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Abstract

Background: Major Depressive Disorder (MDD) is a clinically heterogeneous disorder. Previous
large-scale genetic studies of MDD have explored genetic risk factors of MDD case-control
status or aggregated sums of depressive symptoms, ignoring possible clinical or genetic
heterogeneity.

Aim: In this study, we present the results of symptom-level genetic analyses and compare SNP-
based heritability (42 snp) and genetic correlations across major depression symptoms. We further
investigate genetic correlations with a range of psychiatric disorders and other associated traits.
Methods: We have analysed data from the UK biobank and included 148,752 subjects of white
British ancestry with genotype data who completed nine items of a self-rated measure of
depression: the Patient Health Questionnaire (PHQ-9). Genome-Wide Association analyses were
conducted for nine symptoms and two composite measures. LD score regression analysis was
used to calculate SNP-based heritability (42 snp) and genetic correlations (rg) across symptoms
and to investigate genetic correlations with 25 external phenotypes. Confirmatory factor analyses
were applied to test whether one, two, or three-factor models best fit the pattern of genetic
correlations across the nine symptoms.

Results: We identified 9 novel genome-wide significant genomic loci, with no overlap in loci
across depression symptoms. /4% snpranged from 3% (suicidal ideation) to 11% (fatigue). Genetic
correlations range from 0.54 to 0.96 (all p < 1.39x107%) with 30 of 36 correlations being
significantly smaller than 1. A 3-factor model provided the best fit to the genetic correlation
matrix, with factors representing “psychological”, “neurovegetative”, and “psychomotor /
concentration” symptoms. The genetic correlations with external phenotypes showed large
variation across the nine symptoms.

Discussion: Patterns of 42 sne and genetic correlations differed across the nine symptoms of
depression. Our findings suggest that the large phenotypic heterogeneity observed for MDD is
recapitulated at a genetic level. Future studies should investigate how genetic heterogeneity in

MDD influences the efficacy of clinical interventions.
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3
Introduction

Clinical depression is a markedly complex and debilitating mental disorder characterised
by sad, irritable or empty mood, diminished pleasure, and cognitive and somatic impairment!.
The heritability of major depressive disorder (MDD) is estimated to be ~37% from twin studies?
with common Single Nucleotide Polymorphisms (SNPs) explaining around 9% of the variation
in liability’. MDD has substantial comorbidity with other psychiatric and substance use disorders
and is related to a wide range of personality, socioeconomic, and human traits*. There is
substantial overlap in the genetic risk factors of MDD and other psychiatric disorders?®, including
significant genetic correlations (rg) with schizophrenia (rg= 0.34), bipolar disorder (rg= 0.32),
autism spectrum disorders (rg = 0.44) and ADHD (r¢g = 0.42). MDD has notably high genetic
overlap with anxiety disorders (rg= 0.80) and neuroticism (rg = 0.70), which may reflect the
overlap in diagnostic criteria between the three traits. Initial efforts to identify genetic variants
associated with major depression were unsuccessful, despite successes with other psychiatric
diseases and traits. While a Genome Wide Association Study (GWAS) of schizophrenia (9,394
cases), for example, detected seven genome-wide significant associations °, a mega-analysis of
MDD (9240 cases)® and a meta-analysis of depressive symptoms (N = 34,549)7 found no
significant associations. By 2014, 108 independent genetic loci for schizophrenia had been
identified®, and not a single one for depression. The struggle to identify significant genetic
variants was likely related to low statistical power due to the clinical heterogeneity of MDD,

Depression is a polygenic disorder, influenced by the combination of small effects from
many genetic variants which can only be detected in studies with large sample sizes'?. Due to the
relatively high prevalence of depression (~15% vs. <1% for schizophrenia), power is lower than

for other diseases with similar numbers of cases but lower prevalence!!. Also, depression is less
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4
heritable than other psychiatric disorders (~37% vs. ~80% for schizophrenia'?) and therefore
larger sample sizes are required to obtain similar statistical power to detect significant effects. In
the last two yours, increasing sample size has proved to be effective with the number of genome-
wide significant variants increasing steadily with sample size. Hyde, et al. 13 identified 15
genome-wide significant loci associated with self-reported depression (N = 307,354). Another 17
loci were identified across three broad depression phenotypes (N = 322,580)'4. The largest
GWAS of major depression to date (N = 480,359) identified 44 significant loci®.

