

1 **Cryo-EM structures reveal interactions of S-OPA1 with**
2 **membrane and changes upon nucleotide binding**

3

4 Danyang Zhang^{1, 2, *}, Yan Zhang^{1, *}, Jun Ma^{1, 2}, Tongxin Niu³, Wenbo Chen^{1, 2},
5 Xiaoyun Pang¹, Yujia Zhai¹, Fei Sun^{1, 2, 3, &}

6

7 ¹ National Key Laboratory of Biomacromolecules, CAS Center for Excellence in
8 Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences,
9 Beijing 100101, China.

10 ² University of Chinese Academy of Sciences, Beijing, China;

11 ³ Center for Biological Imaging, Institute of Biophysics, Chinese Academy of
12 Sciences, Beijing 100101, China;

13

14

15 * These authors made equal contributions to the work.

16 & Correspondence should be addressed to F.S. (feisun@ibp.ac.cn).

17

18

1 ABSTRACT

2 Mammalian mitochondrial inner membrane fusion is mediated by OPA1(optic
3 atrophy 1). Under physiological condition, OPA1 undergoes proteolytic
4 processing to form a membrane-anchored long isoform (L-OPA1) and a soluble
5 short isoform (S-OPA1). A combination of L-OPA1 and S-OPA1 are required for
6 membrane fusion, however, the relevant mechanism is not well understood. In
7 this study, we investigate the cryo-EM structures of S-OPA1 coated liposome at
8 nucleotide-free and GTP γ S bound states. S-OPA1 exhibits a general structure of
9 dynamin family. It can assemble onto membrane in a helical array with a building
10 block of dimer and thus induce membrane tubulation. A predicted amphipathic
11 helix is discovered to mediate the tubulation activity of S-OPA1. The binding of
12 GTP γ S triggers a conformational rotation between GTPase domain and stalk
13 region, resulting the rearrangement of helical lattice and tube expansion. This
14 observation is opposite to the behavior of other dynamin proteins, suggesting a
15 unique role of S-OPA1 in the fusion of mitochondrial inner membrane.

16 KEYWORDS

17 Cryo-electron microscopy; Conformational change; Mitochondrial fusion;
18 Membrane tubulation; OPA1.

19 SIGNIFICANCE STATEMENT

20 Mitochondria are highly dynamic cellular organelles that constitute a
21 remarkably dynamic network. Such dynamic network is vital to keep homeostasis
22 of cellular metabolism and it is balanced by fission and fusion events. Having the
23 double membrane, the fusion of mitochondria becomes more complicated in
24 comparison with other cellular mono-membrane organelles. The inner membrane
25 fusion is driven by OPA1 that needs to be pre-processed to long and short forms
26 while the molecular mechanism is largely unknown. This work well characterizes
27 the biochemical property of the short form of OPA1, and reveals how it interacts
28 with membrane and how its conformation responds to nucleotide binding. This
29 work gives a further insight into mitochondrial inner membrane fusion
30 mechanism .

1 INTRODUCTION

2 In eukaryotic cells, series of discrete membranous compartments separate
3 different biochemical reactions, and the membrane fission and fusion
4 mechanisms accomplish the communication between and within these
5 compartments (McNew et al., 2013). A family of large GTPases called dynamins
6 plays pivotal roles in the fission and fusion process (Praefcke and McMahon,
7 2004). Mitochondria are highly dynamic organelles and their remarkably dynamic
8 networks are also regulated by large GTPases dependent fission and fusion of
9 outer and inner membranes (Labbe et al., 2014; van der Bliek et al., 2013;
10 Westermann, 2010). The GTPase OPA1 (optic atrophy 1), a member of dynamin
11 protein family, is known related to mitochondrial inner membrane fusion (Anand
12 et al., 2014; Frezza et al., 2006; MacVicar and Langer, 2016).

13 OPA1 composes an N-terminal mitochondrial targeting sequence (MTS), a
14 following transmembrane domain (TM), a coiled coil domain, a highly conserved
15 GTPase domain, a middle domain and a C-terminal GTPase effector domain
16 (GED), and it has eight different spliced variations at the region between the TM
17 and coiled coil domain (Belenguer and Pellegrini, 2013; Olichon et al., 2007) (see
18 also **Figure 1A**). The GTPase domain, middle domain and GED are classical
19 dynamin regions. After imported into mitochondria, the MTS is proteolytically
20 processed to form a membrane anchored long form L-OPA1, and the L-OPA1
21 can be further cleaved into a short form S-OPA1 through the S1 or S2 site
22 between the TM and coiled coil domain (Naotada Ishihara et al., 2006; Song et
23 al., 2007). Both the long and short form of OPA1 participate in mitochondria inner
24 membrane fusion, however it remains open about the specific role of S-OPA1
25 during the fusion procedure (Anand et al., 2014; Ban et al., 2017; Del Dotto et al.,
26 2017).

27 Efforts to recapitulate the fusion mechanism in vitro using FRET suggested
28 that L-OPA1 alone on either side of membrane can promote fusion with a proper
29 concentration of cardiolipin in the opposite membrane (Ban et al., 2017). The S-
30 OPA1, on the other hand, bridges the opposite membrane probably via

1 interactions with both L-OPA1 and cardiolipin and assists the L-OPA1-dependent
2 fusion with the needs of GTP hydrolysis (Ban et al., 2017). Studies on Mgm1, the
3 yeast homolog of OPA1, have drawn a similar conclusion in which its long form L-
4 Mgm1 acts as a fusion-prone protein with its GTPase activity inhibited and its
5 short form S-Mgm1 drives fusion procedure through GTP hydrolysis (DeVay et
6 al., 2009; Zick et al., 2009). Another study of S-OPA1 confirms its tubulation
7 activity with cardiolipin containing liposomes by negative staining electron
8 microscopy (Ban et al., 2010). These studies speculate a GTPase dependent
9 auxiliary function of S-OPA1 while membrane fusion, however, there are also
10 other reports supporting the fission favorable function of S-OPA1 (Anand et al.,
11 2014).

12 To further understand the role of S-OPA1 in mitochondrial inner membrane
13 fusion, here we substantially studied the biochemical property of S-OPA1 and
14 utilized cryo-electron microscopy to solve the structures of S-OPA1 coated
15 liposome in a nucleotide-free state and a GTPyS binding state. Our studies imply
16 a distinctive role of S-OPA1 in mitochondrial inner membrane fusion.

17

18 **RESULTS**

19 **S-OPA1 can induce tubulation of cardiolipin containing liposome**

20 We expressed the short isoform of splice form 1 human OPA1 (S-OPA1, see
21 **Figure 1A**) in bacteria and purified into homogeneity (**Figure 1B**). Gel-filtration
22 and chemical cross-linking experiments indicate a dimerization form of S-OPA1
23 (**Figure 1C; see also Figures S1A and S1B**). The GTP hydrolysis activity of S-
24 OPA1 is weak but significantly enhanced ~70 fold (Kcat) with the existence of
25 liposome (**Figure 1D and Table S1**). The liposome was prepared with a
26 phospholipid composition of 45% DOPC (1,2-dioleoyl-sn-glycero-3-
27 phosphocholine), 22% DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine),
28 8% PI (phosphatidylinositol) and 25% CL (cardiolipin), which approximates the
29 composition of mitochondrial inner membrane (Ban et al., 2010). By examining
30 the mixture of S-OPA1 with liposome using both negative electron microscopy

1 (nsEM) and cryo-electron microscopy (cryo-EM), we found significant tubulation
2 of liposome induced by S-OPA1 (**Figures 1E and 1F**). However, we found the
3 tubes are varied with the diameters and diffraction patterns, suggesting the
4 membrane coated S-OPA1 did not form a unique helical lattice.

5 To optimize the homogeneity of the sample, we cloned and expressed a
6 truncation form of S-OPA1 (S-OPA1-Δ196-252, see **Figure 1A and 1B**) by
7 deleting its N-terminal residues from 196 to 252 because this region was reported
8 responsible for the dimerization of S-OPA1 in solution (Akepati et al., 2008).
9 Compared to the wild type, the truncation form behaves as a monomer in gel-
10 filtration (**Figure 1C and S1B**) and its basal GTP hydrolysis activity is lower but
11 can be stimulated about two orders with the existence of liposome (**Figure 1D**
12 and **Table S1**). In addition, the truncation form can induce homogeneous tubes
13 with smaller diameter (**Figures 1E and 1F**). If not specially mentioned, all the
14 subsequent cryo-EM structural studies were performed using this truncation form
15 S-OPA1-Δ196-252. However, all the subsequent biochemical and biophysical
16 assays were performed using the wild type full length S-OPA1.

17 **Helical structure of S-OPA1 coated liposomal tube in a nucleotide-free state**

18 To characterize the structure of nucleotide-free S-OPA1 coated liposomal
19 tube, we collected a cryo-EM dataset of S-OPA1 coated tubes and classified the
20 boxed tubes via the diameters and diffraction patterns (**Figures S1C and S1D**). A
21 selected class of tubes with the average diameter of 53 nm were segmented and
22 further reconstructed by the iterative helical real-space reconstruction (IHRSSR)
23 algorithm (Egelman, 2000, 2007) (**Figure S1E and S1F**). This approach finally
24 generated a six-start left-handed helical map at a resolution of ~ 14 Å. The map
25 has an inner diameter of 23 nm, an outer diameter of 53 nm, 17.3 units per turn
26 and a pitch of 465.6 Å (**Figures 2A, 2B and Movie S1**).

27 Similar to the dynamin 1 (Dyn1) coated tube (Chappie et al., 2011;
28 Sundborger et al., 2014), the S-OPA1 coated tube can be generally divided into
29 three regions along its radial direction, an inner density fused with the outer
30 leaflet of lipid bilayer, a middle density packing compactly, and an outer globular

1 density (**Figures 2C and 2D**). Thus we name the inner, middle, and outer density
2 as leg, stalk and head respectively in consistence with the nomenclature of Dyn1
3 coated tube (Chappie et al., 2011).

4 To be noted, since we could not determine the handedness of S-OPA1
5 coated tube at the current resolution from helical reconstruction, we further
6 performed cryo-electron tomography (cryo-ET) combined with sub-volume
7 averaging (SVA) to determine the structure of S-OPA1 coated tube (The
8 handedness of this procedure has been pre-calibrated). The final averaged cryo-
9 ET map shows a consistent architecture (**Figure 2E and S2A**) and corrects the
10 handedness of the helical reconstruction (**Figure 2**). We also determined the
11 structure of full length S-OPA1 coated tube by using the same tomographic
12 procedure (**Figure S2B**), showing the same architecture with the truncation form.
13 Thus, our observation of the helical lattice of S-OPA1 bound to membrane is not
14 an artifact from the truncation of the coiled coil domain.

