationalized in the sum-score phenotypes, in
380 agreement with Howard, et al. ¹⁴ who similarly found no genetic overlap between anorexia and
381 their three overall depression phenotypes. Yet, anorexia nervosa was genetically correlated with
382 appetite change, low self-esteem, and psychomotor changes. Interestingly, the overlap with
383 appetite change was in the opposite direction compared to the other two items. This finding

384 emphasises the importance of analysing individual symptoms of a disorder, as important
385 information is ignored by relying on sum-scores or overall phenotypes.

386 **Limitations**

387 The findings and conclusions of this study should be interpreted in view of some key
388 limitations. First, despite having the largest sample available to date, the current study is still
389 underpowered to detect significant SNPs. Given the relatively high prevalence and phenotypic
390 heterogeneity of depression, much larger sample sizes are needed compared to other psychiatric
391 disorders¹¹. To not reduce power further we did not correct for multiple testing (of 11 GWA
392 analyses) and hence our GWAS results require independent replication. Second, depression items
393 were analysed in isolation, regardless of the overall MDD status of the participant. For example,
394 a participant could strongly endorse the symptom fatigue, yet have no other signs of depression
395 and hence the endorsement of fatigue is unrelated to major depression. Nevertheless, it is
396 possible that fatigue, regardless of the context it occurs in, possesses the same underlying genetic
397 basis. Third, we used a PHQ-9 cut-off score of 1 to dichotomise items in order to maximise the
398 number of cases and improve statistical power. A PHQ-9 item score of one does not meet the
399 diagnostic criteria for endorsement, hence the phenotypes may represent a predisposition to
400 rather than full endorsement of the particular symptom. Fourth, our results may be affected by
401 ascertainment bias due to healthy volunteerism within the UKBB. As such our sample could
402 represent a truncated version of the population's genetic distribution for symptoms (people on far
403 end of liability scale may be less likely to participate), hence resulting in reduced number of
404 cases for some symptoms or reduced variation between cases and controls.

405 **Implications**

406 The recent success in the discovery of genetic variants associated with depression has
407 been driven by ever increasing sample sizes, an approach that has been favoured over reducing
408 phenotypic heterogeneity. Consequently, GWASs have been conducted on a diverse range of
409 depression-related phenotypes that often include a small subset of symptoms, generally with the
410 view that the increase in sample size can overcome the lack of clinical precision. While this has
411 indeed been proven to be effective at increasing the number of significant variants identified, our
412 finding of symptom-level genetic heterogeneity raises questions about this approach. Using
413 broad diagnostic phenotypes ignores the unique genetic factors associated with specific
414 symptoms of depression that would likely provide useful information to further unravel the
415 genetic architecture of MDD. Further, our finding of genetic heterogeneity across MDD
416 symptoms implicates that patients with MDD show variation in disease pathogenesis. This
417 variation may be linked to response to clinical interventions, such that patients presenting with
418 specific symptom patterns (e.g., characterized primarily by neurovegetative symptoms) may be
419 expected to respond differently.

420 **Conclusion**

421 Our results provide convincing evidence that major depression is a genetically
422 heterogeneous disorder, and highlight the utility of analysing the genetics of individual items or
423 symptoms of a psychiatric disorder. Insights into the genetic aetiology and underlying biology of
424 MDD will be maximised by combining large-scale genetic studies of broad clinical definitions
425 with follow-up studies of more refined phenotypic measures of specific diagnostic subtypes.

Table and Figure legends

Table 1: Sample sizes and prevalence of all binary PHQ-9 items.

Table 2: GWAS Results for binary PHQ-9 items and sum-score phenotypes.

Figure 1. SNP-based heritability estimates and 95% confidence intervals (95% CI) for the nine depression items and sum-score phenotypes.

Figure 2. Inter-item genetic and phenotypic correlations.

Figure 3. Cluster dendrogram of inter-item genetic correlations.

Figure 4. Genetic correlations between PHQ-9 items and a range of other complex traits (psychiatric, substance use, and socioeconomic phenotypes) based on publicly available summary statistics.

Tables

Table 1: Sample sizes and prevalence rates of all binary PHQ-9 items.