These genetic studies ignored possible clinical heterogeneity in MDD, despite clinical
presentations and symptoms of MDD being diverse. The Diagnostic and Statistical Manual of
Mental Disorders 5th edition (DSM-5) defines major depression by the following symptoms: (1)
depressed mood, (2) diminished interest or pleasure in activities (anhedonia), (3) decrease or
increase in weight or appetite, (4) insomnia or hypersomnia, (5) psychomotor agitation or
retardation, (6) fatigue or loss of energy, (7) feelings of worthlessness or excessive or
inappropriate guilt, (8) diminished ability to think or concentrate, or indecisiveness, and (9)
recurrent thoughts of death or recurrent suicidal ideation'. For a diagnosis of MDD five or more
of these symptoms need to be present during a two week period, with at least one symptom being
depressed mood or anhedonia. @stergaard, et al. '¢ highlighted that there are 227 possible
combinations of symptoms meeting DSM-5 criteria, indicating MDD is an extremely
heterogeneous disorder. Further, individual symptoms have been found to differ substantially in
their association with psychosocial impairment, influence from environmental and personality
risk factors, and biological correlates!’. GWASs of depression have typically focused on MDD
case-control status or aggregated sums of depressive symptoms. By combining different

symptoms into a single clinical measure, it is implicitly assumed that individual symptoms of
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5
100  depression are genetically similar. However, the extreme heterogeneity of depression and
101  numerous clinical presentations of the disorder suggest that different biological mechanisms
102  could underlie the diverse subtypes of depression. Supporting this notion, depression symptoms
103 have been found to differ substantially in heritability (h?range, 0 — 35%); with somatic and
104  cognitive symptoms being most heritable!®. Further, the diagnostic criteria of MDD were found
105  to reflect three underlying genetic factors (cognitive / psychomotor symptoms, mood symptoms,
106  and neurovegetative symptoms) rather than a single factor of genetic risk in a twin study'®.
107  Nagel, et al. ?° found substantial genetic heterogeneity in neuroticism, a personality trait with
108  extensive phenotypic and genetic overlap with MDD?!, by conducting genetic analyses on the
109  individual items used to measure neuroticism.
110 To date, it is not known to what extent genetic risk factors overlap in individual
111  symptoms of MDD. The aim of the present study is to examine and assess the extent of genetic
112  heterogeneity in major depression. We conduct genetic analyses on individual symptoms of
113  depression in 148,752 participants within the UK Biobank, as measured by the nine items of the
114  Patient Health Questionnaire (PHQ-9)?2, a depression measure which directly maps onto the
115 DSM-5 criteria. In order to examine genetic heterogeneity in depression we (1) conduct
116  symptom-level GWA analyses and then compare genetic associations and SNP-based heritability
117  across symptoms; (2) calculate phenotypic and genetic correlations across depression symptoms
118  and determine their underlying genetic factor structure; and (3) calculate genetic correlations
119  between individual symptoms and a range of psychiatric disorders and human complex traits.

120
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Methods
UK Biobank Cohort
UK Biobank (UKBB) is a major health data resource containing phenotypic information
on a wide range of health-related measures and characteristics in over 500,000 participants from
the United Kingdom general population?®. Participants were recruited between 2006 and 2010
and provided written informed consent. A total of 157,365 participants completed the PHQ-9, as
part of a UKBB mental health follow-up questionnaire administered online in 2016.
Sample selection
First, participants were included in the present study if they were of white British
ancestry, identified through self-reported ethnicity and genetic principal components.
Participants who self-reported as not white British, but for whom the first two genetic principal
components indicated them to be genetically similar to those of white British ancestry were also
included in order to maximise sample size (these commonly were participants who reported to be
of Irish ancestry). Second, Participants were excluded if they were identified with schizophrenia
and / or other psychotic disorders, bipolar disorder, cyclothymic disorder, or dissociative identity
disorder, based on self-reported symptoms or diagnosis, reported prescription of an antipsychotic
medication, and/or ICD-10 (The International Classification of Diseases, Tenth Revision) codes
from linked hospital admission records. Third, only participants who provided a response for all
nine items of the PHQ-9 were included (list-wise deletion represented a less than 2% reduction
in sample size). This resulted in a final sample size of 148,752 (see Supplementary Figure 13 for

flow diagram of sample selection).
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7
PHQ-9

The PHQ-9 is a commonly used self-administered measure of depression containing nine
items that map directly onto the nine DSM diagnostic criteria for major depression??. Each PHQ-
9 item assesses the frequency of that symptom over the past two weeks, rated on a four-point
ordinal scale: (0) Not at all, (1) Several days, (2) More than half the days, (3) Nearly every day.
(See Supplementary Table 1 for the nine symptoms of major depression, PHQ-9 items, and
DSM-5 diagnostic criteria).