15 **Domain organization of S-OPA1 and membrane binding sites**

16 Dynamin proteins have similar domain architecture (**Figure 1A and 3A**), and
17 structure predictions by Phyre2 (Kelley et al., 2015) and I-TASSER (Roy et al.,
18 2010; Yang et al., 2015; Zhang, 2008) showed that S-OPA1 has a classic Dyn1-
19 like general structure (**Figure S1G**). Since S-OPA1 shares the highest degree of
20 sequence conservation (19.8% identical and 35.0% similar) with Dyn1, we used
21 the crystal structure of human Dyn1 (PDB ID 3SNH) (Faelber et al., 2011) to dock
22 into the cryo-EM map. Considering potential relevant conformational changes
23 among different domains, we separated the crystal structure of Dyn1 into three
24 parts, the G/BSE region, the middle/GED stalk, and the PH domain (**Figure 3A**).

25 The G/BSE region can be well fitted into the head layer and the linker density
26 that connects the head and stalk layers (**Figures 3B, 3D and 3E**). The good
27 fitness suggests S-OPA1 has a similar structural component of G domain
28 (GTPase domain) and BSE three-helix bundle with Dyn1. Since the G domains of
29 dynamin proteins need to dimerize to activate the GTPase activity (Chappie et
30 al., 2010; Raphael Gasper et al., 2009), we also investigated whether the G

1 domains of S-OPA1 are dimerized in the present cryo-EM density. However, the
2 attempts to dock the crystal structure of dimerized G domains GG_{GDP,AlF4-} (PDB
3 ID 2X2E) (Chappie et al., 2010) failed (**Figure S3A**). And the dimerization
4 interfaces of the proximal G domains in the present packing are separated with
5 about 30 angstroms (**Figure 3C, 1**), suggesting a further conformational change
6 is needed in the subsequent nucleotide binding to enable the activity of GTP
7 hydrolysis.

8 The middle/GED stalk structure can be well docked into the stick-like density
9 of the middle/stalk layer of the map (**Figures 3B, 3C and 3D**). However, the stalk
10 layer of S-OPA1 may have a slightly different conformation compared to the
11 middle/GED stalk structure of Dyn1 as its distal tip stretches into the inner layer
12 and directly interacts with the membrane (**Figures 3D, 3E and S3B**). The whole
13 stalk region of the S-OPA1 array shows a compact packing with two interaction
14 interfaces, the bundle-to-bundle interface and the tip-to-tip one (**Figure 3C, 2**).
15 Such compact packing suggests a pivotal role of stalk interactions of S-OPA1 in
16 maintaining the structural stability of the protein-lipid complex.

17 The leg density of the S-OPA1 tube is more complicated than the Dyn1 tube
18 (Chappie et al., 2011) because it not only contains a globular density
19 corresponding to the leg of Dyn1 but also contains another density corresponding
20 to the extension of S-OPA1 stalk (**Figures 3C, 3D, 3E and S3B**). Sequence
21 analysis does not suggest a membrane binding domain of S-OPA1 explicitly,
22 however, we were surprised to find the Dyn1 PH domain could fit into the globular
23 density very well (**Figures 3C, 3D and 3E**), suggesting S-OPA1 would have a
24 globular membrane binding domain (GMB) with a comparable size of PH domain
25 and this GMB domain interacts with the mitochondrial inner membrane. The
26 corresponding sequence of such domain would be located between the middle
27 and GED domain (**Figures 1A and S5A**).

28 The current resolution of the map could not determine the linkage between
29 the stalk and the GMB domain. However, according to the packing of S-OPA1 on
30 the tube, there are only two possible conformations, a kinked conformation with

1 the GMB domain right underneath its own stalk region or an extended
2 conformation with the GMB domain stretching into the nearby interstice (**Figure**
3 **3F**).

4 Overall, based on the present cryo-EM density of S-OPA1 coated tube, we
5 observed two membrane binding sites of S-OPA1, one is located at its GMB
6 domain and another at the extension of its stalk domain (**Figure S3B**).

7 **S-OPA1 dimer is the building block of its helical array on liposomal tube**

8 The helical reconstruction imaging processing procedure indicated S-OPA1
9 coated tube has a 6-fold symmetry and contains six helical starts. By fitting
10 crystal structures of Dyn1 domains, we found the asymmetric unit of S-OPA1
11 packing array contains two copies of S-OPA1 molecules that form a dimer (blue
12 and gray in **Figure S3C**). There are two possible forms of S-OPA1 dimer
13 according to the packing array, one is called here the short dimer (green in
14 **Figure S3C**) and the other defined as the long dimer (pink in **Figure S3C**). The
15 short dimer utilizes the tip-to-tip interactions of their stalk domains to form the
16 dimerization interface while the long dimer is more extended and its dimerization
17 interface is mediated by their stalks bundle-to-bundle interactions. Our
18 subsequent structural analyzes by comparing structures of S-OPA1 coated tubes
19 in different nucleotide binding states suggest the short dimer is more likely the
20 building block of S-OPA1 assembly on liposome (see context below and also
21 **Figure S8A**). Thus, in the following structural analysis and comparison, we will
22 only focus on the short dimer.

23 We then investigated how the S-OPA1 dimers assemble on the liposomal
24 tube. By following the helical symmetry, the S-OPA1 short dimers assemble into
25 a single helical turn and then form one start of the packing array (**Figure 3B**).
26 However, for each start, the building blocks are not close enough to form
27 interactions. The packing array needs to be stabilized by the interactions among
28 different starts and we found such interactions are mediated by bundle-to-bundle
29 interfaces of stalks (**Figures 3B and 3C**). These stalk interactions are the main
30 factors to stabilize the S-OPA1 helical structure. In addition to the stalk

1 interactions, we noticed the G domains of S-OPA1 in adjacent helical starts are
2 facing each other with their dimerization interfaces opposed, which leaves a
3 potential for the subsequent change of S-OPA1 array (**Figure 3C, 1**).

4 **S-OPA1 membrane tubulation activity is independent with its GTPase**
5 **activity**

6 Our observation that S-OPA1 can induce tubulation of liposome without the
7 addition of nucleotide has suggested the tubulation activity of S-OPA1 is
8 independent with its GTP hydrolysis activity. To further validate this assumption,
9 we performed mutagenesis. The high sequence conservation of G domains
10 among dynamin proteins enabled us to identify the locations (a.a. 297-302 and
11 319-327) of the key catalytic residues of S-OPA1 (**Figure S4A**) at its P loop and
12 switch I (Schmid and Frolov, 2011). All the mutants Q297E, S298A, G300E,
13 T302N and T323A kept their wild-type abilities to bind to liposome but lost their
14 liposome induced GTPase activities (**Figures 4A, 4B and Table S1**). However,
15 interestingly, their tubulation activities did not change significantly by examining
16 their liposomal tubes using nsEM (**Figure 4C**). These results confirm S-OPA1
17 can deform membrane without the need of GTP hydrolysis and further suggest
18 the GTP hydrolysis of S-OPA1 occurs most likely after the liposomal tubulation.

19 **S-OPA1 has a potential amphipathic helix involved in membrane tubulation**

20 Next, we sought to identify the factors to affect S-OPA1 membrane tubulation
21 activity. The above structural analysis suggests the GMB domain of S-OPA1
22 would be presumably responsible for S-OPA1 membrane binding and
23 deformation. Sequence analysis suggests such GMB domain would correspond
24 to the residues from 734 to 850 in S-OPA1 (**Figure S5A**). Subsequent secondary
25 structure prediction and helical wheel analysis (Alan Bleasby, pepwheel,
26 <http://www.bioinformatics.nl/cgi-bin/emboss/pepwheel>) identified a possible
27 amphipathic helix between E794 and K800 (**Figure S5B**). Previous studies have
28 discovered the important role of an amphipathic helix in membrane remodeling
29 (Shen et al., 2012). We thus performed mutagenesis to investigate this

1 susceptible amphipathic helix in S-OPA1 GMB domain for its role in membrane
2 tubulation.

3 We constructed five mutants of S-OPA1 by mutating the region 794-800 to all
4 alanine residues (794-800A), or by point mutations (E794AE795A, K797AK800A,
5 L795EM798EL799E and L795AM798AL799A). Compared to wild type, the five
6 mutants exhibited moderate suppression on membrane binding suggesting this
7 region partially involves in membrane binding via hydrophobic interaction (**Figure**
8 **5A**). However, we observed more significant effects of these mutants upon their
9 liposome induced GTPase activity (**Figure 5B and Table S1**) and membrane
10 tubulation activity (**Figure 5C**). The mutants 794-800A, L795EM798EL799E and
11 L795AM798AL799A completely lost their liposome induced GTP hydrolysis
12 activities and membrane tubulation activities. While, these activities of mutants
13 E794AE795A and K797AK800A were also greatly reduced. As a result, the
14 predicted amphipathic helix of GMB domain would be one of the major factors
15 involved in S-OPA1 induced membrane tubulation procedure, which most likely
16 inserts hydrophobic residues into the membrane (Drin and Antonny, 2010). The
17 reduced or abolished membrane tubulation activities therefore affect the
18 subsequent membrane induced GTP hydrolysis activity.

19 In addition, the above cryo-EM map based structural analyzes have identified
20 two membrane binding sites of S-OPA1. The mutagenesis studies here indicated
21 a less important role of the predicted amphipathic helix of the GMB domain in
22 membrane binding. Therefore, another identified stalk tip region of S-OPA1 would
23 play a more important role for S-OPA1 bound to membrane.

24 **Nucleotide binding induces a reduced curvature of S-OPA1 coated tube**

25 Since the GTPase activity of S-OPA1 is indispensable for its fusion in
26 promoting mitochondrial inner membrane fusion (Ban et al., 2010), we sought to
27 study how nucleotide binding could take effect on the S-OPA1 coated liposomal
28 tube. Significant conformational changes of dynamin proteins after nucleotide
29 binding have been observed for Dyn1 and Dnm1 (Chappie et al., 2011; Frohlich
30 et al., 2013; Mears et al., 2011).

1 We incubated excess GTP or its non-hydrolyzed or slowly hydrolyzed
2 analogs (GMPPCP, GMPPNP and GTP γ S) with the wild type and truncated S-
3 OPA1 coated liposomal tubes for 30 mins and examined the tubes by cryo-
4 electron microscopy (**Figure S6A**). We surprisingly found that the diameters of
5 the tubes were all increased from the original ~ 53 nm to 70~80 nm (**Figure**
6 **S6B**), which is in contrast to the phenomena observed for Dyn1 and Dnm1,
7 where a constricted diameter was observed after nucleotide binding (Chappie et
8 al., 2011; Frohlich et al., 2013; Mears et al., 2011). Besides the expansion of the
9 tube diameter and the reduction of the tube curvature, compared to the
10 nucleotide-free state, the binding of nucleotide also decreases the homogeneity
11 of the S-OPA1 coated tubes with a wide range of tube diameters (**Figure S6B**),
12 suggesting an increased variability of S-OPA1 in the nucleotide bound state.

13 We observed the instability of the S-OPA1 coated liposomal tubes after
14 incubating with GTP, which might be due to the subsequent GTP hydrolysis.
15 Thus, we selected GTP γ S bound state (truncated S-OPA1 coated) for the
16 subsequent structural studies because this sample is stable enough and relative
17 homogenous in comparison with other states. Helical reconstruction technique
18 failed due to the variable diameters. We therefore utilized cryo-ET and SVA to
19 analyze the assembly of GTP γ S bound S-OPA1 on the liposomal tube (**Figures**
20 **S6C, S6D, S6E and S6F**).