Item	N endorsed	N not endorsed	Prevalence %
Anhedonia	27,288	121,464	18.3
Depressed mood	32,263	116,489	21.7
Sleep problems	72,302	76,450	48.6
Fatigue	73,924	74,828	49.7
Appetite changes	26,757	121,995	18.0
Low self-esteem	28,206	120,546	19.0
Concentration problems	26,229	122,523	17.6
Psychomotor changes	7,914	140,838	5.3
Suicidal ideation	6,064	142,688	4.1

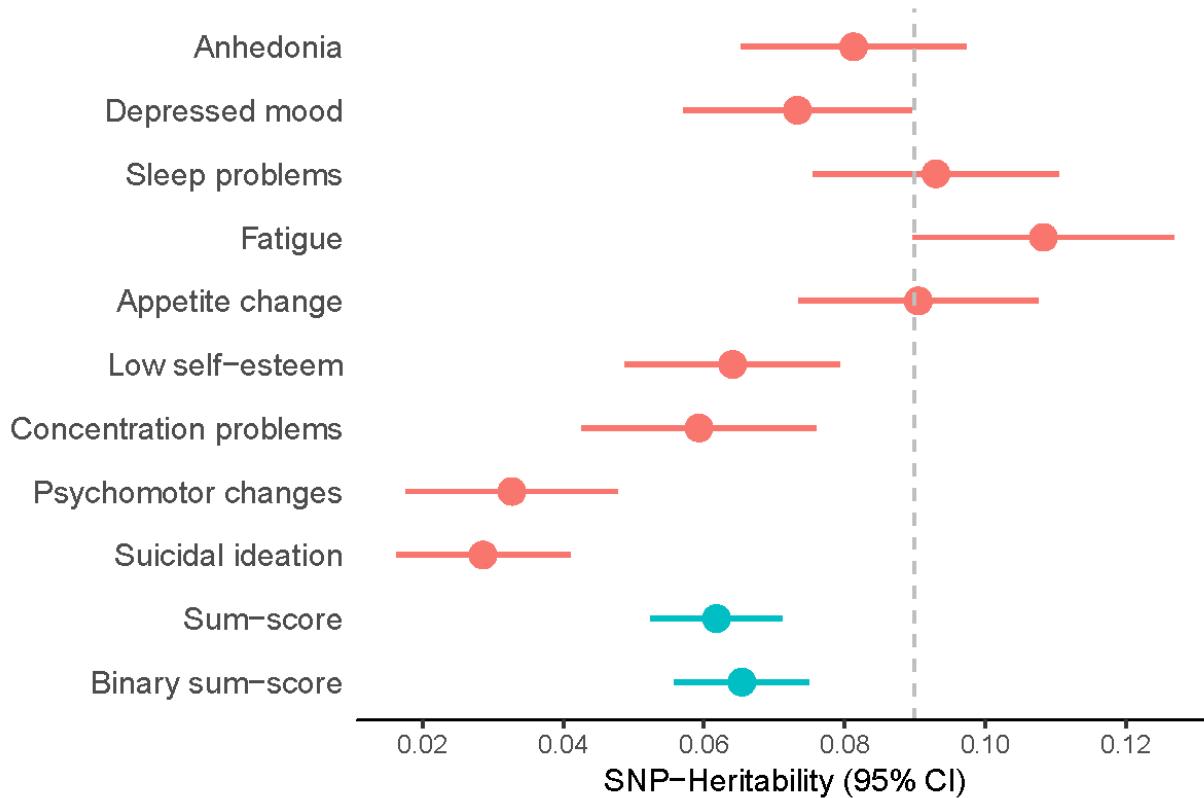
Table 2: GWAS Results for binary PHQ-9 items and sum-score phenotypes