The PHQ-9 is a psychometrically valid and reliable measure of depression®*. Test-retest
reliability was high (» = .84, over a span of 48 hours) and internal consistency was excellent with
Cronbach’s alphas (a) of .89 and .86 in primary care and obstetrics-gynaecology samples,
respectively. The authors also reported good criterion and construct validity. The PHQ-9 was
validated against professional diagnoses of MDD, resulting in 88% sensitivity and 88%
specificity (at a PHQ-9 sum-score of > 10); and scores correlated highly with similar constructs,
such as the 20-item Short-Form General Health Survey (SF-20)?° mental health scale (r = .73).
Internal consistency of the PHQ-9 in the UK Biobank sample in the current study was high
(Cronbach's a = .83).

Depression Item Phenotypes

Each of the nine PHQ-9 items is considered a separate phenotype in the genetic analyses.
The ordinal scale of measurement of these items complicates interpretation of the SNP-based
heritability estimates (amount of phenotypic variance in the item explained by SNPs). SNP-
based heritability is an important concept in genetics, essential to understanding the magnitude of
the genetic influence on a particular trait®®. To enable a direct comparison across each of the

PHQ-9 items, each ordinal phenotype was transformed to a binary phenotype for heritability
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165  estimation. The nine items were dichotomised such that an item was considered to be endorsed if
166 the item score was one or greater (several days, more than half the days, or nearly every day),
167  and not endorsed if the score was zero (not at all). A cut-off score of one was used in order to
168 maximise the number of subjects who endorsed an item and hence statistical power, a strategy
169 that has provided greater benefit in GWASs of depression over ensuring a seamless
170  phenotype®!'!14?7, In addition to the nine ordinal items and nine binary items, a sum-score (sum
171  of all ordinal item scores; ranging from 0 to 27) and binary sum-score (number of binary items
172  endorsed; ranging from 0 to 9) were included as phenotypes. We will present the results from the
173  binary items and the two sum-scores while results for ordinal items are provided in
174  supplementary.
175 Genome-Wide Association Analyses
176 A total of 20 GWA analyses were conducted (nine ordinal scale depression items, nine
177  binary items, plus the sum-score and binary sum-score phenotypes) using BOLT-LMM?8,
178  Associations between SNPs and a phenotype are tested using a linear mixed model in order to
179  correct for population structure and cryptic relatedness. While BOLT-LMM is based on a
180  quantitative trait model, it can be used to analyse binary traits by treating them as continuous and
181  applying a transformation. Ordinal items are treated as continuous. An issue when analysing
182  binary traits in BOLT-LMM is the inflated type 1 error rates for rare SNPs when the number of
183  cases and controls are very unbalanced?. In practice, all of the traits we consider here have a
184  case proportion which is large enough (3%) for this not to be a problem?°.
185 Analyses were limited to autosomal SNPs with high imputation quality score (INFO
186  score > 0.80) and a minor allele frequency of 1% or higher, resulting in 9,413,637 SNPs being

187  tested for association. Sex and age were included as covariates. GWAS results were annotated
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using the FUMA GWAS platform?®!. The conventional genome-wide significance threshold of

p <5x107% was applied. Due to the exploratory nature of the analyses and the high correlation

between the 20 phenotypes, we decided not to correct for multiple testing of the 20 phenotypes

as this would lead to increased type-II error rate and reduced power.

Significant SNPs were clumped into blocks high in linkage disequilibrium (the non-
random association of alleles at a specific locus; LD) using a threshold of r> < 0.10 (correlation
between allele frequencies of two SNPs; as calculated by PLINK). Independent significant SNPs
were defined as the SNP with the lowest p-value within an LD block. Genomic risk loci (distinct,
fixed positions on a chromosome) were identified by merging independent SNPs if r>> 0.10 and
their LD blocks are physically close to each other at a distance of 1,000 kb.

LDSC analyses

Estimates of the variance in each phenotype attributable to the additive effects of all
SNPs (SNP-based heritability; h? sne) were calculated via single-trait LD Score Regression using
GWAS summary statistics from our analyses* (see Supplementary methods). In order to
interpret h? snp for binary items estimates are converted to a normally distributed liability scale,
because liability scale heritability is independent of prevalence and can be compared across
different phenotypes and populations®. The population prevalence of PHQ-9 items was
estimated from our UK Biobank sample (population prevalence = sample prevalence; see Table
1). We applied a Bonferroni corrected significance threshold for the 11 h? snp estimates (p <
4.55%1073).