21 **A loosened helical lattice of S-OPA1 coated tube after nucleotide binding**

22 Compared to the nucleotide-free state, the 23 Å cryo-EM map (see **Figure**
23 **S6F**) of S-OPA1 coated tube with GTP γ S bound also shows four layers of
24 densities, the outer head region, the middle stalk region, the inner leg region, and
25 the innermost membrane region (**Figures 6A and 6B**). However, after GTP γ S
26 binding, the interlaced stalks of S-OPA1 rotate ~20° clockwise and the distance
27 between neighboring stalk rungs expand ~55 Å leaving significant gaps, which
28 results in a reduced compactness of S-OPA1 assemble and a loosened helical
29 lattice (**Figure 6A**).

1 We then docked the aforesaid crystal structures of Dyn1 domains into the
2 cryo-EM density (**Figure 6C**). The structure of G/BSE domain can be well fitted
3 into the head region (green in **Figures 6C and 6D**) and the middle/GED domain
4 well fitted into the middle stalk region (blue in **Figure 6C and 6D**). The potential
5 dimerization interfaces of S-OPA1 G domains still exist between neighboring
6 rungs (**Figure 6C**) while the distance between the G domains becomes closer
7 (compared to nucleotide-free state) but still not close enough to form dimer
8 (**Figure S7A**), indicating further conformation adjustment needed for the
9 subsequent GTP hydrolysis.

10 For the inner leg region, there are two pieces of densities. One (purple in
11 **Figure 6D**) is underneath the stalk region and would account for the extension of
12 the stalk tip of S-OPA1 for membrane interaction. Another globular density
13 (yellow in **Figure 6A**) lies underneath the gap between the parallel stalks, which
14 can be well fitted with a dimer of PH domain of Dyn1 (**Figures 6C and 6D**) and
15 thus presumably account for the dimerized GMB domains. The above structural
16 analyzes of S-OPA1 in nucleotide-free state suggest two possible conformations
17 of S-OPA1, the kinked and the extended ones with two possible locations of its
18 GMB domain (**Figure 3F**). However, the cryo-EM density here suggests after
19 nucleotide binding the GMB domain of S-OPA1 deflects to the stalk flank and
20 stays away from the stalk. Thus, an extended configuration of S-OPA1 monomer
21 is more possible (**Figure 6E**).

22 By investigating the packing array of S-OPA1, we also found that the
23 asymmetric unit of S-OPA1 coated tube after GTP γ S binding contains two copies
24 of S-OPA1 molecules, which can form either a short dimer or a long dimer
25 (**Figure S7B**). In consistency with the above nucleotide-free one, the short dimer
26 with GTP γ S bound utilizes the same interaction interfaces (**Figure 7B**). While the
27 long dimer in the GTP γ S bound map has a completely different interface with the
28 one in the nucleotide-free state (**Figure S8A**). Thus, by combining two cryo-EM
29 maps of S-OPA1 coated tube in both nucleotide-free and bound state, we
30 concluded the short form of S-OPA1 dimer is the building block when it binds to
31 membrane and starts to assembly. We further compared this dimer of S-OPA1

1 with other dynamins dimers (Dyn1, MxA and Drp1) that are involved in
2 membrane fission and found their significant differences (**Figure S8B**). The S-
3 OPA1 utilizes the stalks tip-to-tip interaction for dimerization while other dynamins
4 utilize the bundle-to-bundle interaction of stalks for dimerization.

5 **A significant conformational change of S-OPA1 after nucleotide binding**

6 Next we further analyzed the conformational changes of S-OPA1 upon
7 nucleotide binding by comparing the structural models of S-OPA1 coated tubes in
8 nucleotide-free and GTP γ S bound states. Superimposing the short dimers of S-
9 OPA1 (extended conformation) in two states reveals a significant motion of G
10 domain (**Figure 7A and Movie S2**), yielding an open conformation of S-OPA1
11 after GTP γ S binding.

12 The assembly array of S-OPA1 on the tube exhibits even more significant
13 changes after GTP γ S binding (**Figures 7B, 7C and Movies S3 and S4**). When
14 overlapping the two helical tubes along the vertical direction, a clockwise rotation
15 ($\sim 20^\circ$) of the S-OPA1 short dimer was observed and the distance between the
16 short dimers in the same helical rung is increased ~ 6 Å. Such rotation eliminates
17 the stalk bundle-to-bundle interactions among different helical rungs that are
18 important for the stabilization of nucleotide-free protein-membrane complex
19 (**Figure 3D**). However, a new interface between the short dimers in the same
20 helical rung forms after the structural rotation, which is mediated via a new kind
21 of stalk bundle-to-bundle interactions and thus stabilizes the structure of GTP γ S
22 bound protein-membrane complex. Besides the structural rotation, the movement
23 of the S-OPA1 short dimer was also observed, which yields an increased
24 distance of ~ 26 Å between dimers in adjacent rungs (**Figures 6C and 6D**).

25 Overall, GTP γ S binding induces a conformational change of S-OPA1
26 (majorly the movement of G domain) without changing the general architecture of
27 the tube building block. And this conformational change causes the rotation of the
28 S-OPA1 dimers and enlarges the intervals between neighboring dimers, which
29 eventually results an expansion of the helical tube.

30

1 DISCUSSION

2 Membrane fission and fusion are very important processes in eukaryotic cells
3 for organelle communication, matter exchange and cargo transportation. Owing
4 to the specific double-membrane structure, the fission and fusion of mitochondria
5 are more complicated than plasma membrane and other organelles. With the
6 fruitful structural information of Mfn1/2 and Drp1/Dnm1, the molecular
7 mechanisms of mitochondrial outer membrane fusion and fission have been
8 extensively investigated (Cao et al., 2017; Frohlich et al., 2013; Kalia et al., 2018;
9 Mears et al., 2011; Qi et al., 2016; Yan et al., 2018). However, with the lack of the
10 structure of OPA1, we know little about the molecular mechanism of
11 mitochondrial inner membrane fusion. Compared to Mfn1/2, the primary structure
12 of OPA1 is more like Dyn1 that is physiologically involved in membrane fission.
13 How a membrane-fission-like protein could play a role in membrane fusion has
14 been a puzzle in the field for a long time. In addition, unlike other membrane
15 fusion/fission proteins, OPA1 has multiple isoforms and needs to be processed
16 from a long membrane anchored form (L-OPA1) to a short soluble form (S-OPA1)
17 for an efficient mitochondrial inner membrane fusion, which suggests a strictly
18 regulated dynamics of mitochondrial inner membrane.

19 In the present study, we investigated the interactions between S-OPA1 and
20 liposome that comprises the phospholipid composition of mitochondrial inner
21 membrane, and then we utilized cryo-electron microscopy approach to resolve
22 the structures of S-OPA1 coated on membrane in both nucleotide-free and
23 GTPyS bound states. Like other dynamin proteins, S-OPA1 can bind to
24 membrane and induce membrane tubulation by forming a helical array. We found
25 such tubulation process is independent with the GTP hydrolysis activity of S-
26 OPA1. While the GTPase activity of S-OPA1 can be significantly enhanced upon
27 binding to membrane.

28 We found S-OPA1 has a typical architecture of dynamin family and
29 comprises a global G domain, a long stalk region and a globular membrane
30 binding (GMD) domain. Analyzing cryo-EM densities reveal two membrane

1 binding sites of S-OPA1, one is located in its GMD domain and another belongs
2 to the extention portion of its stalk region. We further identified an amphipathic
3 helix located in the GMD domain and found this helix contributes partially to
4 membrane binding but determines the membrane tubulation activity of S-OPA1.
5 Indeed, previous literatures have suggested the relations between diseases and
6 the mutations at the stalk and GMD regions in OPA1 (see **Table S2**).

7 We deduced the building block of S-OPA1 helical array on the membrane is a
8 dimer, which utilizes the tip-to-tip interaction of stalk regions to form the interface.
9 Such dimer organization is significantly different with other dynamin proteins
10 (Faelber et al., 2011; Ford et al., 2011; Reubold et al., 2015). The bundle-to-
11 bundle interactions among stalk regions play key roles in the stability of S-OPA1
12 coated liposomal tubes. The G domain dimerization interface, which is important
13 for the GTP hydrolysis activity of dynamin proteins, is not formed in the helical
14 array of nucleotide-free S-OPA1, suggesting the GTP hydrolysis is a late-stage
15 event after membrane remodeling by S-OPA1.

16 We observed a significant conformational change of S-OPA1 after GTP γ S
17 binding, which includes the relative motion between G domain and stalk, the
18 global rotation of stalk region and the re-arrangment of S-OPA1 helical lattice.
19 Here we defined the conformation of S-OPA1 in its nucleotide-free state as a
20 close conformation and the one with GTP γ S bound as an open conformation. On
21 the contrary to the conventional dynamin proteins that induce a more crowded
22 packing and a constricted tube with a smaller diameter and higher curvature
23 (ready for fission) after nucleotide binding (Chappie et al., 2011; Mears et al.,
24 2011; Sundborger et al., 2014), the conformational change of S-OPA1 from close
25 to open after GTP γ S binding results an expanded tube with an increased
26 diameter and reduced membrane curvature. This implies a different role of S-
27 OPA1 in membrane remodeling in comparison with other dynamin proteins.

28 There is a hypothesis of a mechanochemical mechanism of protein induced
29 membrane remodeling adopted by Dyn1 (Chappie et al., 2011). The protein
30 utilizes the energy generated from binding and hydrolysis of GTP to achieve a

1 conformational change. Such conformational change would deform the
2 membrane and successfully transform the chemical energy into mechanical
3 changes. Since S-OPA1 shows a similar G domain conformational change after
4 nucleotide binding like Dyn1 adopts, it would probably function through the same
5 mechanism on membrane remodeling. Although the resolution by cryo-electron
6 tomography and sub-tomogram averaging is not high, our observation does imply
7 a closer distance of S-OPA1 G domains between two neighbor S-OPA1 short
8 dimer after GTP γ S binding, however such distance is still not close enough for G
9 domains dimerization. Thus, the structure of GTP γ S bound S-OPA1 we
10 determined is still not the state ready for GTP hydrolysis. We speculate it is due
11 to the subtle difference between GTP γ S and GTP, which yields a barrier for
12 future structural re-organization of S-OPA1 helical array to form dimerization of G
13 domains. Thus, in the physiological procedure, with GTP binding a further motion
14 of G domain and S-OPA1 dimer would occur to enable forming G domain
15 dimerization interface ready for GTP hydrolysis.

16 Previous studies showed that S-OPA1 alone could not trigger the fusion of
17 mitochondrial inner membrane and S-OPA1 needs to work together with L-OPA1
18 (Ban et al., 2017; Del Dotto et al., 2017; Song et al., 2007). During mitochondrial
19 inner membrane fusion, L-OPA1 would perform a more important role while the
20 addition of S-OPA1 would significantly increase the fusion efficiency (Ban et al.,
21 2017). In addition, the GTPase activity of S-OPA1 is indispensable for its fusion
22 related function (Ban et al., 2017). Those reveal an assumption that S-OPA1 will
23 assist the function of L-OPA1 with its GTPase activity during mitochondrial inner
24 membrane fusion. Thus, we speculate S-OPA1 facilitates the membrane fusion
25 by oligomerization together with L-OPA1, helping with the GTP hydrolysis and
26 conformational change of L-OPA1. Studies of Mgm1, the homolog of OPA1 in
27 yeast, indicated a similar situation in which the GTPase activity of L-Mgm1 (long
28 isoform) is inhibited because of the restriction of G domain movement by the
29 transmembrane helix (DeVay et al., 2009). The S-Mgm1 (short isoform) would
30 then bind to facilitate the generation of G dimer and accelerate GTP hydrolysis.