Gen. locus	SNP id	Chr	BP	A1	A2	Freq A1	Phenotype	β	SE	p-value	nSNPs	nearest gene	eQTL genes
1	rs2279681	1	201861016	C	G	0.657	Sum-score	0.093	0.014	5.60E-11	25	<i>SHISA4</i>	SHISA4, LMOD1
							Binary sum-score	0.023	0.004	8.60E-09	6	<i>SHISA4</i>	
2	rs62158169	2	114081827	C	T	0.784	Sleep problems	0.015	0.002	1.40E-10	22	<i>PAX8</i>	FOXD4L1, CBWD2
3	rs137997194	3	48824937	A	G	0.955	Depressed mood	-0.023	0.004	7.70E-10	15	<i>PRKAR2A</i>	AMT, KLHDC8B
	rs143756010						Binary sum-score	-0.053	0.009	7.40E-09	15	<i>C3orf62</i>	AMT, NICN1, RNF123
4	rs12492113	3	50521402	G	A	0.875	Binary sum-score	-0.037	0.006	1.20E-10	114	<i>CACNA2D2</i>	C3orf18, CACNA2D2, CYB561D2, DOCK3, HEMK1, HYAL1, LSMEM2, RBM6, MANF, MAPKAPK3
							Sum-score	-0.124	0.020	1.30E-09	76	<i>CACNA2D2</i>	
							Appetite changes	-0.013	0.002	8.80E-09	28	<i>CACNA2D2</i>	
5	rs13127129	4	30501860	A	G	0.499	Sleep problems	0.010	0.002	4.90E-08	1	<i>PCDH7</i>	-
6	rs7073667	10	107809043	T	C	0.452	Sleep problems	0.010	0.002	4.30E-08	12	<i>RP11-298H24.1</i>	-
7	rs140920627	11	41577268	C	A	0.988	Anhedonia	-0.037	0.007	3.70E-08	1	<i>RP11-124G5.3</i>	-
8	rs840161	12	57323523	A	G	0.366	Binary sum-score	-0.021	0.004	3.90E-08	1	<i>SDR9C7</i>	-
9	rs2335859	19	7871837	T	G	0.602	Anhedonia	-0.009	0.001	9.80E-09	10	<i>EXOSC3P2</i>	-

Note: Table displays SNPs significant at $p < 5 \times 10^{-8}$ and independent at $r^2 < 0.10$. Genomic risk loci (Gen. locus) are defined by $r^2 < 0.10$, window size 1,000kb. Chromosome (Chr), location in base pairs (BP) on Hg19, effect allele (A1), allele 2 (A2), frequency of effect allele (Freq A1), effect size beta (β), standard error of beta (SE), p-value, and number of SNPs clumped under lead SNP (nSNPs) are shown. Proximity (nearest gene) and eQTL (eQTL genes) mapping results are given. eQTL mapping limited to significant (FDR < .05) cis-eQTLs from GTEx v7⁵³ and the CommonMind Consortium (CMC)⁵⁴. SNP rs137997194 and rs143756010 are tagging the same signal, but was the SNP with lowest p-value in “depressed mood” and “binary sum-score”, respectively.