Cross-trait LD Score Regression®*

was used to estimate genetic correlations (rg) between
each of the nine binary items. We applied a Bonferroni corrected significance threshold for these

36 rg tests (p < 1.39x1073). Additionally, we also calculated pairwise genetic correlations
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211  between our phenotypes (9 depression items and sum-scores) and 25 other psychiatric, substance
212 use, socioeconomic and human traits with publicly available GWAS summary statistics (see
213  Supplementary Table 2). Multiple testing was corrected for by adjusting p values based on false
214  discovery rate (FDR) across all tests.
215  Hierarchical Cluster Analysis
216 A hierarchical cluster analysis was conducted to examine the underlying genetic structure
217  between depression items. Implemented in the helust function in R, items are grouped into
218  similar clusters based on a measure of dissimilarity between each pair of items and the results are
219  presented in a cluster dendrogram. Dissimilarity was defined as one minus the genetic correlation
220 (1 -ry).
221  Confirmatory Factor Analyses
222 Confirmatory factor analyses (CFA) were conducted based on genetic covariances
223  between items, in order to quantitatively assess the genetic factor structure of the PHQ-9
224 identified in the cluster analysis. The fit of a one-factor baseline model and two and three-factor
225 models identified in the cluster analysis were compared.
226 x? likelihood ratio tests are very sensitive to large samples and often produce spurious
227  positive results®®. Given the very large sample size in the present study, model fit was evaluated
228  with a range of alternative fit indices. These indices (and their commonly used thresholds for
229  acceptable model fit) include: NFI (> .95), AGFI (>.95), RMSEA (< .06), and SRMR (< .06)*".
230  Models were compared using AIC and BIC indices, which take into account both model fit and
231  complexity. The most parsimonious model is the model with the lowest AIC and BIC values.

232
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233 Results
234  Descriptive Statistics
235 The final sample (N = 148,752) was 56% female, ranging in age from 38 to 72 years old

236 (M =55.93,SD =17.73). The distribution of responses to all PHQ-9 items (on the ordinal scale)
237  are displayed in Supplementary Table 3. The distribution of item scores varied considerably

238  across items; sleep problems and fatigue had the highest endorsement rates while suicidal

239  ideation and psychomotor changes had the lowest rates. Sum-scores ranged from 0 to 27, with a
240  mean of 2.71 (SD = 3.61). Endorsement rates of binary depression items are shown in Table 1.
241  The number of symptoms endorsed ranged from zero to nine, with a mean of 2.02 (SD = 2.20).
242  GWA Analyses

243 Genome-wide association analyses of the 9 binary depression items plus sum-score

244 phenotypes identified a total of 326 genome-wide significant SNPs (p < 5x107®), tagged by 13
245  independent SNPs. Two lead SNPs were significant in more than one phenotype, such that across
246  all phenotypes there are 11 unique, independent genome-wide significant SNPs. These SNPs

247  mapped onto nine genomic risk loci (see Table 2 for results, Supplementary Figures 1-10 for QQ
248  plots and Manhattan plots of all phenotypes; and Supplementary Table 4 for the ordinal item

249  GWAS results).

250  Heritability Estimates

251 Estimates of the proportion of phenotypic variance in each item attributable to the

252  additive effects of all SNPs (SNP-based heritability; h? snp) varied considerably across the nine
253 items (see Figure 1 and Supplementary Table 5). All estimates were significant after Bonferroni
254 correction (p < 4.55x107%). The amount of variance explained by common SNPs ranged from 3%