1 Though our current studies tried to understand OPA1 induced mitochondrial
2 inner membrane fusion, the precise cooperating mechanism of L-OPA1 and S-
3 OPA1 remains further elucidated. The high-resolution information of S-OPA1 and
4 L-OPA1 in different states need determined to unravel the molecular mechanism
5 of mitochondrial inner membrane fusion.

6

7

1 **MATERIALS AND METHODS**

2 **Protein expression and purification**

3 cDNA corresponding to the short S1 isoform of OPA1 was sub-cloned into
4 the pET32M-3C expression vector (from Wei Feng's Lab, IBP, CAS) with a N-
5 terminal Trx tag and a followed His6 tag. And there is a prescission protease
6 cleavage site exist between His tag and protein sequence. Mutants were
7 constructed in pET32M-3C/OPA1-S1 via PCR. All proteins were expressed in
8 Tranetta (DE3) bacteria cells (Transgene) and purified under the following
9 procedure. Cultures were grown at 37 °C until OD 600 nm reaching 0.8 and
10 induced with 0.2 mM IPTG for 18 hr at 16°C. The cells were collected by
11 centrifugation. Bacteria pellets were resuspended in lysis buffer containing 20
12 mM Tris-HCl (pH 8.0), 150 mM NaCl and 1 tablet of protease inhibitors cocktail
13 (Roche) and disrupted with ultra-sonication. Lysates were incubated with Ni-NTA
14 beads (Roche). After washing with the buffer containing 20 mM Tris-HCl (pH 8.0),
15 150 mM NaCl, 1mM DTT, and 10 mM imidazole, protein was cleaved by
16 prescission protease at 4°C overnight. After cleavage, protein was eluted with 20
17 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM DTT, 20 mM imidazole. The eluted
18 protein fraction was further purified by gel filtration chromatography using a
19 Superdex 200 10/300 GL column (GE Healthcare) in the buffer of 20 mM Tris-HCl
20 (pH 8.0), 150 mM NaCl, and 1 mM DTT. The elution volume of the column was
21 pre-calibrated using standard protein molecular weight markers. Purified proteins
22 were frozen in liquid nitrogen and stored at -80 °C.

23 **Preparation of S-OPA1 coated tubes**

24 The lipids (Avanti Polar Lipids) were mixed in the following ratio: 45%
25 palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 22% 1-palmitoyl-2-
26 oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 8% L- α -
27 lysophosphatidylinositol (PI), and 25% 1',3'-bis[1,2-dioleoyl-sn-glycero-3-
28 phospho]-sn-glycerol (cardiolipin). The indicated ratios of lipids were mixed in a
29 chloroform solution, evaporated for 4 hr in a vacuum desiccator and rehydrated in
30 the buffer of 20 mM Tris-HCl (pH 8.0), 1 mM EGTA, and 1 mM MgCl₂ to a final

1 concentration of 4 mg/ml. The resulting multi-lamellar liposomes were put
2 through five freeze/thaw cycles to make unilamellar liposomes. S-OPA1 protein
3 was then mixed with unilamellar liposomes 1:1 (m:m) at a final concentration of
4 1mg/ml in the buffer containing 20 mM HEPES (pH 8.0), 1 mM EGTA, and 1 mM
5 MgCl₂. The mixture was incubated at 16 °C for 30 min before preparing cryo-EM
6 samples. For tubes incubate with GTP and GTP non-hydrolyzed analogous, 10
7 mM nucleotide was then added with a final concentration of 1mM, and the
8 mixture was incubated for another 30 min.

9 For negative staining EM, 5 μ l of protein-lipid tubes was applied to glow-
10 discharged continuous carbon films and stained with uranyl acetate (2% w/v) for
11 1 min. Samples were visualized using a Tecnai Spirit electron microscope
12 (ThermoFisher Scientific) operating at 120 kV and image were recorded with an
13 Eagle camera.

14 Cryo-EM grids were prepared with Vitrobot Mark IV (ThermoFisher Scientific)
15 under 100% humidity. 3 μ l of protein-lipid tubes was applied to glow-discharged
16 Quantifoil R2/1 holey carbon grids, blotted, and plunged into liquid ethane. For
17 grids using for tomography data collection, homemade protein A coated colloidal
18 gold was added as a fiducial marker.

19 **Cryo-electron microscopy**

20 Images for helical reconstruction were recorded on a cryo-electron
21 microscope Titan Krios (ThermoFisher Scientific) operating at 300kV using
22 SerialEM software (Mastronarde, 2005). A Falcon-IIIEC camera (ThermoFisher
23 Scientific) was used at a calibrated pixel size of 1.42 \AA . A combined total dose of
24 50 e/ \AA^2 was applied with each exposure. Images were collected at 2-4 μ m
25 underfocus.

26 Tilt series data were collected on a cryo-electron microscope Titan Krios G2
27 (ThermoFisher Scientific) using SerialEM software (Mastronarde, 2005), with a
28 K2 direct electron detector (Gatan) operating in counting mode. Tilt series data
29 were typically collected from $\pm 45^\circ$ with 3° tilt increments at 3-5 μ m underfocus. A
30 combined dose of about 90 e/ \AA^2 was applied over the entire series.

1 **Helical reconstruction**

2 In total, 2112 movie stacks were collected. Motion correction and defocus
3 estimation for all these micrographs were performed using MotionCorr2 (Zheng
4 et al., 2017) and GCTF (Zhang, 2016) respectively. Micrographs with ice
5 contamination, poor Thon rings, too large defocus values (greater than 3 μ m)
6 were excluded before filament boxing. Good micrographs were then multiplied by
7 their theoretical contrast transfer function (CTF) for initial correction of CTF. 511
8 S-OPA1 tubes were boxed using e2helixboxer.py in the package of EMAN2
9 (Tang et al., 2007) with a 480 px box width. An initial segment was stack
10 generated from all these tubes with an overlap of 90% and an initial 3D model
11 was generated by back projection method using these segments and assigning
12 random azimuthal angles to them. The initial 3D model was then interpolated into
13 different ones with various diameters, and diameter classification was performed
14 through supervised 2D classification where models were generated by projecting
15 the 3D models with various diameters. Then for each diameter class, the
16 diffraction pattern for each tube was calculated and further classified. A main
17 class of tubes at \sim 53 nm diameter was sorted corresponding to its diameter and
18 diffraction pattern, and contains 6644 segments. The segment stack of the
19 selected class was then regenerated with the box size of 480 px and the box
20 overlap of \sim 94%. Initial helical parameters were calculated by indexing the layer
21 lines in the power spectrum of the boxed tubes. An initial helical rise of 27.0 \AA and
22 twist of 20.87 $^{\circ}$ were obtained and used for helical reconstruction through a real
23 space helical reconstruction algorithm IHRSR (Egelman, 2000, 2007). The helical
24 parameters finally converged to 25.87 \AA for the helical rise, and 20.86 $^{\circ}$ for the
25 helical twist. Then summed CTF² was divided for the final CTF correction of the
26 map reconstructed by IHRSR. SPIDER (Shaikh et al., 2008) was used for
27 negative B-factor sharpening. Resolution of the final map was estimated based
28 on the gold standard Fourier shell correlation (FSC)0.143 criterion.

29 **Tomographic reconstruction and sub-volume averaging**

1 Fiducial marker based tilt series alignment and gold erasure were performed
2 using AuTom (Han et al., 2017). And the tomographic reconstructions were
3 performed using IMOD (Kremer et al., 1996) with 2 times binning. No CTF
4 correction was performed at this step. For tomographic reconstruction, the radial
5 filter options were set at 0.35 cut off and 0.05 fall off. The sub volumes picked in
6 IMOD were extracted by RELION 1.4 (Scheres, 2012) and CTF model of each
7 particles was generated through RELION script that called CTFFIND4 (Rohou
8 and Grigorieff, 2015). Then 3D classification was carried with CTF correction and
9 the particles from selected classes were used for the final refinement. The initial
10 model for 3D classification and refinement is the random averaging of all particles
11 and low-pass filtered to 60 Å. Reported resolutions are based on the gold-
12 standard Fourier shell correlation (FSC) 0.143 criterion.

13 **Sedimentation assay**

14 Sedimentation assay was carried on as previous study (Ban et al., 2010).
15 Proteins was diluted to a concentration of 0.2 mg/ml in 20 mM Tris-HCl (pH 8.0),
16 300 mM NaCl, 1mM MgCl₂, 1mM EGTA, 1 mM DTT. Liposomes are the same as
17 the above tubulation assay. The liposomes were directly added to the protein
18 solution at a final concentration of 0.2 mg/ml and incubated at room temperature
19 for 30 min. Samples were centrifuged at 250,000 g in a S140AT rotor (Hitachi) for
20 20 min at 4°C. The supernatant and pellet were analyzed by SDS-PAGE.

21 **GTPase activity assay**

22 GTPase reactions were performed as previous studies (Ban et al., 2010) with
23 0.1 mg/ml protein and 0.1 mg/ml liposomes in 20 mM HEPES (pH 7.5), 1 mM
24 EGTA, and 1mM MgCl₂. GTP hydrolysis was quantified by monitoring the free
25 phosphate concentration using a malachite green assay (Leonard et al., 2005).
26 Reactions were initiated by the addition of GTP to 100 mM and incubation at
27 37°C. 20 µl mixtures were quenched with 5 µl of 0.5 M EDTA at regular time
28 points. After the addition of 150 µl malachite green solution, the free phosphate
29 concentration was monitored by the absorbance at 650 nm in a 96-well plate
30 reader (EnSpire 2300).

1 Calculation of Km and Kcat is based on Lineweaver-Burk plot with the
2 measurement at 6 different GTP concentration. The final GTP concentration was
3 set to 0.4, 0.5, 0.6, 0.8, 1.0, and 1.4 mM individually. Reactions were initiated by
4 the addition of 10 μ l GTP solution to a 10 μ l protein or protein liposome mixtures
5 in 20 mM HEPES (pH 7.5), 1 mM EGTA, and 1mM MgCl₂. After 1~2 h
6 incubation, which was set based on the activity of different mutants, at 37 °C, the
7 reactions were quenched with 10 μ l 0.1 M EDTA. The phosphate was quantified
8 using malachite green assay. 150 μ l malachite green solution was added and the
9 absorbance at 650 nm is monitored in a 96-well plate reader (EnSpire 2300). All
10 experiments were repeated at least three times.