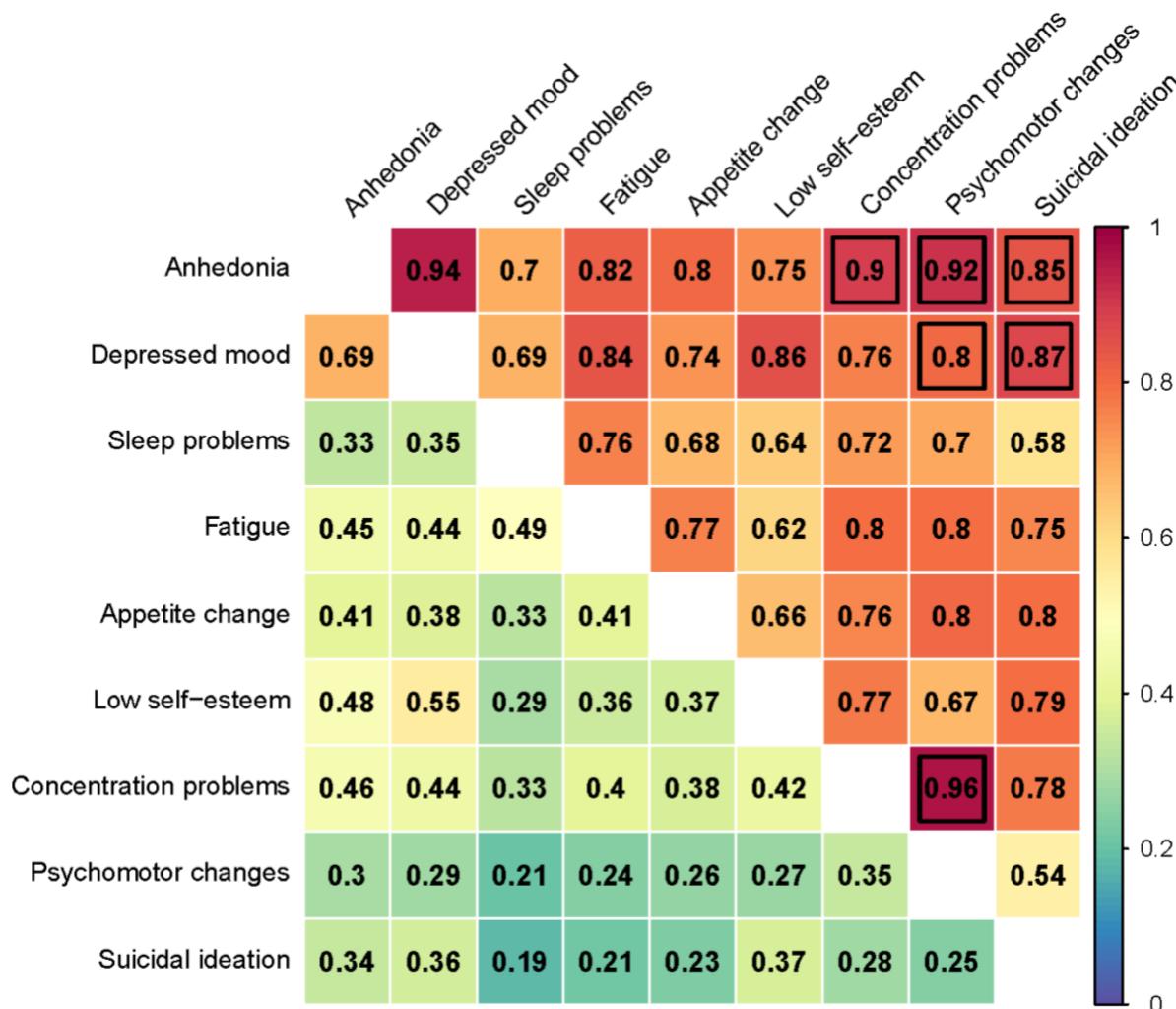
Figures

Figure 1. SNP-based heritability estimates and 95% confidence intervals (95% CI) for the nine depression items and sum-score phenotypes.



Note: heritability estimated via single-trait LD Score Regression. The dotted line indicates the SNP-based heritability of major depression ($h^2_{\text{SNP}} = \sim 0.09$)³. All estimates are significant after multiple testing correction ($p < 4.55 \times 10^{-3}$).

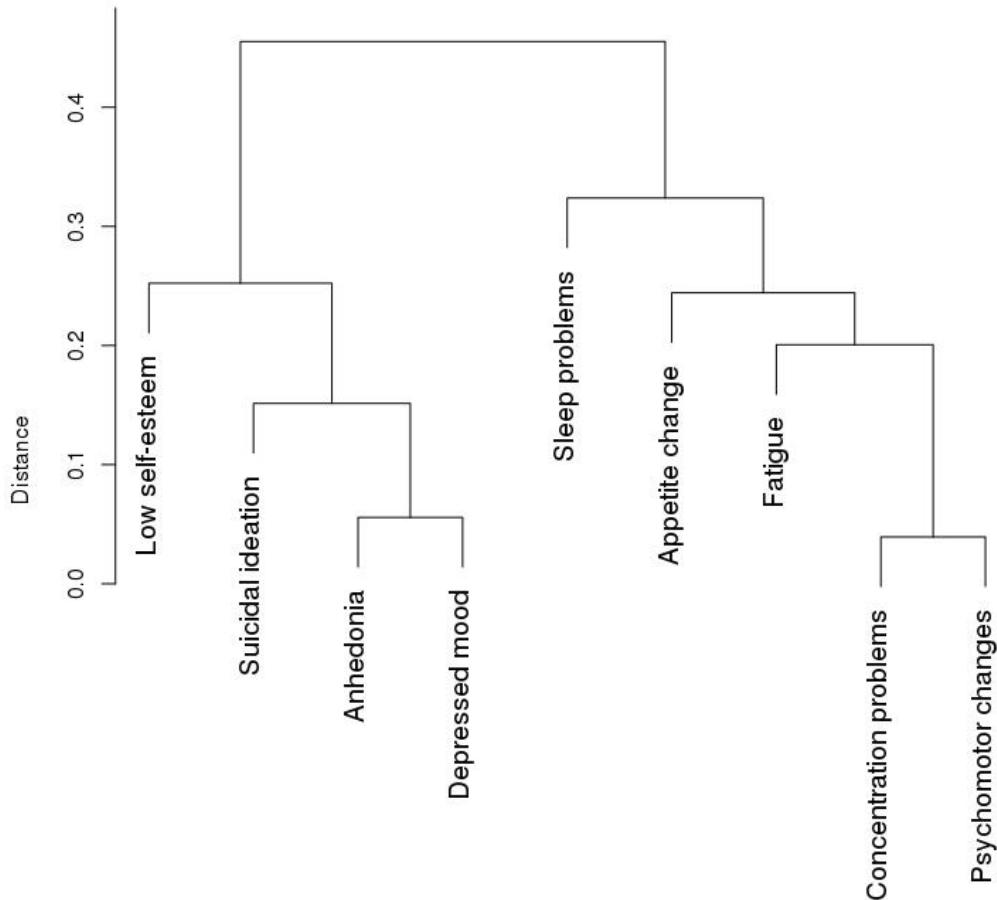
Figure 2. Inter-item genetic and phenotypic correlations.