255  of variance in suicidal ideation up to 11% of the variance in fatigue (mean h? snp across the nine
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256  depression items was 7%). h? snp estimates for the sum-score and no. symptoms phenotypes were
257 6% and 7%, respectively.
258 Inter-item Phenotypic and Genetic Correlations
259 Spearman correlations between all pairs of PHQ-9 depression items showed that all items
260  were positively correlated with each other phenotypically and remained significant after
261  Bonferroni correction for 36 tests (p < 1.39x1073). Coefficients ranged from .19 to .69, with the
262  strongest association between anhedonia and depressed mood, the two core symptoms of MDD
263  (see Figure 2).
264 Summary statistics from the GWASs of the nine binary items were used to calculate
265  genetic correlations (rg) between items. All correlations were significant after correcting for
266  multiple testing (p < 1.39x1073) and were in the same direction (see Figure 2). Estimated r¢’s
267  ranged from .54 (suicidal ideation / psychomotor changes; s.e = .15) to .96 (psychomotor
268  changes / concentration problems; s.e = .11), with a mean rgof .77. Thirty out of the 36 genetic
269  correlations were significantly less than one (95% CI did not include one), indicating substantial
270  genetic heterogeneity across the PHQ-9 items (partly unique genetic risk factors contribute to the
271  majority of pairs of depressive symptoms; see Figure 2 and Supplementary Table 6). Some of the
272  genetic correlations that were not significantly different from 1 were relatively low, but have
273  large standard errors which explains their overlap with 1.
274 A very similar pattern of genetic correlations emerged for the ordinal items (rg range: .55
275  t0.96), such that the Pearson correlation between the set of binary item rg’s and ordinal item r¢’s

276  was high, »=.90, p <.001 (see Supplementary Figure 11).
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The Pearson correlation between the genetic correlations and phenotypic correlations was
moderate, » = .48, p = .003, suggesting phenotypic correlations do not map one to one with
genetic correlations (see Supplementary Figure 12).
Genetic Clustering Analysis

A hierarchical clustering analysis based on genetic covariance between the nine
depression items revealed two main genetic clusters: the first cluster including anhedonia,
depressed mood, suicidal ideation, and low self-esteem (psychological symptoms); and the
second cluster including psychomotor changes, concentration problems, fatigue, appetite change,
and sleep problems (somatic symptoms; see Figure 3). Further exploration of the cluster
dendrogram suggests the somatic symptoms cluster could again be split into two clusters:
“neurovegetative” symptoms (fatigue, appetite change, and sleep problems); and “psychomotor /
concentration” symptoms.
Confirmatory Factor Analyses

CFA of the genetic factor structure found that all three models provided good fit to the
data (see Supplementary Table 7). Comparison of models based on AIC and BIC values found
that the three-factor model was the most parsimonious model compared to the one-factor model
and the two-factor model (substantially lower AIC and BIC values). These results suggest the
PHQ-9 is reflected genetically by three factors, comprising “psychological”, “neurovegetative”,
and “psychomotor / concentration” symptoms.
Genetic Correlations with External Traits

Genetic correlations of the nine depression items, sum-score and binary sum-score with

25 other psychiatric, substance use, socioeconomic and human traits are displayed in Figure 4.
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Correlations significant after correcting for false discovery rate (FDR) are indicated by non-
white squares (see Supplementary Table 8).

Individual depression items correlated as expected with closely related traits, supporting
the validity of the individual symptom phenotypes in the present study. For example, appetite
change had a substantially stronger positive genetic correlation with body mass index (g =.61)
than the other eight depression symptoms (7¢’s range between .10 to .29); and sleep problems
had a strong, positive correlation with insomnia (rg=.71). All symptoms were negatively
correlated with subjective well-being (7g range = -.54 to -.91), with suicidal ideation having the
strongest association. Furthermore, all items positively correlated (and showed a similar pattern)
with the other MDD and overall depression phenotypes.

Genetic overlap with other psychiatric disorders and traits differed substantially across
depression symptoms, such as with anxiety disorders (rg range = .50 to .93), neuroticism (rg
range = .49 to .85), schizophrenia (rg range = .09 to .32), and insomnia (7¢ range = .31 to .71).
Furthermore, bipolar disorder was significantly correlated with 4 out of 9 depression items only
(sleep problems, low self-esteem, concentration problems, and psychomotor changes). Anorexia
nervosa overlapped with just three items, with genetic correlations even being in different

directions (low self-esteem rg= .28, psychomotor changes rg= .27, and appetite change rg= -.26).