11

12 **DATA AVAILABILITY**

13 Cryo-EM maps and models of S-OPA1 coated liposomal tubes have been
14 deposited into Electron Microscopy Data Bank and Protein Data Bank with the
15 accession codes EMD-XXXX/PDB-XXXX for the helical reconstruction of
16 nucleotide-free state, EMD-XXXX for the tomographic reconstruction of
17 nucleotide-free state and EMD-XXXX/PDB-XXXX for the tomographic
18 reconstruction of GTP γ S bound state, respectively.

19 **AUTHOR CONTRIBTUIONS**

20 F. S. initiated and supervised the project. D.Z. performed all experiments and
21 collected all data. Y.Z. performed image processing of helical reconstruction. D.Z.
22 and T.N. performed image processing of cryo-electron tomography and sub-
23 tomogram averaging. J.M. cloned the gene and performed initial protein
24 expression. W.C. performed initial cryo-EM work of S-OPA1 coated tube. X.P.
25 helped on liposome preparation and co-sedimentation experiments. Y.Z. helped
26 on protein production and purification. D.Z., Y.Z., and F.S. analyzed the data and
27 wrote the manuscript.

28 **ACKNOWLEDGMENTS**

1 We would like to thank Prof. Edward H. Egelman from University of Virginia for
2 his generous help on image processing of helical reconstruction. We are grateful
3 to Xue Wang (F.S. lab) for her initial trials of tubulation experiments. We would
4 also like to thank Ping Shan and Ruigang Su (F.S. lab) for their assistances. This
5 work was supported by National Natural Science Foundation of China
6 (31770794), grants from Chinese Academy of Sciences (XDB08030202) and the
7 Ministry of Science and Technology of China (2017YFA0504700). All the EM
8 works were performed at Center for Biological Imaging (CBI, <http://cbi.ibp.ac.cn>),
9 Institute of Biophysics, Chinese Academy of Sciences.

10 **COMPLIANCE WITH ETHICAL STANDARDS**

11 All authors declare that they have no conflict of interest. All institutional and
12 national guidelines for the care and use of laboratory animals were followed.

13 **COMPETING INTERESTS**

14 The Authors declare no Competing Financial or Non-Financial Interests.

15 **REFERENCES**

16 Akepati, V.R., Muller, E.C., Otto, A., Strauss, H.M., Portwich, M., and Alexander, C. (2008).
17 Characterization of OPA1 isoforms isolated from mouse tissues. *Journal of neurochemistry* **106**,
18 372-383.

19 Anand, R., Wai, T., Baker, M.J., Kladt, N., Schauss, A.C., Rugarli, E., and Langer, T. (2014). The i-
20 AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. *The*
21 *Journal of cell biology* **204**, 919-929.

22 Ban, T., Heymann, J.A., Song, Z., Hinshaw, J.E., and Chan, D.C. (2010). OPA1 disease alleles
23 causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and
24 membrane tubulation. *Hum Mol Genet* **19**, 2113-2122.

25 Ban, T., Ishihara, T., Kohno, H., Saita, S., Ichimura, A., Maenaka, K., Oka, T., Mihara, K., and
26 Ishihara, N. (2017). Molecular basis of selective mitochondrial fusion by heterotypic action
27 between OPA1 and cardiolipin. *Nature cell biology* **19**, 856-863.

28 Belenguer, P., and Pellegrini, L. (2013). The dynamin GTPase OPA1: more than mitochondria?
29 *Biochimica et biophysica acta* **1833**, 176-183.

30 Cao, Y.L., Meng, S., Chen, Y., Feng, J.X., Gu, D.D., Yu, B., Li, Y.J., Yang, J.Y., Liao, S., Chan, D.C., *et al.*
31 (2017). MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial
32 fusion. *Nature* **542**, 372-376.

33 Chappie, J.S., Acharya, S., Leonard, M., Schmid, S.L., and Dyda, F. (2010). G domain dimerization
34 controls dynamin's assembly-stimulated GTPase activity. *Nature* **465**, 435-440.

35 Chappie, J.S., Mears, J.A., Fang, S., Leonard, M., Schmid, S.L., Milligan, R.A., Hinshaw, J.E., and
36 Dyda, F. (2011). A pseudoatomic model of the dynamin polymer identifies a hydrolysis-
37 dependent powerstroke. *Cell* **147**, 209-222.

1 Del Dotto, V., Mishra, P., Vidoni, S., Fogazza, M., Maresca, A., Caporali, L., McCaffery, J.M.,
2 Cappelletti, M., Baruffini, E., Lenaers, G., *et al.* (2017). OPA1 Isoforms in the Hierarchical
3 Organization of Mitochondrial Functions. *Cell reports* **19**, 2557-2571.
4 DeVay, R.M., Dominguez-Ramirez, L., Lackner, L.L., Hoppins, S., Stahlberg, H., and Nunnari, J.
5 (2009). Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner
6 membrane fusion. *The Journal of cell biology* **186**, 793-803.
7 Drin, G., and Antonny, B. (2010). Amphipathic helices and membrane curvature. *FEBS letters* **584**,
8 1840-1847.
9 Egelman, E.H. (2000). A robust algorithm for the reconstruction of helical filaments using single-
10 particle methods. *Ultramicroscopy* **85**, 225-234.
11 Egelman, E.H. (2007). The iterative helical real space reconstruction method: surmounting the
12 problems posed by real polymers. *Journal of structural biology* **157**, 83-94.
13 Faelber, K., Posor, Y., Gao, S., Held, M., Roske, Y., Schulze, D., Haucke, V., Noe, F., and Daumke, O.
14 (2011). Crystal structure of nucleotide-free dynamin. *Nature* **477**, 556-560.
15 Ford, M.G., Jenni, S., and Nunnari, J. (2011). The crystal structure of dynamin. *Nature* **477**, 561-
16 566.
17 Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli,
18 D., Polishuck, R.S., Danial, N.N., De Strooper, B., *et al.* (2006). OPA1 controls apoptotic cristae
19 remodeling independently from mitochondrial fusion. *Cell* **126**, 177-189.
20 Frohlich, C., Grabiger, S., Schwefel, D., Faelber, K., Rosenbaum, E., Mears, J., Rocks, O., and
21 Daumke, O. (2013). Structural insights into oligomerization and mitochondrial remodelling of
22 dynamin 1-like protein. *The EMBO journal* **32**, 1280-1292.
23 Han, R., Wan, X., Wang, Z., Hao, Y., Zhang, J., Chen, Y., Gao, X., Liu, Z., Ren, F., Sun, F., *et al.*
24 (2017). AuTom: A novel automatic platform for electron tomography reconstruction. *Journal of
25 structural biology* **199**, 196-208.
26 Kalia, R., Wang, R.Y., Yusuf, A., Thomas, P.V., Agard, D.A., Shaw, J.M., and Frost, A. (2018).
27 Structural basis of mitochondrial receptor binding and constriction by DRP1. *Nature* **558**, 401-
28 405.
29 Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web
30 portal for protein modeling, prediction and analysis. *Nature protocols* **10**, 845.
31 Kremer, J.R., Mastronarde, D.N., and McIntosh, J.R. (1996). Computer visualization of three-
32 dimensional image data using IMOD. *Journal of structural biology* **116**, 71-76.
33 Labbe, K., Murley, A., and Nunnari, J. (2014). Determinants and functions of mitochondrial
34 behavior. *Annual review of cell and developmental biology* **30**, 357-391.
35 Leonard, M., Doo Song, B., Ramachandran, R., and Schmid, S.L. (2005). Robust Colorimetric
36 Assays for Dynamin's Basal and Stimulated GTPase Activities. *404*, 490-503.
37 MacVicar, T., and Langer, T. (2016). OPA1 processing in cell death and disease - the long and short
38 of it. *Journal of cell science* **129**, 2297-2306.
39 Mastronarde, D.N. (2005). Automated electron microscope tomography using robust prediction
40 of specimen movements. *Journal of Structural Biology* **152**, 36-51.
41 McNew, J.A., Sondermann, H., Lee, T., Stern, M., and Brandizzi, F. (2013). GTP-dependent
42 membrane fusion. *Annual review of cell and developmental biology* **29**, 529-550.
43 Mears, J.A., Lackner, L.L., Fang, S., Ingberman, E., Nunnari, J., and Hinshaw, J.E. (2011).
44 Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission.
45 *Nature structural & molecular biology* **18**, 20-26.
46 Naotada Ishihara, Yuu Fujita, Toshihiko Oka, and Mihara, K. (2006). Regulation of mitochondrial
47 morphology through proteolytic cleavage of OPA1. *The EMBO journal*.

1 Olichon, A., Elachouri, G., Baricault, L., Delettre, C., Belenguer, P., and Lenaers, G. (2007). OPA1
2 alternate splicing uncouples an evolutionary conserved function in mitochondrial fusion from a
3 vertebrate restricted function in apoptosis. *Cell death and differentiation* *14*, 682-692.

4 Praefcke, G.J., and McMahon, H.T. (2004). The dynamin superfamily: universal membrane
5 tubulation and fission molecules? *Nature reviews. Molecular cell biology* *5*, 133-147.

6 Qi, Y., Yan, L., Yu, C., Guo, X., Zhou, X., Hu, X., Huang, X., Rao, Z., Lou, Z., and Hu, J. (2016).
7 Structures of human mitofusin 1 provide insight into mitochondrial tethering. *The Journal of cell
8 biology* *215*, 621-629.

9 Raphael Gasper, Simon Meyer, Katja Gotthardt, Minhajuddin Sirajuddin, and Wittinghofer, A.
10 (2009). It takes two to tango: regulation of G proteins by dimerization. *Nature reviews molecular
11 cell biology*.

12 Reubold, T.F., Faelber, K., Plattner, N., Posor, Y., Ketel, K., Curth, U., Schlegel, J., Anand, R.,
13 Manstein, D.J., Noe, F., et al. (2015). Crystal structure of the dynamin tetramer. *Nature* *525*, 404-
14 408.

15 Rohou, A., and Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from
16 electron micrographs. *Journal of structural biology* *192*, 216-221.

17 Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein
18 structure and function prediction. *Nature protocols* *5*, 725-738.

19 Scheres, S.H. (2012). RELION: implementation of a Bayesian approach to cryo-EM structure
20 determination. *Journal of structural biology* *180*, 519-530.

21 Schmid, S.L., and Frolov, V.A. (2011). Dynamin: functional design of a membrane fission catalyst.
22 *Annual review of cell and developmental biology* *27*, 79-105.

23 Shaikh, T.R., Gao, H., Baxter, W.T., Asturias, F.J., Boisset, N., Leith, A., and Frank, J. (2008). SPIDER
24 image processing for single-particle reconstruction of biological macromolecules from electron
25 micrographs. *Nature protocols* *3*, 1941-1974.

26 Shen, H., Pirruccello, M., and De Camilli, P. (2012). SnapShot: membrane curvature sensors and
27 generators. *Cell* *150*, 1300, 1300 e1301-1302.

28 Song, Z., Chen, H., Fiket, M., Alexander, C., and Chan, D.C. (2007). OPA1 processing controls
29 mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. *The
30 Journal of cell biology* *178*, 749-755.

31 Sundborger, A.C., Fang, S., Heymann, J.A., Ray, P., Chappie, J.S., and Hinshaw, J.E. (2014). A
32 dynamin mutant defines a superconstricted prefission state. *Cell reports* *8*, 734-742.