Note: Genetic correlations (r_g) above diagonal and phenotypic correlations (r_s) below diagonal.

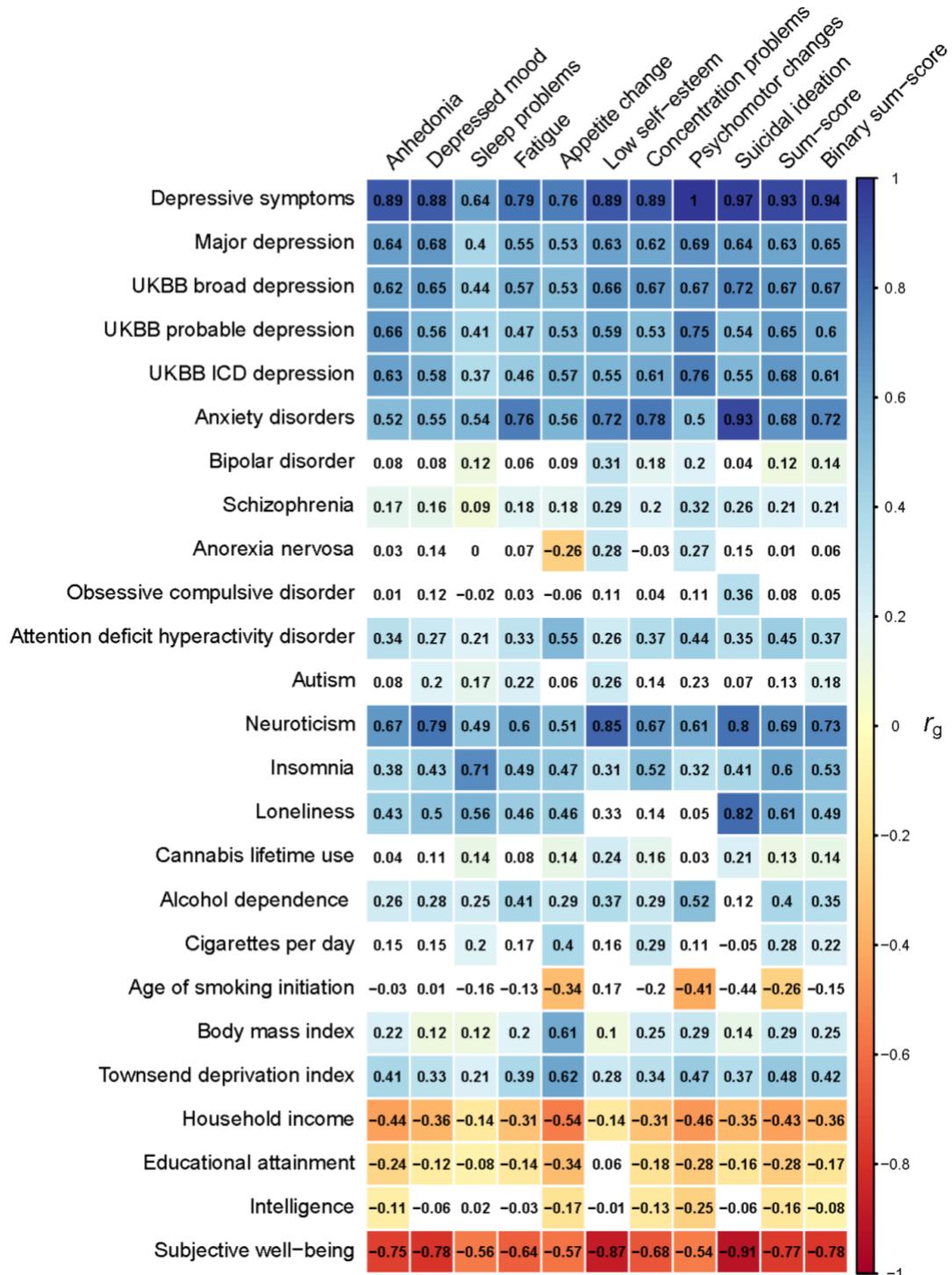
Genetic correlations estimated using cross-trait LD Score Regression. All correlations are significant at $p < 1.39 \times 10^{-3}$. Black squares indicate correlation is not significantly different from one (95% CI includes 1).