https://doi.org/10.1101/528067
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/528067; this version posted January 23, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

aCC-BY-NC-ND 4.0 International license.
15
Discussion
In the present study, we investigated genetic heterogeneity in major depression by
conducting genetic analyses on individual symptoms of MDD in 148,752 participants from the
UK Biobank. We identified nine genomic risk loci across the nine MDD symptoms and sum-
score phenotypes, all have not been associated with major depression in previous
GWASs>7:13.1427.3843 "OQur results revealed substantial genetic heterogeneity in depression
symptoms with no overlap in significant loci across PHQ items. Though we acknowledge that
the lack of overlap may be due to low statistical power to detect all true associations, we
highlight some notable examples where a specific symptom of depression is linked to a gene that
was previously found to be associated with a strongly related phenotype. For the item “sleep
problems”, we found SNPs that implicate PAXS8 (based on proximity), a transcription factor
related to thyroid follicular cell development and expression of thyroid-specific genes,
replicating previous studies linking this gene to sleep duration**-6. In addition, SNPs associated
with “depressed mood” influenced the expression of KLHDCSB (protein coding gene involved in
cytokinesis). This gene has been previously linked to depressed affect, a sub-cluster of
neuroticism that is strongly related to depression*’. Neither of these genes were implicated in the
largest GWASs of overall depression®!4, illustrating the importance of exploring genetic
associations for specific symptoms of depression.
SNP-based heritability analyses revealed that individual depression symptoms were
differentially heritable (h? sne ranging from 3 to 11%), suggesting that depression symptoms
differ in their relative proportions of common SNP contributions. Notably, items within the

“neurovegetative” symptom cluster were most highly heritable, consistent with a previous report
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that found somatic symptoms (such as sleep problems and appetite changes) to have a stronger
heritable basis '8,

Genetic correlations between depression symptoms ranged from moderate (7 < .60) to
high (7> .90), suggesting that while some symptoms have high genetic overlap, a substantial
amount of genetic variation is not shared between symptoms. This indicates extensive genetic
heterogeneity in major depression, in line with the finding that depression represents multiple
dimensions of genetic risk'® and previous associations between individual symptoms and specific
polymorphisms*®,

The underlying genetic structure between symptoms was best explained by three genetic
clusters. This suggests there are risk factors specific to clusters which could indicate underlying
biology specific to either “neurovegetative”, “psychological” or “psychomotor / concentration”
symptoms of depression. This is consistent with symptoms differing in their biological
correlates, with neurovegetative symptoms such as weight gain, increased appetite, and sleep
problems being associated with higher levels of inflammation markers*>->?. These clusters were
not in full agreement with the three genetic factors found by Kendler, et al. ' based on an
analysis of twin data. As an example, in the Kendler study, suicidal ideation loaded onto the
same factor as psychomotor changes and concentration problems, while we find that suicidal
ideation clusters with symptoms of depressed mood, anhedonia, and low self-esteem that
together form a “psychological symptoms™ factor. However results are not easily comparable
given that they derived factors from a twin study (and therefore captured rare genetic variants as
well as common SNPs), used a subset of eight symptoms (appetite changes did not load onto any

factor), and symptom phenotypes came from structured clinical interview rather than a self-

report measure such as the PHQ-9.
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Results from genetic correlations between items and a range of external traits lead us to
note three general observations. First, genetic correlations with external traits differed
substantially between symptoms providing evidence for genetic heterogeneity in major
depression. In agreement with previous findings for major depression®!4, all symptoms
overlapped with anxiety, schizophrenia, ADHD, insomnia, neuroticism, and subjective well-
being, however the proportion of overlap varied considerably across symptoms. For example,
anxiety disorders had a substantially higher genetic correlation with “suicidal ideation” than the
other items. This supports a strong phenotypic association, with over 70% of people with a
history of suicide attempt having an anxiety disorder, compared to ~33% in the general
population®!. Second, some traits (such as bipolar disorder, cannabis lifetime use, cigarettes per
day, and intelligence) were genetically correlated with a subset of items only. Bipolar disorder
for example, was genetically correlated with only four items (low self-esteem, concentration,
psychomotor changes, and sleep problems), suggesting that the moderate genetic overlap
between bipolar and major depression’? is predominately driven by these selected symptoms.
This highlights how insight into the genetic architecture between traits can be gained from
conducting symptom-level analyses. Third, we found traits that were genetically correlated with
individual items, but not with the sum-score phenotypes. Anorexia nervosa did not overlap with
aggregate measures of depression symptoms as operationalized in the sum-score phenotypes, in
agreement with Howard, et al. '* who similarly found no genetic overlap between anorexia and
their three overall depression phenotypes. Yet, anorexia nervosa was genetically correlated with
appetite change, low self-esteem, and psychomotor changes. Interestingly, the overlap with