33 Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke, S.J. (2007). EMAN2:
34 an extensible image processing suite for electron microscopy. *Journal of structural biology* *157*,
35 38-46.

36 van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial fission and
37 fusion. *Cold Spring Harbor perspectives in biology* *5*.

38 Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. *Nature reviews.
39 Molecular cell biology* *11*, 872-884.

40 Yan, L., Qi, Y., Huang, X., Yu, C., Lan, L., Guo, X., Rao, Z., Hu, J., and Lou, Z. (2018). Structural basis
41 for GTP hydrolysis and conformational change of MFN1 in mediating membrane fusion. *Nature
42 structural & molecular biology* *25*, 233-243.

43 Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015). The I-TASSER Suite: protein
44 structure and function prediction. *Nature methods* *12*, 7-8.

45 Zhang, K. (2016). Gctf: Real-time CTF determination and correction. *Journal of structural biology*
46 *193*, 1-12.

47 Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. *BMC bioinformatics* *9*, 40.

1 Zheng, S.Q., Palovcak, E., Armache, J.P., Verba, K.A., Cheng, Y., and Agard, D.A. (2017).
2 MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron
3 microscopy. *Nature methods* **14**, 331-332.
4 Zick, M., Duvezin-Caubet, S., Schafer, A., Vogel, F., Neupert, W., and Reichert, A.S. (2009). Distinct
5 roles of the two isoforms of the dynamin-like GTPase Mgm1 in mitochondrial fusion. *FEBS letters*
6 **583**, 2237-2243.

7

8

1

FIGURES AND LEGENDS

2 **Figure 1. Purification and characterization of S-OPA1.** (A) Domain
3 organization of OPA1. MTS, mitochondrial targeting sequence; TM,
4 transmembrane region; G, G domain; Middle, middle domain; GMB, global
5 membrane binding domain; GED, GTPase effector domain. The proteolytic
6 cleavage site S1 in isoform 1 at the 195th amino acid is indicated by black
7 triangle. (B) SDS-PAGE and native PAGE of wild type S-OPA1 and its truncation
8 form (Δ 196-252). (C) Size exclusion chromatography of S-OPA1 using Superdex
9 200 10/300 GL column (GE Healthcare). The elution volume of the column was
10 pre-calibrated using standard protein molecular weight markers. (D) Base and
11 liposome-binding induced GTPase activity of S-OPA1 and Δ 196-252. The total
12 free phosphate was measured at each time point and data presented come from
13 3 independent experiments. (E) Negative stain electron micrographs of S-OPA1
14 coated tubes, scale bar: 200 nm. (F) Cryo electron micrographs of S-OPA1
15 coated tubes. Scale bar: 100 nm.

16

17 **Figure 2. 3D reconstruction of nucleotide-free S-OPA1 coated tubes.** (A)
18 Side view of cryo-EM map of S-OPA1 coated tube. Other than membrane, the
19 map is subdivided and colored radially into three layers denoting “leg” (yellow),
20 “stalk” (blue), and “head” (green and cyan). The outer diameter and pitch are
21 labeled. (B) Radical cross-section of the tube. The inner diameter is labeled.
22 Dashed black lines denote the planar sections that are rotated by 90° and shown
23 in (D). (C) Cross-section of the tube along the solid vertical black line in (B). The
24 leg, stalk, head, and membrane bilayer density are labeled and colored as in (A).
25 (D) Corresponding cross sections of the tube along the dashed black lines in (B).
26 The density color scheme is same with (A). (E) Sub-volume averaging of S-OPA1
27 coated tube at nucleotide-free state. The map was viewed at the side (left panel),
28 end-on (middle panel) and section (right panel) as (A), (B) and (C),
29 correspondingly.

30

1 **Figure 3. Docking crystallized fragments of dynamin1 into cryo-EM map of**
2 **nucleotide-free S-OPA1 coated tube. (A)** Crystal structure of nucleotide-free
3 human Dyn1 (Faelber et al., 2011) (PDB ID 3SNH). The structure is separated
4 into G/BSE region, middle/GED stalk region and PH domain, respectively. **(B)**
5 Docking structural fragments of nucleotide-free human Dyn1 into cryo-EM map
6 (transparent gray) of nucleotide-free S-OPA1 coated tube. G/BSE domains are
7 colored green, and middle/GED stalk are colored blue. Building blocks in two
8 different helical starts are colored orange and pink, respectively. **(C)** Slicing cross
9 sections of the tube showing the fitness between structural model and the map.
10 The positions of cross sections are same with **Figure 2D** and (E). Black circles in
11 panel 1 indicate potential G dimer interface. Solid line circle in panel 2 highlights
12 bundle-to-bundle stalk interface and dashed line circle for the tip-to-tip stalk
13 interface. **(D)** Zoomed-in view of radical cross-section showing the fitness
14 between structural model and the map. The PH domain of human dynamin 1 is
15 fitted into the leg density and the density belonging to the extension of the stalk is
16 shown in a higher threshold and colored in purple. **(E)** Vertical cross section of
17 the map that rotates 90° with respect to (D). Dashed black lines denote the
18 positions of the cross sections in (C). **(F)** Two possible monomer conformations
19 of S-OPA1, the extended form and the kinked one.

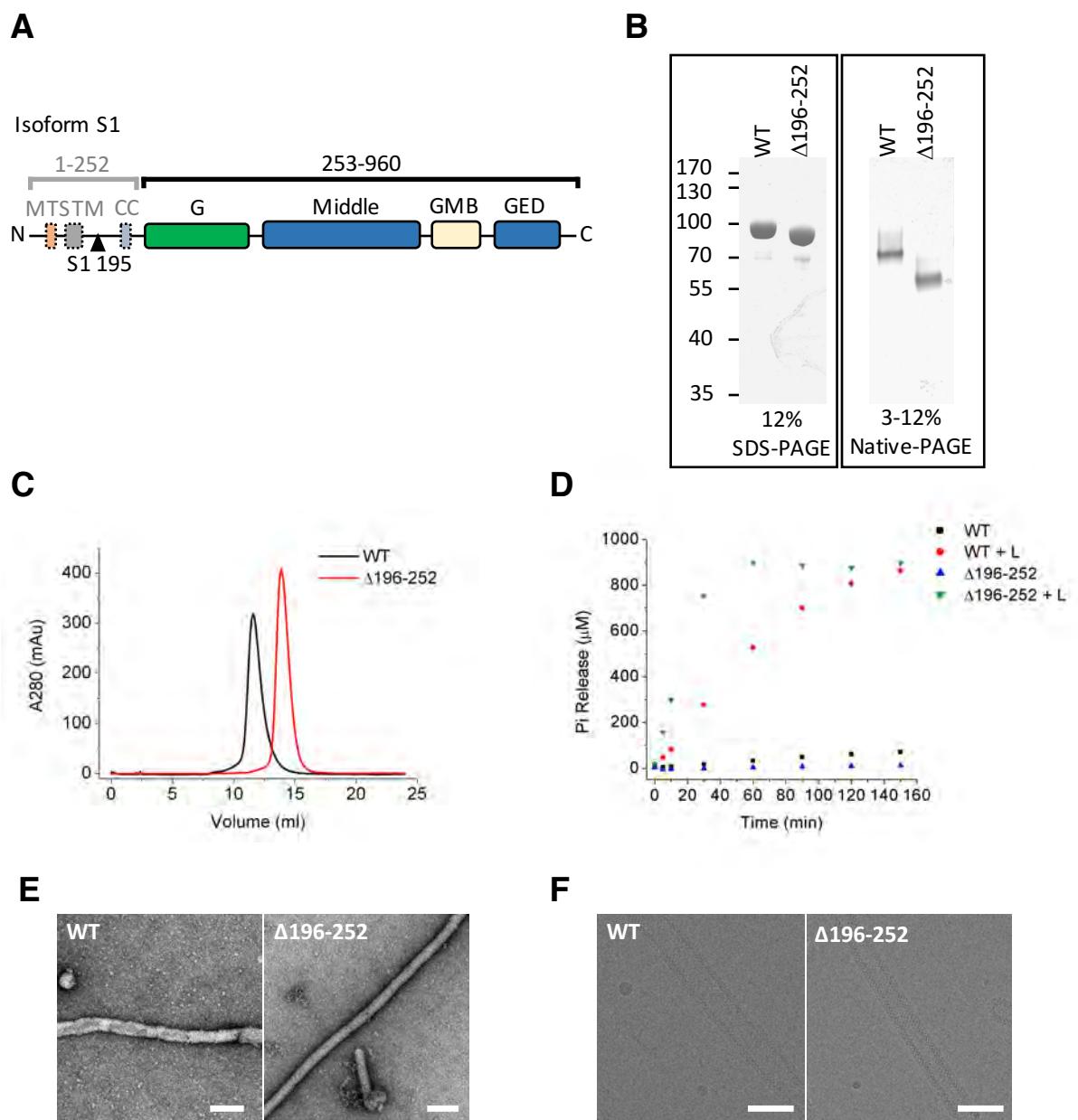
20

21 **Figure 4. Tubulation activity of S-OPA1 is independent with its GTPase**
22 **activity. (A)** Sedimentation of wild type S-OPA1 and its G domain mutants with
23 or without cardiolipin containing liposomes (n=3). S, supernatant; P, pellet; *,
24 P<0.01; **, P<0.001. **(B)** Basel (left panel) and liposome binding induced (right
25 panel) GTPase activity of wild-type S-OPA1 and its G domain mutants. L,
26 liposome. The total free phosphate was measured at each time point and data
27 presented result from 3 independent experiments. **(C)** Tubulation activity of wild-
28 type S-OPA1 and G domain mutants examined by negative stain electron
29 microscopy. Scale bar: 500 nm.