Figure 3. Cluster dendrogram of inter-item genetic correlations.



Note: distance is a measure of dissimilarity, defined as one minus the genetic correlation ($1 - r_g$).

Figure 4. Genetic correlations between PHQ-9 items and a range of other complex traits (psychiatric, substance use, and socioeconomic phenotypes) based on publicly available summary statistics.



Note: white squares indicate correlations that do not meet significance after correcting for FDR.

Acknowledgments

This work was conducted using the UK Biobank Resource (application number 25331). The UK Biobank was established by the Wellcome Trust medical charity, Medical Research Council (UK), Department of Health (UK), Scottish Government, and Northwest Regional Development Agency. It also had funding from the Welsh Assembly Government, British Heart Foundation, and Diabetes UK.

S.M. is supported by a National Health and Medical Research Council (NHMRC) Fellowship.

A.T.M. is supported by the Foundation Volksbond Rotterdam.

Conflicts of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

References

- 1 Christian, O. *et al.* Major depressive disorder. *Nature Reviews Disease Primers* **2**, doi:10.1038/nrdp.2016.65 (2016).
- 2 Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. *The American journal of psychiatry* **157**, 1552-1562, doi:10.1176/appi.ajp.157.10.1552 (2000).
- 3 Wray, N. R. *et al.* Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. *Nature Genetics*, doi:10.1038/s41588-018-0090-3 (2018).
- 4 Lee, S. H. *et al.* Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. *Nature genetics* **45**, 984 (2013).
- 5 Ripke, S. *et al.* Genome-wide association study identifies five new schizophrenia loci. *Nature genetics* **43**, 969 (2011).
- 6 Ripke, S. *et al.* A mega-analysis of genome-wide association studies for major depressive disorder. *Mol Psychiatry* **18**, 497-511, doi:10.1038/mp.2012.21 (2013).
- 7 Hek, K. *et al.* A genome-wide association study of depressive symptoms. *Biol Psychiatry* **73**, 667-678, doi:10.1016/j.biopsych.2012.09.033 (2013).
- 8 Ripke, S. *et al.* Biological insights from 108 schizophrenia-associated genetic loci. *Nature* **511**, 421 (2014).
- 9 Levinson, D. F. *et al.* Genetic studies of major depressive disorder: why are there no genome-wide association study findings and what can we do about it? *Biological psychiatry* **76**, 510-512, doi:10.1016/j.biopsych.2014.07.029 (2014).
- 10 Wray, N. R. *et al.* Research Review: Polygenic methods and their application to psychiatric traits. *Journal of Child Psychology and Psychiatry* **55**, 1068-1087, doi:10.1111/jcpp.12295 (2014).
- 11 Wray, N. R. *et al.* Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. *Mol Psychiatry* **17**, 36-48, doi:10.1038/mp.2010.109 (2012).
- 12 Hilker, R. *et al.* Heritability of Schizophrenia and Schizophrenia Spectrum Based on the Nationwide Danish Twin Register. *Biol Psychiatry* **83**, 492-498, doi:10.1016/j.biopsych.2017.08.017 (2018).
- 13 Hyde, C. L. *et al.* Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. *Nature Genetics* **48**, 1031, doi:10.1038/ng.3623 <https://www.nature.com/articles/ng.3623#supplementary-information> (2016).
- 14 Howard, D. M. *et al.* Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. *Nature Communications* **9**, 1470, doi:10.1038/s41467-018-03819-3 (2018).
- 15 American Psychiatric Association. *Diagnostic and statistical manual of mental disorders (DSM-5®)*. (American Psychiatric Pub, 2013).