appetite change was in the opposite direction compared to the other two items. This finding
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384  emphasises the importance of analysing individual symptoms of a disorder, as important
385 information is ignored by relying on sum-scores or overall phenotypes.
386  Limitations
387 The findings and conclusions of this study should be interpreted in view of some key
388  limitations. First, despite having the largest sample available to date, the current study is still
389  underpowered to detect significant SNPs. Given the relatively high prevalence and phenotypic
390  heterogeneity of depression, much larger sample sizes are needed compared to other psychiatric
391  disorders''. To not reduce power further we did not correct for multiple testing (of 11 GWA
392  analyses) and hence our GWAS results require independent replication. Second, depression items
393  were analysed in isolation, regardless of the overall MDD status of the participant. For example,
394  aparticipant could strongly endorse the symptom fatigue, yet have no other signs of depression
395  and hence the endorsement of fatigue is unrelated to major depression. Nevertheless, it is
396  possible that fatigue, regardless of the context it occurs in, possesses the same underlying genetic
397  Dbasis. Third, we used a PHQ-9 cut-off score of 1 to dichotomise items in order to maximise the
398  number of cases and improve statistical power. A PHQ-9 item score of one does not meet the
399  diagnostic criteria for endorsement, hence the phenotypes may represent a predisposition to
400 rather than full endorsement of the particular symptom. Fourth, our results may be affected by
401  ascertainment bias due to healthy volunteerism within the UKBB. As such our sample could
402  represent a truncated version of the population’s genetic distribution for symptoms (people on far
403  end of liability scale may be less likely to participate), hence resulting in reduced number of

404  cases for some symptoms or reduced variation between cases and controls.
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405 Implications
406 The recent success in the discovery of genetic variants associated with depression has
407  been driven by ever increasing sample sizes, an approach that has been favoured over reducing
408  phenotypic heterogeneity. Consequently, GWASs have been conducted on a diverse range of
409  depression-related phenotypes that often include a small subset of symptoms, generally with the
410  view that the increase in sample size can overcome the lack of clinical precision. While this has
411  indeed been proven to be effective at increasing the number of significant variants identified, our
412  finding of symptom-level genetic heterogeneity raises questions about this approach. Using
413  broad diagnostic phenotypes ignores the unique genetic factors associated with specific
414  symptoms of depression that would likely provide useful information to further unravel the
415  genetic architecture of MDD. Further, our finding of genetic heterogeneity across MDD
416  symptoms implicates that patients with MDD show variation in disease pathogenesis. This
417  variation may be linked to response to clinical interventions, such that patients presenting with
418  specific symptom patterns (e.g., characterized primarily by neurovegetative symptoms) may be
419  expected to respond differently.
420  Conclusion
421 Our results provide convincing evidence that major depression is a genetically
422  heterogeneous disorder, and highlight the utility of analysing the genetics of individual items or
423  symptoms of a psychiatric disorder. Insights into the genetic aetiology and underlying biology of
424 MDD will be maximised by combining large-scale genetic studies of broad clinical definitions

425  with follow-up studies of more refined phenotypic measures of specific diagnostic subtypes.
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Table and Figure legends

Table 1: Sample sizes and prevalence of all binary PHQ-9 items.
Table 2: GWAS Results for binary PHQ-9 items and sum-score phenotypes.

Figure 1. SNP-based heritability estimates and 95% confidence intervals (95% CI) for the nine

depression items and sum-score phenotypes.
Figure 2. Inter-item genetic and phenotypic correlations.
Figure 3. Cluster dendrogram of inter-item genetic correlations.

Figure 4. Genetic correlations between PHQ-9 items and a range of other complex traits
(psychiatric, substance use, and socioeconomic phenotypes) based on publicly available

summary statistics.
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Tables

Table 1: Sample sizes and prevalence rates of all binary PHQ-9 items.

Item N N not Prevalence
endorsed endorsed %

Anhedonia 27,288 121,464 18.3
Depressed mood 32,263 116,489 21.7
Sleep problems 72,302 76,450 48.6
Fatigue 73,924 74,828 49.7
Appetite changes 26,757 121,995 18.0
Low self-esteem 28,206 120,546 19.0
Concentration problems 26,229 122,523 17.6
Psychomotor changes 7,914 140,838 5.3

Suicidal ideation 6,064 142,688 4.1
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Table 2: GWAS Results for binary PHQ-9 items and sum-score phenotypes