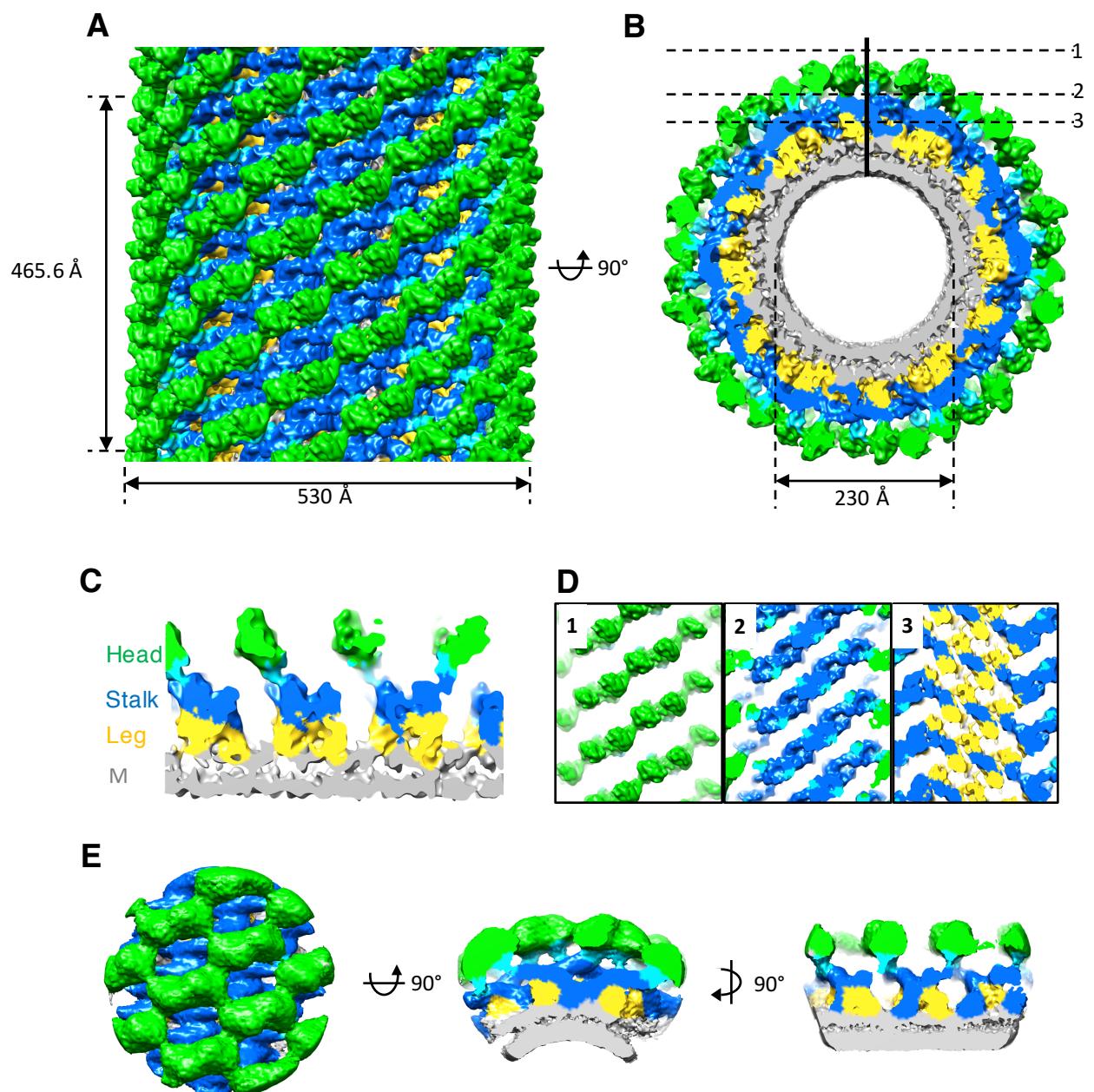
30

1 **Figure 5. A predicted amphipathic helix in S-OPA1 is indispensable for its**
2 **tubulation activity. (A)** Sedimentation of wild type S-OPA1 and its mutants with
3 or without cardiolipin containing liposomes (n=3). S, supernatant; P, pellet; *,
4 P<0.01; **, P<0.001. **(B)** Basel and liposome binding induced GTPase activity of
5 wild-type S-OPA1 and its amphipathic helix mutants. L, liposome. The total free
6 phosphate was measured at each time point and data presented come from 3
7 independent experiments. **(C)** Tubulation activity of wild-type S-OPA1 and its
8 mutants examined by negative stain electron microscopy. Scale bar: 500 nm.

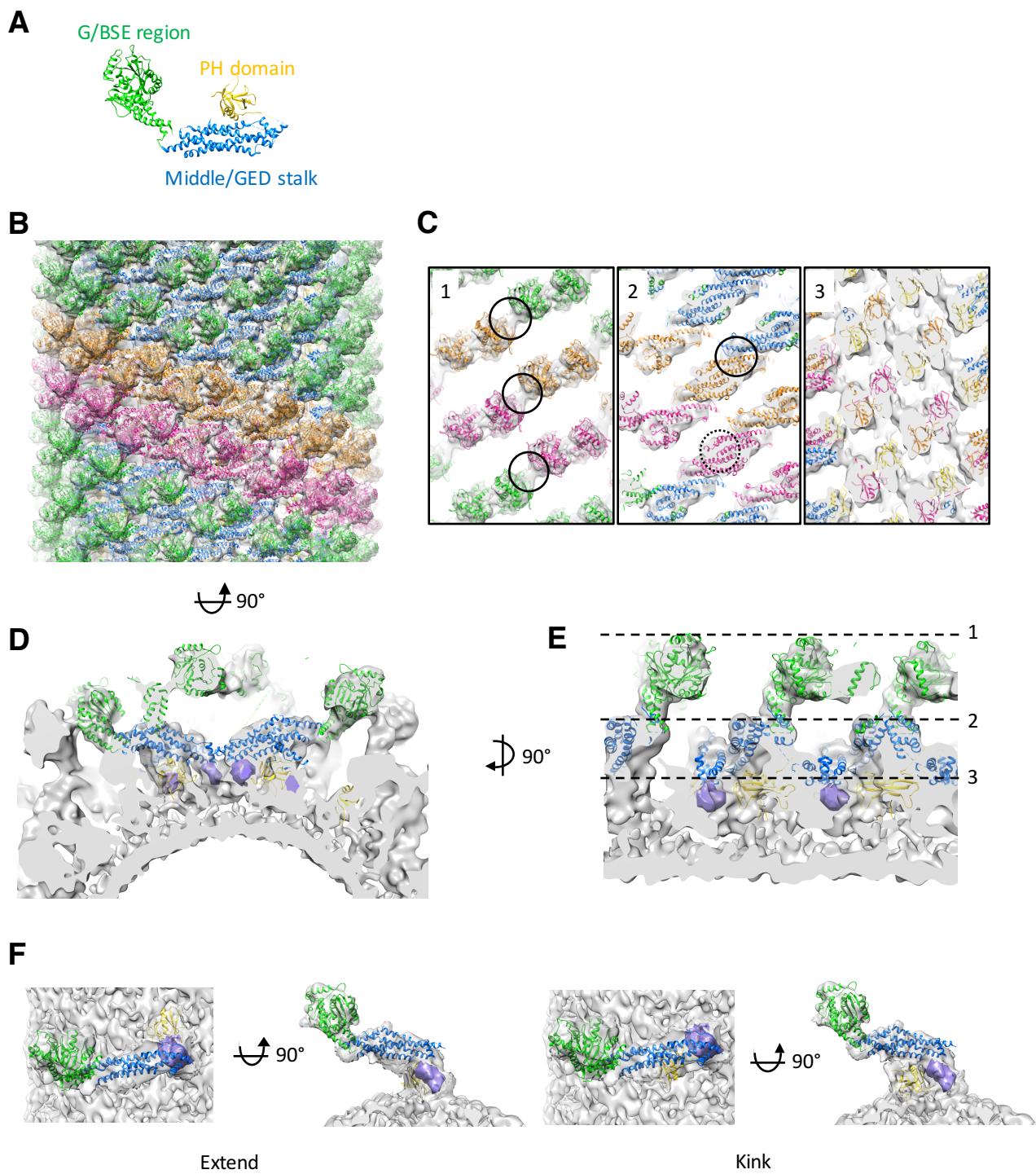
9

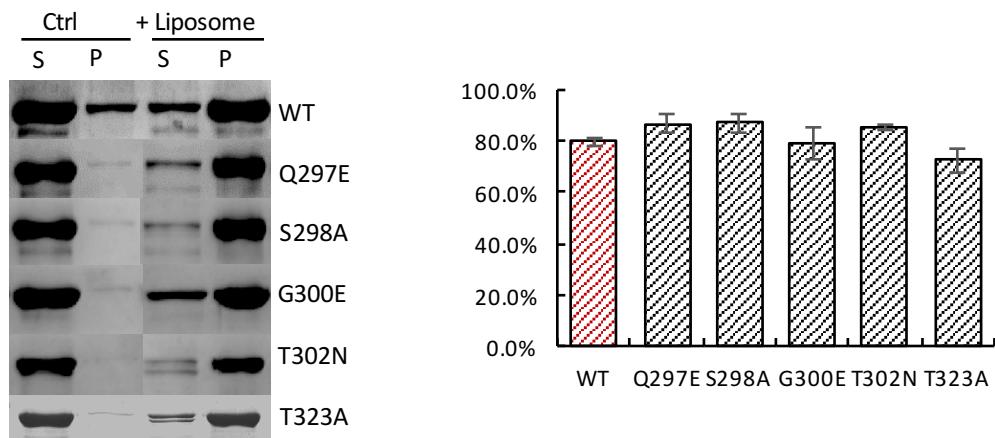
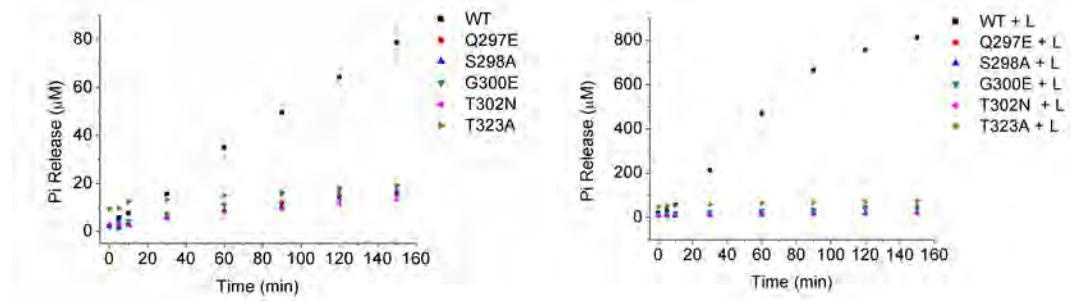
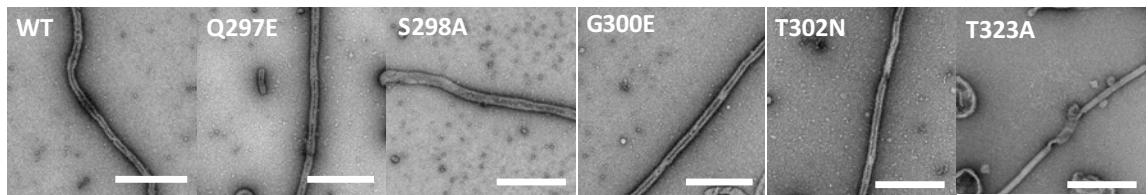

10 **Figure 6. Sub-tomogram averaging of S-OPA1 coated tube in GTP γ S bound**
11 **state. (A)** Side view of S-OPA1 coated tubes after adding GTP γ S. The map is
12 subdivided into three layers and colored with the same scheme in **Figure 1**. **(B)**
13 Cross-section view of the map that is rotated 90° from (A). **(C)** Docking structure
14 fragments of dynamin 1 into the map in (A). **(D)** Cross section views of the map
15 that is rotated 90° from (C). The densities belonging to the extension of the stalk
16 are shown in a higher threshold and colored in purple. **(E)** Possible monomer
17 conformation of S-OPA1 in an extended form.