16 Østergaard, S. D., Jensen, S. O. W. & Bech, P. The heterogeneity of the depressive syndrome: when numbers get serious. *Acta Psychiatrica Scandinavica* **124**, 495-496, doi:10.1111/j.1600-0447.2011.01744.x (2011).

17 Fried, E. I. & Nesse, R. M. Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. *Journal of Affective Disorders* **172**, 96-102, doi:<https://doi.org/10.1016/j.jad.2014.10.010> (2015).

18 Jang, K. L., Livesley, W. J., Taylor, S., Stein, M. B. & Moon, E. C. Heritability of individual depressive symptoms. *Journal of Affective Disorders* **80**, 125-133, doi:[https://doi.org/10.1016/S0165-0327\(03\)00108-3](https://doi.org/10.1016/S0165-0327(03)00108-3) (2004).

19 Kendler, K. S., Aggen, S. H. & Neale, M. C. Evidence for multiple genetic factors underlying dsm-iv criteria for major depression. *JAMA Psychiatry* **70**, 599-607, doi:10.1001/jamapsychiatry.2013.751 (2013).

20 Nagel, M., Watanabe, K., Stringer, S., Posthuma, D. & van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. *Nature Communications* **9**, 905, doi:10.1038/s41467-018-03242-8 (2018).

21 John M. Hettema , M. D., Ph.D. , Michael C. Neale , P. D., John M. Myers , M. S., Carol A. Prescott , P. D. & Kenneth S. Kendler , M. D. A Population-Based Twin Study of the Relationship Between Neuroticism and Internalizing Disorders. *American Journal of Psychiatry* **163**, 857-864, doi:10.1176/ajp.2006.163.5.857 (2006).

22 Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ - 9. *Journal of General Internal Medicine* **16**, 606-613, doi:doi:10.1046/j.1525-1497.2001.016009606.x (2001).

23 Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data. *Nature* **562**, 203-209, doi:10.1038/s41586-018-0579-z (2018).

24 Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ - 9: validity of a brief depression severity measure. *Journal of general internal medicine* **16**, 606-613 (2001).

25 Stewart, A. L., Hays, R. D. & Ware, J. E., Jr. The MOS short-form general health survey. Reliability and validity in a patient population. *Medical care* **26**, 724-735 (1988).

26 Yang, J., Zeng, J., Goddard, M. E., Wray, N. R. & Visscher, P. M. Concepts, estimation and interpretation of SNP-based heritability. *Nature Genetics* **49**, 1304, doi:10.1038/ng.3941
<https://www.nature.com/articles/ng.3941#supplementary-information> (2017).

27 Hall, L. S. *et al.* Genome-wide meta-analyses of stratified depression in Generation Scotland and UK Biobank. *Translational Psychiatry* **8**, 9, doi:10.1038/s41398-017-0034-1 (2018).

28 Loh, P.-R. *et al.* Efficient Bayesian mixed-model analysis increases association power in large cohorts. *Nature Genetics* **47**, 284, doi:10.1038/ng.3190
<https://www.nature.com/articles/ng.3190#supplementary-information> (2015).

29 Zhou, W. *et al.* Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. *Nature Genetics* **50**, 1335-1341, doi:10.1038/s41588-018-0184-y (2018).

30 Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association for biobank-scale datasets. *Nature Genetics* **50**, 906-908, doi:10.1038/s41588-018-0144-6 (2018).

31 Watanabe, K., Taskesen, E., Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. *Nature communications* **8**, 1826 (2017).

32 Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nature genetics* **47**, 291 (2015).

33 Lee, S. H., Wray, Naomi R., Goddard, Michael E. & Visscher, Peter M. Estimating Missing Heritability for Disease from Genome-wide Association Studies. *American Journal of Human Genetics* **88**, 294-305, doi:10.1016/j.ajhg.2011.02.002 (2011).