Gen.
locus
1

© 0O N o o

SNP id

rs2279681

rs62158169
rs137997194
rs143756010
rs12492113

rs13127129
rs7073667
rs140920627
rs840161
rs2335859

Chr

w W w N

10
11
12
19

BP

201861016

114081827
48824937
49312248
50521402

30501860
107809043
41577268
57323523
7871837

Al

O

DO O > 0

= > O 4 >

A2

> 4 o -

® o >» 00

Freq
Al
0.657

0.784
0.955
0.956
0.875

0.499
0.452
0.988
0.366
0.602

Phenotype

Sum-score
Binary sum-score
Sleep problems
Depressed mood
Binary sum-score
Binary sum-score
Sum-score
Appetite changes

Sleep problems
Sleep problems
Anhedonia
Binary sum-score

Anhedonia

0.093
0.023
0.015
-0.023
-0.053
-0.037
-0.124
-0.013

0.010
0.010
-0.037
-0.021
-0.009

SE

0.014
0.004
0.002
0.004
0.009
0.006
0.020
0.002

0.002
0.002
0.007
0.004
0.001

p-value

5.60E-11
8.60E-09
1.40E-10
7.70E-10
7.40E-09
1.20E-10
1.30E-09
8.80E-09

4.90E-08
4.30E-08
3.70E-08
3.90E-08
9.80E-09

NSNPs

25

22
15
15
114
76
28

12

10

nearest gene

SHISA4
SHISA4
PAX8
PRKAR2A
C3orf62
CACNA2D2
CACNA2D?2
CACNA2D2

PCDH7
RP11-298H24.1
RP11-124G5.3
SDROC7
EXOSC3P2

22

eQTL genes

SHISA4, LMOD1

FOXD4L1, CBWD2
AMT, KLHDC8B
AMT, NICN1, RNF123

C30rf18, CACNA2D?2,
CYB561D2, DOCKS3,
HEMK1, HYALL,
LSMEM2, RBMG,
MANF, MAPKAPK3

Note: Table displays SNPs significant at p <5x10® and independent at r> < 0.10. Genomic risk loci (Gen. locus) are defined by r? <
0.10, window size 1,000kb. Chromosome (Chr), location in base pairs (BP) on Hg19, effect allele (A1), allele 2 (A2), frequency of
effect allele (Freq A1), effect size beta ( ), standard error of beta (SE), p-value, and number of SNPs clumped under lead SNP

(nSNPs) are shown. Proximity (nearest gene) and eQTL (eQTL genes) mapping results are given. eQTL mapping limited to significant
(FDR < .05) cis-eQTLs from GTEx v7°? and the CommonMind Consortium (CMC)>**. SNP rs137997194 and rs143756010 are tagging

the same signal, but was the SNP with lowest p-value in “depressed mood” and “binary sum-score”, respectively.
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Figures

Figure 1. SNP-based heritability estimates and 95% confidence intervals (95% CI) for the nine

depression items and sum-score phenotypes.

Anhedonia

Depressed mood

Sleep problems

Fatigue

Appetite change

Low self-esteem
Concentration problems
Psychomotor changes

Suicidal ideation

Sum-score —)—
Binary sum-score —_—
0.02 0.04 0.06 0.08 0.10 012

SNP-Heritability (95% CI)

Note: heritability estimated via single-trait LD Score Regression. The dotted line indicates the
SNP-based heritability of major depression (h? snp= ~0.09)3. All estimates are significant after
multiple testing correction (p < 4.55x1073).
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Figure 2. Inter-item genetic and phenotypic correlations.

Anhedonia
Depressed mood (.69
Sleep problems 0.33

Fatigue 0.45

Appetite change 0.41 0.38 0.33 0.41

- 0.4

Low self-esteem 0.48 0.55 0.29 0.36 0.37

Concentration problems 0.46 0.44 0.33 0.4 0.38 0.42

Psychomotor changes 0.3 0.29 0.24 0.26 0.27 0.35 0.54

Suicidal ideation 0.34 0.36 ... 0.37 0.28 0.25

Note: Genetic correlations (rg) above diagonal and phenotypic correlations (rs) below diagonal.
Genetic correlations estimated using cross-trait LD Score Regression. All correlations are
significant at p < 1.39x1073. Black squares indicate correlation is not significantly different from

one (95% CI includes 1).
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Figure 3. Cluster dendrogram of inter-item genetic correlations.
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Note: distance is a measure of dissimilarity, defined as one minus the genetic correlation (1 - rg).
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Figure 4. Genetic correlations between PHQ-9 items and a range of other complex traits
(psychiatric, substance use, and socioeconomic phenotypes) based on publicly available

summary statistics.
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