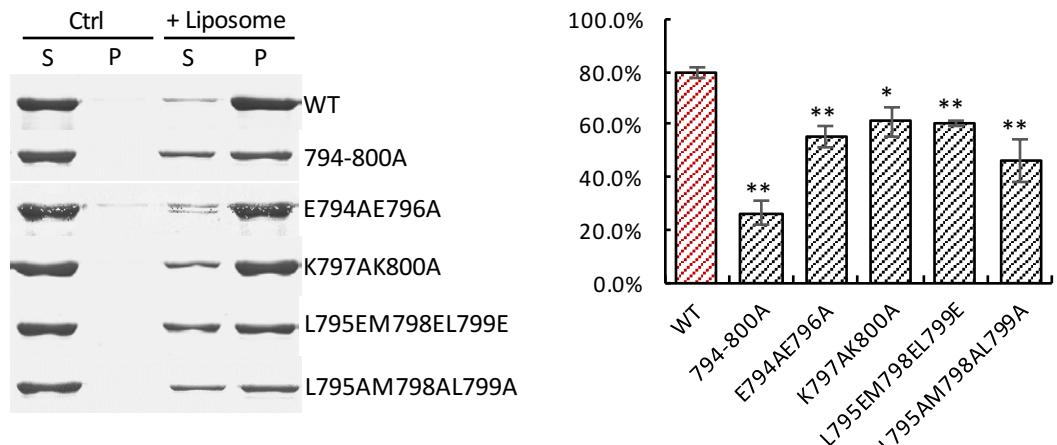
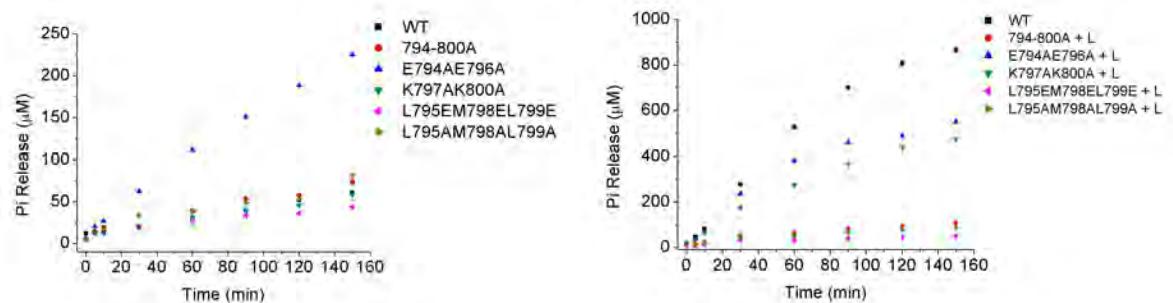
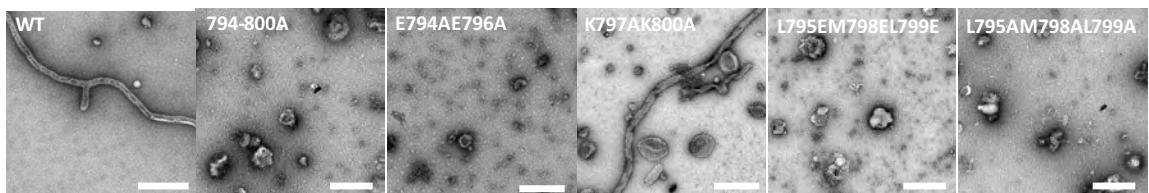
18


19 **Figure 7. A possible conformational change of S-OPA1 on lipid after GTP γ S**
20 **binding. (A)** Conformational change of S-OPA1 short dimer after GTP γ S binding.
21 The left panel shows the short dimer in a view perpendicular to the helical axis
22 and the right panel shows the view along the axis. Dimer in nucleotide-free state
23 is colored in purple and dimer in GTP γ S bound state is colored in yellow. Black
24 arrows indicate the direction of the conformational change. **(B)** Conformational
25 change of S-OPA1 helical lattice after GTP γ S binding. Four short dimers are
26 number from 1 to 4. The distances between the tips of stalks in a single building
27 block are labeled and indicated by black lines. Interactions between building
28 blocks as labeled in black cycle. **(C)** Cartoon representation of displacements
29 and rotations between building blocks during GTP γ S binding. Distances between

- 1 neighboring dimers are labeled and indicated by black lines. The black arrows
- 2 indicate the rotation of each S-OPA1 short dimer.


Figure 1




Figure 2

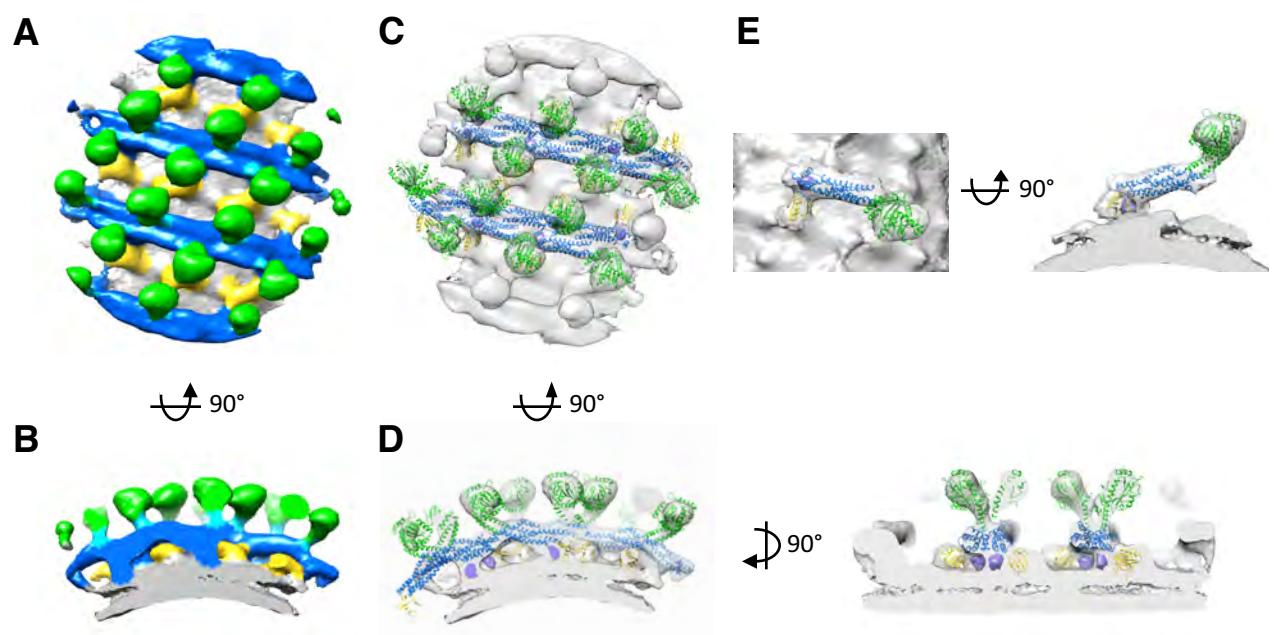

Figure 3

Figure 4**A****B****C**

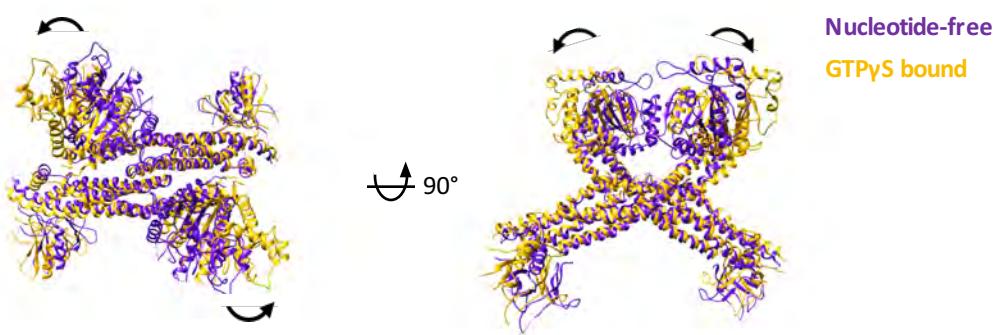

Figure 5**A****B****C**

Figure 6

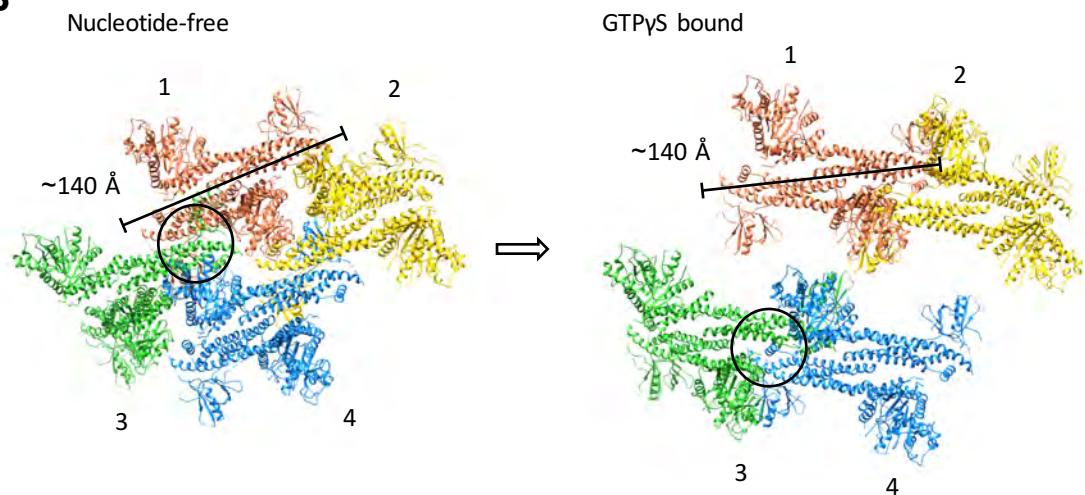
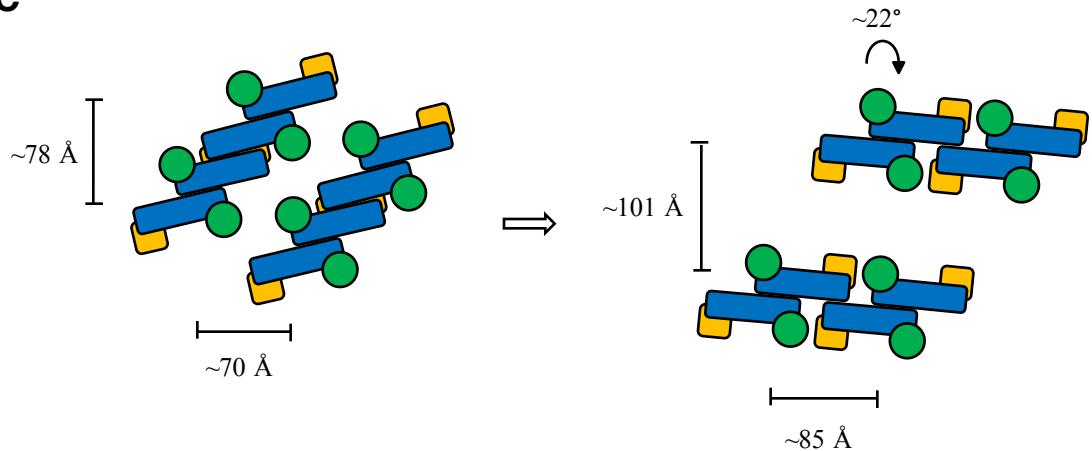


Figure 7


A

B

C