34 Bulik-Sullivan, B. K. *et al.* An atlas of genetic correlations across human diseases and traits. *Nature Genetics* **47**, 1236, doi:10.1038/ng.3406
<https://www.nature.com/articles/ng.3406#supplementary-information> (2015).

35 Müllner, D. fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python. *Journal of Statistical Software* **53**, 1-18 (2013).

36 Martin-Löf, P. The Notion of Redundancy and Its Use as a Quantitative Measure of the Discrepancy between a Statistical Hypothesis and a Set of Observational Data [with Discussion]. *Scandinavian Journal of Statistics*, 3-18 (1974).

37 Kline, R. B. *Principles and practice of structural equation modeling*. 2nd edn, (Guilford, 2005).

38 Power, R. A. *et al.* Genome-wide Association for Major Depression Through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium(). *Biological Psychiatry* **81**, 325-335, doi:10.1016/j.biopsych.2016.05.010 (2017).

39 Okbay, A. *et al.* Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. *Nature Genetics* **48**, 624, doi:10.1038/ng.3552
<https://www.nature.com/articles/ng.3552#supplementary-information> (2016).

40 Li, X. *et al.* Common variants on 6q16.2, 12q24.31 and 16p13.3 are associated with major depressive disorder. *Neuropsychopharmacology* **43**, 2146-2153, doi:10.1038/s41386-018-0078-9 (2018).

41 Kohli, Martin A. *et al.* The Neuronal Transporter Gene SLC6A15 Confers Risk to Major Depression. *Neuron* **70**, 252-265, doi:<https://doi.org/10.1016/j.neuron.2011.04.005> (2011).

42 Direk, N. *et al.* An Analysis of Two Genome-wide Association Meta-analyses Identifies a New Locus for Broad Depression Phenotype. *Biological Psychiatry* **82**, 322-329, doi:<https://doi.org/10.1016/j.biopsych.2016.11.013> (2017).

43 Cai, N. *et al.* Sparse whole-genome sequencing identifies two loci for major depressive disorder. *Nature* **523**, 588 (2015).

44 Gottlieb, D. J. *et al.* Novel loci associated with usual sleep duration: the CHARGE Consortium Genome-Wide Association Study. *Mol Psychiatry* **20**, 1232-1239, doi:10.1038/mp.2014.133 (2015).

45 Jones, S. E., Tyrrell, J. & Wood, A. R. Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci. *12*, e1006125, doi:10.1371/journal.pgen.1006125 (2016).

46 Lane, J. M. *et al.* Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. *Nature genetics* **49**, 274-281, doi:10.1038/ng.3749 (2017).

47 Nagel, M. *et al.* Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. *Nature Genetics* **50**, 920-927, doi:10.1038/s41588-018-0151-7 (2018).

48 Myung, W. *et al.* Genetic association study of individual symptoms in depression. *Psychiatry Research* **198**, 400-406, doi:<https://doi.org/10.1016/j.psychres.2011.12.037> (2012).

49 Motivala, S. J., Sarfatti, A., Olmos, L. & Irwin, M. R. Inflammatory markers and sleep disturbance in major depression. *Psychosomatic medicine* **67**, 187-194, doi:10.1097/01.psy.0000149259.72488.09 (2005).

50 Lamers, F. *et al.* Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. *Mol Psychiatry* **18**, 692-699, doi:10.1038/mp.2012.144 (2013).

51 Nepon, J., Belik, S.-L., Bolton, J. & Sareen, J. The relationship between anxiety disorders and suicide attempts: findings from the National Epidemiologic Survey on Alcohol and Related Conditions. *Depression and Anxiety* **27**, 791-798, doi:doi:10.1002/da.20674 (2010).

52 Consortium, C.-D. G. o. t. P. G. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. *The Lancet* **381**, 1371-1379 (2013).

53 Lonsdale, J. *et al.* The Genotype-Tissue Expression (GTEx) project. *Nature Genetics* **45**, 580, doi:10.1038/ng.2653
<https://www.nature.com/articles/ng.2653#supplementary-information> (2013).

54 Fromer, M. *et al.* Gene expression elucidates functional impact of polygenic risk for schizophrenia. *Nature Neuroscience* **19**, 1442, doi:10.1038/nn.4399
<https://www.nature.com/articles/nn.4399#supplementary-information> (2016).